[go: up one dir, main page]

JP4103428B2 - Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof - Google Patents

Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof Download PDF

Info

Publication number
JP4103428B2
JP4103428B2 JP2002104117A JP2002104117A JP4103428B2 JP 4103428 B2 JP4103428 B2 JP 4103428B2 JP 2002104117 A JP2002104117 A JP 2002104117A JP 2002104117 A JP2002104117 A JP 2002104117A JP 4103428 B2 JP4103428 B2 JP 4103428B2
Authority
JP
Japan
Prior art keywords
nox
catalyst
concentration
exhaust
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002104117A
Other languages
Japanese (ja)
Other versions
JP2003293745A (en
Inventor
大介 柴田
久 大木
孝太郎 林
忍 石山
尚史 曲田
正明 小林
孝宏 大羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002104117A priority Critical patent/JP4103428B2/en
Publication of JP2003293745A publication Critical patent/JP2003293745A/en
Application granted granted Critical
Publication of JP4103428B2 publication Critical patent/JP4103428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関し、特に排気浄化装置に設けられた触媒の特性に基ずく劣化判定方法に関する。
【0002】
【従来の技術】
排気中の窒素酸化物(NOx)を浄化する触媒の一つとして、酸素濃度過剰雰囲気(リーン雰囲気)でNOxを吸蔵し、排気中に還元剤である燃料を添加して酸素濃度低下雰囲気(リッチ雰囲気)にした時に吸蔵したNOxを放出し、活性化された触媒(Pt等)により燃料(HC)と反応させ、N2に還元して外気に排出する吸蔵還元型NOx触媒がある。
【0003】
このNOx触媒は、前記のように排気中のNOxをリーン雰囲気の時に吸蔵、リッチ雰囲気の時に放出するNOx吸蔵剤と、還元剤である燃料により、活性化されて排出されたNOxに還元反応を起こさせる貴金属触媒とから構成され、それぞれ吸蔵放出機能、活性化機能を組み合わせて排気を浄化している。
【0004】
ところで、内燃機関より排出される排気中には、NOxの他に硫黄成分から構成される硫黄酸化物(SOx)等の硫黄分を含んでおり、このSOxに代表される硫黄分も前記NOxと同様にNOx触媒に吸蔵される。しかし、この吸蔵されたSOxはNOxを放出還元する工程では放出することができず、よって該NOx触媒は、SOxを吸蔵することにより、NOxの吸蔵能力が低下することとなり、これをS被毒という。
【0005】
また、該NOx触媒を長期間使用する際、高温に晒されること等によって該NOx触媒の粒子構造が破壊されてNOx等との反応部位である表面積が減少し、触媒の浄化能力が低下することとなり、これをシンタリングという。
【0006】
前記のS被毒、シンタリング等が発生することにより、前記NOx触媒はその吸蔵能力が低下し、NOx触媒の浄化能力が低下することとなる。このため、従来より、希薄燃料内燃機関においてNOx触媒の劣化判定を可能にした技術が公開されている。例えば、特開平11−229858号公報には、NOx触媒の下流側にNOxセンサを設けて、燃料添加を行いNOxを浄化する際に、このNOxセンサよりの出力値を少なくとも2回測定し、この時の出力値の差や比が所定値を越えた場合にNOx触媒の劣化を判定する技術が開示されている。
【0007】
【発明が解決しようとする課題】
従来の技術は、NOxセンサにより排気中のNOx濃度を検出しているので、この検出結果によりNOx触媒の劣化程度を判定することができる。しかし従来の技術では、NOx触媒のNOx吸蔵能力を再生する再生手段である排気雰囲気をリーン雰囲気からリッチ雰囲気に変化させた際の、経時変化に基づくNOxセンサの出力値の変化、又はこの再生手段実行中から再生手段終了後にリーン雰囲気な状態で、所定時間離れた少なくとも2回のNOxセンサの出力値に基づいて該NOx触媒の劣化程度を判断するものである。
【0008】
つまりは、再生手段によりNOx触媒の再生を行う時に、NOx触媒の雰囲気をリーン雰囲気とリッチ雰囲気に切り替えてNOx触媒より排出されるNOx量に基づいてNOx触媒の劣化判定を行うものである。このため、NOxセンサに個体差があったり、リーン雰囲気からリッチ雰囲気に雰囲気を変えた場合に、その酸素濃度にばらつきがあった場合などにNOx濃度の検出結果が変化してしまい、NOx触媒の劣化程度を正しく判断することができない。
【0009】
本発明は上記問題に鑑みてなされたもので、NOxセンサの個体差や経時変化に左右されずに該NOx触媒の吸蔵能力の変化から触媒の劣化程度を判定することを課題とする。
【0010】
【課題を解決するための手段】
前記の問題を解決するために、酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒が、内燃機関の排気通路に設けられた排気浄化装置に設けられ、このNOx触媒の下流で排気中のNOx濃度を検出すると共に、排気雰囲気を所定の期間内に酸素濃度過剰雰囲気と酸素濃度低下雰囲気とに繰り返し変化させて前記NOx触媒中のNOxを断続的に排気中に放出させてこの放出されたNOx濃度を求め、所定の期間内で各々のNOx濃度の変化率及び変位差に基づいて該排気浄化装置の劣化状態を判定する排気浄化装置の劣化判定方法により劣化を判定する。
【0011】
また、酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒が、内燃機関の排気通路に設けられた排気浄化装置に設けられ、このNOx触媒の下流で排気中のNOx濃度を検出すると共に、排気雰囲気を所定の期間内に酸素濃度過剰雰囲気と酸素濃度低下雰囲気とに繰り返し変化させて、前記NOx触媒中のNOxを断続的に排気中に放出させる前と放出させた後とのNOx濃度の検出結果に基づいて該排気浄化装置の劣化状態を判定する排気浄化装置の劣化判定方法によって劣化を判定する。
【0012】
これらの劣化判定方法を行うために、内燃機関の排気通路中に設けられ酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒と、排気雰囲気を酸素濃度過剰雰囲気と酸素濃度低下雰囲気とに繰り返し変化させて前記NOx触媒中のNOxを断続的に放出させる再生手段と、前記NOx触媒の下流に設けられ排気中のNOx濃度を検出すると共に、前記再生手段によりNOx触媒の再生を実施した際にNOx触媒より断続的に放出されるNOx濃度を各々検出するNOx濃度検出手段と、前記再生手段によりNOx触媒の再生を所定の期間に連続して行い、この期間中に前記NOx濃度検出手段により検出したNOx濃度の変化率及び変位差に基づいて該触媒の劣化状態を判断する劣化判定手段とを備えた排気浄化装置の劣化判定装置を用いた。
【0013】
前記劣化判定装置は、前記再生手段を実施した際に前記NOx触媒より断続的に放出されるNOx濃度を各々検出するNOx濃度検出手段を有すると共に、この検出したNOx濃度の極大値を検出するNOx濃度極大値検出手段を有することとした。
【0014】
前記劣化判定装置は、前記NOx濃度検出手段により、前記再生手段によるNOx触媒の再生を実施する前と実施した後のNOx濃度を検出し、前記再生の実施前と実施後の検出値の差に基づいて該触媒の劣化状態を判断する劣化判定手段を備えることとした。
【0015】
NOx触媒に吸蔵されたNOxを放出してNOx触媒のNOx吸蔵機能を再生する際に、触媒雰囲気を酸素濃度過剰雰囲気から酸素濃度低下雰囲気にするために排気中に還元剤添加を行う。この還元剤添加を行った時にNOxがNOx触媒より放出されてNOx触媒下流に設けられたNOxセンサ等のNOx濃度検出手段で感知される。劣化していないNOx触媒ならば、還元剤が添加された際の反応の即応性、及びNOxの吸蔵量の多さから、還元剤と還元反応を行うよりも多くのNOxが放出されてNOx触媒下流にNOxが排出され、NOxセンサに排出量の大きな極大値(ピーク)が検出される。これに対して劣化した触媒ならば、その劣化により、還元剤が添加された際の即応性の低下、及びNOx吸蔵量の低下からNOx放出量が低下し、NOx触媒下流に設けられたNOxセンサのNOx排出量のピークが小さくなる。
【0016】
また、還元剤を添加することによりNOxが吸蔵されたNOx触媒を再生する際には、断続的に還元剤を添加し、NOx触媒に吸蔵されたNOxを繰り返し放出、還元する。この時、還元剤の各添加時におけるNOx濃度のピークも徐々に小さくなり、最終的にはNOx触媒に吸蔵されたNOxが全て放出され、排気中に存在するNOxを検出するのみになる。この時劣化していないNOx触媒は、単位時間、単位表面積あたりのNOx吸蔵能力の高さ、及びNOx放出能力の高さから、NOx触媒下流に流出するNOx量は還元剤添加前に比べて大幅に少なくなると共に、断続的にNOxを放出した際のNOx濃度のピークも急激に小さくなっていく。しかし、劣化したNOx触媒はNOx吸蔵能力及びNOx放出能力も低下しているため、NOx触媒下流に流出するNOx量は還元剤添加前に比べ、そのNOx量の低下は緩慢であり、また断続的にNOxを放出した際のNOx濃度のピークの低下も余り顕著に現れない。
【0017】
すなわち、本発明は、前記の特性に基づいて行われるものであり、劣化したNOx触媒と劣化していないNOx触媒で還元剤を複数回添加してNOx浄化工程を行う際に、排出されるNOx量のピークの差、及び複数回発生するピークの変化度合に基づいて劣化の判断を行う。これに加えて浄化工程を行う前のNOx触媒下流側のNOx濃度と浄化工程を行った後のNOx触媒下流側のNOx濃度の変化の差に基づいても該NOx触媒の劣化を判断する。
【0018】
前記NOxの浄化工程を行う際に発生するピークに基づいてNOx触媒劣化の判断を行う場合には、常に同じ条件で劣化判定を行う必要から、NOx触媒はそのNOx吸蔵量が満たされていること(飽和状態)が望ましい。また、同様にNOx触媒に流入する排気流量も安定した状態で測定を行うことが望ましい。
【0019】
前記浄化工程を行う前のNOx触媒下流側のNOx濃度と浄化工程を行った後のNOx触媒下流側のNOx濃度の変化の差に基づいて該NOx触媒の劣化を判断を行う場合にも、同じ条件で劣化判定を行う必要があることから、排気浄化工程を行う前にNOx濃度を測定する時は、NOx触媒はNOxにより飽和状態であるのが望ましい。また、排気浄化工程後にNOx濃度を測定するのは、NOx触媒にNOxが吸蔵されていない状態でのNOx触媒下流側のNOx濃度を測定することである。よって排気浄化工程後に限らずNOx触媒にNOxが吸蔵されていない状態、例えばコールドスタート後等にNOx触媒下流のNOx濃度を測定し、この値とNOx触媒が飽和状態でのNOx触媒下流NOxのNOx濃度を測定し比較対象として触媒劣化判定を行っても良い。
【0020】
次に、酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒が、内燃機関の排気通路に設けられた排気浄化装置に設けられ、このNOx触媒の上流と下流とで排気中のNOx濃度を検出してこの検出結果から該NOx触媒に吸蔵されるNOx量を検出し、このNOx量の検出結果に基づいて該排気浄化装置の劣化状態を判定することを特徴とする排気浄化装置の劣化判定方法によって触媒の劣化を判定する。
【0021】
この劣化判定方法を行うために、内燃機関の排気通路中に設けられ酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒と、内燃機関より排出されて前記NOx触媒に流入する排気中のNOx量を検出する触媒流入NOx量検出手段と、前記触媒より流出する排気中のNOx量を検出する触媒流出NOx量検出手段と、前記触媒流入NOx量検出手段と触媒流出NOx量検出手段とにより、検出されたNOx量の差より該NOx触媒に吸蔵されたNOx量を検出する吸蔵NOx量検出手段と、この吸蔵NOx量検出手段より検出されたNOx吸蔵量に基づいて該触媒の劣化状態を判定する劣化判定手段とを備えた排気浄化装置の劣化判定装置を用いた。
【0022】
前述のように劣化したNOx触媒は劣化していないNOx触媒に対して吸蔵能力が劣る。よって判定を行うNOx触媒の吸蔵量を算出し、予め算出されている劣化していないNOx触媒でのNOx吸蔵量と比較することで、判定を行うNOx触媒の劣化程度を判断する。NOxの吸蔵量を算出する手段としては、NOx触媒の上下流にNOxセンサを設けて排気中のNOx濃度を測定し、それぞれ含まれるNOxの差により求める方法がある。また、予めマップ等により内燃機関より排出されるNOx量が推定できるのならば、前記マップで推定されるNOx量と、NOx触媒下流側に設けたNOxセンサから算出されるNOx量の差より求めても良い。
【0023】
また、本発明を行うにあたっては、測定を開始する前のNOx触媒にはNOxが吸蔵されていないことが望ましい。NOx触媒の吸蔵量により判断を行うため、測定時に予めNOxが吸蔵されていると、予め吸蔵されていたNOx量だけNOx吸蔵量が減り、これにより劣化していないNOx触媒も劣化していると誤判断する可能性があるためである。
【0024】
以上の劣化判定方法を行うことにより、NOx触媒のNOx放出還元能力、NOx吸蔵能力の観点からNOx触媒の劣化判断を行うことが可能となる。また、NOxの放出量に基づく劣化判定方法を第1の劣化判定方法と定めると共に、NOxの吸蔵量に基づく劣化判定方法を第2の劣化判定方法と定める。この時に先ず第2の劣化判定方法を行うことにより、NOx触媒にNOxを吸蔵させて飽和状態とし、その後第1の劣化判定方法を行うことにより、これら第1及び第2の劣化判定方法を一連として行うことが可能である。
【0025】
【発明の実施の形態】
本発明に係る内燃機関の排気浄化装置の劣化判定装置及び方法を、ディーゼルエンジンシステムに適用した実施の形態について説明する。
【0026】
図1において、内燃機関(以下、エンジンという)1は、燃料供給系10、燃焼室20、吸気系30及び排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。以下、本ディーゼルエンジンシステムの構成について説明する。
【0027】
燃料供給系10は、サプライポンプ11、蓄圧室(コモンレール)12、燃料噴射弁13、遮断弁14、燃料添加ノズル17、機関燃料通路P1及び添加燃料通路P2等を備えて構成される。
【0028】
サプライポンプ11は燃料タンク(図外)からくみ上げた燃料を高圧にし、機関燃料通路P1を介してコモンレール12に供給する。コモンレール12はサプライポンプ11から供給された高圧燃料を所定の圧力に保持(蓄圧)する機能を有し、この蓄圧した燃料を各燃料噴射弁13に分配する。燃料噴射弁13はその内部に電磁ソレノイド(図外)を備えた電磁弁であり、適宜開弁して燃焼室20内に燃料を供給噴射する。
【0029】
他方、サプライポンプ11は、燃料タンクからくみ上げた燃料の一部を添加燃料通路P2を介して燃料添加ノズル17に供給する。燃料通路P2にはサプライポンプ11から燃料添加ノズル17に向かって遮断弁14が配設されている。遮断弁14は緊急時において、添加燃料通路P2を遮断し、燃料供給を中止する。燃料添加ノズル17は燃料噴射弁13と同様な電磁弁であり、排気系40内に還元剤である燃料を噴射添加する。
【0030】
吸気系30は、各燃焼室20内に供給される吸気空気の通路(吸気通路)を形成する。一方、排気系40は、各燃焼室20から排出される排気ガスの通路(排気通路)を形成する。
【0031】
また、このエンジン1には、周知の過給器(ターボチャージャ)50が備えられている。ターボチャージャ50は、シャフト51を介して連結されたタービンホイール52とコンプレッサ53とを備える。一方のコンプレッサ53は吸気系30内の吸気に晒され、他方のタービンホイール52は排気系40内の排気ガスに晒されている。このような構成を有するターボチャージャ50は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサ53を回転させ、吸気圧を高める効果(過給効果)を有する。
【0032】
吸気系30において、ターボチャージャ50の下流に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。インタークーラ31よりも更に下流に設けられたスロットル弁32は、その開度を無段階に調節することができる電子制御式の開閉弁であり、所定の条件下において吸気通路の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0033】
また、エンジン1には、燃焼室20の上流(吸気系30)及び下流(排気系40)をバイパスする排気環流通路(EGR通路)60が形成されている。具体的には、EGR通路60は排気系40におけるターボチャージャ50上流の排気集合管40aと吸気系30におけるスロットル弁32の下流側を連通している。このEGR通路60は、排気ガスの一部を適宜吸気系30に戻す機能を有する。EGR通路60には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調節することが可能なEGR弁61と、EGR通路60を通過(環流)する排気ガスを冷却するためのEGRクーラ62が設けられている。
【0034】
また、排気系40において、燃焼室より接続する排気集合管40a、タービンホイール52が設けられた部位より下流側には、排気ガスの流路に沿って排気通路40b、その下流にNOx触媒ケーシング42、更に下流に排気通路40cが順次連結されている。NOx触媒ケーシング42には、後述するように排気ガス中に含まれるNOx等の有害成分を浄化する吸蔵還元型NOx触媒42bが収容されている。
【0035】
また、エンジン1の各部位には、各種センサが取り付けられており、当該部位の環境条件やエンジン1の運転状態に関する信号を出力する。
【0036】
すなわち、レール圧センサ70は、コモンレール12内に蓄えられている燃料の圧力に応じた検出信号を出力する。燃圧センサ71は、添加燃料通路P2内を流通する燃料のうち、燃料添加ノズル17へ導入される燃料の圧力(燃圧)に応じた検出信号を出力する。エアフローメータ72は、吸気系30内のスロットル弁32上流において吸入空気の流量(吸気量)に応じた検出信号を出力する。酸素濃度(A/F)センサ73は、排気系40の触媒ケーシング42上流において排気ガス中の酸素濃度に応じて連続的に変化する検出信号を出力する。触媒流出排気温度センサ74は、同じく排気系40の触媒ケーシング42下流において排気ガスの温度(排気温度)に応じた検出信号を出力する。NOxセンサ78は触媒ケーシング42出口において流出する排気ガス中に含まれるNOx濃度に応じた検出信号を出力する。
【0037】
また、アクセル開度センサ76はアクセルペダル(図外)に取り付けられ、同ペダルの踏込量に応じてエンジン1において要求する仕事量の基となる検出信号を出力する。クランク角センサ77は、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ70〜79は、電子制御装置(ECU)80と電気的に接続されている。
【0038】
図2に示すように、ECU80は中央演算処理装置(CPU)81、読み出し専用メモリ(ROM)82、ランダムアクセスメモリ(RAM)83及び運転停止後も記憶した情報が消去されないバックアップRAM84、タイマカウンタ85等と、A/D変換器を含む入力ポート86と、出力ポート87とが、双方向性バス88により接続されて構成される論理演算回路を備える。
【0039】
ECU80は、前記各種センサの検出信号を入力ポート86を介して入力し、これら信号に基づいてECU80に有するCPU81において、ROM82に記憶されているプログラムから、エンジン1の燃料噴射等についての基本制御を行う他、還元剤(還元剤として機能する燃料)添加に係る燃料噴射の供給量の決定や添加時期等に関する還元剤(燃料)添加制御等、エンジン1の運転状態に関係する各種制御を行う。
【0040】
尚、燃料噴射弁13を通じて各気筒に燃料を供給する燃料供給系10、排気系40に備えられたNOx触媒、及びこれら燃料供給系10やNOx触媒の機能を制御するECU80等は、併せて本実施の形態に係るエンジン1の排気浄化装置を構成する。前記燃料添加制御等は、当該制御に関する指令信号を出力するECU80を含め、この排気浄化装置を構成する各種部材の作動を通じて実施される。
【0041】
次に、以上説明したエンジン1の構成要素のうち、排気系40に設けられた触媒ケーシング42について、その構成及び機能を詳しく説明する。
【0042】
図3は、図1に示した触媒ケーシング42を、その内部構造の一部と共に拡大して示す断面図である。触媒ケーシング42は、その内部に吸蔵還元型NOx触媒42bを収容する。
【0043】
NOx触媒42bは、例えばアルミナ(AL23)を主材料とした担体とし、この担体の表面にNOx吸蔵剤として機能する、例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)、のようなアルカリ土類金属、あるいはイットリウム(Y)のような希土類と、酸化触媒(貴金属触媒)として機能する、例えば白金(Pt)のような貴金属とが担持されることによって構成される。
【0044】
NOx吸蔵剤は、排気ガス中の酸素濃度が高い状態ではNOxを保持し、排気ガス中の酸素濃度が低い状態ではNOxを放出する特性を有する。また、排気ガス中にNOxが放出された時、排気ガス中にHCやCO等が存在していれば、貴金属触媒がこれらHCやCOの酸化反応を促すことで、NOxを酸化成分、HCやCOを還元成分とする酸化還元反応が両者間で起こる。すなわち、HCやCOはCO2やH2Oに酸化され、NOxはN2に還元される。
【0045】
また、NOx触媒42bを構成している貴金属触媒はHCの酸化を促して、HCの酸化反応熱により床温を昇温する。
【0046】
また、NOx吸蔵剤は排気ガス中の酸素濃度が高い状態である時にでも所定の限界量のNOxを保持すると、それ以上NOxを保持しなくなる。エンジン1では、触媒ケーシング42内に収容されたNOx触媒42bのNOx保持量が限界に達する前に、排気通路の触媒ケーシング42上流に還元剤を添加供給することで、NOx触媒42bを活性化して保持されたNOxを還元浄化し、NOx触媒42bのNOx保持能力を回復させるといった制御を所定のインターバルで繰り返す。
【0047】
以下NOx浄化について具体的に説明する。
【0048】
一般に、ディーゼルエンジンでは、燃焼室内で燃焼に供される燃料及び空気の混合気の酸素濃度が、殆どの運転領域で高濃度状態にある。燃焼に供される混合気の酸素濃度は、燃焼に供された酸素を差し引いてそのまま排気ガス中の酸素濃度に反映されるのが通常であり、混合気中の酸素濃度が高ければ、排気ガス中の酸素濃度も基本的には同様に高くなる。
【0049】
一方、前述したように、NOx触媒42bは排気ガス中の酸素濃度が高ければNOxを保持し、低ければNOxをN2に還元する特性を有するため、排気ガス中の酸素が高濃度にある限りNOxを保持し続ける。但し、当該NOx触媒42bのNOx保持量には限界が存在し、同NOx触媒42bが限界量のNOxを保持した状態では、排気ガス中のNOxは同NOx触媒42bに保持されず触媒ケーシング42を素通りする。
【0050】
NOx触媒42bのNOx保持作用を復帰させるため、還元剤をNOx触媒42b中のNOx吸蔵剤に添加する必要があるが、エンジンの構成上、通常の燃料噴射を行った場合に、酸素濃度が低い、すなわち還元剤である燃料を多量に含んだ排気ガスは排出され難い。
【0051】
よって、内燃機関の燃焼室にて行われる動力転化用の主燃料噴射とは別に主に未燃焼燃料として燃料を噴射する副次的燃料噴射を行う方法や、排気通路に設けられ、排気ガス中に燃料を噴射する方法などにより燃料を排気ガス中に添加して排気ガス中の還元剤成分を増量させ、この還元成分によりNOx保持作用を復帰、再生させる(NOx触媒再生制御)。
【0052】
このNOx触媒再生制御を行う場合は、再生を行うNOx触媒42bの床温度、NOx吸蔵量等により、還元剤である燃料の添加量や添加時期等が異なる。また、この添加量や添加時期を決定するにあたっては、車両搭載時のNOx触媒42bの浄化能力に基づいた値が設定されている。しかし長期間NOx触媒42bを使用すると、その経年劣化等により、該NOx触媒42bの排気浄化能力が変化してくる。よって、NOx触媒42bの劣化程度を判定し、その劣化程度に沿って還元剤の添加量を変化させるか、あるいはNOx触媒42bを交換する必要がある。
【0053】
以下、NOx触媒42bについての触媒劣化判定について説明する。NOx触媒はその特徴としてNOx触媒周辺の雰囲気がリーン雰囲気の時に排気中のNOxを駆体に吸蔵し、NOx触媒周辺の雰囲気がリッチ雰囲気に変化すると共に駆体に吸蔵していたNOxを放出する。よってNOx触媒42bが劣化することにより、このNOx吸蔵、放出の機能が衰える。この劣化による吸蔵放出機能低下を基にしてNOx触媒の劣化判定を行う。
【0054】
現状制御では、NOx触媒においてNOxの吸蔵開始温度よりも還元剤添加開始温度のほうが高い。よって、図4に示すように、新触媒において、触媒床温度がNOx吸蔵開始温度になった時点から燃料添加開始可能温度に昇温して燃料添加を開始するまでの間(区間a〜b)、すなわちNOx吸蔵量が飽和状態になるまではNOxを吸蔵することができる。しかし、NOx吸蔵能力が低下した場合には飽和状態のNOx吸蔵量が減少するため、そのNOxを吸蔵して飽和状態になるまでの期間が短くなる(区間a〜b’)。
【0055】
よって、NOx吸蔵開始温度から燃料添加開始温度までの時間を短縮する必要がある。この時間を短縮する一例としてに図5に示したフローチャートに基づく早期添加制御等を行う。
【0056】
このフローチャートでは、NOx吸蔵開始温度から燃料添加開始温度までの時間を短縮するために、先ず、S501でNOx吸蔵能力が低下しているかどうかを判断する。ここでNOx吸蔵能力が低下しているのであればS502へ進む。S502及びS503では、触媒床温度について判断する。S502で触媒床温度が燃料添加開始温度以下であるならば早期添加制御が必要であるため、S503に進む。次にS503で触媒床温度がNOx吸蔵開始温度以上であるかどうかを判断する。ここで触媒床温度がNOx吸蔵開始温度以下であるならば、早期添加制御を行う必要が無いので、S502に戻る。触媒床温度がNOx吸蔵開始温度以上であるならば、S504へ進み、触媒床温度を燃料添加開始温度以上に上げる。そしてS505で触媒昇温が燃料添加開始温度以上であることを確認して早期添加制御を終了する。
【0057】
つまりは図4で、通常の温度上昇を表す触媒床温度曲線Aを、早期添加制御を行った場合を表す触媒床温度曲線Bに変えて、劣化触媒のNOx飽和量となるb’の時点で触媒床温度が燃料添加開始可能温度より低温の場合には、NOxが吸蔵しきれずに触媒ケーシング42の下流に排出され、NOx浄化時のエミッション悪化に繋がる。よって劣化したNOx触媒の吸蔵能力の低下を基にしてNOx触媒の劣化を判定し、エミッション悪化を防止する。
【0058】
NOx触媒42bの劣化判定を行うにあたり、この劣化判定を行うに必要な構成について説明する。図1に図示されている触媒ケーシング42の下流には、触媒床温度を計測するために触媒流出排気温度センサ74が設けられて間接的に触媒床温度を測定する。また同様に触媒ケーシング42の下流にNOxセンサ78が設けられて触媒ケーシング42内のNOx触媒42bより排出される排気中のNOx濃度を測定する。このNOxセンサ78で測定した濃度と、吸気系30に設けられたエアフローメータ72から算出される流入空気量からNOx触媒42bの下流に流出したNOx量(Nout)を算出する。また、NOx触媒42bに流入するNOx量(Nin)については、予めエンジン1の水温、燃焼室20に噴射される燃料量、燃焼室20に流入する空気量などからなるマップをROM82に記憶しておき、このマップによりエンジン1より排出される排気中のNOx濃度を推定したものとエアフローメータ72から算出される流入空気量からNOx触媒42bに流入するNOx量を算出する。以上の構成を基にしてNOx触媒の劣化判定を行う。
