JP4090666B2 - 数値制御システムおよびそれに用いられる位置指令値補正装置 - Google Patents
数値制御システムおよびそれに用いられる位置指令値補正装置 Download PDFInfo
- Publication number
- JP4090666B2 JP4090666B2 JP2000109677A JP2000109677A JP4090666B2 JP 4090666 B2 JP4090666 B2 JP 4090666B2 JP 2000109677 A JP2000109677 A JP 2000109677A JP 2000109677 A JP2000109677 A JP 2000109677A JP 4090666 B2 JP4090666 B2 JP 4090666B2
- Authority
- JP
- Japan
- Prior art keywords
- command value
- position command
- correction
- friction
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Numerical Control (AREA)
- Control Of Position Or Direction (AREA)
Description
【発明の属する技術分野】
この発明は、いわゆるNC加工システム、NCロボットシステム、NC搬送システムなどの数値制御システムおよびそれに用いられる位置指令値補正装置に係り、特に、制御対象を反転駆動する際に生じるロストモーションを簡易な設定にて高精度に補正するための改良に関するものである。
【0002】
【従来の技術】
図12は従来の数値制御システムの構成を示すブロック図である。図において、1は被加工物(ワーク)や工具などが固定されるテーブル、2はこのテーブル1の下面に固定されたボールネジナット、3はこのボールネジナット2と嵌合されたボールネジ、4はこのボールネジ3を回転駆動するサーボモータ、5はこのサーボモータ4の回転量を検出するエンコーダである。
【0003】
6は位置指令値を出力する位置指令値出力手段、7は位置指令値に基づいてテーブル1の制御方向の反転を検出して反転検出信号を出力する反転検出手段、23は当該反転検出時に位置補正信号を出力するロストモーション補正ゲイン算出手段、10は位置補正信号を位置指令値に加算する位置加算手段である。また、11は位置加算手段10の出力に示される目標位置とエンコーダ5の検出回転量に示される現在位置との距離に応じた速度指令値を出力する位置制御手段、12は速度指令値に応じた電流指令値を出力する速度制御手段、24は反転検出信号が入力された際に一定の大きさの電流指令補正値を出力する摩擦補正ゲイン算出手段、14は電流指令値にこの電流指令補正値を加算する電流加算手段、15はこの電流加算手段14の出力に応じた電流値の電流をサーボモータ4に供給する電流制御手段である。
【0004】
次に動作について説明する。
位置指令値出力手段6から位置指令値が出力されると、反転検出手段7はこの位置指令値に基づいてテーブル1の制御方向の反転を検出する。反転する場合には、反転後の制御方向に応じて正または負の大きさ1の反転検出信号が出力される。逆に、反転しない場合には、以前と同じ符号の大きさ1の反転検出信号が出力される。上記反転検出信号に基づいてロストモーション補正ゲイン算出手段23から位置補正信号が出力され、これが加算された電流指令値が位置制御手段11に入力され、この位置制御手段11から速度指令値が出力され、速度制御手段12から電流指令値が出力される。同様に、上記反転検出信号に基づいて摩擦補正ゲイン算出手段24から電流補正値が出力され、これが加算された電流指令値は電流制御手段15に入力され、この電流指令値に基づいてサーボモータ4はボールネジ3を駆動し、この回転量に応じた分だけテーブル1は移動する。
【0005】
そして、このような構成であれば、単にテーブル1をサーボモータ4で一方向に精度良く移動させるだけでなく、ボールネジ3とボールネジナット2との間のがたつきなどがあって、且つ、移動方向が切り替わる場合であったとしてもそれを上記位置指令補正値などで補正して補い、例えば真円加工などの加工精度を向上させることができる。
【0006】
しかしながら、このような従来の数値制御システムでは、ロストモーション補正ゲインは一定値であり、算出されるロストモーション補正量の符号は変化するがその絶対値は一定である。従って、実際の製品においては位置、速度および直動案内機構の潤滑状態により変化してしまうロストモーション量を適正に補正することができないという問題があった。
【0007】
図13は位置とロストモーション量の関係を説明する図である。同図(a)において、25は直動案内、26はそれぞれこの直動案内25に固定されるとともにボールネジ3を軸支する軸受である。同図(b)はその構成の場合のテーブル位置と摩擦量との代表的な関係を示す特性図である。そして、このような軸受構造である場合、ボールネジ3はその両端に設置された一対の軸受26により軸支されるが、このときボールネジナット2の位置におけるテーブル1からボールネジ3までの間隔と、軸受26の位置におけるテーブル1からボールネジ3までの間隔とが微妙に異なる時があり、そのような時にはボールネジナット2が軸受26に近づけば近づくほど大きな摩擦が生じてしまい、ボールネジ3の回転負荷が増加してしまうことになる。その結果、ボールネジナット2が両端の軸受26から最も遠い位置において最小となり、そこから両端に近づけば近づくほど大きくなってしまうように摩擦量は変化する。
【0008】
また、直動案内25がすべり案内である場合には、速度が小さいときには直動案内25の案内面とテーブル1とが接触した状態にあり、速度が上昇するに従ってテーブル1が案内面から浮上して摩擦が小さくなることが知られている。この現象はすべり案内に供給されている潤滑油の状態に大きく依存し、特に温度が変化すると潤滑油の粘性係数が変動し摩擦が変動する。
【0009】
そこで、特開平4−362603号公報にはロストモーション補正ゲインを可変する従来の数値制御システムが提案されている。図14はその従来の数値制御システムの構成を示すブロック図である。図において、27は主制御部27a、制御プログラム記憶部27b、ロストモーション補正量算出部27c、多層ニューラルネット型推定部27d、出力部27e、入力部27fおよび結合重み係数算出部27gを備え、上記制御プログラム記憶部27bに記憶された制御プログラムと回転検出量とに基づいて制御信号を出力する軸制御部、28は制御信号を増幅してサーボモータ4に供給するアンプ、29は軸制御部27をトレーニングする際に関数を出力する関数発生部である。
【0010】
次に動作について説明する。
関数発生部29の出力に基づいて軸制御部27のトレーニングが完了した状態において、当該軸制御部27が制御プログラムと回転検出量とに基づいて制御信号を出力すると、この制御信号はアンプ28で増幅され、その増幅された制御信号に基づいてサーボモータ4が回転し、その回転に応じてテーブル1は直線運動を行う。そして、サーボモータ4の回転量をエンコーダ5で検出し、このエンコーダ5の検出回転量に基づいてテーブル1の新たな位置が軸制御部27において把握され、次の制御信号が出力される。
【0011】
そして、このような構成であれば、多層ニューラルネットを用いてその時の位置や速度などに応じてロストモーションの補正量を変化させることができるので、単に一定のロストモーション補正量を位置指令に加算するようなものに比べ、位置、速度、ガイドの潤滑状態などによらずロストモーションを高精度に補正することができる。
【0012】
【発明が解決しようとする課題】
従来の数値制御システムおよびそれに用いられる位置指令値補正装置は以上のように構成されているので、位置、速度、ガイドの潤滑状態などに応じて最適なロストモーション補正をさせるためには予め位置、速度、ガイドの潤滑状態の想定される使用環境を想定して、その全体に渡る使用環境について1つ1つの組合わせを再現して多層ニューラルネットに学習させる必要があり、特に、複数の要因を考慮して精度良く補正することができるロストモーション補正量を得ようとすればするほど多数の使用環境を再現して学習させる必要があり、このような作業は非常に多量の手間が必要となって煩雑となってしまうなどの課題がある。
【0013】
また、このような従来の数値制御システムにおいて制御対象たるテーブル1の移動方向を規制する部材として好適に用いられるすべり案内などにおいては、その潤滑状態が季節や日時により変動したり、温度変化やすべり案内面の経年変化によっても変動してしまうが、そのような変動に起因するロストモーションを補正することはできない。
【0014】
そして、組立誤差によるずれなどの発生の仕方が異なる1つ1つの製品についてこのような作業をすることは現実的ではないので、その結果、この多層ニューラルネットに学習させるデータは多数の製品に共通のデータとするのが現実的であり、その結果、ずれなどの発生の仕方が異なる複数の製品における平均値的なデータを使用することとなって一定以上の高精度化を現実的に図ることができないなどの課題もある。
【0015】
この発明は上記のような課題を解決するためになされたもので、精度良く補正することができるロストモーション補正量を少ない測定にて設定することができ、ひいては簡易な手間で各製品毎にロストモーション量を測定しつつ位置、速度、ガイドの潤滑状態などによらず高精度にロストモーション補正量を設定することができる数値制御システムおよびそれに用いられる位置指令値補正装置を得ることを目的とする。
【0016】
【課題を解決するための手段】
この発明に係る位置指令値補正装置は、制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、予め測定された制御対象の位置毎の摩擦量を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置の摩擦量を選択して出力する摩擦量出力手段と、当該摩擦量記憶手段からの摩擦量出力とともに上記反転検出信号が入力され、当該摩擦量に応じて異なる値となる位置指令補正値を生成して出力する位置指令補正値出力手段と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えるものである。
【0017】
この発明に係る位置指令補正装置は、制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、予め測定された制御対象の位置毎の摩擦量を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置の摩擦量を選択して出力する摩擦量出力手段と、予め測定された制御対象の位置毎のバネ係数を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置のバネ係数を選択して出力するバネ係数出力手段と、当該バネ係数記憶手段からのバネ係数出力とともに上記摩擦量記憶手段からの摩擦量出力ならびに上記反転検出信号が入力され、当該バネ係数ならびに当該摩擦量に応じて異なる値となる位置指令補正値を生成して出力する位置指令補正値出力手段と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えるものである。
【0018】
この発明に係る位置指令値補正装置は、摩擦量出力手段が、所定のスケジュールに基づいて制御対象を動作させ、その時の制御対象の位置情報とこの制御対象を駆動する駆動手段への指令値とに基づいて各位置における摩擦量を演算する摩擦量演算手段を備え、記憶手段が、この摩擦量演算手段により演算された制御対象の位置毎の摩擦量を記憶するものである。
【0019】
この発明に係る位置指令値補正装置は、摩擦量演算手段が、一定の位置指令値に基づいて制御対象を動作させた際の摩擦量を演算するものである。
【0020】
この発明に係る位置指令値補正装置は、制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、制御対象を駆動する駆動手段に対する指令値が入力され、制御対象のモデリングに基づく演算式を用いて位置指令補正値を生成して出力する位置指令補正値出力手段と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えるものである。
【0021】
この発明に係る位置指令値補正装置は、位置指令補正値出力手段が、制御対象の現在速度に関する情報が入力され、制御対象のモデリングに基づく演算式を用いて制御対象の速度に応じても異なる値となる位置指令補正値を生成して出力するものである。
【0022】
この発明に係る数値制御システムは、制御対象の数値制御に利用する位置指令値を出力する位置指令値出力手段と、この位置指令値が入力され、上記制御対象の反転検出信号に基づいて当該位置指令値を補正する上記位置指令値補正装置と、当該位置指令値補正装置から出力される補正された位置指令値に基づいて電流指令値を生成する電流指令値生成手段と、この電流指令値が入力され、上記制御対象の反転検出信号に基づいて所定の摩擦補正ゲインを用いて上記電流指令値を補正する電流指令値補正装置と、当該電流指令値補正装置から出力される補正された電流指令値に基づいて上記制御対象を駆動する駆動手段とを備えるものである。
【0023】
この発明に係る数値制御システムは、電流指令値補正装置が、位置指令値補正装置で生成された位置指令補正値に基づいて摩擦補正ゲインを演算し、この摩擦補正ゲインを用いて上記電流指令値を補正するものである。
【0024】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1によるNC加工システムの一軸分の構成を示すブロック図である。図において、1は被加工物(ワーク)や工具などが固定されるテーブル(制御対象)、2はこのテーブル1の下面に固定されたボールネジナット(駆動手段)、3はこのボールネジナット2と嵌合されたボールネジ(駆動手段)、4はこのボールネジ3を回転駆動するサーボモータ(駆動手段)、5はこのサーボモータ4の回転量を検出するエンコーダである。そして、上記ボールネジ3およびボールネジナット2はサーボモータ4の回転運動を直線運動に変換し、テーブル1はこのボールネジ3およびボールネジナット2などの駆動伝達部材と図示外の直動案内機構(ガイドレール)とに従って所定の位置に設定制御されたり、目標の軌道にて移動動作を実施する。
【0025】
6は加工プログラムなどに基づいて上記テーブル1の所定の一軸方向の位置を数値制御するための位置指令値を出力する位置指令値出力手段、7は位置指令値が入力され、その位置指令値の値の増減に基づいてテーブル1の当該軸方向の制御方向が反転するか否かを判断し、反転する場合には反転後の位置指令値の増減方向に応じた正または負の大きさ1のステップ状の反転検出信号を出力し、反転しない場合には前回の判断結果と同じ符号の大きさ1のステップ状の反転検出信号を出力する反転検出手段、8はテーブルの位置毎の摩擦量を予め記憶するとともに上記エンコーダ5の検出回転量が入力され、この検出回転量に基づいて推測されるテーブル1の位置における上記摩擦量を出力する摩擦量記憶手段(摩擦量出力手段)、9はこの摩擦量とともに反転検出信号が入力され、サーボモータ4、ボールネジ3及びテーブル1の動摩擦に相当する摩擦補正ゲインで当該摩擦量に応じた大きさとなるように反転検出信号の大きさを補正したものを位置補正信号として出力するロストモーション補正ゲイン算出手段(位置指令補正値出力手段)、10はこの位置補正信号を位置指令値に加算する位置加算手段(演算手段)である。
【0026】
なお、このロストモーション補正ゲイン算出手段9においては、エンコーダ5の検出回転量に基づいて判断される現在位置をp、その現在位置の摩擦量として摩擦量記憶手段8に記憶されている摩擦量関数をf(p)、位置指令補正値(ロストモーション補正量)をLMとした場合、下記式1に示す演算に基づいて位置指令補正値を生成する。ただし、Kは摩擦量と位置指令補正値との関係を表す定数であり、バネ係数(この実施の形態では一定値)に相当する。
LM = f(p)/K ・・・式1
【0027】
また、このバネ係数Kは以下の手順により設定されている。まず、一定の位置および一定の速度においてテーブル1を移動させた状態で、接触式変位計などの位置計測手段を用いてテーブル1のロストモーション量を計測するとともに、サーボモータ4への最終的な供給電流値を記録する。次に、これらのデータを下記式2に代入してバネ係数Kを求める。但し、Ktはサーボモータ4のトルク定数であり一般的にサーボモータ4の仕様として既知のものであり、i(p1)はテーブル位置p1におけるサーボモータ4への供給電流値であり、LM(p1)はテーブル位置p1におけるテーブル1のロストモーション量である。
K = Kt×i(p1)/LM(p1) ・・・式2
【0028】
11はこの位置加算手段10の出力およびエンコーダ5の検出回転量が入力され、位置加算手段10の出力に示される目標位置とエンコーダ5の検出回転量に示される現在位置との距離に応じた速度指令値を出力する位置制御手段(電流指令値生成手段)、12はこの速度指令値に応じたサーボモータ4への電流指令値を出力する速度制御手段(電流指令値生成手段)、13は反転検出信号が入力され、これを一定の大きさの摩擦補正ゲインで補正してサーボモータ4に作用する摩擦を打ち消す補正トルク量となる電流指令補正値を出力する摩擦補正ゲイン算出手段(電流指令値補正装置)、14は電流指令値にこの電流指令補正値を加算する電流加算手段(電流指令値補正装置)、15はこの電流加算手段14の出力が入力され、この出力に応じた電流値の電流をサーボモータ4に供給する電流制御手段(駆動手段)である。
【0029】
ところで、摩擦量記憶手段8には予め基準となる動作における電流指令値を計測し、その電流指令値から推定される位置に依存する摩擦量が記憶される。例えば、速度および加速度の影響がサーボモータ4の電流値に大きく現れない十分な低速度において各駆動軸に等速直線運動をさせ、その時のテーブル1の位置をエンコーダ5を用いて計測するとともに、サーボモータ4への最終的な供給電流値を計測し、下記式3を用いて各位置の摩擦量を演算し、これを記憶させる。但し、Ktはサーボモータ4のトルク定数であり一般にサーボモータ4の仕様として既知であり、i(p)は位置pにおけるサーボモータ4への供給電流値である。
f(p) = Kt×i(p) ・・・式3
【0030】
なお、上記式2の関係を得るためには、製品出荷前に少なくとも1度だけ任意の1点p1で、接触式変位計などのテーブル位置を測定する手段で計測する必要がある。そして、このロストモーションLMは、エンコーダ5で計測したモータの位置と、接触式変位計などで計測したテーブルの位置との差であり、ミクロン以下の精度が要求される。これに対して、上記式3の段階では、位置精度はたとえば1mm程度のオーダでよく、エンコーダ5を用いたモータ位置検出で十分なものとなる。バネ係数Kは固定値であるため以降は計測する必要は無く、テーブルの位置を計測する手段は必要ない。エンコーダ5によるモータ位置の検出は容易であるが、テーブル位置の検出は余分な器具が必要となり煩雑である。
【0031】
図2はこの発明の実施の形態1による摩擦量記憶手段に記憶されているテーブル1の位置と摩擦量との関係の一例を示す説明図である。同図(a)は横軸を位置、縦軸を摩擦量とする摩擦量分布グラフ、同図(b)はそのグラフのもととなる計測データである。そして、同図に示すものでは、テーブル1の位置が軸の中央部から両端部に移動するほどにだんだんと摩擦量が増加する特性となっている。
【0032】
次に動作について説明する。
位置指令値出力手段6から加工プログラムなどに基づいて位置指令値が出力されると、反転検出手段7はその位置指令値の値の増減に基づいてテーブル1の当該軸方向の制御方向が反転するか否かを判断する。そして、反転しない場合には前回の判断結果と同じ符号の、反転する場合には反転後の当該軸の制御方向に応じた正または負の大きさ1のステップ状の反転検出信号が出力される一方で、摩擦量記憶手段8から検出回転量に基づいて推測されるテーブル1の現在位置における摩擦量が出力され、ロストモーション補正ゲイン算出手段9はこの摩擦量に応じた大きさとなるように反転検出信号の大きさを補正し、位置加算手段10においてこの位置補正信号と上記位置指令値とが加算される。そして、位置制御手段11からは上記加算値に示される目標位置とエンコーダ5の検出回転量に示される現在位置との距離に応じた速度指令値が出力される。また、速度制御手段12からこの速度指令値に応じた電流指令値が出力される一方で、摩擦補正ゲイン算出手段13が上記反転検出信号の大きさを補正して電流指令補正値を出力するので電流加算手段14においてこれらが加算され、この加算電流指令値が電流制御手段15に入力され、電流制御手段15の出力電流がサーボモータ4に供給され、サーボモータ4はボールネジ3を回転駆動し、テーブル1はボールネジナット2とともに上記速度指令の速度で上記位置指令値の位置まで移動する。
【0033】
以上のように、この実施の形態1によれば、上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出信号を出力する反転検出手段7と、予め測定された制御対象の位置毎の摩擦量を記憶するとともにテーブル1の現在位置に基づいて当該位置の摩擦量を選択して出力する摩擦量記憶手段8と、当該摩擦量記憶手段8からの摩擦量出力とともに上記反転検出信号が入力され、反転検出信号が入力された際に当該摩擦量に応じて変化する位置指令補正値を生成して出力するロストモーション補正ゲイン算出手段9と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う位置加算手段10とを備えて、テーブル1の数値制御に利用する位置指令値を補正するので、摩擦量記憶手段8に予め測定されたテーブル1の位置毎の摩擦量を記憶させることで、テーブル1の制御方向に反転が生じた位置毎に異なる値の摩擦量に基づいて、各位置において最適な位置指令補正値を用いて位置指令値の補正演算を行うことができる。
【0034】
従って、テーブル1の位置に応じて異なる摩擦量を得、これに基づいて位置指令値を補正することができるので、ボールネジナット2とボールネジ3との間の遊びなどに起因するがたつき(バックラッシ)やこれらの駆動伝達部材の剛性と摩擦との関係に依存する弾性変形があったとしても、単にテーブル1の制御方向が反転した際に一定の位置指令補正値を用いて位置指令値の補正演算を行う場合に比べて精度良くロストモーションを補正して精度良く位置を制御することができる効果がある。
【0035】
また、テーブル1の位置に応じた位置指令補正値を生成し、これを用いて位置指令値を補正しているので、テーブル1の位置と摩擦量との関係モデルに基づく位置指令補正値を生成することができ、ある一定の条件の下でテーブル1の位置と摩擦量との関係を測定するだけで当該テーブル1の位置に応じた摩擦量を摩擦量記憶手段8に記憶させることができる。従って、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータを変化させた全ての組み合わせについて測定を行う必要はなく、少ない測定にて位置指令補正値を設定することができる。
【0036】
更に、このように少ない測定にて摩擦量を設定することができるので、各製品毎に1つ1つ測定を行ったとしても莫大な手間にはならないので、各製品毎にそれぞれのずれを精度良く補正することができる位置指令補正値を設定することができ、従来にない高精度化を実現することができる効果がある。
【0037】
実施の形態2.
図3はこの発明の実施の形態2によるNC加工システムの一軸分の構成を示すブロック図である。図において、16は摩擦量記憶手段8からの摩擦量とともにエンコーダ5の検出回転量が入力され、反転検出信号が入力された場合には、検出回転量に基づいて判断されるテーブル1の移動速度に応じて下記式4を用いて位置指令補正値を生成して出力するロストモーション補正ゲイン算出手段(位置指令補正値出力手段)である。但し、g(v)は現在速度に依存するロストモーション量の増減をあらわす関数である。これ以外の構成は実施の形態1と同様であり説明を省略する。
LM = f(p)×g(v)/K ・・・式4
【0038】
図4はこの発明の実施の形態2によるテーブル1の速度と摩擦量との関係を示す説明図である。同図(a)は横軸を速度、縦軸を上記式4におけるロストモーション係数g(v)とする摩擦分布グラフ、同図(b)はそのグラフのもととなる計測データである。そして、同図に示すものでは、テーブル1の速度が増加すると一定の速度範囲まではだんだんと摩擦量が減少して上記ロストモーション係数g(v)が減少し、更にその速度範囲を超えて速度が増加すると徐々に摩擦量が増加して上記ロストモーション係数g(v)も増加する特性となっている。
【0039】
次に動作について説明する。
反転検出手段7から反転検出信号が入力されると、ロストモーション補正ゲイン算出手段16は、摩擦量および検出回転量に基づいて判断されるテーブル1の移動速度に応じて上記式4を用いて位置指令補正値を生成して出力する。これ以外の動作は実施の形態1と同様であり説明を省略する。
【0040】
以上のように、この実施の形態2によれば、ロストモーション補正ゲイン算出手段16が、エンコーダ5からの検出回転量が入力され、テーブル駆動系のモデリングに基づく演算式を用いてテーブル1の速度に応じても異なる値となる位置指令補正値を生成して出力するので、速度に応じて異なるテーブル1の摩擦量を位置指令補正値で補正することができ、単にテーブル1の位置のみを考慮した位置指令補正値を用いる場合よりも精度良く位置を制御することができる効果がある。
【0041】
しかも、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータをまとめて考慮させることなく、テーブル1の駆動系のモデリングに基づいてテーブル1の位置と速度とを分離して考慮することができるので、このように考慮すべき要因数が増加したとしても、それにかかわらず少ない測定にて摩擦量記憶手段8の記憶内容や演算式のパラメータを設定しつつ、各製品毎にそれぞれのずれを精度良く補正することができる効果がある。
【0042】
実施の形態3.
図5はこの発明の実施の形態3によるNC加工システムの一軸分の構成を示すブロック図である。図において、17はテーブルの位置毎のバネ係数を予め記憶するとともにエンコーダ5の検出回転量が入力され、この回転検出量に基づいて推測されるテーブル1の位置における上記バネ係数を出力するバネ係数記憶手段(バネ係数出力手段)、18は摩擦量記憶手段8からの摩擦量とともにエンコーダ5の検出回転量が入力され、反転検出信号が入力された場合には、検出回転量に基づいて判断されるテーブル1の位置に応じて下記式5を用いて位置指令補正値を生成して出力するロストモーション補正ゲイン算出手段(位置指令補正値出力手段)である。但し、k(p)は現在位置に依存して変化するバネ係数としてバネ係数記憶手段17に記憶されているものである。これ以外の構成は実施の形態1と同様であり説明を省略する。
LM = f(p)/k(p) ・・・式5
【0043】
図6はこの発明の実施の形態3によるテーブル1の位置とバネ係数との関係を示す説明図である。同図(a)は横軸を位置、縦軸を上記式5におけるバネ係数k(p)とするバネ係数分布グラフ、同図(b)はそのグラフのもととなる計測データである。そして、同図に示すものは、テーブル1の位置が増加すると徐々にバネ係数k(p)が減少する特性となっている。
【0044】
また、このバネ係数の分布関数k(p)は以下の手順により設定されている。まず、一定の速度においてテーブル1を動作範囲全体に渡って移動させながら、接触式変位計などの位置計測手段を用いてテーブル1のロストモーション量を計測するとともに、サーボモータ4への供給電流値を記録する。次に、これらのデータを下記式6に代入してバネ係数の分布関数k(p)を求める。但し、Ktはサーボモータ4のトルク定数、i(p)はテーブル位置pにおけるサーボモータ4への供給電流値であり、LM(p)はテーブル位置pにおけるテーブル1のロストモーション量である。そして、上記バネ係数分布グラフはこれをプロットしたものである。
k(p) = Kt×i(p)/LM(p) ・・・式6
【0045】
次に動作について説明する。
バネ係数記憶手段から現在位置に応じたバネ係数が出力された状態で反転検出手段7から反転検出信号が入力されると、ロストモーション補正ゲイン算出手段18は、摩擦量記憶手段8からの出力である摩擦量とバネ係数記憶手段17からの出力であるバネ係数から上記式5を用いて位置指令補正値を生成して出力する。これ以外の動作は実施の形態1と同様であり説明を省略する。
【0046】
以上のように、この実施の形態3によれば、ロストモーション補正ゲイン算出手段18が、制御対象の位置に応じて変化する摩擦量および制御対象の位置に応じて変化するバネ係数を用いて位置指令補正値を生成して出力するので、制御対象の位置毎のバネ係数が変化したとしても、それに応じた位置指令補正値を演算することができ、単に制御対象の摩擦量の変動のみを考慮した位置指令補正値を用いる場合よりも精度良く位置を制御することができる効果がある。
【0047】
しかも、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータをまとめて考慮することなく、テーブル1の位置による摩擦量の変化と、テーブル1の位置によるバネ係数の変化を分離して考慮することができるので、このように考慮すべき要因数が増加したとしても、それに係わらず少ない測定にて補正量記憶手段8の記憶内容や演算式のパラメータを設定しつつ、各製品毎にそれぞれのずれを精度良く補正することができる効果がある。
【0048】
なお、図7に示すように、実施の形態2のNC加工システムの構成を前提としても同様の効果を得ることができる。図において、19は摩擦量記憶手段8からの摩擦量およびバネ係数記憶手段17からのバネ係数とともにエンコーダ5の検出回転量が入力され、反転検出信号が入力された場合には、検出回転量に基づいて判断されるテーブル1の速度に応じて下記式7を用いて位置指令補正値を生成して出力するロストモーション補正ゲイン算出手段(位置指令補正値出力手段)である。これ以外の構成は実施の形態2と同様であり説明を省略する。
LM = f(p)×g(v)/k(p) ・・・式7
【0049】
また、上記説明では制御対象の位置に依存する摩擦量およびバネ係数を表形式で持つ例を示したが、表形式のデータから抽出した近似関数を用いてもよい。あるいは、制御対象の位置に依存するバネ係数に関しては、制御対象の機械系モデルに基づいた下記式8を用いてもよい。但し、A,Bは現在位置をバネ係数に換算するための定数である。
k(p)=1/(A×p+B) ・・・式8
【0050】
実施の形態4.
図8はこの発明の実施の形態4によるNC加工システムの一軸分の構成を示すブロック図である。図において、20はエンコーダ5の検出回転量およびサーボモータ4への最終的な供給電流値が入力され、電源起動、所定の連続稼働時間、ユーザ指示などに基づいて把握される所定のスケジュールにて摩擦量記憶手段8の記憶内容の更新処理を実施する関数導出手段(摩擦量演算手段)である。この関数導出手段20は具体的には例えば、テーブル1をその移動範囲全体において通常の使用速度よりもずっと低い一定の速度で移動させる位置指令値を位置指令値出力手段6から出力させつつ、その時のテーブル1の位置情報と供給電流値とに基づいて各位置における摩擦量を上記式3を用いて演算し、これを摩擦量記憶手段8に記憶させる。これ以外の構成は実施の形態1と同様であり説明を省略する。
【0051】
次に動作について説明する。
上記スケジュールに基づいて摩擦量記憶手段8の記憶内容の更新処理タイミングがくると、関数導出手段20は具体的には例えば、テーブル1を移動範囲全体において通常の使用速度よりもずっと低い一定の速度にて移動させる位置指令値を位置指令値出力手段6から出力させつつ、その時のテーブル1の位置情報と供給電流値とに基づいて各位置における摩擦量を演算し、これを摩擦量記憶手段8に記憶させる。これ以外の動作は実施の形態1と同様であり説明を省略する。
【0052】
以上のように、この実施の形態4によれば、所定のスケジュールに基づいてテーブル1を動作させ、その時のテーブル1の位置情報とこのテーブル1を駆動するサーボモータ4への最終的な電流指令値とに基づいて各位置における摩擦量を演算する関数導出手段20を備え、摩擦量記憶手段8が、この関数導出手段20により演算されたテーブル1の位置毎の摩擦量を記憶するので、摩擦量記憶手段8にはその時々の環境や状態に応じた位置指令補正値を記憶させることができる。
【0053】
従って、直動案内の潤滑状態などが温度変化や経年変化などに応じて変化し、その結果、テーブル1の位置毎の摩擦量が変化したとしても、つまり直動案内機構の潤滑状態が変化したとしても、それに応じて摩擦量記憶手段8の記憶内容を更新することができるので、これらの温度変化や経年変化によらず、しかも、ガイドの潤滑状態の変化によらず、ロストモーションを精度良く補正することができる効果がある。
【0054】
この実施の形態4によれば、関数導出手段20が、一定の位置指令値に基づいてテーブル1を動作させた際の摩擦量を演算するので、その移動範囲略全体に渡って略一定の速度でテーブル1を移動させた状態の摩擦量を得ることができ、速度変化に伴う摩擦量の変化を防止し、テーブル1の位置に応じた摩擦量や位置指令補正値の精度を向上させることができる効果がある。
【0055】
実施の形態5.
図9はこの発明の実施の形態5によるNC加工システムの一軸分の構成を示すブロック図である。図において、21は位置指令補正値に基づいて摩擦補正ゲインを演算し、反転検出信号が入力された場合には、下記式9を用いてそれの大きさをこの摩擦補正ゲインで補正して電流指令補正値として出力する摩擦補正ゲイン算出手段(電流指令値補正装置)である。但し、fcは摩擦補正量、LMはロストモーション補正量、Kはロストモーション補正量と摩擦量の関係を示すバネ係数である。これ以外の構成は実施の形態1と同様であり説明を省略する。
fc = LM×K ・・・式9
【0056】
次に動作について説明する。
反転検出手段7から反転検出信号が出力され、更にこの反転検出信号に基づいてロストモーション補正ゲイン算出手段9から位置補正信号が出力されると、摩擦補正ゲイン算出手段21は位置指令補正値に基づいて摩擦補正ゲインを演算し、反転検出信号の大きさをこの摩擦補正ゲインで補正して電流指令補正値を出力する。これ以外の動作は実施の形態1と同様であり説明を省略する。
【0057】
以上のように、この実施の形態5によれば、ロストモーション補正ゲイン算出手段9で生成された位置指令補正値に基づいて摩擦補正ゲインを演算し、この摩擦補正ゲインを用いて上記電流指令値を補正する摩擦補正ゲイン算出手段21を備えているので、テーブル1の位置に依存する摩擦量の増減分をこの摩擦補正ゲインで相殺させることができ、この摩擦量の増減による位置補正精度の悪化を防止することができる効果がある。
【0058】
なお、図10に示すように、実施の形態2のNC加工システムの構成を前提としても同様の効果を得ることができる。
【0059】
実施の形態6.
図11はこの発明の実施の形態6によるNC加工システムの一軸分の構成を示すブロック図である。図において、22はサーボモータ4への最終的な供給電流値およびエンコーダ5の検出回転量が入力され、反転検出信号が入力された場合には、検出回転量に基づいて判断されるテーブル1の移動速度に応じて下記式10を用いて位置指令補正値を生成して出力するロストモーション補正ゲイン算出手段(位置指令補正値出力手段)である。但し、fは推定されたサーボモータ軸換算の摩擦量、Ktはサーボモータ4のトルク定数、iはサーボモータ4への電流指令値、Jは可動部すべてを含むサーボモータ軸換算のイナーシャ、ddΘはサーボモータ4の角加速度、Cはサーボモータ軸換算の粘性摩擦係数、dΘはサーボモータ4の角速度である。これ以外の構成は実施の形態2と同様であり説明を省略する。
f = Kt×i−J×ddΘ−C×dΘ ・・・式10
【0060】
なお、イナーシャJ及び粘性摩擦係数Cは、サーボモータ4の駆動軸に適当な最大速度を持つ正弦波運動をさせた場合の位置(角度)、速度(角速度)、加速度(角加速度)および推力(サーボモータトルク)から最小二乗法を用いて下記の式群11で計算される。但し、[]’は転置行列、[τ]はサーボモータトルクの時系列データからなるm行の列ベクトル、Bは角加速度ddΘと角速度dΘ及びdΘの符号sign(dΘ)はそれぞれの時系列データからなるm行の列ベクトルで構成されるm行×3列の行列、Aは行列Bから計算される3行×3列の逆行列である。
[J C f]’ = A[τ]
B = [ddΘ dΘ sign(dΘ)]
τ = Kt×i ・・・式群11
【0061】
次に動作について説明する。
反転検出手段7から反転検出信号が出力されると、ロストモーション補正ゲイン算出手段22はその時のサーボモータ4への最終的な供給電流値およびエンコーダ5の検出回転量から判断される現在速度とを用いて上記式10に基づいて位置指令補正値を生成する。これ以外の動作は実施の形態2と同様であり説明を省略する。
【0062】
以上のように、この実施の形態6によれば、位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出信号を出力する反転検出手段7と、テーブル1を駆動するサーボモータ4に対する最終的な供給電流値が入力され、テーブル1のモデリングに基づく演算式を用いて位置指令補正値を生成して出力するロストモーション補正ゲイン算出手段22と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う位置加算手段10とを備えて、テーブル1の数値制御に利用する位置指令値を補正するので、テーブル1のモデリングに基づく演算式を用いてテーブル1の反転が生じた位置毎に異なる値の位置指令値の補正演算を行うことができる。
【0063】
従って、位置に応じて異なるテーブル1の摩擦量に応じて位置指令値を補正することができるので、単にテーブル1が反転した際に一定の位置指令補正値を用いて位置指令値の補正演算を行う場合に比べて精度良く位置を制御することができる効果がある。
【0064】
また、テーブル1の位置と摩擦量との関係モデルに基づく位置指令補正値を生成することができるので、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータを変化させた全ての組み合わせについて測定を行う必要はなく、少ない測定にて上記演算式のパラメータを設定することができる。
【0065】
更に、このように少ない測定にて演算式を設定することができるので、各製品毎に1つ1つ測定を行ったとしても莫大な手間にはならないので、各製品毎にそれぞれのずれを精度良く補正することができる位置指令補正値を設定することができるので、従来にない高精度化を実現することができる効果がある。
【0066】
最後に、ロストモーション補正ゲイン算出手段22には、その時々の環境や状態に応じて摩擦量が変化すれば、それに応じて変化するサーボモータ4への最終的な供給電流値が入力されるので、直動案内の潤滑状態などが温度変化や経年変化などに応じて変化し、その結果、テーブル1の位置毎の摩擦量が変化したとしても、それに応じた位置指令補正値を演算することができるので、これらの温度変化や経年変化によらず、しかも、直動案内の潤滑状態の変化によらず、ずれを精度良く補正することができる効果がある。
【0067】
この実施の形態6によれば、ロストモーション補正ゲイン算出手段22が、テーブル1のモデリングに基づく演算式を用いてテーブル1の速度に応じても異なる値となる位置指令補正値を生成して出力するので、速度に応じて異なるテーブル1の摩擦量を位置指令補正値で補正することができ、単にテーブル1の位置のみを考慮した位置指令補正値を用いる場合よりも精度良く位置を制御することができる効果がある。
【0068】
しかも、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータをまとめて考慮させることなく、テーブル1のモデリングに基づいてテーブル1の位置と速度とを分離して考慮することができるので、このように考慮すべき要因数が増加したとしても、それにかかわらず少ない測定にて演算式のパラメータを設定しつつ、各製品毎にそれぞれのロストモーションを精度良く補正することができる効果がある。
【0069】
なお、以上の実施の形態では、テーブル1の現在位置をエンコーダ5の検出回転量に基づいて判断しているが、位置指令値出力手段6の出力である位置指令値を用いて判断しても同様の効果を得ることができる。
【0070】
【発明の効果】
以上のように、この発明によれば、制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、予め測定された制御対象の位置毎の摩擦量を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置の摩擦量を選択して出力する摩擦量出力手段と、当該摩擦量記憶手段からの摩擦量出力とともに上記反転検出信号が入力され、当該摩擦量に応じて異なる値となる位置指令補正値を生成して出力する位置指令補正値出力手段と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えるので、記憶手段に予め測定された制御対象の位置毎の摩擦量を記憶させることで、制御対象の反転が生じた位置毎に異なる値の摩擦量に基づいて、各位置において最適な位置指令補正値を用いて位置指令値の補正演算を行うことができる。
【0071】
従って、位置に応じて異なる制御対象の摩擦量に応じて位置指令値を補正することができるので、単に制御対象が反転した際に一定の位置指令補正値を用いて位置指令値の補正演算を行う場合に比べて精度良く位置を制御することができる効果がある。
【0072】
また、制御対象の位置に応じた補正値を生成し、これを用いて位置指令値を補正しているので、制御対象の位置と摩擦量との関係モデルに基づく位置指令補正値を生成することができ、ある一定の条件の下で制御対象の位置と摩擦量との関係を測定するだけで当該制御対象の位置に応じた位置指令補正値を記憶手段に記憶させることができる。従って、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータを変化させた全ての組み合わせについて測定を行う必要はなく、少ない測定にて位置指令補正値を設定することができる。
【0073】
更に、このように少ない測定にて位置指令補正値を設定することができるので、各製品毎に1つ1つ測定を行ったとしても莫大な手間にはならないので、各製品毎にそれぞれのロストモーションを精度良く補正することができる位置指令補正値を設定することができるので、従来にない高精度化を実現することができる効果がある。
【0074】
この発明によれば更に、予め測定された制御対象の位置毎のバネ係数を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置のバネ係数を選択して出力するバネ係数出力手段を設けるとともに、ロストモーション補正ゲイン算出手段が、制御対象の位置に応じて変化する摩擦量および制御対象の位置に応じて変化するバネ係数を用いて位置指令補正値を生成して出力するので、制御対象の位置毎のバネ係数が変化したとしても、それに応じた位置指令補正値を演算することができ、単に制御対象の摩擦量の変動のみを考慮した位置指令補正値を用いる場合よりも精度良く位置を制御することができる効果がある。
【0075】
この発明によれば、摩擦量出力手段が、所定のスケジュールに基づいて制御対象を動作させ、その時の制御対象の位置情報とこの制御対象を駆動する駆動手段への指令値とに基づいて各位置における摩擦量を演算する摩擦量演算手段を備え、記憶手段が、この摩擦量演算手段により演算された制御対象の位置毎の摩擦量を記憶するので、記憶手段にはその時々の環境や状態に応じた位置指令補正値を記憶させることができる。従って、ガイドの潤滑状態などが温度変化や経年変化などに応じて変化し、その結果、制御対象の位置毎の摩擦量が変化したとしても、それに応じて記憶手段の位置指令補正値を更新することができるので、これらの温度変化や経年変化によらず、しかも、ガイドの潤滑状態の変化によらず、ロストモーションを精度良く補正することができる効果がある。
【0076】
この発明によれば、摩擦量演算手段が、一定の位置指令値に基づいて制御対象を動作させた際の摩擦量を演算するので、その移動範囲略全体に渡って略一定の速度で制御対象を移動させた状態の摩擦量を得ることができ、速度変化に伴う摩擦量の変化を防止し、制御対象の位置に応じた補正量や位置指令補正値の精度を向上させることができる効果がある。
【0077】
この発明によれば、制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、制御対象を駆動する駆動手段に対する指令値が入力され、制御対象のモデリングに基づく演算式を用いて位置指令補正値を生成して出力する位置指令補正値出力手段と、当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えるので、制御対象のモデリングに基づく演算式を用いて制御対象の反転が生じた位置毎に異なる値の位置指令値の補正演算を行うことができる。
【0078】
従って、位置に応じて異なる制御対象の摩擦量に応じて位置指令値を補正することができるので、単に制御対象が反転した際に一定の位置指令補正値を用いて位置指令値の補正演算を行う場合に比べて精度良く位置を制御することができる効果がある。
【0079】
また、制御対象の位置と摩擦量との関係モデルに基づく位置指令補正値を生成することができるので、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータを変化させた全ての組み合わせについて測定を行う必要はなく、少ない測定にて上記演算式のパラメータを設定することができる。
【0080】
更に、このように少ない測定にて演算式を設定することができるので、各製品毎に1つ1つ測定を行ったとしても莫大な手間にはならないので、各製品毎にそれぞれのずれを精度良く補正することができる位置指令補正値を設定することができるので、従来にない高精度化を実現することができる効果がある。
【0081】
最後に、位置指令補正値出力手段には、その時々の環境や状態に応じて摩擦量が変化すれば、それに応じて変化する制御対象を駆動する駆動手段に対する指令値が入力されるので、ガイドの潤滑状態などが温度変化や経年変化などに応じて変化し、その結果、制御対象の位置毎の摩擦量が変化したとしても、それに応じた位置指令補正値を演算することができるので、これらの温度変化や経年変化によらず、しかも、ガイドの潤滑状態の変化によらず、ロストモーションを精度良く補正することができる効果がある。
【0082】
この発明によれば、位置指令補正値出力手段が、制御対象の現在速度に関する情報が入力され、制御対象のモデリングに基づく演算式を用いて制御対象の速度に応じても異なる値となる位置指令補正値を生成して出力するので、速度に応じて異なる制御対象の摩擦量を位置指令補正値で補正することができ、単に制御対象の位置のみを考慮した位置指令補正値を用いる場合よりも精度良く位置を制御することができる効果がある。
【0083】
しかも、従来の多層ニューラルネットを用いた位置指令値補正装置のようにあらゆるパラメータをまとめて考慮させることなく、制御対象のモデリングに基づいて制御対象の位置と速度とを分離して考慮することができるので、このように考慮すべき要因数が増加したとしても、それにかかわらず少ない測定にて記憶手段の記憶内容や演算式のパラメータを設定しつつ、各製品毎にそれぞれのロストモーションを精度良く補正することができる効果がある。
【0084】
この発明によれば、制御対象の数値制御に利用する位置指令値を出力する位置指令値出力手段と、この位置指令値が入力され、上記制御対象の反転検出信号に基づいて当該位置指令値を補正する上記位置指令値補正装置と、当該位置指令値補正装置から出力される補正された位置指令値に基づいて電流指令値を生成する電流指令値生成手段と、この電流指令値が入力され、上記制御対象の反転検出信号に基づいて所定の摩擦補正ゲインを用いて上記電流指令値を補正する電流指令値補正装置と、当該電流指令値補正装置から出力される補正された電流指令値に基づいて上記制御対象を駆動する駆動手段とを備えるので、少ない測定に基づくデータで位置指令補正値を生成することができ、しかも、単に制御対象が反転した際に一定の位置指令補正値を用いて位置指令値の補正演算を行う場合に比べて精度良く位置を制御することができる効果がある。
【0085】
この発明によれば、電流指令値補正装置が、位置指令値補正装置で生成された位置指令補正値に基づいて摩擦補正ゲインを演算し、この摩擦補正ゲインを用いて上記電流指令値を補正するので、テーブルの位置に依存する摩擦量の増減分をこの摩擦補正ゲインで相殺させることができ、この摩擦量の増減による位置補正精度の悪化を防止することができる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1によるNC加工システムの一軸分の構成を示すブロック図である。
【図2】 この発明の実施の形態1による摩擦量記憶手段に記憶されているテーブルの位置と摩擦量との関係の一例を示す説明図である。
【図3】 この発明の実施の形態2によるNC加工システムの一軸分の構成を示すブロック図である。
【図4】 この発明の実施の形態2によるテーブルの速度と摩擦量との関係を示す説明図である。
【図5】 この発明の実施の形態3によるNC加工システムの一軸分の構成を示すブロック図である。
【図6】 この発明の実施の形態3による位置とバネ係数の関係を説明する図である。
【図7】 この発明の実施の形態3によるNC加工システムの変形例を示すブロック図である。
【図8】 この発明の実施の形態4によるNC加工システムの一軸分の構成を示すブロック図である。
【図9】 この発明の実施の形態5によるNC加工システムの一軸分の構成を示すブロック図である。
【図10】 この発明の実施の形態5によるNC加工システムの変形例を示すブロック図である。
【図11】 この発明の実施の形態6によるNC加工システムの一軸分の構成を示すブロック図である。
【図12】 従来の数値制御システムの構成を示すブロック図である。
【図13】 位置とロストモーション量の関係を説明する図である。
【図14】 従来の数値制御システムの構成を示すブロック図である。
【符号の説明】
1 テーブル(制御対象)、2 ボールネジナット(駆動手段)、3 ボールネジ(駆動手段)、4 サーボモータ(駆動手段)、5 エンコーダ、6 位置指令値出力手段、7 反転検出手段、8 摩擦量記憶手段(摩擦量出力手段)、9,16,18,19,22 ロストモーション補正ゲイン算出手段(位置指令補正値出力手段)、10 位置加算手段(演算手段)、11 位置制御手段(電流指令値生成手段)、12 速度制御手段(電流指令値生成手段)、13 摩擦補正ゲイン算出手段(電流指令値補正装置)、14 電流加算手段(電流指令値補正装置)、15 電流制御手段(駆動手段)、17 バネ係数記憶手段(バネ係数出力手段)、20 関数導出手段(摩擦量演算手段)、21 摩擦補正ゲイン算出手段(電流指令値補正装置)。
Claims (8)
- 制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、
上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、
予め測定された制御対象の位置毎の摩擦量を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置の摩擦量を選択して出力する摩擦量出力手段と、
当該摩擦量記憶手段からの摩擦量出力とともに上記反転検出信号が入力され、当該摩擦量に応じて異なる値となる位置指令補正値を生成して出力する位置指令補正値出力手段と、
当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えることを特徴とする位置指令値補正装置。 - 制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、
上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、
予め測定された制御対象の位置毎の摩擦量を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置の摩擦量を選択して出力する摩擦量出力手段と、
予め測定された制御対象の位置毎のバネ係数を記憶する記憶手段を備え、制御対象の現在位置に基づいて当該位置のバネ係数を選択して出力するバネ係数出力手段と、
当該バネ係数記憶手段からのバネ係数出力とともに上記摩擦量記憶手段からの摩擦量出力ならびに上記反転検出信号が入力され、当該バネ係数ならびに当該摩擦量に応じて異なる値となる位置指令補正値を生成して出力する位置指令補正値出力手段と、
当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えることを特徴とする位置指令値補正装置。 - 摩擦量出力手段は、所定のスケジュールに基づいて制御対象を動作させ、その時の制御対象の位置情報とこの制御対象を駆動する駆動手段への指令値とに基づいて各位置における摩擦量を演算する摩擦量演算手段を備え、
記憶手段は、この摩擦量演算手段により演算された制御対象の位置毎の摩擦量を記憶することを特徴とする請求項1または請求項2記載の位置指令値補正装置。 - 摩擦量演算手段は、一定の位置指令値に基づいて制御対象を動作させた際の摩擦量を演算することを特徴とする請求項3記載の位置指令値補正装置。
- 制御対象の数値制御に利用する位置指令値を補正する位置指令値補正装置において、
上記位置指令値が入力され、上記位置指令値の増減に基づいて制御方向の反転を検出して反転検出情報を出力する反転検出手段と、
制御対象を駆動する駆動手段に対する指令値が入力され、制御対象のモデリングに基づく演算式を用いて位置指令補正値を生成して出力する位置指令補正値出力手段と、
当該位置指令補正値を用いて上記位置指令値の補正演算を行う演算手段とを備えることを特徴とする位置指令値補正装置。 - 位置指令補正値出力手段は、制御対象の現在速度に関する情報が入力され、制御対象のモデリングに基づく演算式を用いて制御対象の速度に応じても異なる値となる位置指令補正値を生成して出力することを特徴とする請求項1から請求項5のうちのいずれか1項記載の位置指令値補正装置。
- 制御対象の数値制御に利用する位置指令値を出力する位置指令値出力手段と、
この位置指令値が入力され、上記制御対象の反転検出信号に基づいて当該位置指令値を補正する請求項1または請求項5記載の位置指令値補正装置と、
当該位置指令値補正装置から出力される補正された位置指令値に基づいて電流指令値を生成する電流指令値生成手段と、
この電流指令値が入力され、上記制御対象の反転検出信号に基づいて所定の摩擦補正ゲインを用いて上記電流指令値を補正する電流指令値補正装置と、
当該電流指令値補正装置から出力される補正された電流指令値に基づいて上記制御対象を駆動する駆動手段とを備える数値制御システム。 - 電流指令値補正装置は、位置指令値補正装置で生成された位置指令補正値に基づいて摩擦補正ゲインを演算し、この摩擦補正ゲインを用いて上記電流指令値を補正することを特徴とする請求項7記載の数値制御システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000109677A JP4090666B2 (ja) | 1999-10-05 | 2000-04-11 | 数値制御システムおよびそれに用いられる位置指令値補正装置 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28459899 | 1999-10-05 | ||
JP11-284598 | 1999-10-05 | ||
JP2000109677A JP4090666B2 (ja) | 1999-10-05 | 2000-04-11 | 数値制御システムおよびそれに用いられる位置指令値補正装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001175313A JP2001175313A (ja) | 2001-06-29 |
JP4090666B2 true JP4090666B2 (ja) | 2008-05-28 |
Family
ID=26555535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000109677A Expired - Lifetime JP4090666B2 (ja) | 1999-10-05 | 2000-04-11 | 数値制御システムおよびそれに用いられる位置指令値補正装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4090666B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003076425A (ja) * | 2001-09-05 | 2003-03-14 | Yamazaki Mazak Corp | 送り駆動系の制御装置 |
JP4573604B2 (ja) * | 2004-09-13 | 2010-11-04 | 株式会社リコー | 送り装置 |
KR100836655B1 (ko) * | 2006-08-02 | 2008-06-10 | 경북대학교 산학협력단 | 오프셋 제어장치 및 그 방법 |
JP5096019B2 (ja) * | 2007-02-26 | 2012-12-12 | オークマ株式会社 | サーボモータ制御装置 |
JP4581096B2 (ja) * | 2007-02-27 | 2010-11-17 | 国立大学法人東京農工大学 | 摩擦補償方法、摩擦補償器及びモータ制御装置 |
JP4838817B2 (ja) * | 2008-01-09 | 2011-12-14 | 三菱重工業株式会社 | ロストモーション解消制御装置 |
JP5739400B2 (ja) * | 2012-11-30 | 2015-06-24 | ファナック株式会社 | 被駆動体の位置補正機能を有するサーボ制御装置 |
WO2014122822A1 (ja) * | 2013-02-07 | 2014-08-14 | 三菱電機株式会社 | サーボ制御装置 |
JP6557477B2 (ja) * | 2015-02-12 | 2019-08-07 | キヤノン株式会社 | 位置制御装置及び位置制御方法 |
JP6430986B2 (ja) | 2016-03-25 | 2018-11-28 | ファナック株式会社 | ロボットを用いた位置決め装置 |
JP6834528B2 (ja) * | 2017-01-25 | 2021-02-24 | オムロン株式会社 | 制御装置、制御プログラムおよび制御システム |
-
2000
- 2000-04-11 JP JP2000109677A patent/JP4090666B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001175313A (ja) | 2001-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7706922B2 (en) | Method for controlling parallel kinematic mechanism machine and control apparatus therefor | |
JP4090666B2 (ja) | 数値制御システムおよびそれに用いられる位置指令値補正装置 | |
US10747193B2 (en) | Machine learning apparatus, servo control apparatus, servo control system, and machine learning method | |
JP3407972B2 (ja) | 工作機械の熱変位補正方法 | |
JP5096019B2 (ja) | サーボモータ制御装置 | |
US5374884A (en) | Model-based position-repeatable disturbance compensation | |
WO1998043139A1 (fr) | Procede se rapportant a la correction d'une commande de decalage et systeme de servocommande dans lequel la commande de decalage est corrigee | |
CN103561904A (zh) | 用于自动检测和补偿机床间隙的方法及装置 | |
JP5657633B2 (ja) | 移動体が反転するときの位置誤差を補正するサーボ制御装置 | |
JP6359210B1 (ja) | 制御パラメータ調整装置 | |
US7847503B2 (en) | Control apparatus and method for controlling a control subject | |
US7366576B2 (en) | Position control device and position control method for machine tools | |
US4961034A (en) | Numerical control device | |
CN103853099A (zh) | 具有被驱动体的位置修正功能的伺服控制装置 | |
JP4361285B2 (ja) | 数値制御装置 | |
JP4183057B2 (ja) | 数値制御システム | |
CN111857049A (zh) | 数控机床的控制方法和装置 | |
JP7111498B2 (ja) | ロボットの制御装置およびロボットの制御方法 | |
JP2008041011A (ja) | 工作機械における位置補正方法 | |
JP4488564B2 (ja) | 工作機械の熱変形抑制方法および温度制御装置 | |
JP2003157114A (ja) | ロストモーション補正方法およびロストモーション補正装置 | |
JP4939388B2 (ja) | フィードフォワード制御装置 | |
JP2768569B2 (ja) | ロストモーション補正機能を有する数値制御装置 | |
JP2003076425A (ja) | 送り駆動系の制御装置 | |
JP4323263B2 (ja) | 寿命評価装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071107 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071107 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080227 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4090666 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110307 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120307 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130307 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140307 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |