[go: up one dir, main page]

JP4094856B2 - Machining method of arc groove - Google Patents

Machining method of arc groove Download PDF

Info

Publication number
JP4094856B2
JP4094856B2 JP2002015805A JP2002015805A JP4094856B2 JP 4094856 B2 JP4094856 B2 JP 4094856B2 JP 2002015805 A JP2002015805 A JP 2002015805A JP 2002015805 A JP2002015805 A JP 2002015805A JP 4094856 B2 JP4094856 B2 JP 4094856B2
Authority
JP
Japan
Prior art keywords
workpiece
arc
tool
axis
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002015805A
Other languages
Japanese (ja)
Other versions
JP2003220501A (en
Inventor
克彦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Mori Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd, Mori Seiki Co Ltd filed Critical DMG Mori Co Ltd
Priority to JP2002015805A priority Critical patent/JP4094856B2/en
Publication of JP2003220501A publication Critical patent/JP2003220501A/en
Application granted granted Critical
Publication of JP4094856B2 publication Critical patent/JP4094856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械を用い、工具とワークとを相対的に移動させて、底面が円弧状凹曲面をなす溝を前記ワークに加工する溝加工方法に関する。
【0002】
【従来の技術】
従来、図9及び図10に示すような半円筒状の凹部を有するワーク50の該凹部内面に、底面が円弧状の凹曲面をなす溝(以下、円弧溝という)51を形成する代表的な加工法として、放電電極を用いた放電加工を挙げることができる。
【0003】
この加工法は、加工形状たる円弧溝51に合致した形状の放電部を備えた放電電極を用い、この電極とワーク50とを絶縁性を有する加工液中に浸漬し、電極とワーク50との間に微小な隙間を持たせた状態で両者間に電圧を印加して放電させることにより、ワーク50の放電部を溶融させて、ワーク50に電極の放電部と同形状の円弧溝51を形成するというものである。
【0004】
【発明が解決しようとする課題】
ところが、上記放電電極を用いた放電加工法は、放電電極とワーク50との間に放電を生起させることにより、ワーク50の放電部を溶融させて、円弧溝51を形成するというものであり、その加工速度が遅いため、生産性が悪く、しかも加工コストが高いという問題がある。また、加工形状に応じた専用の電極が必要であるため、この面でも加工コストが高くなる。
【0005】
本発明は、以上の実情に鑑みなされたものであって、ワークに底面が円弧状凹曲面をなす溝を加工するに当たり、これを低コストでしかも効率良く行うことができる溝加工方法の提供をその目的とする。
【0006】
【課題を解決するための手段及びその効果】
上記目的を達成するための本発明の請求項1に記載した発明は、
工具を保持する主軸を備え、該主軸及びワークが直交2軸方向に相対移動可能に、前主軸又はワークが前記直交2軸方向と垂直な揺動中心軸回りに揺動可能に、前記主軸を軸線中心に回転させて割出可能に構成された工作機械を用い、半円筒状をした凹部を有する前記ワークの該凹部内面に底面が円弧状の凹曲面をなす溝を加工する方法であって、
前記工具に、すくい面及び逃げ面を有する1つの刃先を備え、前記主軸の軸線に対して傾いた状態で前記主軸に保持された溝加工用バイトを使用し、
前記ワークを、形成すべき円弧状凹曲面をなす溝の中心軸線と前記揺動中心軸とが平行となるように配置し、
ついで、前記バイトの刃先を、前記ワークに対して所定の切り込み量を有するように位置決めした後、
前記バイト又はワークを前記揺動中心軸回りに揺動させる揺動動作と、前記バイト及びワークを前記直交2軸方向に直線移動させる直線移動動作との複合動作により、前記バイトの刃先が、前記切り込み量に応じて仮想的に設定される円弧状の加工軌跡と所定のすくい角を持って接するように且つ前記加工軌跡に沿って移動するように、更に、仕上げられる円弧溝に沿った一方端から円弧の中央位置まで移動するように、前記バイトをワークに対し非回転で相対的に移動させ、
次に、前記バイトが180度反転するように前記主軸を軸線中心に回転させて割出した後、
前記バイトの刃先を前記円弧溝の一方端から中央位置まで移動させたときと同様に、前記バイトの刃先が、前記円弧溝に沿った他方端から円弧の前記中央位置まで移動するように、前記バイトをワークに対し非回転で相対的に移動させて、
前記ワークに底面が円弧状凹曲面をなす溝を形成するようにしたことを特徴とする円弧溝の加工方法に係る。
【0007】
この発明によれば、半円筒状をした凹部を有するワークが、形成すべき円弧状凹曲面をなす溝の中心軸線と揺動中心軸とが平行となるように配置され、刃先がワークに対して所定の切り込み量を有するように位置決めされた後、当該刃先が前記切り込み量に応じて仮想的に設定される円弧状の加工軌跡と所定のすくい角を持って接するように且つ前記加工軌跡に沿って移動するように、更に、仕上げられる円弧溝に沿った一方端から円弧の中央位置まで移動するように、バイトがワークに対し非回転で相対的に移動せしめられる。この相対移動は、バイト又はワークを揺動中心軸回りに揺動させる揺動動作と、バイト及びワークを直交2軸方向に直線移動させる直線移動動作との複合動作により行われる。これにより、刃先がワークに対して描く円弧状の加工軌跡に沿ってワークが削り取られて、加工軌跡に沿った円弧の一方端から中央位置まで円弧状の溝がワークに形成される。
【0008】
この後、バイトが180度反転するように主軸が軸線中心に回転せしめられて割出された後、刃先を円弧溝の一方端から中央位置まで移動させたときと同様に、刃先が円弧溝に沿った他方端から円弧の中央位置まで移動するように、バイトがワークに対し非回転で相対的に移動せしめられる。これにより、刃先がワークに対して描く円弧状の加工軌跡に沿ってワークが削り取られて、加工軌跡に沿った円弧の他方端から中央位置まで円弧状の溝がワークに形成される。こうして、加工軌跡に沿った円弧の一方端から他方端までの全弧長に渡ってワークが削り取られ、当該加工軌跡に応じた円弧状の形状がワークに形 成される。
【0009】
尚、一度の加工で仕上り寸法の円弧溝を形成することができない場合には、所定の切り込み量で上記動作を繰り返すことにより、仕上がり寸法の円弧溝をワークに形成することができる。
【0010】
斯くして、本発明では、バイトとワークとを、当該バイトの刃先がワークに対して円弧状の加工軌跡を描くように非回転で相対移動させることによってワークを削り取り、円弧状の溝を形成するようにしているので、高精度な加工面を得ることができる。また、放電加工に比べて加工速度が速く、効率的に加工することができるので、生産性を向上させることができ、加工コストを抑制することができる。また、加工形状に応じた専用の電極が不要であり、この点においても、加工コストを抑制することができる。
【0011】
また、主軸の軸線に対して傾いた状態で主軸に保持された溝加工用バイトを工具に使用し、バイトの刃先を、仕上げられる円弧溝に沿った一方端から円弧の中央位置まで移動させた後、バイトを180度反転させ、この後、バイトの刃先を、円弧溝に沿った他方端から円弧の中央位置まで移動させているので、1回の加工動作におけるバイト刃先の移動範囲を狭くすることができ、円弧溝の弧長が長い場合であっても、上記相対移動の際に、バイトとワークとが干渉するといった不都合が生じるのを防止することが可能となる。
【0012】
【発明の実施の形態】
以下、本発明の具体的な実施形態に係る円弧溝の加工方法について添付図面に基づき説明する。尚、以下の説明では、工作機械として図1に示すような5軸制御立形マシニングセンタ1を用いて、図9及び図10に示すような半円筒状の凹部を有するワーク50の該凹部内面に、円弧溝51を形成するものとする。また、前記円弧溝51をワーク50に荒加工なしに加工するものとして説明するが、これに限られるものではなく、荒加工後の仕上げ加工に本例の円弧溝の加工方法を適用しても良い。
【0013】
図1に示すように、前記5軸制御立形マシニングセンタ1は、ベッド2と、該ベッド2上に配設されたコラム3と、該コラム3上に配設され、矢示X軸方向に移動可能になったサドル4と、このサドル4に支持され、矢示Z軸方向に移動可能になった主軸頭5と、工具10を保持するとともに、前記主軸頭5によって支持され、矢示C軸方向に回転,割出し可能になった主軸6と、前記ベッド2上に配設され、矢示Y軸方向に移動可能及び矢示A軸方向に揺動可能になったテーブル7などからなる。
【0014】