【0059】
NOx触媒はコールドスタート時等、長時間低床温状態が続くとNOx吸蔵量は0になる特性を持つ。よって、長時間低床温状態であるコールドスタート後に、NOxの吸蔵量に基づく劣化判定方法である第2の劣化判定方法による劣化判定を開始する。
【0060】
具体的な判定方法としては以下のように行う。先ず、図6に示すように、コールドスタート後、触媒床温度が吸蔵開始温度(a点)になるまではNinとNoutとの値はほぼ同値で移行する。その後、触媒床温度が吸蔵開始温度以上になるとNOx触媒42bでNOxの吸蔵が開始され、NOx触媒42bの上下流での排気中のNOx量に差が発生する。この差がNOx触媒42bの吸蔵NOx量(snox)になる。触媒が吸蔵開始温度以上になってNinとNoutとの間に差が生じた後、NOx触媒42bに吸蔵されるNOxが飽和状態に達してNinとNoutとの間に差が無くなる時点(b点)までsnoxを測定する。よって、このa点からb点までNOx触媒42bのNinとNoutとの差であるsnoxを積分したものがNOx触媒42bに吸蔵される総NOx量(Snox)となる。
【0061】
前記で求めたSnoxが予め定められた所定値より小さいのであればNOx触媒42bは劣化していると判定される。以上を図7に示すフローチャートに基づいて説明する。
【0062】
先ずS701で触媒床温度が所定時間、所定温度a以下であったかどうかを判断する。これは触媒にNOxが吸蔵されているかどうかを確認するための工程であり、このときの所定時間、所定温度aは、NOxが吸蔵量の最大値まで吸蔵された新品のNOx触媒において、NOxがすべて放出されるのに必要な時間及び温度である。
【0063】
次にS702,S703でNout,Ninの測定を行う。その後S704へ進みNinとNoutとの差が所定値b以上であるかどうかを判断する。ここでsnoxが所定値b以上ならばS708へ進み、所定値b以下ならばS705へ進む。
【0064】
S705では触媒床温度が吸蔵開始温度である所定温度c以上であるかどうかを判断する。触媒床温度が所定温度c以下であるならばS702へ戻り、所定温度cになるまで本ルーチンを繰り返す。触媒床温が所定温度c以上ならばS706へ進み、該触媒にはNOx吸蔵能力が無いと考えられる。次にS707で該触媒は破損している等の原因から劣化していると判定され、本ルーチンを終了する。
【0065】
S704でNinとNoutの差が所定値c以上であると判断されて進んだS708では、NinとNoutとの差:Nin−Nout=吸蔵量:snoxとする。その後S709へ進み、Noutを測定する。ここでNoutは、NOx触媒42bがその吸蔵量が飽和近くになることによる吸蔵量の低下、若しくは触媒床温度の低下による吸蔵能力の低下が想定される。よってS710に進み、触媒床温度を測定し、触媒床温度が吸蔵開始温度である所定温度d以下ならば、NOx触媒42bのNOx吸蔵能力が低下若しくは停止していることから、S701に戻り本ルーチンを再び繰り返す。触媒床温度が所定温度d以上であるならば、S711に進む。
【0066】
S711ではsnoxを積分して、NOx触媒42bが飽和状態になった時点での吸蔵量:Snoxを算出する。次にS712に進んで、NinとNoutとの間に差が発生しているかどうかを判定する。S710で触媒床温度が吸蔵開始温度より高い温度であることを確認しているので、NinとNoutとの間に差が発生していないならばNOx触媒42bで吸蔵反応が起こらない状態、すなわちNOxが飽和状態にあると考えられる。ここでNinとNoutとの間に差が発生しているのならばS709へ戻ってNinとNoutとの間に差が発生しなくなるまで本ルーチンを繰り返す。
【0067】
S712でNinとNoutとの間に差が発生していないならばS713に進んでNOx触媒42bに吸蔵された総NOx量であるSnoxを所定値eと比較する。この所定値eは、予め定められた劣化していない触媒で吸蔵される総NOx量である。Snoxが所定値e以上ならば触媒は劣化していないと判定し、本ルーチンを終了する。またSnoxが所定値e以下ならば触媒は劣化していると判定し、本ルーチンを終了する。
【0068】
以上より、第2の劣化判定方法である、NOx触媒のNOx吸蔵能力に基づく触媒の劣化が判定可能となる。
【0069】
次に図6のb点において、NOx触媒42bがそのNOx吸蔵量が飽和した状態になった後、NOxを還元浄化するため、NOxを排気中に放出する機能から触媒の劣化を判定する。
【0070】
NOx触媒にNOxが飽和状態まで吸蔵された状態で、触媒雰囲気をリーン雰囲気からリッチ雰囲気にした状態、すなわちNOx触媒に還元剤を添加した場合に、劣化したNOx触媒では、1回の還元剤添加におけるNOx放出量、NOx低減量が小さくなるのは公知である。また、この還元剤添加を繰り返し行った場合では、劣化したNOx触媒は、そのNOx放出量の変化が小さくなる特性を示す。よってこのNOx放出量変化が小さくなることに着目して、NOxの放出量に基づく劣化判定方法である第1の劣化判定方法を行う。
【0071】
具体的には、飽和状態にまでNOxを吸蔵させたNOx触媒42bに還元剤である燃料添加を燃料添加ノズル17より複数回繰り返し行う。この複数回繰り返し燃料添加を行うことで、NOx触媒42bに吸蔵されているNOxを排気中に放出し、この放出されたNOxをNOxセンサ78で感知する。
【0072】
複数回繰り返し燃料添加を行うことにより、図8に示すように燃料添加を行った際には排気中のNOx濃度が上昇し、各燃料添加時においてNOx濃度の極大値(ピーク)を示す。新触媒では最初の燃料添加時にそのピークが大きくなり、その後繰り返し燃料添加を行うたびにそのピークは急激に小さくなっていく。すなわち、初期のピークに対して繰り返し燃料添加を行うことにより発生するピークの変化率は大きくなる。これに対して劣化している触媒では、最初の燃料添加時のピークは余り大きくならず、その後繰り返し燃料添加を行った際にも、そのピークの低下は緩慢である。すなわち初期のピークに対して繰り返し発生するピークの変化率は小さくなる。
【0073】
これと共に、図8に示すように、新触媒では燃料添加開始前のNOx濃度に対する、燃料添加を繰り返し行った後のNOx濃度の低減量が大きいのに対し、劣化した触媒では燃料添加開始前のNOx濃度に対する、燃料添加を繰り返し行った後のNOx濃度の低減量が小さくなる。
【0074】
よって、NOxを飽和状態まで吸蔵した劣化していないNOx触媒に燃料を繰り返し添加した際のピークの変化率、及び燃料添加を行う前後でのNOx濃度の低減量を所定の値と定める。これに対して劣化判定を行うNOx触媒の燃料添加を繰り返し行った際に発生するピークの変化率、及び燃料添加を繰り返し行う前に対する燃料添加を繰り返し行った後のNOx濃度の低減量を求め、前記所定値と比較して、ピークの変化率が低く、NOx濃度の低減量が少ない場合には劣化していると判断する。
【0075】
また、前記で求めた劣化判定を行うNOx触媒のピークの変化率は大きいがNOx濃度の低減量が少ない場合には還元剤である燃料の添加量不足が想定される。これとは反対にNOx触媒のピークの変化率は小さいが、NOx濃度の低減量が多い場合には、NOx触媒の吸蔵能力の低下が想定される。
【0076】
以上を図9に示すフローチャートに基づいて説明する。
【0077】
先ず、S901にてNOx触媒42bにNOxが飽和状態まで吸蔵されているかどうかを確認する。これはNOx触媒に燃料を添加した際、すなわちNOx触媒の雰囲気をリッチ雰囲気にした場合にNOx触媒より排出されるNOx量が該NOx触媒に吸蔵されている吸蔵NOx量に左右されるため、劣化判定を行う際には、一定のNOx吸蔵量、つまりは飽和状態のNOx吸蔵量において劣化判定を行うためである。S901で所定量NOxが吸蔵されていると判断されればS902へ進み、所定量NOxが吸蔵されていないと判断されれば所定量NOxが吸蔵されるまで本ステップを繰り返す。
【0078】
次に、S902で還元剤である燃料を所定期間内に断続的に複数回添加する。この時燃料添加回数が進むに順って、NOx触媒より放出されるNOx量が低下するため、還元剤である燃料量も減らす必要がある。よって、S903、S904では燃料の添加量を調整する。すなわち、S903では酸素濃度センサ73の値が予め定められた酸素濃度(所定値1)以下ならばS905及びS902へ進んで添加量を増量する。S904では酸素濃度センサ73の値が予め定められた酸素濃度(所定値2)以上ならばS906及びS902へ進んで添加量を減量する。
【0079】
S902〜S906のステップでNOx触媒42bに燃料添加が正しく行われていることを確認した後、S907へ進みNOx触媒42bの劣化判定を行う。
【0080】
S907では所定期間内でNOxの放出量に起因する、NOx濃度の変化率について判定を行う。該変化率が劣化していないNOx触媒が示す所定値3より低い値であるならばS908へ進み、該変化率が所定値3より高い値ならばS909へ進む。S908、S909では何れも燃料添加を行う所定の期間前のNOx濃度と燃料添加を行った所定の期間後のNOx濃度の変化量であるNOx低減量について判定を行う。
【0081】
S908でNOx低減量が、劣化していないNOx触媒が示す所定値4より低い値を示すのであればS910へ進んで該NOx触媒42bは劣化していると判定され、本チャートは終了する。同じくS908でNOx低減量が所定値4より高い値を示すのであればS911へ進んで該NOx触媒は、吸蔵放出能力は低下しているが、還元能力は劣化していないと判断されて本チャートを終了する。
【0082】
S909でNOx低減量が、劣化していないNOx触媒が示す所定値5より低い値を示すのであれば、S912へ進んで所定期間内での還元量不足、すなわち添加燃料量不足と判定され、本チャートを終了する。同じくS909でNOx低減量が所定値5より高い値を示すのであれば、吸蔵放出機能、還元機能ともに正常な状態であり、該NOx触媒42bは劣化していないと判定され、本チャートを終了する。
【0083】
以上より、第1の劣化判定方法である、劣化したNOx触媒のNOx放出量及びNOx濃度が変化することに基づくNOx触媒の劣化が判定可能となる。
【0084】
上記第2の劣化判定方法、第1の劣化判定方法を行うことにより、NOx触媒のNOx吸蔵機能、NOx放出還元機能のそれぞれの面より劣化判定を行うことが可能となる。
【0085】
尚、第2の劣化判定方法において本実施の形態では、図6にあるように、時間とNOx流量に基づいてその判定方法の概要を説明したものであるが、ここで劣化判定の基準として用いるものは、NOx触媒42bの上流と下流とのNOx流量の差の積分値であるNOx吸蔵量の最大値である。よって時間、NOx濃度等のパラメータは、このNOx吸蔵量を指し示す上で便宜上用いたものであり、本発明を構成する上で必須要件となるものではない。つまりは、劣化を判定する触媒に吸蔵されるNOx量の最大値さえ確認できる方法であれば本発明である第2の劣化判定方法により劣化を判定することが可能となる。
【0086】
また、第1の劣化判定方法においては、断続的に燃料を添加してNOx触媒42bよりNOxを断続的に放出させ、このNOx濃度の極大値の変化率を判定基準としてNOx触媒42bの劣化を判定した。これ以外にも、例えば燃料添加を断続的に行った際の、各燃料添加時に放出されるNOx量の平均値を求め、この平均値の変化率を基にして劣化判定を行っても良い。また、より単純に、燃料添加が所定の期間に断続的に行われる際に、その所定の期間の最初と最後に行われた燃料添加によるNOx触媒より放出されるNOx濃度を測定して、最初のNOx放出に起因するNOx濃度と、最後のNOx放出に起因するNOx濃度とから求められる変化率及び変位差を基にして劣化判定を行っても良い。つまりは、NOxを断続に放出した際のNOx濃度の変化に基づいてNOx触媒の劣化判定を行うのである。
【0087】
【発明の効果】
本発明に係る触媒の劣化判定装置及び方法を用いることにより、NOxセンサの個体差や経時変化に左右されずに該NOx触媒の吸蔵能力の変化からNOx触媒の劣化程度を判定することが可能となる。更に、排気中の、特にNOxに係る浄化工程であるNOxの吸蔵及び排出還元それぞれの機能について個別にNOx触媒が劣化しているかどうかを判定することも可能となる。
【0088】
また、本発明ではNOx触媒42bに燃料添加を行ってNOx触媒の劣化判定を行う際には、断続して複数回燃料添加を行い、各燃料添加に起因するNOx濃度の極大値から導き出されるNOx濃度変化率を用いて劣化判定を行う。つまりは劣化判定に供する測定値を測定するために、異なる劣化判定試行時の各測定値を求め、この複数の測定値結果より総合的にNOx触媒の劣化判定を行うものである。よって、従来の単独のNOx触媒への燃料添加、すなわち唯一の劣化判定試行時に伴うNOx濃度の変化等をその劣化判定の測定値として用いる劣化判定方法に比べて、本発明の劣化判定方法では精度の高い判定結果を導き出すことが可能となる。
【図面の簡単な説明】
【図1】本発明実施の形態に係るディーゼルエンジンシステムを示す概略構
成図。
【図2】同実施の形態に係る、ECU周りの構成概念図。
【図3】同実施の形態に係る、触媒ケーシングの断面概念図。
【図4】同実施の形態に係る、触媒床温度と時間の関係を表すグラフ。
【図5】同実施の形態に係る、NOx触媒能力低下時の還元剤添加制御例を
示すフローチャート。
【図6】同実施の形態に係る、触媒床温度とNOx吸蔵量の関係を表すグラ
フ。
【図7】同実施の形態に係る、NOx吸蔵能力測定による劣化判定フローチ
ャート。
【図8】同実施の形態に係る、NOx還元時のNOx放出量を表すグラフ。
【図9】同実施の形態に係る、NOx放出量、NOx低減量、NOx放出量
変化による劣化判定フローチャート。
【符号の説明】
1 エンジン
10 燃料供給系
11 サプライポンプ
12 コモンレール
13 燃料噴射弁
14 遮断弁
17 燃料添加ノズル
20 燃焼室
30 吸気系
31 インタークーラ
32 スロットル弁
40 排気系
40a 排気集合管
40b 排気通路
40c 排気通路
42 触媒ケーシング
42b NOx触媒
50 ターボチャージャ
51 シャフト
52 タービンホイール
53 コンプレッサ
60 EGR通路
61 EGR弁
62 EGRクーラ
70 レール圧センサ
71 燃圧センサ
72 エアフローメータ
73 酸素濃度センサ
74 触媒流出排気温度センサ
76 アクセル開度センサ
77 クランク角センサ
78 NOxセンサ
80 電子制御装置(ECU)
81 中央演算処理装置(CPU)
82 読み出し専用メモリ(ROM)
83 ランダムアクセスメモリ(RAM)
84 バックアップRAM
85 タイマカウンタ
86 入力ポート
87 出力ポート
88 双方向バス
P1 機関燃料通路
P2 添加燃料通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine, and more particularly to a deterioration determination method based on the characteristics of a catalyst provided in the exhaust emission control device.
[0002]
[Prior art]
As one of the catalysts for purifying nitrogen oxide (NOx) in exhaust gas, NOx is occluded in an oxygen concentration excess atmosphere (lean atmosphere), and a reducing agent fuel is added to the exhaust gas to reduce the oxygen concentration atmosphere (rich). NOx occluded in the atmosphere) is released and reacted with fuel (HC) by an activated catalyst (Pt, etc.), N 2 There is an NOx storage reduction catalyst that reduces the exhaust gas to the outside air.
[0003]
As described above, this NOx catalyst stores NOx in the exhaust gas in a lean atmosphere, and performs a reduction reaction on NOx that is activated and exhausted by the NOx storage agent that is released in a lean atmosphere and the fuel that is the reducing agent. It consists of a noble metal catalyst to be raised, and purifies exhaust by combining the occlusion and release function and the activation function, respectively.
[0004]
By the way, the exhaust gas discharged from the internal combustion engine contains a sulfur content such as sulfur oxide (SOx) composed of a sulfur component in addition to NOx, and the sulfur content represented by this SOx is also the NOx. Similarly, the NOx catalyst is occluded. However, the stored SOx cannot be released in the step of releasing and reducing NOx. Therefore, the NOx catalyst reduces the NOx storage capacity by storing SOx, and this is poisoned by S. That's it.
[0005]
In addition, when the NOx catalyst is used for a long period of time, the particle structure of the NOx catalyst is destroyed due to exposure to a high temperature or the like, and the surface area that is a reaction site with NOx or the like is reduced, so that the purification capacity of the catalyst is lowered. This is called sintering.
[0006]
Occurrence of the S poisoning, sintering, etc. causes the NOx catalyst to have a reduced storage capacity and a reduced NOx catalyst purification capacity. For this reason, conventionally, a technique has been disclosed that makes it possible to determine the deterioration of a NOx catalyst in a lean fuel internal combustion engine. For example, in Japanese Patent Laid-Open No. 11-229858, a NOx sensor is provided on the downstream side of a NOx catalyst, and when NOx is purified by adding fuel, the output value from the NOx sensor is measured at least twice. A technique is disclosed in which the deterioration of the NOx catalyst is judged when the difference or ratio of output values exceeds a predetermined value.
[0007]
[Problems to be solved by the invention]
In the conventional technique, the NOx concentration in the exhaust gas is detected by the NOx sensor, and the degree of deterioration of the NOx catalyst can be determined from the detection result. However, in the prior art, when the exhaust atmosphere, which is a regeneration means for regenerating the NOx storage capacity of the NOx catalyst, is changed from a lean atmosphere to a rich atmosphere, the change in the output value of the NOx sensor based on the change over time or the regeneration means The degree of deterioration of the NOx catalyst is judged based on the output values of the NOx sensor at least two times apart from each other in a lean atmosphere after execution and after the regeneration means.
[0008]
That is, when the NOx catalyst is regenerated by the regeneration means, the NOx catalyst deterioration is determined based on the NOx amount discharged from the NOx catalyst by switching the atmosphere of the NOx catalyst between a lean atmosphere and a rich atmosphere. For this reason, when there is an individual difference in the NOx sensor, or when the atmosphere is changed from a lean atmosphere to a rich atmosphere, when the oxygen concentration varies, the detection result of the NOx concentration changes, and the NOx catalyst is changed. The degree of deterioration cannot be judged correctly.
[0009]
The present invention has been made in view of the above problems, and it is an object of the present invention to determine the degree of catalyst deterioration from changes in the storage capacity of the NOx catalyst without being influenced by individual differences in NOx sensors or changes with time.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problem, an exhaust purification apparatus in which an NOx catalyst that stores NOx in exhaust in an oxygen concentration excess atmosphere and releases NOx stored in an oxygen concentration reduced atmosphere is provided in the exhaust passage of the internal combustion engine. The NOx concentration in the exhaust gas is detected downstream of the NOx catalyst, and the NOx in the NOx catalyst is changed by repeatedly changing the exhaust atmosphere to an oxygen concentration excess atmosphere and an oxygen concentration reduction atmosphere within a predetermined period. An exhaust purification device that intermittently releases the exhaust gas into the exhaust gas to obtain the released NOx concentration, and determines the deterioration state of the exhaust purification device based on the change rate and displacement difference of each NOx concentration within a predetermined period. Deterioration is determined by a deterioration determination method.
[0011]
Further, a NOx catalyst that stores NOx in the exhaust in an oxygen concentration excess atmosphere and releases NOx stored in the oxygen concentration reduced atmosphere is provided in an exhaust purification device provided in an exhaust passage of the internal combustion engine, and this NOx catalyst The NOx concentration in the exhaust gas is detected downstream of the exhaust gas, and the exhaust atmosphere is repeatedly changed to an oxygen concentration excess atmosphere and an oxygen concentration reduction atmosphere within a predetermined period, so that the NOx in the NOx catalyst is intermittently discharged into the exhaust gas. Deterioration is determined by a deterioration determination method of the exhaust purification device that determines the deterioration state of the exhaust purification device based on the detection results of the NOx concentration before and after the release.
[0012]
In order to perform these deterioration determination methods, a NOx catalyst provided in the exhaust passage of the internal combustion engine that stores NOx in the exhaust in an oxygen concentration excess atmosphere and releases the NOx stored in the oxygen concentration reduced atmosphere, and an exhaust atmosphere Regenerative means for intermittently releasing NOx in the NOx catalyst by repeatedly changing to an oxygen concentration excess atmosphere and an oxygen concentration lowering atmosphere, and detecting the NOx concentration in the exhaust provided downstream of the NOx catalyst, NOx concentration detecting means for detecting each NOx concentration intermittently released from the NOx catalyst when the regeneration means performs regeneration of the NOx catalyst, and regeneration of the NOx catalyst by the regeneration means continuously for a predetermined period. And determining the deterioration state of the catalyst based on the change rate and displacement difference of the NOx concentration detected by the NOx concentration detecting means during this period. The exhaust gas purifier deterioration determination device provided with the deterioration determination means was used.
[0013]
The deterioration determining device has NOx concentration detecting means for detecting NOx concentrations intermittently released from the NOx catalyst when the regeneration means is implemented, and NOx for detecting a maximum value of the detected NOx concentration. The concentration maximum value detecting means is provided.
[0014]
The degradation determination device detects the NOx concentration before and after the regeneration of the NOx catalyst by the regeneration unit by the NOx concentration detection unit, and determines the difference between the detected values before and after the regeneration. Based on this, deterioration determination means for determining the deterioration state of the catalyst is provided.
[0015]
When the NOx occluded in the NOx catalyst is released to regenerate the NOx occlusion function of the NOx catalyst, a reducing agent is added to the exhaust gas in order to change the catalyst atmosphere from an oxygen concentration excess atmosphere to an oxygen concentration lowering atmosphere. When this reducing agent is added, NOx is released from the NOx catalyst and sensed by NOx concentration detecting means such as a NOx sensor provided downstream of the NOx catalyst. If the NOx catalyst is not deteriorated, more NOx is released than when the reduction reaction is performed with the reducing agent due to the quick response of the reaction when the reducing agent is added and the large amount of occluded NOx. NOx is discharged downstream, and a maximum value (peak) with a large discharge amount is detected by the NOx sensor. On the other hand, in the case of a deteriorated catalyst, the NOx release amount decreases due to the deterioration of the quick response when the reducing agent is added and the NOx occlusion amount due to the deterioration, and the NOx sensor provided downstream of the NOx catalyst. The peak of NOx emissions is reduced.
[0016]
Further, when the NOx catalyst in which NOx is stored by adding the reducing agent is regenerated, the reducing agent is intermittently added, and NOx stored in the NOx catalyst is repeatedly released and reduced. At this time, the peak of the NOx concentration at each addition of the reducing agent gradually decreases, and finally, all the NOx stored in the NOx catalyst is released, and only the NOx present in the exhaust gas is detected. The NOx catalyst that has not deteriorated at this time has a large NOx occlusion capacity per unit time, unit surface area, and NOx release capacity, so the amount of NOx flowing out downstream of the NOx catalyst is much larger than before the addition of the reducing agent. And the peak of NOx concentration when NOx is intermittently released gradually decreases. However, since the deteriorated NOx catalyst also has a reduced NOx storage capacity and NOx release capacity, the NOx amount flowing out downstream of the NOx catalyst is slower than that before the addition of the reducing agent, and the NOx amount is slow and intermittent. In addition, the decrease in the peak of the NOx concentration when NOx is released does not appear remarkably.
[0017]
That is, the present invention is performed based on the above-described characteristics, and NOx discharged when a NOx purification process is performed by adding a reducing agent a plurality of times with a deteriorated NOx catalyst and a non-degraded NOx catalyst. Judgment of deterioration is made based on the difference in the peak of the quantity and the degree of change of the peak occurring multiple times. In addition, the deterioration of the NOx catalyst is also determined based on the difference between the NOx concentration downstream of the NOx catalyst before the purification step and the change in NOx concentration downstream of the NOx catalyst after the purification step.
[0018]
When determining NOx catalyst deterioration based on the peak generated when performing the NOx purification step, it is necessary to always perform the deterioration determination under the same conditions, so that the NOx storage amount of the NOx catalyst is satisfied. (Saturated state) is desirable. Similarly, it is desirable to measure the exhaust flow rate flowing into the NOx catalyst in a stable state.
[0019]
The same applies when determining the deterioration of the NOx catalyst based on the difference between the NOx concentration downstream of the NOx catalyst before the purification step and the change in NOx concentration downstream of the NOx catalyst after the purification step. Since it is necessary to determine deterioration under conditions, it is desirable that the NOx catalyst is saturated with NOx when measuring the NOx concentration before the exhaust purification step. In addition, the NOx concentration is measured after the exhaust purification step is to measure the NOx concentration on the downstream side of the NOx catalyst when NOx is not stored in the NOx catalyst. Therefore, the NOx concentration downstream of the NOx catalyst is measured not only after the exhaust purification process but also in a state where NOx is not occluded in the NOx catalyst, for example after a cold start, and this value and the NOx of the NOx downstream of the NOx catalyst when the NOx catalyst is saturated. The concentration of the catalyst may be measured and a catalyst deterioration determination may be performed as a comparison target.
[0020]
Next, a NOx catalyst that occludes NOx in the exhaust in an oxygen concentration excess atmosphere and releases NOx occluded in the oxygen concentration reduced atmosphere is provided in an exhaust purification device provided in the exhaust passage of the internal combustion engine. The NOx concentration in the exhaust gas is detected upstream and downstream of the catalyst, the NOx amount stored in the NOx catalyst is detected from the detection result, and the deterioration state of the exhaust gas purification device is determined based on the detection result of the NOx amount. The deterioration of the catalyst is determined by a method for determining the deterioration of the exhaust gas purification device characterized in that it is determined.
[0021]
In order to perform this deterioration determination method, a NOx catalyst provided in the exhaust passage of the internal combustion engine for storing NOx in the exhaust in an oxygen concentration excess atmosphere and releasing NOx stored in the oxygen concentration reduced atmosphere, and an internal combustion engine Catalyst inflow NOx amount detecting means for detecting the NOx amount in the exhaust gas discharged and flowing into the NOx catalyst, catalyst outflow NOx amount detecting means for detecting the NOx amount in the exhaust gas flowing out from the catalyst, and the catalyst inflow NOx The NOx amount detecting means for detecting the NOx amount occluded in the NOx catalyst from the difference in the detected NOx amount by the amount detecting means and the catalyst outflow NOx amount detecting means, and the occluded NOx amount detecting means. A deterioration determination device for an exhaust gas purification apparatus comprising deterioration determination means for determining the deterioration state of the catalyst based on the NOx occlusion amount was used.
[0022]
As described above, the deteriorated NOx catalyst is inferior in storage capacity to an undegraded NOx catalyst. Therefore, the storage amount of the NOx catalyst to be determined is calculated, and the degree of deterioration of the NOx catalyst to be determined is determined by comparing with the NOx storage amount of the NOx catalyst that has not been deteriorated. As a means for calculating the NOx occlusion amount, there is a method in which NOx sensors are provided upstream and downstream of the NOx catalyst, the NOx concentration in the exhaust gas is measured, and the difference between the NOx contained therein is obtained. Further, if the NOx amount exhausted from the internal combustion engine can be estimated in advance by a map or the like, it is obtained from the difference between the NOx amount estimated by the map and the NOx amount calculated from the NOx sensor provided on the downstream side of the NOx catalyst. May be.
[0023]
In carrying out the present invention, it is desirable that NOx is not stored in the NOx catalyst before the measurement is started. Since the determination is made based on the storage amount of the NOx catalyst, if NOx is stored in advance at the time of measurement, the NOx storage amount is reduced by the NOx amount stored in advance, and the non-deteriorated NOx catalyst is also deteriorated. This is because there is a possibility of misjudgment.
[0024]
By performing the deterioration determination method described above, it is possible to determine the deterioration of the NOx catalyst from the viewpoint of the NOx release / reduction ability and NOx storage ability of the NOx catalyst. The deterioration determination method based on the NOx release amount is defined as a first deterioration determination method, and the deterioration determination method based on the NOx occlusion amount is defined as a second deterioration determination method. At this time, by first performing the second deterioration determination method, NOx is stored in the NOx catalyst so as to be saturated, and thereafter, the first deterioration determination method is performed, whereby the first and second deterioration determination methods are performed in series. Can be done as
[0025]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which a deterioration determination device and method for an exhaust gas purification apparatus for an internal combustion engine according to the present invention is applied to a diesel engine system will be described.
[0026]
In FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 1 is an in-line four-cylinder diesel engine system that includes a fuel supply system 10, a combustion chamber 20, an intake system 30, an exhaust system 40, and the like as main parts. Hereinafter, the configuration of the diesel engine system will be described.
[0027]
The fuel supply system 10 includes a supply pump 11, a pressure accumulating chamber (common rail) 12, a fuel injection valve 13, a shutoff valve 14, a fuel addition nozzle 17, an engine fuel passage P1, an addition fuel passage P2, and the like.
[0028]
The supply pump 11 increases the pressure of the fuel pumped up from the fuel tank (not shown) and supplies it to the common rail 12 through the engine fuel passage P1. The common rail 12 has a function of holding (accumulating) high-pressure fuel supplied from the supply pump 11 at a predetermined pressure, and distributes the accumulated fuel to each fuel injection valve 13. The fuel injection valve 13 is an electromagnetic valve provided with an electromagnetic solenoid (not shown) therein, and is appropriately opened to supply and inject fuel into the combustion chamber 20.
[0029]
On the other hand, the supply pump 11 supplies a part of the fuel pumped up from the fuel tank to the fuel addition nozzle 17 via the added fuel passage P2. A shutoff valve 14 is disposed in the fuel passage P2 from the supply pump 11 toward the fuel addition nozzle 17. In an emergency, the shutoff valve 14 shuts off the added fuel passage P2 and stops the fuel supply. The fuel addition nozzle 17 is an electromagnetic valve similar to the fuel injection valve 13 and injects and adds fuel as a reducing agent into the exhaust system 40.
[0030]
The intake system 30 forms a passage (intake passage) for intake air supplied into each combustion chamber 20. On the other hand, the exhaust system 40 forms a passage (exhaust passage) for exhaust gas discharged from each combustion chamber 20.
[0031]
The engine 1 is provided with a known supercharger (turbocharger) 50. The turbocharger 50 includes a turbine wheel 52 and a compressor 53 that are connected via a shaft 51. One compressor 53 is exposed to intake air in the intake system 30, and the other turbine wheel 52 is exposed to exhaust gas in the exhaust system 40. The turbocharger 50 having such a configuration has an effect of increasing the intake pressure (supercharging effect) by rotating the compressor 53 using the exhaust flow (exhaust pressure) received by the turbine wheel 52.
[0032]
In the intake system 30, an intercooler 31 provided downstream of the turbocharger 50 forcibly cools the intake air whose temperature has been increased by supercharging. The throttle valve 32 provided further downstream than the intercooler 31 is an electronically controlled on-off valve whose opening degree can be adjusted in a stepless manner, and restricts the flow passage area of the intake passage under predetermined conditions. The function of adjusting (reducing) the supply amount of the intake air is provided.
[0033]
Further, an exhaust gas circulation passage (EGR passage) 60 that bypasses the upstream (intake system 30) and the downstream (exhaust system 40) of the combustion chamber 20 is formed in the engine 1. Specifically, the EGR passage 60 communicates the exhaust collecting pipe 40 a upstream of the turbocharger 50 in the exhaust system 40 and the downstream side of the throttle valve 32 in the intake system 30. The EGR passage 60 has a function of returning a part of the exhaust gas to the intake system 30 as appropriate. The EGR passage 60 is opened and closed steplessly by electronic control, and the exhaust gas flowing through the EGR passage 60 can be freely adjusted, and the exhaust gas passing through (circulating) the EGR passage 60 is cooled. EGR cooler 62 is provided.
[0034]
Further, in the exhaust system 40, an exhaust passage 40b along the exhaust gas flow path is provided downstream of the exhaust collecting pipe 40a connected from the combustion chamber and a portion where the turbine wheel 52 is provided, and a NOx catalyst casing 42 is provided downstream thereof. Further, the exhaust passage 40c is sequentially connected further downstream. The NOx catalyst casing 42 houses a NOx storage reduction catalyst 42b that purifies harmful components such as NOx contained in the exhaust gas, as will be described later.
[0035]
Further, various sensors are attached to each part of the engine 1, and signals related to the environmental conditions of the part and the operating state of the engine 1 are output.
[0036]
That is, the rail pressure sensor 70 outputs a detection signal corresponding to the fuel pressure stored in the common rail 12. The fuel pressure sensor 71 outputs a detection signal corresponding to the pressure (fuel pressure) of the fuel introduced into the fuel addition nozzle 17 among the fuel flowing through the added fuel passage P2. The air flow meter 72 outputs a detection signal corresponding to the flow rate (intake amount) of intake air upstream of the throttle valve 32 in the intake system 30. The oxygen concentration (A / F) sensor 73 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust gas upstream of the catalyst casing 42 of the exhaust system 40. Similarly, the catalyst outflow exhaust temperature sensor 74 outputs a detection signal corresponding to the temperature of exhaust gas (exhaust temperature) downstream of the catalyst casing 42 of the exhaust system 40. The NOx sensor 78 outputs a detection signal corresponding to the concentration of NOx contained in the exhaust gas flowing out at the catalyst casing 42 outlet.
[0037]
Further, the accelerator opening sensor 76 is attached to an accelerator pedal (not shown), and outputs a detection signal that is a basis of a work amount required in the engine 1 according to the depression amount of the pedal. The crank angle sensor 77 outputs a detection signal (pulse) every time the output shaft (crankshaft) of the engine 1 rotates by a certain angle. Each of these sensors 70 to 79 is electrically connected to an electronic control unit (ECU) 80.
[0038]
As shown in FIG. 2, the ECU 80 includes a central processing unit (CPU) 81, a read only memory (ROM) 82, a random access memory (RAM) 83, a backup RAM 84 in which stored information is not erased even after the operation is stopped, and a timer counter 85. , An input port 86 including an A / D converter, and an output port 87 are connected to each other by a bidirectional bus 88.
[0039]
The ECU 80 inputs the detection signals of the various sensors through the input port 86, and based on these signals, the CPU 81 included in the ECU 80 performs basic control on the fuel injection of the engine 1 from the program stored in the ROM 82. In addition to the control, various controls related to the operating state of the engine 1 such as determination of the supply amount of the fuel injection related to the addition of the reducing agent (fuel that functions as the reducing agent) and the reducing agent (fuel) addition control related to the addition timing and the like are performed.
[0040]
The fuel supply system 10 that supplies fuel to each cylinder through the fuel injection valve 13, the NOx catalyst provided in the exhaust system 40, the ECU 80 that controls the functions of the fuel supply system 10 and the NOx catalyst, etc. The exhaust emission control device of the engine 1 according to the embodiment is configured. The fuel addition control and the like are performed through the operation of various members constituting the exhaust gas purification apparatus, including the ECU 80 that outputs a command signal related to the control.
[0041]
Next, among the components of the engine 1 described above, the configuration and functions of the catalyst casing 42 provided in the exhaust system 40 will be described in detail.
[0042]
FIG. 3 is an enlarged sectional view of the catalyst casing 42 shown in FIG. 1 together with a part of its internal structure. The catalyst casing 42 accommodates the NOx storage reduction catalyst 42b therein.
[0043]
The NOx catalyst 42b is, for example, alumina (AL 2 O Three ) As a main material, and functions as a NOx occlusion agent on the surface of the carrier, for example, alkali metals such as potassium (K), sodium (Na), lithium (Li), cesium (Cs), barium (Ba ), An alkaline earth metal such as calcium (Ca), or a rare earth such as yttrium (Y), and a noble metal such as platinum (Pt) that functions as an oxidation catalyst (noble metal catalyst) is supported. Consists of.
[0044]
The NOx storage agent has a characteristic of retaining NOx when the oxygen concentration in the exhaust gas is high and releasing NOx when the oxygen concentration in the exhaust gas is low. In addition, when NOx is released into the exhaust gas, if HC, CO, or the like is present in the exhaust gas, the noble metal catalyst promotes an oxidation reaction of these HC and CO, thereby converting NOx into an oxidizing component, HC, A redox reaction using CO as a reducing component occurs between the two. That is, HC and CO are CO 2 And H 2 Oxidized to O, NOx is N 2 Reduced to
[0045]
Further, the noble metal catalyst constituting the NOx catalyst 42b promotes the oxidation of HC and raises the bed temperature by the heat of oxidation reaction of HC.
[0046]
Further, even when the NOx storage agent has a high oxygen concentration in the exhaust gas, if it retains a predetermined limit amount of NOx, it will no longer retain NOx. In the engine 1, before the NOx retention amount of the NOx catalyst 42b accommodated in the catalyst casing 42 reaches a limit, the NOx catalyst 42b is activated by adding and supplying a reducing agent upstream of the catalyst casing 42 in the exhaust passage. The control of reducing and purifying the held NOx and restoring the NOx holding ability of the NOx catalyst 42b is repeated at a predetermined interval.
[0047]
The NOx purification will be specifically described below.
[0048]
In general, in a diesel engine, the oxygen concentration of a mixture of fuel and air used for combustion in a combustion chamber is in a high concentration state in most operating regions. The oxygen concentration of the mixture used for combustion is usually reflected in the oxygen concentration in the exhaust gas as it is after subtracting the oxygen provided for combustion. If the oxygen concentration in the mixture is high, the exhaust gas The oxygen concentration inside is basically increased as well.
[0049]
On the other hand, as described above, the NOx catalyst 42b retains NOx if the oxygen concentration in the exhaust gas is high, and NOx if the oxygen concentration is low. 2 Therefore, as long as the oxygen in the exhaust gas is at a high concentration, NOx is maintained. However, there is a limit in the NOx retention amount of the NOx catalyst 42b, and in the state where the NOx catalyst 42b retains the limit amount of NOx, NOx in the exhaust gas is not retained by the NOx catalyst 42b and the catalyst casing 42 is Go through.
[0050]
In order to restore the NOx retention action of the NOx catalyst 42b, it is necessary to add a reducing agent to the NOx storage agent in the NOx catalyst 42b. However, due to the configuration of the engine, the oxygen concentration is low when normal fuel injection is performed. That is, the exhaust gas containing a large amount of fuel as a reducing agent is difficult to be discharged.
[0051]
Therefore, in addition to the main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine, a method of performing secondary fuel injection that mainly injects fuel as unburned fuel, or provided in the exhaust passage, The fuel is added to the exhaust gas by, for example, a method of injecting the fuel into the exhaust gas to increase the amount of the reducing agent component in the exhaust gas, and the NOx holding action is restored and regenerated by this reducing component (NOx catalyst regeneration control).
[0052]
When performing this NOx catalyst regeneration control, the amount of addition of fuel as a reducing agent, the timing of addition, and the like differ depending on the bed temperature of the NOx catalyst 42b to be regenerated, the NOx occlusion amount, and the like. In addition, when determining the addition amount and the addition timing, values are set based on the purification ability of the NOx catalyst 42b when the vehicle is mounted. However, if the NOx catalyst 42b is used for a long period of time, the exhaust purification ability of the NOx catalyst 42b changes due to its aging and the like. Therefore, it is necessary to determine the degree of deterioration of the NOx catalyst 42b and change the amount of reducing agent added in accordance with the degree of deterioration, or replace the NOx catalyst 42b.
[0053]
Hereinafter, the catalyst deterioration determination for the NOx catalyst 42b will be described. A characteristic of the NOx catalyst is that when the atmosphere around the NOx catalyst is a lean atmosphere, the NOx in the exhaust is occluded in the precursor, the atmosphere around the NOx catalyst changes to a rich atmosphere, and the NOx occluded in the precursor is released. . Therefore, when the NOx catalyst 42b is deteriorated, the NOx occlusion and release functions decline. The deterioration determination of the NOx catalyst is performed based on the decrease in the storage / release function due to this deterioration.
[0054]
In the current state control, the reducing agent addition start temperature is higher than the NOx occlusion start temperature in the NOx catalyst. Therefore, as shown in FIG. 4, in the new catalyst, the time from when the catalyst bed temperature reaches the NOx occlusion start temperature to when the fuel addition starts and the fuel addition starts (sections a and b). That is, NOx can be occluded until the NOx occlusion amount becomes saturated. However, since the NOx occlusion amount in the saturated state decreases when the NOx occlusion capacity decreases, the period until the NOx is occluded and becomes saturated is shortened (sections a to b ′).
[0055]
Therefore, it is necessary to shorten the time from the NOx occlusion start temperature to the fuel addition start temperature. As an example of shortening this time, early addition control based on the flowchart shown in FIG. 5 is performed.
[0056]
In this flowchart, in order to shorten the time from the NOx occlusion start temperature to the fuel addition start temperature, first, in S501, it is determined whether or not the NOx occlusion capacity is lowered. Here, if the NOx occlusion capacity is lowered, the process proceeds to S502. In S502 and S503, the catalyst bed temperature is determined. If the catalyst bed temperature is equal to or lower than the fuel addition start temperature in S502, the early addition control is necessary, and the process proceeds to S503. Next, in S503, it is determined whether or not the catalyst bed temperature is equal to or higher than the NOx occlusion start temperature. If the catalyst bed temperature is equal to or lower than the NOx occlusion start temperature, there is no need to perform early addition control, and the process returns to S502. If the catalyst bed temperature is equal to or higher than the NOx occlusion start temperature, the process proceeds to S504, and the catalyst bed temperature is raised to the fuel addition start temperature or higher. In S505, it is confirmed that the catalyst temperature rise is equal to or higher than the fuel addition start temperature, and the early addition control is terminated.
[0057]
That is, in FIG. 4, the catalyst bed temperature curve A representing a normal temperature rise is changed to a catalyst bed temperature curve B representing the case where the early addition control is performed, and at the point of time b ′ when the NOx saturation amount of the deteriorated catalyst is reached. When the catalyst bed temperature is lower than the temperature at which fuel addition can be started, NOx is not occluded and is discharged downstream of the catalyst casing 42, leading to deterioration of emissions during NOx purification. Therefore, the deterioration of the NOx catalyst is determined based on the decrease in the storage capacity of the deteriorated NOx catalyst, and the deterioration of the emission is prevented.
[0058]
A description will be given of a configuration necessary for performing the deterioration determination when determining the deterioration of the NOx catalyst 42b. A catalyst outflow exhaust gas temperature sensor 74 is provided downstream of the catalyst casing 42 shown in FIG. 1 to measure the catalyst bed temperature, and indirectly measures the catalyst bed temperature. Similarly, a NOx sensor 78 is provided downstream of the catalyst casing 42 to measure the NOx concentration in the exhaust discharged from the NOx catalyst 42b in the catalyst casing 42. From the concentration measured by the NOx sensor 78 and the inflow air amount calculated from the air flow meter 72 provided in the intake system 30, the NOx amount (Nout) flowing out downstream of the NOx catalyst 42b is calculated. As for the NOx amount (Nin) flowing into the NOx catalyst 42b, a map including the water temperature of the engine 1, the amount of fuel injected into the combustion chamber 20, the amount of air flowing into the combustion chamber 20 is stored in the ROM 82 in advance. Then, the amount of NOx flowing into the NOx catalyst 42b is calculated from the estimated NOx concentration in the exhaust discharged from the engine 1 and the amount of inflow air calculated from the air flow meter 72 using this map. Based on the above configuration, the deterioration determination of the NOx catalyst is performed.
[0059]
The NOx catalyst has a characteristic that the NOx occlusion amount becomes zero when the low bed temperature state continues for a long time, such as at a cold start. Therefore, after a cold start in which the bed temperature is low for a long time, the deterioration determination by the second deterioration determination method, which is a deterioration determination method based on the NOx occlusion amount, is started.
[0060]
A specific determination method is as follows. First, as shown in FIG. 6, after the cold start, the values of Nin and Nout shift at substantially the same value until the catalyst bed temperature reaches the storage start temperature (point a). Thereafter, when the catalyst bed temperature becomes equal to or higher than the storage start temperature, NOx storage is started in the NOx catalyst 42b, and a difference occurs in the amount of NOx in the exhaust upstream and downstream of the NOx catalyst 42b. This difference becomes the stored NOx amount (snox) of the NOx catalyst 42b. After the catalyst becomes higher than the storage start temperature and a difference occurs between Nin and Nout, the NOx stored in the NOx catalyst 42b reaches a saturated state and there is no difference between Nin and Nout (point b) ) Until snox is measured. Therefore, the total NOx amount (Snox) stored in the NOx catalyst 42b is obtained by integrating snox, which is the difference between Nin and Nout of the NOx catalyst 42b from the point a to the point b.
[0061]
If the obtained Snox is smaller than a predetermined value, it is determined that the NOx catalyst 42b has deteriorated. The above will be described based on the flowchart shown in FIG.
[0062]
First, in S701, it is determined whether or not the catalyst bed temperature is equal to or lower than a predetermined temperature a for a predetermined time. This is a step for confirming whether or not NOx is occluded in the catalyst. At this time, the predetermined temperature a is a new NOx catalyst in which NOx is occluded up to the maximum occlusion amount. The time and temperature required to release everything.
[0063]
Next, Nout and Nin are measured in S702 and S703. Thereafter, the process proceeds to S704, where it is determined whether or not the difference between Nin and Nout is greater than or equal to a predetermined value b. If snox is equal to or greater than the predetermined value b, the process proceeds to S708. If snox is equal to or smaller than the predetermined value b, the process proceeds to S705.
[0064]
In S705, it is determined whether or not the catalyst bed temperature is equal to or higher than a predetermined temperature c that is the storage start temperature. If the catalyst bed temperature is equal to or lower than the predetermined temperature c, the process returns to S702, and this routine is repeated until the predetermined temperature c is reached. If the catalyst bed temperature is equal to or higher than the predetermined temperature c, the process proceeds to S706, and it is considered that the catalyst does not have NOx storage capability. Next, in S707, it is determined that the catalyst is deteriorated due to damage or the like, and this routine is finished.
[0065]
In step S708, when it is determined that the difference between Nin and Nout is greater than or equal to the predetermined value c in S704, the difference between Nin and Nout: Nin−Nout = Occlusion amount: snox. Thereafter, the process proceeds to S709 and Nout is measured. Here, Nout is assumed to be a decrease in the storage amount due to the storage amount of the NOx catalyst 42b becoming close to saturation or a decrease in the storage capacity due to a decrease in the catalyst bed temperature. Therefore, the process proceeds to S710, and the catalyst bed temperature is measured. If the catalyst bed temperature is equal to or lower than the predetermined temperature d that is the storage start temperature, the NOx storage capability of the NOx catalyst 42b is reduced or stopped, and the routine returns to S701. Repeat again. If the catalyst bed temperature is equal to or higher than the predetermined temperature d, the process proceeds to S711.
[0066]
In S711, the snox is integrated to calculate the storage amount: Snox when the NOx catalyst 42b is saturated. Next, it progresses to S712 and it is determined whether the difference has generate | occur | produced between Nin and Nout. Since it is confirmed in S710 that the catalyst bed temperature is higher than the occlusion start temperature, if there is no difference between Nin and Nout, the NOx catalyst 42b does not cause an occlusion reaction, that is, NOx. Is considered saturated. If there is a difference between Nin and Nout, the routine returns to S709 and this routine is repeated until there is no difference between Nin and Nout.
[0067]
If there is no difference between Nin and Nout in S712, the process proceeds to S713, where Snox, which is the total NOx amount stored in the NOx catalyst 42b, is compared with a predetermined value e. This predetermined value e is the total amount of NOx occluded by a predetermined catalyst that has not deteriorated. If Snox is equal to or greater than a predetermined value e, it is determined that the catalyst has not deteriorated, and this routine is terminated. If Snox is equal to or less than the predetermined value e, it is determined that the catalyst has deteriorated, and this routine is terminated.
[0068]
From the above, it is possible to determine the deterioration of the catalyst based on the NOx storage ability of the NOx catalyst, which is the second deterioration determination method.
[0069]
Next, at point b in FIG. 6, after the NOx catalyst 42b is in a state where its NOx occlusion amount is saturated, the deterioration of the catalyst is determined from the function of releasing NOx into the exhaust gas in order to reduce and purify NOx.
[0070]
When NOx is stored in the NOx catalyst until saturation, the catalyst atmosphere is changed from a lean atmosphere to a rich atmosphere, that is, when a reducing agent is added to the NOx catalyst, the reducing agent is added once for a deteriorated NOx catalyst. It is publicly known that the amount of NOx released and the amount of NOx reduction are reduced. Further, when this reducing agent addition is repeatedly performed, the deteriorated NOx catalyst exhibits a characteristic that the change in the amount of NOx released becomes small. Therefore, focusing on the fact that the change in the NOx release amount becomes small, the first deterioration determination method, which is a deterioration determination method based on the NOx release amount, is performed.
[0071]
Specifically, the fuel addition as the reducing agent is repeatedly performed a plurality of times from the fuel addition nozzle 17 to the NOx catalyst 42b in which NOx has been occluded to the saturated state. By repeating the fuel addition a plurality of times, NOx stored in the NOx catalyst 42 b is released into the exhaust gas, and the released NOx is detected by the NOx sensor 78.
[0072]
By repeatedly performing fuel addition a plurality of times, as shown in FIG. 8, when fuel is added, the NOx concentration in the exhaust gas rises, and the maximum value (peak) of the NOx concentration is shown at each fuel addition. In the new catalyst, the peak increases at the first fuel addition, and the peak decreases rapidly each time fuel is repeatedly added. That is, the rate of change of the peak generated by repeatedly adding fuel to the initial peak increases. On the other hand, in the case of a deteriorated catalyst, the peak at the time of the first fuel addition is not so large, and when the fuel is repeatedly added thereafter, the decrease in the peak is slow. That is, the rate of change of the peak that occurs repeatedly with respect to the initial peak is small.
[0073]
At the same time, as shown in FIG. 8, the new catalyst has a large reduction amount of NOx concentration after repeated addition of fuel with respect to the NOx concentration before the start of fuel addition, whereas the deteriorated catalyst before the start of fuel addition. The amount of reduction in NOx concentration after repeated addition of fuel to the NOx concentration is reduced.
[0074]
Therefore, the change rate of the peak when the fuel is repeatedly added to the non-degraded NOx catalyst that has occluded NOx to the saturated state and the amount of reduction in the NOx concentration before and after the fuel addition are determined as predetermined values. On the other hand, the change rate of the peak generated when the fuel addition of the NOx catalyst for performing the deterioration determination is repeatedly performed, and the reduction amount of the NOx concentration after the fuel addition is repeatedly performed before the fuel addition is repeatedly performed, If the peak change rate is low and the amount of NOx concentration reduction is small compared to the predetermined value, it is determined that the deterioration has occurred.
[0075]
In addition, when the rate of change of the peak of the NOx catalyst that performs the deterioration determination obtained above is large but the amount of reduction in the NOx concentration is small, it is assumed that the amount of fuel that is a reducing agent is insufficient. On the contrary, the change rate of the peak of the NOx catalyst is small, but when the amount of reduction of the NOx concentration is large, the storage capacity of the NOx catalyst is assumed to be lowered.
[0076]
The above will be described based on the flowchart shown in FIG.
[0077]
First, in S901, it is confirmed whether or not NOx is stored in the NOx catalyst 42b until saturation. This is because when the fuel is added to the NOx catalyst, that is, when the atmosphere of the NOx catalyst is made rich, the amount of NOx discharged from the NOx catalyst depends on the amount of NOx stored in the NOx catalyst. This is because when performing the determination, the deterioration determination is performed with respect to a constant NOx occlusion amount, that is, a saturated NOx occlusion amount. If it is determined in S901 that the predetermined amount NOx is occluded, the process proceeds to S902. If it is determined that the predetermined amount NOx is not occluded, this step is repeated until the predetermined amount NOx is occluded.
[0078]
Next, in S902, the fuel as the reducing agent is intermittently added a plurality of times within a predetermined period. At this time, as the number of fuel additions proceeds, the amount of NOx released from the NOx catalyst decreases, so the amount of fuel that is a reducing agent must also be reduced. Therefore, the amount of fuel added is adjusted in S903 and S904. That is, in S903, if the value of the oxygen concentration sensor 73 is equal to or less than a predetermined oxygen concentration (predetermined value 1), the process proceeds to S905 and S902 to increase the addition amount. In S904, if the value of the oxygen concentration sensor 73 is equal to or higher than a predetermined oxygen concentration (predetermined value 2), the process proceeds to S906 and S902 to decrease the addition amount.
[0079]
After confirming that fuel is correctly added to the NOx catalyst 42b in steps S902 to S906, the process proceeds to S907 to determine the deterioration of the NOx catalyst 42b.
[0080]
In S907, a determination is made regarding the rate of change in NOx concentration resulting from the amount of NOx released within a predetermined period. If the change rate is lower than the predetermined value 3 indicated by the NOx catalyst that has not deteriorated, the process proceeds to S908, and if the change rate is higher than the predetermined value 3, the process proceeds to S909. In both S908 and S909, determination is made regarding the NOx concentration before the predetermined period in which the fuel is added and the NOx reduction amount, which is the amount of change in the NOx concentration after the predetermined period in which the fuel is added.
[0081]
If the NOx reduction amount is lower than the predetermined value 4 indicated by the NOx catalyst that has not deteriorated in S908, the routine proceeds to S910, where it is determined that the NOx catalyst 42b has deteriorated, and this chart ends. Similarly, if the NOx reduction amount is higher than the predetermined value 4 in S908, the process proceeds to S911, where it is determined that the NOx catalyst has a reduced storage capacity, but that the reduction capacity has not deteriorated. Exit.
[0082]
If the NOx reduction amount shows a value lower than the predetermined value 5 indicated by the non-degraded NOx catalyst in S909, the process proceeds to S912, where it is determined that the reduction amount is insufficient within the predetermined period, that is, the added fuel amount is insufficient. End the chart. Similarly, if the NOx reduction amount shows a value higher than the predetermined value 5 in S909, it is determined that both the storage / release function and the reduction function are normal, and the NOx catalyst 42b is not deteriorated, and this chart is ended. .
[0083]
From the above, it is possible to determine the deterioration of the NOx catalyst based on the change in the NOx release amount and NOx concentration of the deteriorated NOx catalyst, which is the first deterioration determination method.
[0084]
By performing the second deterioration determination method and the first deterioration determination method, it is possible to perform deterioration determination from the respective aspects of the NOx storage function and NOx release reduction function of the NOx catalyst.
[0085]
In the second embodiment, in the second deterioration determination method, as shown in FIG. 6, the outline of the determination method is described based on the time and the NOx flow rate. Here, the second deterioration determination method is used as a reference for deterioration determination. What is the maximum value of the NOx occlusion amount, which is an integral value of the difference between the NOx flow rates upstream and downstream of the NOx catalyst 42b. Therefore, parameters such as time and NOx concentration are used for the sake of convenience in indicating this NOx occlusion amount, and are not indispensable for constituting the present invention. In other words, the deterioration can be determined by the second deterioration determination method according to the present invention as long as the maximum NOx amount stored in the catalyst for determining deterioration can be confirmed.
[0086]
Further, in the first deterioration determination method, fuel is intermittently added and NOx is intermittently released from the NOx catalyst 42b, and the deterioration rate of the NOx catalyst 42b is determined using the change rate of the maximum value of the NOx concentration as a determination criterion. Judged. In addition to this, for example, when fuel addition is intermittently performed, an average value of the amount of NOx released at the time of each fuel addition may be obtained, and deterioration determination may be performed based on the change rate of the average value. Further, more simply, when fuel addition is intermittently performed during a predetermined period, the NOx concentration released from the NOx catalyst by the fuel addition performed at the beginning and the end of the predetermined period is measured, The deterioration determination may be performed based on the change rate and the displacement difference obtained from the NOx concentration resulting from the NOx release and the NOx concentration resulting from the last NOx release. That is, the deterioration determination of the NOx catalyst is performed based on the change in the NOx concentration when NOx is intermittently released.
[0087]
【The invention's effect】
By using the catalyst deterioration determination device and method according to the present invention, it is possible to determine the degree of deterioration of the NOx catalyst from the change in the storage capacity of the NOx catalyst without being influenced by individual differences of the NOx sensors or changes with time. Become. Further, it is possible to determine whether or not the NOx catalyst is deteriorated individually for each function of NOx occlusion and exhaust reduction, which is a purification process related to NOx, particularly in exhaust gas.
[0088]
Further, in the present invention, when the NOx catalyst 42b is subjected to fuel addition to determine the deterioration of the NOx catalyst, the fuel is intermittently added a plurality of times, and the NOx derived from the maximum value of the NOx concentration resulting from each fuel addition. Degradation is determined using the density change rate. In other words, in order to measure the measurement value used for the deterioration determination, each measurement value at the time of different deterioration determination trials is obtained, and the NOx catalyst deterioration determination is comprehensively performed based on the plurality of measurement value results. Therefore, the deterioration determination method of the present invention is more accurate than the conventional deterioration determination method using fuel addition to a single NOx catalyst, that is, a change in NOx concentration accompanying a single deterioration determination trial as a measured value of the deterioration determination. It is possible to derive a high determination result.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a diesel engine system according to an embodiment of the present invention.
Chart.
FIG. 2 is a conceptual diagram of a configuration around an ECU according to the embodiment.
FIG. 3 is a conceptual cross-sectional view of a catalyst casing according to the same embodiment.
FIG. 4 is a graph showing the relationship between the catalyst bed temperature and time according to the embodiment.
FIG. 5 shows an example of reducing agent addition control when the NOx catalyst capacity is lowered according to the embodiment;
The flowchart shown.
FIG. 6 is a graph showing the relationship between the catalyst bed temperature and the NOx occlusion amount according to the embodiment.
Huh.
FIG. 7 is a flowchart for determining deterioration by measuring NOx storage capacity according to the embodiment.
Yat.
FIG. 8 is a graph showing the amount of NOx released during NOx reduction according to the same embodiment.
FIG. 9 shows the NOx release amount, NOx reduction amount, and NOx release amount according to the embodiment.
The deterioration determination flowchart by a change.
[Explanation of symbols]
1 engine
10 Fuel supply system
11 Supply pump
12 Common rail
13 Fuel injection valve
14 Shut-off valve
17 Fuel addition nozzle
20 Combustion chamber
30 Intake system
31 Intercooler
32 Throttle valve
40 Exhaust system
40a Exhaust collecting pipe
40b Exhaust passage
40c Exhaust passage
42 Catalyst casing
42b NOx catalyst
50 turbocharger
51 shaft
52 Turbine wheel
53 Compressor
60 EGR passage
61 EGR valve
62 EGR cooler
70 Rail pressure sensor
71 Fuel pressure sensor
72 Air Flow Meter
73 Oxygen concentration sensor
74 Exhaust temperature sensor for catalyst outflow
76 Accelerator position sensor
77 Crank angle sensor
78 NOx sensor
80 Electronic control unit (ECU)
81 Central processing unit (CPU)
82 Read-only memory (ROM)
83 Random access memory (RAM)
84 Backup RAM
85 Timer counter
86 Input port
87 output port
88 bidirectional bus
P1 Engine fuel passage
P2 added fuel passage

Claims (5)

内燃機関の排気通路中に設けられ酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒と、
排気雰囲気を酸素濃度過剰雰囲気と酸素濃度低下雰囲気とに繰り返し変化させて前記NOx触媒中のNOxを断続的に放出させる再生手段と、
前記NOx触媒の下流に設けられ排気中のNOx濃度を検出すると共に、前記再生手段によりNOx触媒の再生を実施した際にNOx触媒より断続的に放出されるNOx濃度を各々検出するNOx濃度検出手段と、
前記再生手段によりNOx触媒の再生を所定の期間に連続して行い、この期間中に前記NOx濃度検出手段により検出したNOx濃度の変化率及び変位差に基づいて該触媒の劣化状態を判断する劣化判定手段とを備えた排気浄化装置の劣化判定装置。
A NOx catalyst that is provided in the exhaust passage of the internal combustion engine and stores NOx in the exhaust in an oxygen concentration excess atmosphere and releases the NOx stored in the oxygen concentration reduced atmosphere;
Regenerating means for intermittently releasing NOx in the NOx catalyst by repeatedly changing the exhaust atmosphere into an oxygen concentration excess atmosphere and an oxygen concentration lowering atmosphere;
NOx concentration detection means that is provided downstream of the NOx catalyst and detects NOx concentration in the exhaust gas, and detects NOx concentration intermittently released from the NOx catalyst when the regeneration means regenerates the NOx catalyst. When,
Degradation in which the regeneration means continuously regenerates the NOx catalyst for a predetermined period, and determines the degradation state of the catalyst based on the change rate and displacement difference of the NOx concentration detected by the NOx concentration detection means during this period. An exhaust purification device deterioration determination device comprising: a determination means.
前記NOx濃度検出手段により、前記再生手段によるNOx触媒の再生を実施する前と実施した後のNOx濃度を検出し、前記再生の実施前と実施後の検出値の差に基づいて該触媒の劣化状態を判断する劣化判定手段を備えたことを特徴とする請求項1に記載の排気浄化装置の劣化判定装置。  The NOx concentration detecting means detects the NOx concentration before and after the regeneration of the NOx catalyst by the regeneration means, and the deterioration of the catalyst based on the difference between the detected values before and after the regeneration. The deterioration determination device for an exhaust gas purification apparatus according to claim 1, further comprising deterioration determination means for determining a state. 前記NOx濃度検出手段で検出したNOx濃度に基づいて、前記NOx濃度の極大値を検出するNOx濃度極大値検出手段を有することを特徴とする請求項1又は2に記載の排気浄化装置の劣化判定装置。  The exhaust gas purification device deterioration determination according to claim 1 or 2, further comprising NOx concentration maximum value detecting means for detecting a maximum value of the NOx concentration based on the NOx concentration detected by the NOx concentration detecting means. apparatus. 前記NOx濃度極大値検出手段で極大値を検出し、所定の期間内で最初に発生するNOx濃度の極大値に対する最後に発生するNOx濃度の極大値の変化率及び変位差に基づいて、該触媒の劣化状態を判断する劣化判定手段を備えることを特徴とする請求項に記載の排気浄化装置の劣化判定装置。The catalyst detects the maximum value with the NOx concentration maximum value detecting means, and based on the change rate and the displacement difference of the maximum value of the NOx concentration that occurs last with respect to the maximum value of the NOx concentration that occurs first within a predetermined period, the catalyst The deterioration determination device for an exhaust gas purification apparatus according to claim 3 , further comprising deterioration determination means for determining the deterioration state of the exhaust gas purification apparatus. 酸素濃度過剰雰囲気で排気中のNOxを吸蔵すると共に酸素濃度低下雰囲気中で吸蔵したNOxを放出するNOx触媒が、内燃機関の排気通路に設けられた排気浄化装置に設けられ、このNOx触媒の下流で排気中のNOx濃度を検出すると共に、排気雰囲気を所定の期間内に酸素濃度過剰雰囲気と酸素濃度低下雰囲気とに繰り返し変化させて前記NOx触媒中のNOxを断続的に排気中に放出させてこの放出されたNOx濃度を求め、所定の期間内で各々のNOx濃度の変化率及び変位差に基づいて該排気浄化装置の劣化状態を判定する排気浄化装置の劣化判定方法。  A NOx catalyst that stores NOx in the exhaust in an atmosphere with excess oxygen concentration and releases NOx stored in the atmosphere with a reduced oxygen concentration is provided in an exhaust purification device provided in the exhaust passage of the internal combustion engine, and downstream of the NOx catalyst. The NOx concentration in the exhaust gas is detected at the same time, and the exhaust atmosphere is repeatedly changed into an oxygen concentration excess atmosphere and an oxygen concentration lowering atmosphere within a predetermined period to intermittently release NOx in the NOx catalyst into the exhaust gas. A method for determining the deterioration of an exhaust purification device, which determines the released NOx concentration and determines a deterioration state of the exhaust purification device based on a change rate and a displacement difference of each NOx concentration within a predetermined period.
JP2002104117A 2002-04-05 2002-04-05 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof Expired - Fee Related JP4103428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002104117A JP4103428B2 (en) 2002-04-05 2002-04-05 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002104117A JP4103428B2 (en) 2002-04-05 2002-04-05 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof

Publications (2)

Publication Number Publication Date
JP2003293745A JP2003293745A (en) 2003-10-15
JP4103428B2 true JP4103428B2 (en) 2008-06-18

Family

ID=29242842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002104117A Expired - Fee Related JP4103428B2 (en) 2002-04-05 2002-04-05 Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof

Country Status (1)

Country Link
JP (1) JP4103428B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821793B1 (en) * 2005-12-12 2008-04-11 현대자동차주식회사 NOx storage catalyst regeneration method
JP4729518B2 (en) * 2007-03-07 2011-07-20 トヨタ自動車株式会社 NOx catalyst deterioration diagnosis device
US9255510B2 (en) * 2009-03-09 2016-02-09 GM Global Technology Operations LLC Ammonia (NH3) storage control system and method based on a nitrogen oxide(NOx) sensor
JP5626030B2 (en) * 2011-03-03 2014-11-19 トヨタ自動車株式会社 Catalyst deterioration judgment system
DE102014016447B4 (en) * 2014-11-06 2023-05-11 Andreas Döring Method and control device for operating an internal combustion engine

Also Published As

Publication number Publication date
JP2003293745A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
US7013638B2 (en) Exhaust gas purifying system and exhaust gas purifying method
US7716918B2 (en) Method of exhaust gas purification and exhaust gas purification system
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
US7104049B2 (en) Exhaust gas purifying system and regeneration end determining method
EP1174600B1 (en) Emission control system and method of internal combustion engine
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
US20080264037A1 (en) Apparatus for deterioration diagnosis of an oxidizing catalyst
WO2007136141A1 (en) Exhaust emission purifier of internal combustion engine
US9234474B2 (en) Control oriented model for LNT regeneration
JP4692436B2 (en) Exhaust gas purification system for internal combustion engine
JP3649130B2 (en) Exhaust gas purification device for internal combustion engine
JP4103428B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP4114355B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP2007170218A (en) Exhaust emission control device of internal combustion engine
JP3858779B2 (en) Exhaust gas purification device
JP2001303937A (en) Exhaust gas purification device for internal combustion engine
JP3925203B2 (en) Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
JP2007332852A (en) Exhaust emission control device for internal combustion engine
JP3508703B2 (en) Exhaust gas purification device for internal combustion engine
JP2008157187A (en) Egr control device for engine
JP4376665B2 (en) Engine particulate matter emission estimation method and exhaust purification control device
CN115467731B (en) DPF regeneration judging method, device and equipment
JP2010106813A (en) Exhaust emission control device for internal combustion engine
JP3624812B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees