[go: up one dir, main page]

JP4093675B2 - Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance - Google Patents

Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance Download PDF

Info

Publication number
JP4093675B2
JP4093675B2 JP09436199A JP9436199A JP4093675B2 JP 4093675 B2 JP4093675 B2 JP 4093675B2 JP 09436199 A JP09436199 A JP 09436199A JP 9436199 A JP9436199 A JP 9436199A JP 4093675 B2 JP4093675 B2 JP 4093675B2
Authority
JP
Japan
Prior art keywords
film
hydrogen
corrosion resistance
coating
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09436199A
Other languages
Japanese (ja)
Other versions
JP2000282296A (en
Inventor
秀和 井戸
武典 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP09436199A priority Critical patent/JP4093675B2/en
Publication of JP2000282296A publication Critical patent/JP2000282296A/en
Application granted granted Critical
Publication of JP4093675B2 publication Critical patent/JP4093675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐水素脆性及び耐食性が優れた塗装用鋼板及び製造方法に関し、特に、自動車部品又は家電製品等に使用される耐食性が優れた耐水素脆性及び耐食性が優れた塗装用鋼板及び製造方法に関する。
【0002】
【従来の技術】
従来、自動車用鋼材の塗膜下地処理としては、リン酸塩処理、ジンケート処理を含む亜鉛メッキ等が使用されている。また、家庭用電化製品用鋼材の塗膜下地処理には、リン酸塩処理又はクロメート処理等が一般的に使用されている。これらの下地処理膜により塗装耐食性の向上が図られている。
【0003】
通常、リン酸塩処理では、基板金属が溶解し表面のpHが上昇する。鋼材では下記化学反応式1に示されるように、鋼材表面で水素が発生する。
【0004】
【化1】
3Fe+2H3PO4 → Fe3(PO42+3H2
【0005】
これが駆動力となり、下記化学反応式2及び3に示されるような反応が進行する。
【0006】
【化2】
Zn(H2PO43 → H3PO4+ZnHPO4
【0007】
【化3】
3Zn(H2PO43 → 4H3PO4+Zn3(PO42
【0008】
このZn3(PO42がリン酸塩皮膜を形成する。また、リン酸塩処理においては、耐食性を高めるためニッケル化合物が使用されることが多い。
【0009】
また、クロメート処理では6価クロムが材料表面と反応して3価に還元され、6価のクロムを含有するクロム酸化物を主成分とするクロメート皮膜が形成される。
【0010】
亜鉛メッキには溶融メッキ及び電気メッキがあり、この他にもいわゆるジンケート処理がある。いずれも犠牲陽極として働き、耐食性を発揮するが、このとき鋼材自体はカソードとして働き、表面では酸素の還元以外に水素の発生反応が起こる。また、電気亜鉛メッキ及びジンケートでも処理時に水素が発生する。
【0011】
一方、アルミニウム塩とケイ酸塩とを含む溶液に鋼材等の非防食金属を浸漬し、それを負極として溶液を電解することにより非防食金属に皮膜を生成するクロメート皮膜のように毒性を持たない防食処理が提案されている(特開平5−287585号公報)。
【0012】
【発明が解決しようとする課題】
しかし、リン酸塩皮膜は皮膜形成時に水素が発生するため、鋼材中に水素が侵入し脆化させると共に、腐食時の水素の侵入を促進させるという問題点がある。
【0013】
また、亜鉛メッキは犠牲陽極として作用するため、防食効果は高いものの、鋼材への水素侵入を促進させてしまうという問題点がある。また、電気亜鉛メッキ及びジンケート処理においては処理時の水素が鋼材に吸蔵されることがあるという問題点がある。
【0014】
更に、特開平5−287585号公報に記載された防食処理では、酸性溶液中で被防食金属を負極として使用し酸性溶液を電解し作製されるため、鋼材への水素侵入を避けることができないという問題点がある。
【0015】
更にまた、環境への影響の観点からいえば、クロメート皮膜は防食性能は高いものの有毒である。リン酸塩処理でもリンによる富栄養化及び処理液又はリン酸塩に含まれるニッケル化合物の環境への悪影響が懸念されている。
【0016】
本発明はかかる問題点に鑑みてなされたものであって、無害な皮膜を有すると共に、鋼材中に水素が侵入することなく皮膜を形成することができる耐水素脆性及び耐食性が優れた塗装用鋼板及び製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明に係る耐水素脆性及び耐食性が優れた塗装用鋼板の製造方法は、鋼材を陽極としてCa(OH) 、Sr(OH) 及びBa(OH) からなる群から選択された少なくとも1種の水酸化物の濃度が0.2乃至1モル/リットルである水溶液を電解する工程を有することを特徴とする。
【0025】
また、前記ケイ酸アルカリはケイ酸ナトリウムであることが好ましい。
【0026】
本発明においては、鋼材の表面に陽極酸化皮膜を形成することにより、鋼材に水素が侵入することを防止することができる。
【0027】
また、鋼材を陽極として水酸化アルカリ金属水溶液又はCa(OH)2、Sr(OH)2及びBa(OH)2からなる群から選択された少なくとも1種の水酸化物を含有する溶液を電解して陽極酸化皮膜を形成することにより、皮膜形成時に水素が鋼材中に侵入することなく皮膜を形成することができる。
【0028】
【発明の実施の形態】
以下、本発明の実施例に係る耐水素脆性及び耐食性が優れた塗装用鋼板及び製造方法について詳細に説明する。
【0029】
本願発明者等は鋭意実験研究の結果、水酸化アルカリ又はCa、Sr又はBaの水酸化物懸濁液に、少量のケイ酸ナトリウムを添加した電解液中で、被防食材である鋼材を陽極として電解することにより被防食材表面に陽極酸化皮膜を形成させた。この方法では成膜形成中で鋼材に水素が侵入する懸念がなく、生成した皮膜により塗膜下の防食又は水素吸蔵を抑制することができることを見出した。
【0030】
一般に、アルミニウム又はチタニウムの陽極酸化処理はシュウ酸又は硫酸等の強酸性溶液中で作製される。しかし、鋼材では同様の強酸性溶液を使用する方法を適用しても、2価の鉄イオンとして溶解してしまうため、成膜することができない。また、空気中で加熱酸化する方法は材料の機械的特性を損なうため使用することができない。
【0031】
本発明においては、水酸化アルカリ金属溶液中で鋼材を陽極として水酸化アルカリ金属溶液を電解すると、下記化学反応式4及び5に示すように鋼材表面では酸素発生反応と酸化皮膜生成反応が進行する。
【0032】
【化4】
4OH- → O2+2H2O+4e-
【0033】
【化5】
3Fe+8OH- → Fe34+4H2O+8e-
【0034】
上記化学反応式4及び5に示すように、鋼材表面では水素ではなく、酸素が発生するため、鋼材に水素が侵入することがない。これに対して、上述のリン酸塩、クロメート処理及び電気亜鉛メッキでは処理時に水素の発生を伴うため、鋼材への水素吸蔵を避けることができない。また、陽極酸化では処理温度が低く処理時間が短いため、酸化物皮膜が結晶化されず、生成する皮膜は緻密なアモルファス酸化皮膜となる。このため、耐食性が優れ水素が透過しにくい。
【0035】
なお、アモルファス酸化皮膜中の酸素含有量は22%(FeO)乃至30%(Fe23)の範囲であることが好ましいが、酸素の含有量が高いほどアモルファス皮膜の溶解性が低くなることから、28%(Fe34)以上であることが更に好ましい。
【0036】
溶液の水酸化アルカリ金属の濃度が0.5モル/リットル未満では、陽極酸化皮膜を形成するための鉄の溶出量が少ないため、ほとんど皮膜は形成されない。一方、溶液の水酸化アルカリ金属の濃度が5モル/リットルを超えると、皮膜形成効果が飽和してしまい、改善が認められない。従って、水酸化アルカリ水溶液濃度は0.5乃至5モル/リットルとする。
【0037】
また、陽極酸化皮膜の形成に使用される溶液の溶質は、水酸化アルカリ金属に限定されるものではなく、水酸化アルカリ金属に匹敵する塩基性物質であるCa(OH)2、Sr(OH)2及びBa(OH)2からなる群から選択された少なくとも1種の水酸化物を使用しても同様の皮膜を形成することができる。
【0038】
なお、Ca(OH)2、Sr(OH)2及びBa(OH)2からなる群から選択された少なくとも1種の含有量が0.5モル/リットル未満では、陽極酸化皮膜を形成するための鉄の溶出量が少ないため、ほとんど皮膜は形成されない。一方、Ca(OH)2、Sr(OH)2及びBa(OH)2からなる群から選択された少なくとも1種の含有量が5モル/リットルを超えると、皮膜形成効果が飽和してしまい、耐食性の改善が認められない。従って、Ca(OH)2、Sr(OH)2及びBa(OH)2からなる群から選択された少なくとも1種の含有量は0.5乃至5モル/リットルとする。
【0039】
更に、皮膜形成時に、ケイ酸ナトリウム等のケイ酸アルカリを溶液に添加すると、皮膜がより緻密になると共に、鋼材に対する皮膜の密着性が高まる。このため、耐水素脆性及び耐食性を更に向上させることができる。電解時には上記化学反応式4に示されるように、被防食材表面(陽極)でOH-が消費されて、pHが低下するため、下記化学反応式6に示されるような反応が進行する。
【0040】
【化6】
Na2SiO3+2H2O → 2NaOH+H2SiO3
【0041】
この被防食材表面に沈積したH2SiO3がバインダの働きをし、皮膜を緻密化すると共に、密着性を高めているものと考えられている。従って、ケイ酸アルカリを含有することが好ましい。
【0042】
溶液のこのケイ酸アルカリの濃度が0.01モル/リットル未満では、皮膜に析出するケイ酸塩が少ないため、耐食性を向上させることができない。一方、溶液のケイ酸アルカリの濃度が0.1モル/リットルを超えると、ケイ酸塩の析出量が0.9%を超えるため、酸化皮膜形成が妨げられる。従って、溶液のケイ酸アルカリの濃度は0.01乃至0.1モル/リットルとすることが好ましい。
【0043】
また、陽極酸化皮膜の膜厚が0.1μm未満では、水又は塩化物イオン等の腐食促進物質の遮断が不十分であるため、耐食性が不足する。一方、陽極酸化皮膜の膜厚が100μmを超えても、耐食性の効果が飽和し耐食性が改善されない。従って、陽極酸化皮膜の膜厚は0.1乃至100μmであることが好ましい。
【0044】
ケイ酸塩としては、ケイ酸ナトリウムが塩基性の強さ、溶解度の高さ、入手の容易さ及びコストの点から特に好ましい。
【0045】
【実施例】
以下、本発明の範囲に入る耐水素脆性及び耐食性が優れた塗装用鋼板及び製造方法の実施例について、その特性を比較例と比較して具体的に説明する。図1は本発明の実施例に係る引張試験片を示す模式図である。図2は本発明の実施例に係る水素透過試験装置を示す模式図である。
【0046】
被処理材として、SUP7を陽極に使用して表1に示す濃度の溶液を表2に示す電解条件で電解して鋼材表面に皮膜を形成した。なお、陰極はアルカリ溶液に溶解されない金属又は合金であればよく、本実施例では冷延鋼板を使用した。皮膜形成後に皮膜の構造及び組成を分析し、皮膜が形成された鋼材の腐食試験、引張試験及び水素透過試験を行った。
【0047】
皮膜の構造及び組成の分析は、X線回折法(XRD)により分析し、X線マイクロアナリシス(EPMA;日本電子製、X線マイクロアナライザ JXA8800RL)を使用して皮膜のケイ酸塩濃度を分析した。なお、XRDの測定条件はX線にCu−Kα線を使用し、測定範囲は5乃至90°とした。EPMAの測定条件は加速電圧を20kV、試料電流を0.27μAとした。
【0048】
腐食試験としては、陽極酸化皮膜を形成した被処理材にカチオン型電着塗料を20μmの膜厚に塗装した後、クロスカット(×印)を入れてJIS Z2371に規定される塩水噴霧試験を40日間実施し、クロスカットからの最大塗膜ふくれ幅を測定し、これを評価した。
【0049】
引張試験としては、腐食試験後、図1に示すように板厚が1.5mmの試験片1を形成し室温で2μm/分のクロスヘッド速度で引張試験を行ない、破断時の伸びを測定し、これを評価した。
【0050】
水素透過試験としては、図2に示すように、NaCl水溶液が満たされた容器4とPt電極5が設置されNaOH水溶液が満たされた容器3との間に陽極酸化皮膜を形成した被処理材を板厚が0.5mmの試験片2を設置した。試験片2とPt電極5とは電流計6が接続されている。この試験片2の電位を参照電極(SCE)に対して150mVとし水素透過に伴う電流値を電流計6で測定した。これらの結果を表3に示す。
【0051】
【表1】

Figure 0004093675
【0052】
【表2】
Figure 0004093675
【0053】
【表3】
Figure 0004093675
【0054】
上記表3に示すように、本発明の範囲に入る実施例No.1乃至16は最大ふくれ幅、水素透過電流及び伸びについていずれも良好な結果を得ることができた。
【0055】
なお、実施例No.1乃至16は表2に示す条件で陽極酸化皮膜を形成することができ、試験片の表面は青乃至赤色を呈していた。XRDの分析の結果から、金属鉄によるピーク以外には結晶性物質による鋭いピークは生じず、アモルファス性物質によるハローパターンが見られることから生成した皮膜はアモルファス陽極酸化皮膜であることがわかった。
【0056】
また、EPMAによる分析の結果からケイ酸塩を含有する実施例No.2乃至4、6乃至11、13、15及び16は皮膜中にケイ酸が取りこまれていた。
【0057】
特に、ケイ酸塩を含有する実施例No.2乃至4、6乃至11、13、15及び16は最大ふくれ幅、水素透過電流及び伸びがいずれも極めて良好な結果を得ることができた。
【0058】
一方、比較例No.17乃至21は最大ふくれ幅、水素透過電流及び伸びについて良好な結果を得ることができなかった。比較例No.17は水酸化ナトリウムの濃度が本発明の範囲未満であるため、最大ふくれ幅及び水素透過電流が大きく、伸びが乏しかった。
【0059】
比較例No.18は水酸化カルシウムの濃度が本発明の範囲未満であるため、最大ふくれ幅及び水素透過電流が大きく、伸びが乏しかった。
【0060】
比較例No.19は皮膜がリン酸亜鉛処理による皮膜であり、本発明の範囲から外れるため、最大ふくれ幅及び水素透過電流が大きく、伸びが乏しかった。
【0061】
比較例No.20は無処理であり、本発明の範囲から外れるため、最大ふくれ幅及び水素透過電流が大きく、伸びが乏しかった。
【0062】
比較例No.21は皮膜が電気亜鉛メッキによる皮膜であり、本発明の範囲から外れるため、水素透過電流が大きく、伸びが乏しかった。
【0063】
【発明の効果】
以上詳述したように本発明においては、鋼材の表面に陽極酸化皮膜を形成することにより、鋼材に水素が侵入することを防止することができるため、水素吸蔵による鋼材の機械的特性の劣化を防止することができると共に、優れた耐食性を得ることができる。
【0064】
また、鋼材を陽極として水酸化アルカリ金属水溶液又はCa(OH)2、Sr(OH)2及びBa(OH)2からなる群から選択された少なくとも1種の水酸化物を含有する溶液を電解して陽極酸化皮膜を形成することにより、皮膜形成時に水素が鋼材中に侵入することなく、緻密で無害なアモルファス構造を有する皮膜を形成することができる。このため、水素吸蔵による鋼材の機械的特性の劣化を防止することができると共に、優れた耐食性を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る引張試験片を示す模式図である。
【図2】本発明の実施例に係る水素透過試験装置を示す模式図である。
【符号の説明】
1、2;試験片
3、4;容器
5;Pt電極
6;電流計[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a steel sheet for coating and a manufacturing method excellent in hydrogen embrittlement resistance and corrosion resistance, and in particular, a steel sheet for coating and a manufacturing method excellent in hydrogen resistance embrittlement and corrosion resistance used for automobile parts or home appliances. About.
[0002]
[Prior art]
Conventionally, galvanization including phosphate treatment and zincate treatment has been used as a coating film base treatment for automotive steel materials. Moreover, phosphate treatment or chromate treatment or the like is generally used for coating film base treatment of steel products for household appliances. The coating corrosion resistance is improved by these base treatment films.
[0003]
Usually, in phosphating, the substrate metal dissolves and the pH of the surface rises. As shown in chemical reaction formula 1 below, hydrogen is generated on the steel material surface.
[0004]
[Chemical 1]
3Fe + 2H 3 PO 4 → Fe 3 (PO 4 ) 2 + 3H 2
[0005]
This becomes a driving force, and the reactions shown in the following chemical reaction formulas 2 and 3 proceed.
[0006]
[Chemical 2]
Zn (H 2 PO 4 ) 3 → H 3 PO 4 + ZnHPO 4
[0007]
[Chemical 3]
3Zn (H 2 PO 4 ) 3 → 4H 3 PO 4 + Zn 3 (PO 4 ) 2
[0008]
This Zn 3 (PO 4 ) 2 forms a phosphate film. In the phosphate treatment, a nickel compound is often used in order to improve corrosion resistance.
[0009]
Further, in the chromate treatment, hexavalent chromium reacts with the material surface and is reduced to trivalent, thereby forming a chromate film mainly composed of chromium oxide containing hexavalent chromium.
[0010]
Zinc plating includes hot dipping and electroplating, and in addition, there is a so-called zincate treatment. Both of them function as sacrificial anodes and exhibit corrosion resistance. At this time, the steel material itself functions as a cathode, and hydrogen generation reaction occurs on the surface in addition to oxygen reduction. Also, hydrogen is generated during processing even in electrogalvanizing and zincate.
[0011]
On the other hand, a non-corrosive metal such as steel is immersed in a solution containing an aluminum salt and a silicate, and the solution is not toxic like a chromate film that forms a film on a non-corrosive metal by electrolyzing the solution as a negative electrode. An anticorrosion treatment has been proposed (Japanese Patent Laid-Open No. 5-287585).
[0012]
[Problems to be solved by the invention]
However, since the phosphate film generates hydrogen when the film is formed, there is a problem that hydrogen penetrates into the steel material to cause embrittlement and promotes the penetration of hydrogen during corrosion.
[0013]
Moreover, since galvanization acts as a sacrificial anode, it has a problem of promoting hydrogen intrusion into the steel material, although it has a high anticorrosion effect. Further, in the electrogalvanizing and zincate treatment, there is a problem that hydrogen during the treatment may be occluded in the steel material.
[0014]
Furthermore, in the anticorrosion treatment described in JP-A-5-287585, it is produced by electrolyzing an acidic solution using a metal to be protected as an anode in an acidic solution, so that hydrogen intrusion into a steel material cannot be avoided. There is a problem.
[0015]
Furthermore, from the viewpoint of influence on the environment, the chromate film is toxic although it has high anticorrosion performance. Even in the phosphate treatment, there is a concern about the eutrophication by phosphorus and the adverse effect on the environment of the nickel compound contained in the treatment solution or phosphate.
[0016]
The present invention has been made in view of such a problem, and has a harmless coating, and can form a coating without intrusion of hydrogen into a steel material, and has excellent hydrogen embrittlement resistance and corrosion resistance. And it aims at providing a manufacturing method.
[0017]
[Means for Solving the Problems]
The manufacturing method of the steel plate for coating excellent in hydrogen embrittlement resistance and corrosion resistance according to the present invention is at least one selected from the group consisting of Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 with the steel material as an anode. It has the process of electrolyzing the aqueous solution whose density | concentration of a seed hydroxide is 0.2-1 mol / liter .
[0025]
The alkali silicate is preferably sodium silicate.
[0026]
In the present invention, it is possible to prevent hydrogen from entering the steel material by forming an anodized film on the surface of the steel material.
[0027]
In addition, an aqueous solution of alkali metal hydroxide or a solution containing at least one hydroxide selected from the group consisting of Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 is electrolyzed using steel as an anode. By forming an anodic oxide film, it is possible to form a film without hydrogen entering the steel material at the time of film formation.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the steel sheet for coating and the manufacturing method excellent in hydrogen embrittlement resistance and corrosion resistance according to examples of the present invention will be described in detail.
[0029]
As a result of diligent experiment research, the inventors of the present application have made an anode of a steel material, which is an anticorrosive material, in an electrolytic solution obtained by adding a small amount of sodium silicate to a hydroxide suspension of alkali hydroxide or Ca, Sr or Ba. As a result, an anodic oxide film was formed on the surface of the material to be protected. In this method, it has been found that there is no concern that hydrogen penetrates into the steel material during film formation, and that the formed film can suppress corrosion prevention or hydrogen storage under the coating film.
[0030]
Generally, the anodizing treatment of aluminum or titanium is made in a strongly acidic solution such as oxalic acid or sulfuric acid. However, even if a method using a similar strongly acidic solution is applied to steel, it cannot be deposited because it dissolves as divalent iron ions. Moreover, the method of heating and oxidizing in air cannot be used because it impairs the mechanical properties of the material.
[0031]
In the present invention, when an alkali metal hydroxide solution is electrolyzed in an alkali metal hydroxide solution with the steel material as an anode, an oxygen generation reaction and an oxide film formation reaction proceed on the surface of the steel material as shown in chemical reaction formulas 4 and 5 below. .
[0032]
[Formula 4]
4OH → O 2 + 2H 2 O + 4e
[0033]
[Chemical formula 5]
3Fe + 8OH → Fe 3 O 4 + 4H 2 O + 8e
[0034]
As shown in the chemical reaction formulas 4 and 5, oxygen is generated on the surface of the steel material instead of hydrogen, so that hydrogen does not enter the steel material. On the other hand, since the above-mentioned phosphate, chromate treatment and electrogalvanization involve generation of hydrogen during the treatment, occlusion of hydrogen into the steel material cannot be avoided. In addition, since the treatment temperature is low and the treatment time is short in anodic oxidation, the oxide film is not crystallized, and the produced film becomes a dense amorphous oxide film. For this reason, corrosion resistance is excellent and hydrogen does not permeate easily.
[0035]
The oxygen content in the amorphous oxide film is preferably in the range of 22% (FeO) to 30% (Fe 2 O 3 ), but the higher the oxygen content, the lower the solubility of the amorphous film. Therefore, it is more preferable that it is 28% (Fe 3 O 4 ) or more.
[0036]
When the concentration of the alkali metal hydroxide in the solution is less than 0.5 mol / liter, the amount of iron elution for forming the anodized film is small, so that almost no film is formed. On the other hand, when the concentration of the alkali metal hydroxide in the solution exceeds 5 mol / liter, the film forming effect is saturated and no improvement is observed. Therefore, the alkali hydroxide aqueous solution concentration is 0.5 to 5 mol / liter.
[0037]
Further, the solute of the solution used for forming the anodic oxide film is not limited to alkali metal hydroxide, but Ca (OH) 2 and Sr (OH) which are basic substances comparable to alkali metal hydroxide. A similar film can be formed by using at least one hydroxide selected from the group consisting of 2 and Ba (OH) 2 .
[0038]
When the content of at least one selected from the group consisting of Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 is less than 0.5 mol / liter, an anodic oxide film is formed. Since the amount of iron elution is small, almost no film is formed. On the other hand, when the content of at least one selected from the group consisting of Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 exceeds 5 mol / liter, the film forming effect is saturated, No improvement in corrosion resistance is observed. Therefore, the content of at least one selected from the group consisting of Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 is 0.5 to 5 mol / liter.
[0039]
Furthermore, when an alkali silicate such as sodium silicate is added to the solution during the formation of the film, the film becomes denser and the adhesion of the film to the steel material is increased. For this reason, hydrogen embrittlement resistance and corrosion resistance can be further improved. At the time of electrolysis, as shown in the chemical reaction formula 4 above, OH - is consumed on the surface of the material to be protected (anode) and the pH is lowered, so that the reaction shown in the chemical reaction formula 6 below proceeds.
[0040]
[Chemical 6]
Na 2 SiO 3 + 2H 2 O → 2NaOH + H 2 SiO 3
[0041]
It is considered that H 2 SiO 3 deposited on the surface of the material to be protected acts as a binder, densifies the film and enhances adhesion. Therefore, it is preferable to contain an alkali silicate.
[0042]
If the concentration of this alkali silicate in the solution is less than 0.01 mol / liter, the silicate deposited on the film is small, so that the corrosion resistance cannot be improved. On the other hand, when the concentration of the alkali silicate in the solution exceeds 0.1 mol / liter, the amount of precipitated silicate exceeds 0.9%, which prevents the formation of an oxide film. Accordingly, the alkali silicate concentration in the solution is preferably 0.01 to 0.1 mol / liter.
[0043]
On the other hand, when the thickness of the anodized film is less than 0.1 μm, the corrosion resistance is insufficient because the corrosion-promoting substance such as water or chloride ions is insufficiently blocked. On the other hand, even if the thickness of the anodized film exceeds 100 μm, the corrosion resistance effect is saturated and the corrosion resistance is not improved. Therefore, the thickness of the anodized film is preferably 0.1 to 100 μm.
[0044]
As the silicate, sodium silicate is particularly preferable in terms of basic strength, high solubility, availability, and cost.
[0045]
【Example】
Hereinafter, the characteristics of the steel sheet for coating and the manufacturing method excellent in hydrogen embrittlement resistance and corrosion resistance that fall within the scope of the present invention will be described in comparison with comparative examples. FIG. 1 is a schematic view showing a tensile test piece according to an embodiment of the present invention. FIG. 2 is a schematic view showing a hydrogen permeation test apparatus according to an embodiment of the present invention.
[0046]
As a material to be treated, SUP7 was used as an anode, and a solution having a concentration shown in Table 1 was electrolyzed under the electrolytic conditions shown in Table 2 to form a film on the surface of the steel material. In addition, the cathode should just be a metal or an alloy which is not melt | dissolved in an alkaline solution, and the cold-rolled steel plate was used in the present Example. After the film formation, the structure and composition of the film were analyzed, and a corrosion test, a tensile test, and a hydrogen permeation test were performed on the steel material on which the film was formed.
[0047]
The structure and composition of the film were analyzed by X-ray diffraction (XRD), and the silicate concentration of the film was analyzed using X-ray microanalysis (EPMA; X-ray microanalyzer JXA8800RL manufactured by JEOL Ltd.). . The XRD measurement conditions used Cu-Kα rays for X-rays, and the measurement range was 5 to 90 °. The measurement conditions for EPMA were an acceleration voltage of 20 kV and a sample current of 0.27 μA.
[0048]
As the corrosion test, a cathodic electrodeposition paint was applied to the material to be treated on which an anodized film was formed to a film thickness of 20 μm, and then a cross-cut (× mark) was added to perform a salt spray test specified in JIS Z2371. It was carried out for one day, and the maximum film swelling width from the crosscut was measured and evaluated.
[0049]
As a tensile test, after a corrosion test, a test piece 1 having a thickness of 1.5 mm is formed as shown in FIG. 1, a tensile test is performed at a crosshead speed of 2 μm / min at room temperature, and an elongation at break is measured. Evaluated this.
[0050]
In the hydrogen permeation test, as shown in FIG. 2, an object to be treated in which an anodized film is formed between a container 4 filled with an aqueous NaCl solution and a container 3 filled with a Pt electrode 5 and filled with an aqueous NaOH solution. A test piece 2 having a plate thickness of 0.5 mm was installed. An ammeter 6 is connected to the test piece 2 and the Pt electrode 5. The potential of the test piece 2 was 150 mV with respect to the reference electrode (SCE), and the current value associated with hydrogen permeation was measured with an ammeter 6. These results are shown in Table 3.
[0051]
[Table 1]
Figure 0004093675
[0052]
[Table 2]
Figure 0004093675
[0053]
[Table 3]
Figure 0004093675
[0054]
As shown in Table 3 above, Examples Nos. 1 to 16 which fall within the scope of the present invention were able to obtain good results for the maximum blister width, hydrogen permeation current and elongation.
[0055]
In Examples Nos. 1 to 16, an anodized film could be formed under the conditions shown in Table 2, and the surface of the test piece was blue to red. From the results of the XRD analysis, it was found that a sharp peak due to the crystalline material did not occur other than the peak due to metallic iron, and a halo pattern due to the amorphous material was observed, so that the generated film was an amorphous anodic oxide film.
[0056]
Further, from the results of analysis by EPMA, in Examples No. 2 to 4, 6 to 11, 13, 15 and 16 containing silicate, silicic acid was incorporated in the film.
[0057]
In particular, Examples Nos. 2 to 4, 6 to 11, 13, 15 and 16 containing silicate were able to obtain extremely good results in all of the maximum blister width, hydrogen permeation current and elongation.
[0058]
On the other hand, Comparative Examples Nos. 17 to 21 could not obtain good results with respect to the maximum blister width, hydrogen permeation current and elongation. In Comparative Example No. 17, since the concentration of sodium hydroxide was less than the range of the present invention, the maximum blister width and hydrogen permeation current were large, and the elongation was poor.
[0059]
Since Comparative Example No. 18 had a calcium hydroxide concentration below the range of the present invention, the maximum blister width and hydrogen permeation current were large, and the elongation was poor.
[0060]
In Comparative Example No. 19, the film was a zinc phosphate-treated film, and was out of the scope of the present invention. Therefore, the maximum blister width and hydrogen permeation current were large, and the elongation was poor.
[0061]
Since Comparative Example No. 20 was untreated and deviated from the scope of the present invention, the maximum blister width and hydrogen permeation current were large and the elongation was poor.
[0062]
In Comparative Example No. 21, the film was a film formed by electrogalvanization and was out of the scope of the present invention, so that the hydrogen permeation current was large and the elongation was poor.
[0063]
【The invention's effect】
As described above in detail, in the present invention, by forming an anodic oxide film on the surface of the steel material, it is possible to prevent hydrogen from entering the steel material. It can be prevented and excellent corrosion resistance can be obtained.
[0064]
In addition, an aqueous solution of alkali metal hydroxide or a solution containing at least one hydroxide selected from the group consisting of Ca (OH) 2 , Sr (OH) 2 and Ba (OH) 2 is electrolyzed using steel as an anode. By forming an anodic oxide film, a film having a dense and harmless amorphous structure can be formed without hydrogen entering the steel material during the film formation. For this reason, deterioration of the mechanical properties of the steel material due to hydrogen storage can be prevented, and excellent corrosion resistance can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a tensile test piece according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a hydrogen permeation test apparatus according to an embodiment of the present invention.
[Explanation of symbols]
1, 2; test pieces 3, 4; container 5; Pt electrode 6; ammeter

Claims (2)

鋼材を陽極としてCa(OH)、Sr(OH)及びBa(OH)からなる群から選択された少なくとも1種の水酸化物0.2乃至1モル/リットルの濃度で含有し、更に、ケイ酸アルカリを0.01乃至0.1モル/リットルの濃度で含有するアルカリ水溶液を電解する工程を有することを特徴とする耐水素脆性及び耐食性が優れた塗装用鋼板の製造方法。Steel as the anode, Ca (OH) 2, Sr (OH) 2 and Ba (OH) at least one hydroxide selected from the group consisting of 2 was at a concentration of 0.2 to 1 mol / liter And a method for producing a steel sheet for coating having excellent hydrogen embrittlement resistance and corrosion resistance , further comprising a step of electrolyzing an aqueous alkali solution containing alkali silicate at a concentration of 0.01 to 0.1 mol / liter . 前記ケイ酸アルカリはケイ酸ナトリウムであることを特徴とする請求項に記載の耐水素脆性及び耐食性が優れた塗装用鋼板の製造方法。The method for producing a steel sheet for coating having excellent hydrogen embrittlement resistance and corrosion resistance according to claim 1 , wherein the alkali silicate is sodium silicate.
JP09436199A 1999-03-31 1999-03-31 Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance Expired - Lifetime JP4093675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09436199A JP4093675B2 (en) 1999-03-31 1999-03-31 Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09436199A JP4093675B2 (en) 1999-03-31 1999-03-31 Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2000282296A JP2000282296A (en) 2000-10-10
JP4093675B2 true JP4093675B2 (en) 2008-06-04

Family

ID=14108174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09436199A Expired - Lifetime JP4093675B2 (en) 1999-03-31 1999-03-31 Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance

Country Status (1)

Country Link
JP (1) JP4093675B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049134B2 (en) * 2012-10-02 2016-12-21 日本電信電話株式会社 Method for suppressing hydrogen intrusion into steel
JP6546313B1 (en) * 2018-04-03 2019-07-17 ジオネーション株式会社 Resin carbon steel joined body and method for producing the same
JP7149242B2 (en) * 2019-09-11 2022-10-06 株式会社神戸製鋼所 Hydrogen permeation test device
CN117888168A (en) * 2023-12-28 2024-04-16 太仓鑫祥金属制品有限公司 Corrosion-resistant treatment technology for steel part of bending machine with complex shape

Also Published As

Publication number Publication date
JP2000282296A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
KR910002103B1 (en) Zn-based composite-plated metallic material and plating method
US4541903A (en) Process for preparing Zn-Fe base alloy electroplated steel strips
JP4845951B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
JPS6121317B2 (en)
US8871038B2 (en) Tinned steel sheet and method for producing the same
CN1336966A (en) Surface treated steel sheet and method for production thereof
JP4093675B2 (en) Manufacturing method of steel sheet for coating with excellent hydrogen embrittlement resistance and corrosion resistance
CN1867704A (en) Electrolytic method for phosphating metal surfaces and phosphated metal layer
JPH0436498A (en) Surface treatment of steel wire
JP2000064090A (en) Surface treatment of metal
US5254238A (en) Surface treating solution and surface treating process for zinc-plated steel plates
JP6852454B2 (en) Manufacturing method of Sn-based alloy-plated steel sheet and Sn-based alloy-plated steel sheet
JP2009079263A (en) Surface-treated zinc-based plated metal material and method for producing the same
JP3977877B2 (en) Electrochemical conversion solution for metal surface treatment and electrolytic conversion treatment method
US2605217A (en) Protection of metallic objects by galvanic action
JP2011127141A (en) Metallic material whose surface is treated for electrodeposition coating and method for conversion coating
JP4661627B2 (en) Surface-treated zinc-based plated metal material and method for producing the same
JP4475057B2 (en) Surface-treated metal material and manufacturing method thereof
US20110104514A1 (en) Method for producing tinned steel sheet and tinned steel sheet
JP2528944B2 (en) Method for producing Zn-based alloy electroplated steel sheet excellent in chemical conversion treatability and corrosion resistance
KR100544646B1 (en) Surface treatment steel sheet with excellent corrosion resistance and manufacturing method
JP2003213459A (en) Surface treated steel sheet having excellent corrosion resistance and spot weldability and production method therefor
KR920010777B1 (en) Double layer alloy plated steel sheet and manufacturing method
KR920010778B1 (en) Double layer alloy plated steel sheet with excellent plating adhesion, phosphate treatment and water resistance, and manufacturing method
JPH04254590A (en) Production of zinc plated steel sheet excellent in weldability, press formability and chemical convertibility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

EXPY Cancellation because of completion of term