また、前記5軸制御立形マシニングセンタ1は、前記サドル4を矢示X軸方向に移動させるX軸送り機構部(図示せず)と、前記主軸頭5を矢示Z軸方向に移動させるZ軸送り機構部(図示せず)と、前記テーブル7を矢示Y軸方向に移動させるY軸送り機構部(図示せず)と、前記主軸6を矢示C軸方向に回転させるC軸回転割出機構部(図示せず)と、前記テーブル7を矢示A軸方向に揺動させるA軸回転送り機構部(図示せず)と、これらX軸送り機構部(図示せず),Z軸送り機構部(図示せず),Y軸送り機構部(図示せず),C軸回転割出機構部(図示せず)及びA軸回転送り機構部(図示せず)の作動を制御する数値制御装置(図示せず)とを備える。また、前記テーブル7は、ワーク50が載置,固定されるように構成されている。
【0015】
前記工具10には、例えば、図2に示すような工具が用いられる。この工具10は、溝加工用バイト20と、このバイト20を前記主軸6の軸線に対して略45度傾いた状態となるように保持,固定するホルダ11などからなる。
【0016】
前記バイト20は、図3及び図4に示すように、シャンク部21と刃部22とからなり、刃部22は、すくい面23と、このすくい面23と角度(刃物角)βで交差する主逃げ面24と、すくい面23の両側に形成された副逃げ面25とから構成される。
【0017】
尚、このバイト20は、例えば、前記ホルダ11に形成された取り付け穴11aに嵌挿された後、そのシャンク部21が固定ボルト12で締められることによって、前記ホルダ11に保持,固定される。
【0018】
そして、このように構成された5軸制御立形マシニングセンタ1及び工具10を用いて、ワーク50に底面が円弧状凹曲面をなす溝51を加工する。まず、前記円弧溝51の中心軸線と前記X軸の軸線とが平行となるように、前記ワーク50を前記テーブル7に載置,固定した後、前記バイト20の突出方向と前記円弧溝51の中心軸線とが直交するように、前記主軸6をその軸中心に前記C軸回転割出機構部(図示せず)により回転させて、これを割出すとともに、図5(a)に示すように、前記テーブル7を前記A軸回転送り機構部(図示せず)により揺動させて、前記ワーク50をバイト20の突出方向に傾斜させる。
【0019】
ついで、前記工具10の刃部22を、前記ワーク50に対して所定の切り込み量dを有するように位置決めした後、前記刃部22が、前記切り込み量dに応じて仮想的に設定される円弧状の加工軌跡Lと接するように、前記工具10とワーク50とを相対的に移動させるべく、前記主軸頭5及びテーブル7を、前記Z軸送り機構部(図示せず)及びY軸送り機構部(図示せず)によりそれぞれ移動させるとともに、テーブル7を前記A軸回転送り機構部(図示せず)により揺動させる。
【0020】
こうして、前記工具10とワーク50との相対的な位置関係が、順次、ワーク50が右に水平より略45度傾いた状態(図5(a)),ワーク50が水平となった状態(図5(b)),ワーク50が左に水平より略45度傾いた状態(図5(c))へと変化して、前記刃部22が、前記加工軌跡Lに沿った円弧の一方端から中央位置まで移動する第1動作が行われる。
【0021】
尚、この時、前記刃部22は、図6及び図7に示すようにして移動する。即ち、前記すくい面23と主逃げ面24との交差部Pを通り、前記ワーク50に対する刃部22の相対的な移動方向と平行な線を線D,直交する線を線Eとすると、前記すくい面23と線Eとの間にすくい角α,前記主逃げ面24と線Dとの間に主逃げ角γ,前記副逃げ面25と溝51の側面部との間に副逃げ角F,Gが形成された状態で、前記交差部Pが前記加工軌跡Lと接するように移動する。これにより、前記加工軌跡Lに沿った円弧の一方端から中央位置までワーク50が削り取られる。
【0022】
そして、上記第1動作を完了した後、図8(a)に示すように、前記工具10を180度反転させるべく、前記主軸6をその軸中心に前記C軸回転割出機構部(図示せず)により回転させて、これを割出す。
【0023】
次に、上記第1動作と同様にして、前記工具10とワーク50との相対的な位置関係が、順次、ワーク50が左に水平より略45度傾いた状態(図8(a)),ワーク50が水平となった状態(図8(b)),ワーク50が右に水平より略45度傾いた状態(図8(c))へと変化して、前記刃部22が、前記加工軌跡Lに沿った円弧の他方端から中央位置まで移動する第2動作を行うように、前記工具10とワーク50とを相対的に移動させる。これにより、前記加工軌跡Lに沿った円弧の他方端から中央位置までワーク50が削り取られる。
【0024】
こうして、前記加工軌跡Lに沿った円弧の一方端から他方端までの全弧長に渡って前記ワーク50が削り取られ、当該加工軌跡Lに応じた円弧状の形状がワーク50に形成される。
【0025】
以降、所定の切り込み量dで上記第1動作及び第2動作を繰り返すことにより、所定の仕上がり寸法の円弧溝51がワーク50に形成される。尚、前記切り込み量dは、前記ワーク50の材質や要求される加工精度などに応じて適宜設定される。
【0026】
斯して、この円弧溝の加工方法によれば、非回転の工具10とワーク50とを、当該工具10の刃部22がワーク50に対して円弧状の加工軌跡Lを描くように相対移動させることによってワーク50を削り取り、円弧状の溝51を形成するようにしているので、高精度な加工面を得ることができる。
【0027】
また、放電加工に比べて加工速度が速く、効率的に加工することができるので、生産性を向上させることができ、加工コストを抑制することができる。また、加工形状に応じた専用の電極が不要であり、この点においても、加工コストを抑制することができる。
【0028】
また、前記円弧溝51の弧長が長い本例においては、前記刃部22を前記加工軌跡Lに沿った円弧の一方端から他方端まで連続的に移動させるようにすると、工具10とワーク50とが干渉するといった不都合を生じるが、第1動作及び第2動作の2つの動作に分けることで、前記干渉を防止することが可能となる。
【0029】
以上、本発明の一実施形態について説明したが、本発明の取り得る具体的な態様は、何らこれに限定されるものではない
【0030】
上述の例では、5軸制御立形マシニングセンタ1を用いた際の円弧溝の加工方法をその一例として説明したが、これに限られるものではなく、例えば、5軸制御横形マシニングセンタ、或いはB,C軸旋回機能を備えた複合加工旋盤を用いた加工にも、これを適用することができる
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る円弧溝加工を実施するための工作機械を示した斜視図である。
【図2】 本実施形態の円弧溝加工で使用する工具を示した正面図である。
【図3】 本実施形態に係る溝加工用バイトを示した正面図である。
【図4】 図3に示した溝加工用バイトの側面図である。
【図5】 本実施形態に係る工具とワークとの相対移動を説明するための説明図である。
【図6】 図5におけるB部を拡大して示した詳細図である。
【図7】 図6における矢示C方向の正面図である。
【図8】 本実施形態に係る工具とワークとの相対移動を説明するための説明図である。
【図9】 ワークの一例を説明するための説明図である。
【図10】 図9における矢示A−A方向の断面図である。
【符号の説明】
1 5軸制御立形マシニングセンタ
2 ベッド
3 コラム
4 サドル
5 主軸頭
6 主軸
7 テーブル
10 工具
11 ホルダ
20 溝加工用バイト
22 刃部
23 すくい面
24 主逃げ面
50 ワーク
51 溝形状
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a groove machining method in which a machine tool is used to relatively move a tool and a workpiece, and a groove whose bottom surface forms an arcuate concave curved surface is machined into the workpiece.
[0002]
[Prior art]
Conventionally, a typical groove 50 (hereinafter referred to as an arc groove) 51 is formed on the inner surface of a concave portion of a workpiece 50 having a semicylindrical concave portion as shown in FIGS. 9 and 10. Examples of the processing method include electric discharge machining using a discharge electrode.
[0003]
In this processing method, a discharge electrode having a discharge portion having a shape matching the circular arc groove 51 as a processing shape is used, and this electrode and the workpiece 50 are immersed in an insulating processing liquid, and the electrode and the workpiece 50 are separated. By applying a voltage between the two and discharging them with a small gap between them, the discharge part of the work 50 is melted, and the arc groove 51 having the same shape as the discharge part of the electrode is formed in the work 50. It is to do.
[0004]
[Problems to be solved by the invention]
However, the electric discharge machining method using the discharge electrode is to cause a discharge between the discharge electrode and the workpiece 50 to melt the discharge portion of the workpiece 50 to form the arc groove 51. Since the processing speed is slow, there is a problem that productivity is poor and processing cost is high. In addition, since a dedicated electrode corresponding to the processing shape is required, the processing cost also increases in this respect.
[0005]
The present invention has been made in view of the above circumstances, and provides a groove machining method capable of efficiently performing this at a low cost when machining a groove whose bottom surface forms an arcuate concave curved surface on a workpiece. For that purpose.
[0006]
[Means for solving the problems and effects thereof]
To achieve the above object, the invention described in claim 1 of the present invention is
Comprising a main shaft for holding the tool, the spindle and workpiece relatively movable in the orthogonal biaxial directions, before Symbol spindle or the workpiece to be swung into the orthogonal biaxial directions perpendicular to the swing center axis, said spindle Is a method of machining a groove having a concave curved surface with a bottom surface formed in an arc shape on the inner surface of the concave portion of the workpiece having a semi-cylindrical concave portion using a machine tool configured to be indexable by rotating the axis about the axis. And
The tool is provided with one cutting edge having a rake face and a flank face, and a grooving tool held on the spindle in a state inclined with respect to the axis of the spindle ,
The workpiece is arranged so that the central axis of the groove forming the arc-shaped concave curved surface to be formed and the oscillation central axis are parallel to each other,
Subsequently, the cutting edge of the byte, and positioned so as to have a predetermined depth of cut with respect to the workpiece,
A swing operation for oscillating the bytes or workpiece to the swing center axis, the combined operation of the linear movement operations for linearly moving the byte and work on the orthogonal two axial directions, the cutting edge of the byte, the One end along the arc groove to be further finished so as to be in contact with the arc-shaped machining trajectory virtually set according to the cut amount and to move along the machining trajectory. The tool is moved relative to the workpiece in a non-rotating manner so that the tool moves to the center position of the arc .
Next, after indexing by rotating the spindle about the axis so that the bite is inverted 180 degrees,
In the same manner as when the cutting edge of the cutting tool is moved from one end of the arc groove to the center position, the cutting edge of the cutting tool is moved from the other end along the arc groove to the center position of the arc. Move the tool relative to the workpiece without rotating,
According to another aspect of the present invention, there is provided a method of machining an arc groove, wherein a groove having a bottom surface forming an arc-shaped concave curved surface is formed on the workpiece.
[0007]
According to the present invention, a workpiece having a semicylindrical concave portion is arranged such that the central axis of the groove forming the arc-shaped concave curved surface to be formed and the oscillation central axis are parallel to each other, and the cutting edge is located with respect to the workpiece. Are positioned so as to have a predetermined cut amount, and then the cutting edge comes into contact with an arc-shaped processing locus virtually set according to the cutting amount with a predetermined rake angle and to the processing locus. The bite is moved relative to the workpiece in a non-rotating manner so as to move from one end along the arc groove to be finished to the center position of the arc . This relative movement is performed by a combined operation of a swinging motion that swings the tool or the workpiece about the center axis of swinging and a linear movement operation that linearly moves the tool and the workpiece in two orthogonal axes. As a result, the workpiece is scraped off along the arc-shaped machining locus drawn by the cutting edge with respect to the workpiece, and an arc-shaped groove is formed in the workpiece from one end of the arc along the machining locus to the center position.
[0008]
After that, after the spindle is rotated and indexed so that the bite is inverted 180 degrees, the cutting edge is turned into the arc groove in the same manner as when the cutting edge is moved from one end of the arc groove to the center position. The cutting tool is moved relative to the workpiece in a non-rotating manner so as to move from the other end along the arc to the center position of the arc. As a result, the workpiece is scraped off along the arc-shaped machining locus drawn by the cutting edge with respect to the workpiece, and an arc-shaped groove is formed in the workpiece from the other end of the arc along the machining locus to the center position. Thus, over the entire arc length from one end of the arc along the processing path to the other end the work is cut away, arcuate shape corresponding to the machining path is made form the workpiece.
[0009]
If a circular groove having a finished dimension cannot be formed by a single process, an arc groove having a finished dimension can be formed in the workpiece by repeating the above operation with a predetermined cut amount.
[0010]
Thus, in the present invention, the workpiece is scraped off by rotating the bite and the workpiece relative to each other in a non-rotating manner so that the cutting edge of the bite draws an arc-shaped machining locus with respect to the workpiece, thereby forming an arc-shaped groove. Therefore, a highly accurate processed surface can be obtained. In addition, since the machining speed is higher than that of electric discharge machining and machining can be performed efficiently, productivity can be improved and machining cost can be suppressed. In addition, a dedicated electrode corresponding to the processing shape is not necessary, and the processing cost can also be suppressed in this respect.
[0011]
In addition, a tool for cutting a groove that is held on the spindle while being tilted with respect to the axis of the spindle is used for the tool, and the cutting edge of the tool is moved from one end along the arc groove to be finished to the center position of the arc. Thereafter, the cutting tool is inverted 180 degrees, and thereafter, the cutting edge of the cutting tool is moved from the other end along the arc groove to the center position of the circular arc, so that the moving range of the cutting tool edge in one machining operation is narrowed. Even when the arc length of the arc groove is long, it is possible to prevent inconvenience such as interference between the cutting tool and the workpiece during the relative movement.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for processing an arc groove according to a specific embodiment of the present invention will be described with reference to the accompanying drawings. In the following description, a 5-axis control vertical machining center 1 as shown in FIG. 1 is used as a machine tool, and the inner surface of the workpiece 50 having a semicylindrical recess as shown in FIGS. 9 and 10 is used. The arc groove 51 is formed. The arc groove 51 is described as being processed on the workpiece 50 without roughing. However, the present invention is not limited to this, and the arc groove processing method of this example may be applied to finishing after roughing. good.
[0013]
As shown in FIG. 1, the 5-axis control vertical machining center 1 includes a bed 2, a column 3 disposed on the bed 2, a column 3 disposed on the column 3, and moves in the direction of the arrow X-axis. The saddle 4 made possible, the spindle head 5 supported by the saddle 4 and movable in the direction of the arrow Z-axis, and the tool 10 are held and supported by the spindle head 5 to show the arrow C-axis. The main shaft 6 can be rotated and indexed in the direction, and the table 7 is disposed on the bed 2 and can be moved in the arrow Y-axis direction and swingable in the arrow A-axis direction.
[0014]
The 5-axis control vertical machining center 1 includes an X-axis feed mechanism (not shown) that moves the saddle 4 in the direction indicated by the arrow X, and a Z that moves the spindle head 5 in the direction indicated by the arrow Z. An axial feed mechanism (not shown), a Y-axis feed mechanism (not shown) that moves the table 7 in the direction of the arrow Y, and a C-axis rotation that rotates the spindle 6 in the direction of the arrow C Indexing mechanism (not shown), A-axis rotary feed mechanism (not shown) for swinging the table 7 in the direction of the A-axis, X-axis feed mechanism (not shown), Z Controls the operation of a shaft feed mechanism (not shown), a Y-axis feed mechanism (not shown), a C-axis rotation indexing mechanism (not shown), and an A-axis rotation feed mechanism (not shown). A numerical control device (not shown). The table 7 is configured such that the workpiece 50 is placed and fixed thereon.
[0015]
As the tool 10, for example, a tool as shown in FIG. 2 is used. The tool 10 includes a grooving tool 20 and a holder 11 for holding and fixing the tool 20 so as to be inclined at about 45 degrees with respect to the axis of the main shaft 6.
[0016]
As shown in FIGS. 3 and 4, the cutting tool 20 includes a shank portion 21 and a blade portion 22, and the blade portion 22 intersects the rake face 23 with an angle (cutlery angle) β with the rake face 23. It comprises a main flank 24 and sub-flank 25 formed on both sides of the rake face 23.
[0017]
The cutting tool 20 is held and fixed to the holder 11 by, for example, being inserted into a mounting hole 11 a formed in the holder 11 and then the shank portion 21 being tightened with a fixing bolt 12.
[0018]
Then, using the 5-axis control vertical machining center 1 and the tool 10 configured as described above, a groove 51 whose bottom surface forms an arc-shaped concave curved surface is processed in the workpiece 50. First, after the work 50 is placed and fixed on the table 7 so that the central axis of the arc groove 51 and the axis of the X axis are parallel, the protruding direction of the cutting tool 20 and the arc groove 51 The main shaft 6 is rotated about its axis by the C-axis rotation indexing mechanism (not shown) so as to be orthogonal to the central axis, and this is indexed, as shown in FIG. 5 (a). The table 7 is swung by the A-axis rotary feed mechanism (not shown), and the work 50 is inclined in the protruding direction of the cutting tool 20.
[0019]
Next, after the blade portion 22 of the tool 10 is positioned so as to have a predetermined cut amount d with respect to the workpiece 50, the blade portion 22 is virtually set according to the cut amount d. In order to move the tool 10 and the workpiece 50 relatively so as to contact the arc-shaped machining locus L, the spindle head 5 and the table 7 are moved to the Z-axis feed mechanism (not shown) and the Y-axis feed mechanism. The table 7 is moved by a part (not shown), and the table 7 is swung by the A-axis rotation feed mechanism part (not shown).
[0020]
Thus, the relative positional relationship between the tool 10 and the workpiece 50 is such that the workpiece 50 is inclined to the right approximately 45 degrees from the horizontal (FIG. 5A), and the workpiece 50 is horizontal (FIG. 5). 5 (b)), the workpiece 50 is changed to a state where the workpiece 50 is inclined to the left by approximately 45 degrees from the horizontal (FIG. 5C), and the blade 22 is moved from one end of the arc along the machining locus L. A first operation of moving to the center position is performed.
[0021]
At this time, the blade portion 22 moves as shown in FIGS. That is, a line D passing through the intersection P between the rake face 23 and the main flank 24 and parallel to the relative movement direction of the blade part 22 with respect to the workpiece 50, and a line orthogonal to the line E as the line E, A rake angle α between the rake face 23 and the line E, a main flank angle γ between the main flank face 24 and the line D, and a sub flank angle F between the sub flank face 25 and the side surface of the groove 51. , G are formed, and the intersecting portion P moves so as to be in contact with the machining locus L. As a result, the workpiece 50 is cut from one end of the arc along the machining locus L to the center position.
[0022]
Then, after completing the first operation, as shown in FIG. 8A, the C-axis rotation indexing mechanism (not shown) with the main shaft 6 as the center of the axis is provided to reverse the tool 10 by 180 degrees. )) To determine this.
[0023]
Next, as in the first operation, the relative positional relationship between the tool 10 and the workpiece 50 is such that the workpiece 50 is sequentially inclined to the left by about 45 degrees from the horizontal (FIG. 8A), The workpiece 50 is changed to a horizontal state (FIG. 8B), and the workpiece 50 is changed to a state inclined to the right by about 45 degrees from the horizontal (FIG. 8C). The tool 10 and the workpiece 50 are relatively moved so as to perform the second operation of moving from the other end of the arc along the locus L to the center position. As a result, the workpiece 50 is cut from the other end of the arc along the machining locus L to the center position.
[0024]
Thus, the workpiece 50 is scraped over the entire arc length from one end of the arc along the machining locus L to the other end, and an arc shape corresponding to the machining locus L is formed in the workpiece 50.
[0025]
Thereafter, by repeating the first operation and the second operation with a predetermined cut amount d, an arc groove 51 having a predetermined finished dimension is formed in the workpiece 50. The cutting depth d is appropriately set according to the material of the workpiece 50, required machining accuracy, and the like.
[0026]
Therefore, according to this arc groove processing method, the non-rotating tool 10 and the workpiece 50 are relatively moved so that the blade portion 22 of the tool 10 draws an arc-shaped processing locus L with respect to the workpiece 50. By doing so, the workpiece 50 is scraped off and the arc-shaped groove 51 is formed, so that a highly accurate machining surface can be obtained.
[0027]
In addition, since the machining speed is higher than that of electric discharge machining and machining can be performed efficiently, productivity can be improved and machining cost can be suppressed. In addition, a dedicated electrode corresponding to the processing shape is not necessary, and the processing cost can also be suppressed in this respect.
[0028]
Further, in this example in which the arc length of the arc groove 51 is long, the tool 10 and the workpiece 50 are moved when the blade portion 22 is continuously moved from one end of the arc along the machining locus L to the other end. However, the interference can be prevented by dividing the operation into two operations of the first operation and the second operation.
[0029]
As mentioned above, although one Embodiment of this invention was described, the specific aspect which this invention can take is not limited to this at all .
[0030]
In the above-described example, the arc groove machining method using the 5-axis control vertical machining center 1 has been described as an example. However, the method is not limited to this, and for example, a 5-axis control horizontal machining center or B, C This can also be applied to machining using a complex machining lathe having a pivoting function .
[Brief description of the drawings]
FIG. 1 is a perspective view showing a machine tool for carrying out arc grooving according to an embodiment of the present invention.
FIG. 2 is a front view showing a tool used in arc grooving according to the present embodiment.
FIG. 3 is a front view showing a groove machining bit according to the present embodiment.
4 is a side view of the groove machining bit shown in FIG. 3. FIG.
FIG. 5 is an explanatory diagram for explaining relative movement between a tool and a workpiece according to the present embodiment.
6 is an enlarged detailed view of a B portion in FIG. 5. FIG.
7 is a front view in the direction of arrow C in FIG. 6. FIG.
FIG. 8 is an explanatory diagram for explaining relative movement between a tool and a workpiece according to the present embodiment.
FIG. 9 is an explanatory diagram for explaining an example of a workpiece.
10 is a cross-sectional view in the direction of arrows AA in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 5-axis control vertical machining center 2 Bed 3 Column 4 Saddle 5 Spindle head 6 Spindle 7 Table 10 Tool 11 Holder 20 Grooving tool 22 Blade part 23 Rake face 24 Main relief face 50 Work 51 Groove shape

Claims (1)

工具を保持する主軸を備え、該主軸及びワークが直交2軸方向に相対移動可能に、前主軸又はワークが前記直交2軸方向と垂直な揺動中心軸回りに揺動可能に、前記主軸を軸線中心に回転させて割出可能に構成された工作機械を用い、半円筒状をした凹部を有する前記ワークの該凹部内面に底面が円弧状の凹曲面をなす溝を加工する方法であって、
前記工具に、すくい面及び逃げ面を有する1つの刃先を備え、前記主軸の軸線に対して傾いた状態で前記主軸に保持された溝加工用バイトを使用し、
前記ワークを、形成すべき円弧状凹曲面をなす溝の中心軸線と前記揺動中心軸とが平行となるように配置し、
ついで、前記バイトの刃先を、前記ワークに対して所定の切り込み量を有するように位置決めした後、
前記バイト又はワークを前記揺動中心軸回りに揺動させる揺動動作と、前記バイト及びワークを前記直交2軸方向に直線移動させる直線移動動作との複合動作により、前記バイトの刃先が、前記切り込み量に応じて仮想的に設定される円弧状の加工軌跡と所定のすくい角を持って接するように且つ前記加工軌跡に沿って移動するように、更に、仕上げられる円弧溝に沿った一方端から円弧の中央位置まで移動するように、前記バイトをワークに対し非回転で相対的に移動させ、
次に、前記バイトが180度反転するように前記主軸を軸線中心に回転させて割出した後、
前記バイトの刃先を前記円弧溝の一方端から中央位置まで移動させたときと同様に、前記バイトの刃先が、前記円弧溝に沿った他方端から円弧の前記中央位置まで移動するように、前記バイトをワークに対し非回転で相対的に移動させて、
前記ワークに底面が円弧状凹曲面をなす溝を形成するようにしたことを特徴とする円弧溝の加工方法。
Comprising a main shaft for holding the tool, the spindle and workpiece relatively movable in the orthogonal biaxial directions, before Symbol spindle or the workpiece to be swung into the orthogonal biaxial directions perpendicular to the swing center axis, said spindle Is a method of machining a groove having a concave curved surface with a bottom surface formed in an arc shape on the inner surface of the concave portion of the workpiece having a semi-cylindrical concave portion using a machine tool configured to be indexable by rotating the axis about the axis. And
The tool is provided with one cutting edge having a rake face and a flank face, and a grooving tool held on the spindle in a state inclined with respect to the axis of the spindle ,
The workpiece is arranged so that the central axis of the groove forming the arc-shaped concave curved surface to be formed and the oscillation central axis are parallel to each other,
Subsequently, the cutting edge of the byte, and positioned so as to have a predetermined depth of cut with respect to the workpiece,
A swing operation for oscillating the bytes or workpiece to the swing center axis, the combined operation of the linear movement operations for linearly moving the byte and work on the orthogonal two axial directions, the cutting edge of the byte, the One end along the arc groove to be further finished so as to be in contact with the arc-shaped machining trajectory virtually set according to the cut amount and to move along the machining trajectory. The tool is moved relative to the workpiece in a non-rotating manner so that the tool moves to the center position of the arc .
Next, after indexing by rotating the spindle about the axis so that the bite is inverted 180 degrees,
In the same manner as when the cutting edge of the cutting tool is moved from one end of the arc groove to the center position, the cutting edge of the cutting tool is moved from the other end along the arc groove to the center position of the arc. Move the tool relative to the workpiece without rotating,
An arc groove machining method, wherein a groove having a bottom surface forming an arcuate concave curved surface is formed on the workpiece.
JP2002015805A 2002-01-24 2002-01-24 Machining method of arc groove Expired - Fee Related JP4094856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002015805A JP4094856B2 (en) 2002-01-24 2002-01-24 Machining method of arc groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002015805A JP4094856B2 (en) 2002-01-24 2002-01-24 Machining method of arc groove

Publications (2)

Publication Number Publication Date
JP2003220501A JP2003220501A (en) 2003-08-05
JP4094856B2 true JP4094856B2 (en) 2008-06-04

Family

ID=27742697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002015805A Expired - Fee Related JP4094856B2 (en) 2002-01-24 2002-01-24 Machining method of arc groove

Country Status (1)

Country Link
JP (1) JP4094856B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150131979A (en) * 2014-05-15 2015-11-25 도시바 기카이 가부시키가이샤 Machining method of noncircular hole, machining apparatus of noncircular hole and lens

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625238B (en) * 2015-01-14 2017-04-19 楚天科技股份有限公司 Panel grain machining method for bottle organizing tray
JP6379264B1 (en) * 2017-08-30 2018-08-22 東芝機械株式会社 High speed grooving method
CN112570737A (en) * 2020-12-11 2021-03-30 西安航天动力机械有限公司 Processing method and tool for inner surface of connecting flange in inclined spray pipe shell
CN112589134A (en) * 2020-12-11 2021-04-02 西安航天动力机械有限公司 Tool and method for machining arc on outer surface of connecting flange of inclined nozzle shell
CN113579264B (en) * 2021-08-03 2024-08-23 西南石油大学 Numerical control turning method for circular arc groove
CN114669787B (en) * 2022-04-15 2024-03-12 中国葛洲坝集团机械船舶有限公司 Machining method for large cambered surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150131979A (en) * 2014-05-15 2015-11-25 도시바 기카이 가부시키가이샤 Machining method of noncircular hole, machining apparatus of noncircular hole and lens
KR101705976B1 (en) * 2014-05-15 2017-02-10 도시바 기카이 가부시키가이샤 Machining method of noncircular hole, and lens

Also Published As

Publication number Publication date
JP2003220501A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
JP3884884B2 (en) In-corner cutting method and cutting tool
JP2001150256A (en) Composite machining method for workpiece
JP4094856B2 (en) Machining method of arc groove
JPS60155310A (en) Cutting method and device
JP2005022034A (en) Machine tool
JP4740842B2 (en) Cutting method and apparatus
JP2002224902A (en) Spherical processing method of workpiece for lathe
JPH11138321A (en) Cam shaft processing machine
JP4268781B2 (en) Arc groove machining method
JPH11239909A (en) Deburring method and device thereof
JP3037557B2 (en) Scroll member molding method
JP4270482B2 (en) Eccentric position spherical machining method by NC lathe
JP2000263308A (en) Cutting method
JP4048356B2 (en) Machining center capable of machining gears and gear machining method
JP3331759B2 (en) Cutting method
JP2000141120A (en) Trochoid tool and machining method by the same
JPH09117845A (en) Square hole machining method in numerically controlled machine tool
JP2002126948A (en) Tool retaining jig
JP4043676B2 (en) Cutting device for bearing retainer
JPH1094921A (en) Gear chamfering machine and method thereof
JP4426838B2 (en) Multi-face machining machine tool and multi-face machining method
JP2845710B2 (en) Machining method
JP3739906B2 (en) Turning method of reverse taper surface
JPS61188014A (en) Machining method of high lead multi-strip spiral groove
JPH01228711A (en) Ball end mill tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees