[go: up one dir, main page]

JP4087593B2 - Magnetic drive device, stirring device, mixing device, and substrate processing device - Google Patents

Magnetic drive device, stirring device, mixing device, and substrate processing device Download PDF

Info

Publication number
JP4087593B2
JP4087593B2 JP2001353024A JP2001353024A JP4087593B2 JP 4087593 B2 JP4087593 B2 JP 4087593B2 JP 2001353024 A JP2001353024 A JP 2001353024A JP 2001353024 A JP2001353024 A JP 2001353024A JP 4087593 B2 JP4087593 B2 JP 4087593B2
Authority
JP
Japan
Prior art keywords
driven
magnet
drive
rotator
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001353024A
Other languages
Japanese (ja)
Other versions
JP2003144891A (en
Inventor
慎一 秋山
Original Assignee
有限会社マグネオ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社マグネオ技研 filed Critical 有限会社マグネオ技研
Priority to JP2001353024A priority Critical patent/JP4087593B2/en
Publication of JP2003144891A publication Critical patent/JP2003144891A/en
Application granted granted Critical
Publication of JP4087593B2 publication Critical patent/JP4087593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、磁気駆動装置、撹拌装置、混合装置及び基板処理装置にかかるものである。
【0002】
【従来の技術】
従来、撹拌子と対向して配置したU字型磁石を回転させ、両者の異極間の吸引作用のみで撹拌子を回転させるものとして、マグネチックスターラと呼ばれる磁気回転伝達装置が知られている。
【0003】
その機構を図12により説明すると、液体115を収容する容器114内に棒状の撹拌子112を配置し、容器114外の底壁近傍にU字型磁石111を対向配置し、駆動モータ113でU字型磁石111を回転させて撹拌子112を回転させるものである。
【0004】
また、磁気カップリングと呼ばれる磁気回転伝達装置もあり、これにはラジアル型とアキシャル型とがある。
【0005】
【発明が解決しようとする課題】
上述した従来のマグネチックスターラは、撹拌子112とU字型磁石111との磁力により撹拌子112が回転するものである。このため、伝達トルクが小さく、撹拌子112が容易に脱離するという不具合がある。また、磁束の径が比較的小さい。
【0006】
ところが、撹拌能力の向上という要請に応えるため、撹拌子112および対向するU字型磁石111の各磁力を強化し、異極間相互の吸引力のみを増大して、撹拌子112の回転能力を向上しようとしている。
【0007】
しかし、このように単に異極間のみの吸引力を増大しようとすると、スラスト方向の負荷が増大してしまう。
【0008】
駆動モータ113のスラスト方向の負荷増大により回転トルクの損失が生じたり、軸受の摩耗が生じたりする。また、撹拌子112の回転接触部の摩擦の増大により回転トルクの損失が生じたり、撹拌子112の回転接触部の摩耗が増大したり、さらには撹拌子112の回転接触部の摩擦音による騒音の増大が生じたりする。特に、撹拌子112の回転接触部が摩耗すると、その摩耗粉が容器内の液体に混入するため、好ましくない。
【0009】
一方、上述した磁気カップリングにあっては、ラジアル型はアキシャル型に比べてスラスト力がかからないという利点があるものの、隔壁が複雑な形状となる欠点を有する。これに対してアキシャル型はラジアル型に比べて構造が簡単で、軸方向の長さを短くでき、隔壁形状を単純化できるという利点を有するものの、軸受部にスラスト力が働き、それが磁力に比例するという欠点を有していた。
【0010】
なお、特許第2678569号による磁気回転伝達装置は、スラストを低減させるが、マイナスのスラストを得るには、至っていない。
【0011】
また、上述した問題点は、マグネチックスターラに限らず、磁気駆動装置一般に共通し、駆動力の増大にともなって、スラストが増大してしまうというものである。
【0012】
本発明の目的は、上述した従来技術の欠点を解消して、駆動力の増大にともないスラストが低減する特性を持つ磁気駆動装置、撹拌装置、混合装置及び基板処理装置を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するための第1の発明は、
一方の磁石を駆動磁石とし他方の磁石を従動磁石として、前記駆動磁石と前記従動磁石とを非接触で磁気的に結合させ、前記駆動磁石の移動にともなって前記従動磁石を従動させる磁気駆動装置において、
前記駆動磁石及び前記従動磁石は略同形状で形成され、互いに略平行な対向面と、該対向面間の外周を覆う周側面とで囲まれた立体をしており、前記周側面の一面全面を一方の極の磁極とし、該周側面の一面と反対の面である他面全面を他方の極の磁極とする両面2極型磁石でそれぞれ構成され、
前記駆動磁石と前記従動磁石との対向面同士を略平行にし、かつ前記駆動磁石の略平行な対向面の中央を共通に通る中央延長線と、前記従動磁石の略平行な対向面の中央を共通に通る中央延長線とが一致するように前記駆動磁石と前記従動磁石とを対向して設け、
前記駆動磁石を、該駆動磁石の中央延長線と交差する方向に移動させることにより、その移動を前記駆動磁石の磁極と前記従動磁石の磁極間に生じる磁力で前記従動磁石に伝達するようにしたことを特徴とする磁気駆動装置である。
【0014】
第2の発明は、
回転軸を中心に回転する駆動回転体と、
前記駆動回転体と対向して設けられ、前記駆動回転体の回転軸の延長線を回転軸として回転する従動回転体と、
前記駆動回転体の前記従動回転体と対向する面上に、前記駆動回転体の回転軸を中心に描かれる仮想円の円周上に等間隔に設けられた少なくとも3つの駆動磁石と、
前記従動回転体の前記駆動回転体と対向する面上に、前記駆動回転体に描かれた仮想円と対応して前記従動回転体の回転軸を中心に描かれる仮想円の円周上に等間隔に設けられた前記駆動磁石と同数の従動磁石と、
を備えた磁気駆動装置において、
前記駆動磁石及び前記従動磁石は略同形状で形成され、互いに平行な対向面と、該対向面間の外周を覆う周側面とで囲まれた立体をしており、前記周側面の一面全面を一方の極の磁極とし、該周側面の一面と反対の面である他面全面を他方の極の磁極とする両面2極型磁石でそれぞれ構成され、
前記駆動磁石と前記従動磁石の対向面同士を略平行にし、かつ前記駆動磁石の対向面の中央を通る中央延長線と、前記従動磁石の対向面の中央を通る中央延長線とが平行になるように前記駆動磁石及び前記従動磁石を前記駆動回転体及び前記従動回転体にそれぞれ取り付け、
前記駆動回転体を前記駆動回転体の回転軸を中心に回転させると、前記駆動磁石と前記従動磁石との磁力により前記従動回転体が前記従動回転体の回転軸を中心に回転することを特徴とする磁気駆動装置である。
【0015】
第3の発明は、
従動移動体に従動磁石を設け、前記従動磁石を駆動磁石の移動にともなって従動させることにより、前記従動移動体を走行させる磁気駆動装置において、
前記駆動磁石及び前記従動磁石は略同形状で形成され、互いに略平行な対向面と、該対向面間の外周を覆う周側面とで囲まれた立体をしており、前記周側面の一面全面を一方の極の磁極とし、該周側面の一面と反対の面である他面全面を他方の極の磁極とする両面2極型磁石でそれぞれ構成され、
前記従動移動体に設けられる前記従動磁石が、前記駆動磁石に対して対向面同士が略平行で、かつ前記駆動磁石の略平行な対向面の中央を共通に通る中央延長線に対して、前記従動磁石の略平行な対向面の中央を共通に通る中央延長線が平行になるように配置され、
前記駆動磁石を該駆動磁石の中央延長線を交差する方向に移動させたとき、前記駆動磁石と前記従動磁石との磁力により、前記従動移動体が任意軌道上を走行することを特徴とする磁気駆動装置である。
【0016】
第4の発明は、
第2の発明に記載の磁気駆動装置が、撹拌槽の内部の液体を撹拌する手段として用いられる撹拌装置であって、
前記磁気駆動装置を構成する従動回転体に、前記撹拌槽内に設けた支持軸が挿通されて前記支持軸を中心に前記従動回転体を回転自在に軸支するための挿通孔と、前記従動回転体の回転により前記液体を撹拌するための撹拌翼とをそれぞれ設け、
前記従動回転体を前記支持軸に軸支したとき、前記磁気駆動装置を構成する駆動回転体が、前記撹拌槽の槽壁を介して前記駆動回転体と対向するように前記撹拌槽の外部に配置されて、前記回転駆動体の回転により前記従動回転体が前記支持軸を中心に回転することを特徴とする撹拌装置である。
【0017】
第5の発明は、
第4の発明に記載の撹拌装置が、混合対象の液体を流入させる所定数の液供給口と混合処理を終えた液体を排出する液排出口とを有する前記撹拌槽内に、該撹拌槽内の液体の混合状態を制御する手段として複数個用いられる混合装置である。
【0018】
第6の発明は、
基板を処理する真空容器と、前記真空容器内に鉛直回転軸を中心に回転自在に設けられ前記基板を保持する基板保持体と、前記鉛直回転軸の上方から該鉛直回転軸に回転力を付与して前記基板保持体を回転させる回転駆動部と、前記基板保持体の下方から該基板保持体をその重力に抗して浮上させつつ前記鉛直回転軸の振れを防止する軸振れ防止機構とを備えた基板処理装置において、
前記駆動回転部として第2の発明に記載の磁気駆動装置が用いられ、前記磁気駆動装置を構成する従動回転体の回転軸に前記鉛直回転軸を連結することにより、前記従動回転体を前記鉛直回転軸を介して前記基板保持体に接続し、前記磁気駆動装置を構成する駆動回転体を前記真空容器の上壁を介して前記回転従動体と対向するように前記真空容器の外部に配置して、前記駆動回転体の回転により前記従動回転体を介して前記基板保持体を前記鉛直回転軸を中心に回転させるように構成し、
前記軸振れ防止機構が、前記基板保持体に設けられた浮揚磁石と、前記真空容器の外部に前記真空容器の底壁を介して前記浮揚磁石と対向するように設けられる超電導体とを備えて、該超電導体を超電導臨界温度以下に冷却することによって、前記超電導体と前記浮揚磁石とのマイスナー効果により前記基板保持体を前記真空容器内で浮上させつつ前記鉛直回転軸をピン止め効果によりピン止めするようにしたことを特徴とする基板処理装置である。
【0019】
第7の発明は、
撹拌すべき液体を収容する密閉型の撹拌槽と、前記撹拌槽内に鉛直回転軸を中心に回転自在に設けられ前記液体を撹拌する撹拌翼と、前記鉛直回転軸の上方から該鉛直回転軸に回転力を付与して前記撹拌翼を回転させる回転駆動部と、前記撹拌翼の下方から該撹拌翼をその重力に抗して浮上させつつ前記鉛直回転軸の振れを防止する軸振れ防止機構とを備えた撹拌装置において、
前記回転駆動部として第2の発明に記載の磁気駆動装置が用いられ、前記磁気駆動装置を構成する従動回転体の回転軸に前記鉛直回転軸を連結することにより、前記従動回転体を前記鉛直回転軸を介して前記撹拌翼に接続し、前記磁気駆動装置を構成する駆動回転体を前記撹拌槽の上壁を介して前記回転従動体と対向するように前記撹拌槽の外部に配置して、前記駆動回転体の回転により前記従動回転体を介して前記撹拌翼を前記鉛直回転軸を中心に回転させるように構成し、
前記軸振れ防止機構が、前記撹拌翼に設けられた浮揚磁石と、前記撹拌槽の外部に前記撹拌槽の底壁を介して前記浮揚磁石と対向するように設けられる超電導体とを備えて、該超電導体を超電導臨界温度以下に冷却することによって、前記超電導体と前記浮揚磁石とのマイスナー効果により前記撹拌翼を前記撹拌槽内で浮上させつつ前記鉛直回転軸をピン止め効果によりピン止めするようにしたことを特徴とする撹拌装置である。
【0020】
第8の発明は、
撹拌すべき液体を収容する撹拌槽と、前記撹拌槽内の下方に回転自在に設けられる撹拌翼と、該撹拌翼を回転させる回転駆動部と、前記撹拌翼をその重力に抗して浮上させつつ前記撹拌翼の回転中心の振れを防止する軸振れ防止機構とを備えた撹拌装置において、
前記回転駆動部として第2の発明に記載の磁気駆動装置が用いられ、前記磁気駆動装置を構成する一方の従動回転体に前記撹拌翼を取り付け、前記磁気駆動装置を構成する他方の駆動回転体を前記撹拌槽の底壁を介して前記回転従動体と対向するように前記撹拌槽の外部に配置して、前記駆動回転体の回転により前記従動回転体を介して前記撹拌翼を前記従動回転体の回転軸を中心に回転させるように構成し、
前記軸振れ防止機構が、前記従動回転体の回転中心に設けられた浮揚磁石と、前記撹拌槽の外部に配置された前記駆動回転体の回転中心に、前記浮揚磁石と対向するように設けられた超電導体とを備えて、該超電導体を超電導臨界温度以下に冷却することによって、前記超電導体と前記浮揚磁石とのマイスナー効果により前記撹拌翼を前記撹拌槽内で浮上させつつ前記回転中心をピン止め効果によりピン止めするようにしたことを特徴とする撹拌装置である。
【0021】
【本発明の実施の形態】
以下、本発明にかかる磁気駆動装置の実施例を、図面に基づいて説明する。
図1は本実施例の2つの磁石を組合わせて構成した磁気駆動装置の原理的な説明図であって、磁石間の組合わせ配置の仕方から、磁気駆動装置を、以下便宜的に、(a)を同極直交型、(b)を異極直交型、(c)を同極平行型、(d)を異極平行型と呼ぶことにする。同図において(イ)は平面図、(ロ)は正面図を示す。
【0022】
上記(a)〜(c)に示した磁気駆動装置は、つぎのような共通した構成をもつ。
磁気駆動装置は、2つの永久磁石から構成される。2つの永久磁石はその磁極を特定方向に向けて上下方向に重ねられる。なお、重ねる方向は左右、斜め等であっても良い。また、上下の永久磁石の向きの組合わせは、上述したように4種類ある((a)〜(c))。その向きについては後述する。
【0023】
下方の磁石を駆動側の駆動磁石11とし、上方の磁石を従動側の従動磁石12とする。駆動磁石11と従動磁石12とは適宜間隔を開けて非接触で磁気的に結合させ、駆動磁石11を紙面と平行な矢印方向Cに移動させることによって従動磁石12を同方向に従動させるようになっている。
【0024】
駆動磁石11及び従動磁石12は略同形状の立体、例えば直方体で形成される。直方体をした駆動磁石11及び従動磁石12は長手方向を水平に向けて重ねてある。直方体では、互いに略平行な対向面は、上下面11a,11b、および12a,12bとなる。また、上下面11a,11b、および12a,12b間の外周を覆う周側面は、長手方向に平行な2側面11c,11d、および12c,12dと、短手方向に平行な2側面との計4つの側面となる、長手方向に平行な一面となる1側面12cの全面を一方の極の磁極Nとする。1側面12cと反対の面である他面12dの全面を他方の極の磁極Sとする。このような両面2極型磁石で駆動磁石11及び従動磁石12はそれぞれ構成される。
【0025】
駆動磁石11の上面11aと従動磁石12の下面12b同士を略平行にし、かつ駆動磁石11の上下面11a、11bの中央を共通に通る中央延長線13と、従動磁石12の上下面12a、12bの中央を共通に通る中央延長線13とが一致するように駆動磁石11と従動磁石12とを対向して設ける。
【0026】
そして、駆動磁石11を、駆動磁石11の中央延長線13と交差する方向、例えば前述した矢印方向Cに移動させることにより、駆動磁石11と従動磁石12の向きを維持したまま、駆動磁石11の磁極NSと従動磁石12の磁極NS間に生じる磁力で同方向の移動を従動磁石12に伝達するようにしている。
【0027】
また、上記(a)〜(b)に示した磁気駆動装置は、つぎのような異なる構成をもつ。先に便宜的に呼ぶこととした(a)の同極直交型は、駆動磁石11と従動磁石12とを直交させ、直交させた駆動磁石11と従動磁石12の各磁極NSを、平面視で同じ側に向けて配置したものである。したがって同極直交型の同極とは、駆動磁石11と従動磁石12との直交を崩して向きを一致させて重ねたとき、駆動磁石11と従動磁石12の対向磁極が同極となっていることを意味する。
【0028】
また、(b)の異極直交型の意味は、駆動磁石11と従動磁石12とを直交させるが、直交させた駆動磁石11と従動磁石12の各磁極NSを、平面視で反対側の異なる方向に向けて配置したものである。したがって異極直交型の異極とは、駆動磁石11と従動磁石12との直交を崩して向きを一致させて重ねたとき、駆動磁石11と従動磁石12の対向磁極が異極となっていることを意味する。図示例の(b)のものは、(a)において上方の従動磁石12に対して下方の駆動磁石11を、中央延長線13を中心に180度回転させると実現できる。
【0029】
(c)の同極平行型の意味は、駆動磁石11と従動磁石12とを長手方向(短手方向)を一致させ、一致させた駆動磁石11と従動磁石12の各磁極NSを、平面視で同じ側に向けて配置したものである。すなわち、駆動磁石11と従動磁石12とが同極で平行配置されたものである。平面視(イ)で、駆動磁石11は、従動磁石12に隠れて見えなくなっている。
【0030】
(d)の異極平行型の意味は、駆動磁石11と従動磁石12とを長手方向(短手方向)を一致させるが、一致させた駆動磁石11と従動磁石12の各磁極NSを、平面視で反対側の異なる方向に向けて配置したものである。すなわち、駆動磁石11と従動磁石12とを、異極で平行配置されたものである。平面視(イ)で、駆動磁石11は、従動磁石12に隠れて見えなくなっている。
なお、上述した組み合せの磁極NSの方向は図示例に限定されず、組単位で磁極NSを入れ替えても良い。
【0031】
磁石11、12の配置の仕方で4種類の組合わせをもつ磁気駆動装置は、駆動磁石11を、駆動磁石11の中央延長線13と交差する方向、例えば前述した矢印方向Cに移動させることにより、駆動磁石11と従動磁石12の向きを維持したまま、駆動磁石11の磁極NSと従動磁石12の磁極NS間に生じる磁力で同方向の移動を従動磁石12に伝達する。ここで駆動磁石11の中央延長線13と交差する方向には、中央延長線13と直交する方向、中央延長線13と斜めに交わる方向、及びこれらの組合わせ方向などが含まれる。しかし、中央延長線13を中心とする回転方向や、中央延長線13と重なる同じ方向、及び中央延長線13と平行な方向は含まれない。また、(a)ないし(d)の状態をそれぞれ保持したまま移動させる以外に、ある場面では、(a)の状態で、他の場面では(b)の状態で、次の場面では(c)の状態で、さらには異なる場面では(d)の状態というように、任意に状態を推移させて使用するという組合わせも可能である。
【0032】
上述した磁気駆動装置の駆動磁石11を、中央延長線13と直交する方向に移動させると、従動磁石12が水平方向にずれて移動する。このとき磁力線も従動磁石がある方向、すなわち水平方向にずれるので、磁力線の水平成分が大きくなり、垂直成分が小さくなる。すなわち駆動方向の引力が大きくなり、垂直方向の引力は小さくなる。したがって従動磁石12の移動力が大きくなり、従動磁石12の駆動磁石11に対するスラストが小さくなる。
【0033】
さて、上述した4種類の組合わせをもつ磁気駆動装置の特性を説明すれば次の通りである。共通特性としては、駆動磁石11に対する従動磁石12のずれ量15が増加すると、従動磁石12の移動力が増加するとともに、スラストが増加ではなく低減することである。ここで、ずれ量とは、駆動磁石11を矢印方向Cに移動したとき、従動磁石12が移動遅れ又は移動進みを生じるが、その従動磁石12の駆動磁石L11対する遅れ量又は進み量である。なお、図において、二点鎖線で示す符号11eは移動後の駆動磁石を示す。
【0034】
また、個別特性は、後述する図9を参考にして説明すれば、概略次の通りである。
(a)の同極直交型では、ずれ量の増加に伴い、移動力もスラストも共に比較的低率で増加し、低減する特性をもつ。移動力はそれほど大きくはならない。またスラストの低減幅も少ない。
(b)の異極直交型にあっては、ずれ量がピーク近くに達すると、スラストがマイナスになる領域がある。
(c)の同極平行型では、ずれ量の増加に伴い、移動力が直線的に増加するが、移動力の増加率に比べてスラストの低減率が比較的小さい特性をもつ。スラストはマイナスにはならない。駆動磁石11と従動磁石12間の磁力の及ぶ距離が最も大きい。
(d)の異極平行型では、ずれ量が僅かなうちに、移動力が急激に増加するが、スラストの絶対値は比較的大きいままである。磁力の及ぶ範囲が最も小さい。
【0035】
上述した特性及び特性の差異が生じる理由は、必ずしも明確ではないが、上述した移動力とスラストの特性から推測して、駆動磁石11が中央延長線13と交差する方向に移動したとき、磁力線の中央延長線13と直角の成分は増大し、中央延長線13と平行の成分は減少したためだと考えられる。また、両面2極型磁石の対向面左右でそれぞれ4極が共存し、吸引作用と同時に反発作用が発生するからであると考えられる。
【0036】
なお、磁気駆動装置は、駆動磁石11を中央延長線13と交差する方向に移動させることにより、従動磁石12が移動するものであればよい。したがって、それぞれの磁石は、まったく同じ形状でなくてもよく、また、厳密な立方体でなくてもよい。さらに中央延長線13が完全に一致してなくてもよい。駆動磁石上面11aと従動磁石下面12bとの間に設けた適宜の隙間の大きさは、駆動磁石11を移動させると磁石間の磁力が及ぶ範囲であって、それにより従動磁石12が移動すればよい。
【0037】
次に、上述した磁気駆動装置を回転磁気駆動装置に適用した第1実施例を図2を用いて説明する。この回転磁気駆動装置は、図1で説明した1組の磁石から構成された磁気駆動装置を、上下の回転体上に4組同心上に組み込んで構成したものである。回転体は円盤で構成される。
【0038】
図2は回転磁気駆動装置の平面図を示し、磁石間の組合わせ配置の仕方から、図1と同様に、(a)を同極直交型、(b)を異極直交型、(c)を同極平行型、(d)を異極平行型と呼ぶことにする。上記(a)〜(b)に示した回転磁気駆動装置は、つぎのような共通した構成をもつ。
【0039】
回転磁気駆動装置は、2枚の回転体22、23を備える。2枚の回転体は、例えば同一径の円板で構成され、上下方向に重ねられる。重なって図では見えないが、下方の回転体を駆動回転体22とし、上方の回転体を従動回転体23とする。駆動回転体22は、回転軸21を中心に回転する。この駆動回転体22と対向して設けられた従動回転体23は、駆動回転体22の回転軸21の延長線上に回転軸21が存在し、すなわち軸心が一致しており、その回転軸21を中心に回転する。
【0040】
駆動回転体22の従動回転体23と対向する上面上であって、駆動回転体22の回転軸21を中心に描かれる仮想円の円周上に等間隔に4つの駆動磁石11が取り付けられる。また、従動回転体23の駆動回転体22と対向する下面上であって、駆動回転体22に描かれた仮想円と対応して従動回転体23の回転軸21を中心に描かれる仮想円の円周上に等間隔に駆動磁石22と同数の従動磁石12とが取り付けられる。これら磁石11、12の回転体22、23に対する取り付けは、ねじ止めや溶着等による固着とする。回転体22、23上に取り付ける磁石11、12の数は、図示例では各4つであるが、これに限定されない。駆動回転体22に対して従動回転体23を面的に安定支持するために、少なくとも3つあればよい。
【0041】
上記駆動磁石22及び従動磁石23は、図1に説明した両面2極型磁石で構成される。すなわち、略同形状で形成され、互いに平行な上下面11a,11bおよび12a,12bと、上下面間の外周を覆う4側面とで囲まれた直方体をしており、4側面の一側面12c全面を一方の極の磁極Nとし、上記一側面12cと反対の面である他側面12d全面を他方の極の磁極Sとする両面2極型磁石でそれぞれ構成される(図1参照)。
【0042】
これらの駆動磁石11と従動磁石12とは、それらの対向面同士を略平行にし、かつ駆動磁石11の対向面の中央を通る中央延長線と、従動磁石12の対向面の中央を通る中央延長線とが平行になるように、駆動回転体22及び従動回転体23にそれぞれ取り付けられる。そして駆動回転体22を、駆動回転体22の回転軸21を中心に回転させると、駆動磁石11と従動磁石12との磁力により従動回転体23が従動回転体23の回転軸21を中心に回転する。
【0043】
次に、上記図2(a)〜(b)に示した磁気駆動装置は、つぎのような異なる構成をもつ。異なる構成は磁石配置にある。また、同図に示す駆動磁石11、従動磁石12間の相対位置は、回転体22、23同士が磁力により釣り合っている平衡状態を示す。
【0044】
図2(a)の同極直交型は、その磁石配置が次のようになっている。
駆動回転体22では、駆動回転体22の上面が、直交する2つの直径で4つの領域に仮想的に等分される。4つの領域にそれぞれ1個の両面2極型磁石からなる駆動磁石11を取り付ける。各領域では、両面2極型磁石は、その一方の極の磁極Nが径方向内方を向き、他方の極の磁極Sが径方向外方を向くようにする。さらに、磁極Nが形成された長手方向に平行な面を一方の直径と平行に、短手方向に平行な面を他方の直径と平行に配置する。すなわち、両面2極型磁石は、その中心を通る直径に対して長手方向に平行な面が45度傾けて取り付けられている。両面2極型磁石は、その中心が仮想円の円周上に存在し、また領域の中心に存在する。対向する領域にそれぞれ取り付けられた両面2極型磁石は点対称に配置される。
【0045】
従動回転体23では、基本的には駆動回転体22と同様な構成になっている。すなわち、従動回転体23の上面が4つの領域に当分され、各領域に1個の両面2極型磁石が取り付けられ、その中心が仮想円の円周上に存在し、領域の中心に存在し、点対称に配置される点も同一である。異なる点は、従動磁石12の取り付け方向である。従動磁石12は、長手方向に平行な面が駆動磁石11に対して45度ずれている。すなわち、駆動回転体22又は従動回転体23を回転して、それらに取り付けられた従動磁石12と駆動磁石11との中心を重ねたときは、駆動磁石11は従動磁石12に対して直交配置されるように取り付けられる。
【0046】
そして、図2(a)に示すように、駆動回転体22の回転方向が時計方向である場合において、駆動回転体22に設けられた駆動磁石11に対して、従動回転体23に設けられた前記駆動磁石11に対応した従動磁石12が45度遅れているときに、4つの駆動磁石11と4つの従動磁石12間の磁力相互作用で、駆動回転体22と従動回転体23とは平衡状態になる。
【0047】
図2(b)の異極直交型は、その磁石配置が、図2(a)の同極直交型と異なる点は、磁極の向きが異なっている点である。これにより、駆動磁石11と従動磁石12とが、これらの中心を重ねて直交しているときに、4つの駆動磁石11と4つの従動磁石12間の磁力相互作用で、駆動回転体22と従動回転体23とは平衡状態になる。
【0048】
図2(c)の同極平行型は、図2(a)の同極直交型と磁極の向きにおいては同じである。異なる点は、駆動回転体22及び従動回転体23に取り付けられた両面2極型磁石が、その中心を通る直径に対して長手方向に平行な面が45度傾いておらず、前記直径と平行に取り付けられている点である。すなわち、全ての両面2極型磁石は、放射状に取り付けられる。これにより、駆動磁石11が従動磁石12間の真ん中に位置するとき、または従動磁石12が駆動磁石11間の真ん中に位置するときに、4つの駆動磁石11と4つの従動磁石12間の磁力相互作用で、駆動回転体22と従動回転体23とは平衡状態になる。
【0049】
図2(d)の異極平行型は、図2(c)と磁極の向きが異なり、駆動磁石11と従動磁石12とで反対になっている点である。これにより、駆動磁石11が従動磁石12と重なるときに、4つの駆動磁石11と4つの従動磁石12間の磁力相互作用で、駆動回転体22と従動回転体23とは平衡状態になる。
【0050】
上述した図2(a)〜図2(d)の平衡状態にある各回転体22、23の磁石11、12間の交差角度をそれぞれθa、θb、θc、θdとしたとき、θa=45度、θb=0度、θc=45度、θd=0度である。また、平衡状態を破って駆動回転体22を回転すると、それに伴って従動回転体23も回転するが、このときの駆動回転体22と従動回転体23間の平衡状態からのずれ量をずれ角θという。
【0051】
次に、図2(a)〜図2(d)に示す回転磁気駆動装置の上記ずれ角に対する各磁気特性(トルク特性及びスラスト特性)を図9を用いて説明する。この磁気特性は図11に示す磁気測定装置で測定した。回転体に取り付けたテスト磁石は、希土類磁石で磁力は380mTである。寸法は、25mm×15mm×10mmで、磁極面が25mm×15mm、対向面が10mm×15mm、磁石間距離は7mm、磁石の中心の回転半径は40mmである。トルクの単位は×10Ncmで、スラストの単位はN(kgf)である。トルク測定には、株式会社山崎精機研究所製回転トルクメーターSS−1R(トルク測定範囲0〜98Ncm(0〜10kgcm))、スラストの測定には、株式会社大場計器製作所製丸型バネ式テンションゲージ置針式(測定範囲0〜196N(0〜20kgf))を使用した。
【0052】
上述した磁気測定装置によるトルク及びスラストの測定方法を説明する。回転ハンドル95により、駆動回転体22を回転させ保持する。駆動回転体22の回転角度が角度目盛板A100に示される。従動回転体23が、磁力により、回転する。従動回転体23の回転角度が角度目盛版B101に示される。角度目盛板A100と角度目盛板B101の示す値の差が、駆動回転体22と従動回転体23とのずれ角である。このずれ角を保持した状態で、まずトルクメーターの値を読む。
【0053】
従動回転体23には、移動台99を駆動回転体22方向へ、スライドさせようとするスラストが働いている。移動体99の移動をストッパー103により制限することで、駆動回転体22と従動回転体23との距離は一定に保たれている。その状態から、移動台引っ張りネジ102を回すことにより、従動回転体23を駆動回転体22から離す方向へ引っ張る。引っ張る力が、バネ秤92に示される。引っ張る力が、従動回転体23に働くスラストを超えた瞬間に、移動台99はストッパー103から一気に離れる。バネ秤92の指針は、置針になっていて常に最大値を示すので、離れた瞬間の値を示している。そのときのバネ秤92の示す値であるスラストを読む。
【0054】
スラストが負のとき、すなわち従動回転体23が駆動回転体22から離れる方向にスラストが働いているときは、ストッパー103から離れた移動台99を、移動台引っ張りネジ102を逆に回すことにより、ストッパー103の位置までもどす。そのときのバネ秤92の値が、スラストである。
【0055】
上述した方法により測定した図9に示すトルク及びスラスト特性を説明する。1)同極直交型磁気特性(図9(a))
図2(a)に対応する特性であり、ずれ角θが増すにつれて、トルクは増大するが、逆にスラストは減少する。ずれ角20度をすぎると反発磁界に入り測定不能になった。しかし、この測定不能域でマイナストルクになり、反発によるスラストが0近傍になる位置が観測された。
【0056】
平衡状態でトルクは0、スラストは16.17(1.65kgf)である。ずれ角θが10度の時トルクは1.6と増大し始め、スラストは14.7(1.5kgf)とやや減少傾向に入った。ずれ角θが増すにつれトルクは増大しスラストは減少する。ずれ角20度付近で、最大トルク2.7、最小スラスト10.29(1.05kgf)になる。
【0057】
回転磁気駆動装置では、トルクは大きい程よく、スラストは小さい程よい。トルクが最大のときに、スラストが最小になるので、好ましい。トルク最大のときのスラストは、吸引作用の分力であると考察する。
【0058】
2)異極直交型磁気特性
図2(b)に対応する特性であり、平衡状態でトルクは0、スラストは3.234(0.33kgf)である。ずれ角θが4度の時トルクは1.8と増大し始め、スラストは2.45(0.25kgf)と減少傾向に入った。ずれ角θが増すにつれトルクは増大しスラストは減少する。ずれ角8度付近になるとスラストは0になる。さらに、ずれ角θを増やしていくと12度付近でスラストは負の値−2.254(−0.23kgf)を示した。16度付近で、最大トルク4.6、最小スラスト−4.9(−0.5kgf)になる。
【0059】
トルクが最大のときにスラストがマイナスになるので、好ましい。平衡状態でのスラスト3.234(0.33kgf)は、磁力線がねじられたときの分力成分と考えられる。平衡状態から駆動回転体22を回転させると、異極同士の吸引作用が減少し、同極同士の反発作用が増大する。このことから、ずれ角16度付近では、磁気浮上して負のスラストが発生したと考えられる。
【0060】
3)同極平行型磁気特性
図2(c)に対応する特性であり、平衡状態でトルクは0、スラストは16.17(1.65kgf)である、ずれ角θが10度の時トルクは2.5と増大し始め、スラストは15.68(1.60kgf)と減少傾向に入った。ずれ角θが増すにつれトルクは増大しスラストは減少する。ずれ角25度付近で、最大トルク7.6、最小スラスト6.37(0.65kgf)になる。
【0061】
トルクが最大のときにスラストが最小になるので、好ましい。ただし、スラストが負の値で、最大のトルクを得るには、異極直行型磁気特性がよい。負のスラストを得る必要がなければ、この特性がよい。最小スラストに対する最大トルクの比率 (比率)=(最大トルク)/(最小スラスト)を大きくしたければ、この特性がいちばんよい。平衡状態でスラスト16.17(1.65kgf)が発生している。この成分は、異極間吸引力の分力成分と考えられる。
【0062】
4)異極平行型磁気特性
図2(d)対応する特性であり、平衡状態でトルク0のときスラストは88.2(9kgf)と大きく、ずれ角θが進むに従いトルクは大きくなるがスラストの減少傾向はわずかである。ずれ角7度付近で、最大トルク9.0、最小スラスト80.36(8.2kgf)になる。
【0063】
トルクが最大のときに、スラストが最小になるが、最小スラストの値は、上記4つの磁気特性のうち最も大きい。
【0064】
上述した4つの型の特性をまとめると、

Figure 0004087593
となる。
【0065】
なお、上述した回転磁気駆動装置では、駆動回転板及び従動回転板上に4つの磁石を取り付けた場合を説明したが、これに限定されない。少なくとも3つの磁石を備えればよい。面は3点支持によって安定するからである。
【0066】
また、上述した磁石の形状は直方体の場合について説明したが、実用に合わせて色々な立方形状をとることができる。図10は、回転体に取り付けた駆動磁石121,123,125,127及び従動磁石122,124,126,128の実用的ないろいろの形状を示す平面図である。なお、これらを取り付ける回転体22、23の中央部には、後述する軸に挿通するための挿通孔120を設けてある。
【0067】
図10(a)は、断面が扇形をした扇柱型の磁石121、122を4個配置した図である。限られたスペースで強力な磁力を得る場合に有利である。図10(b)は、略直方体をしており、その径方向内方側の短手方向に平行な内面、及び径方向外方側の短手方向に平行な外面が、前記挿通孔120及び回転板22、23の外周にそれぞれ沿う曲面で構成された磁石123、124を4個配置した図である。実施時はこの形が実用向きである。図10(c)は、立方体の磁石125、126を4個配置した図である。実施時はこの形が実用向きである。図10(d)は、円柱型の磁石127、128を8個配置した図である。実施時はこの形が実用向きである。磁石の形状は、上記に述べた以外に磁気作用及び実施形態に応じて任意の形状を選ぶことができる。
【0068】
なお、それぞれの回転体の形状は、必ずしも円盤でなくてもよい。例えば、十字型や正三角形などでもよく、回転軸を中心に回転させたとき安定に回転することが可能な形状であればよい。
【0069】
次に、図3を用いて第2実施例を説明する。これは図1で説明した磁気駆動装置をリニア磁気駆動装置に適用したものである。このリニア磁気駆動装置は、上下の移動体上に1組の磁石を組み込んで構成したものである。図3(a)〜(b)に示したリニア磁気駆動装置は、つぎのような共通した構成をもつ。
【0070】
リニア磁気駆動装置は、任意軌道34上を走行する駆動移動体32の移動にともなって、従動移動体33を従動させることにより、従動移動体33を任意軌道34を走行させる。駆動移動体32は例えば板状のもので構成され、車輪を有し、任意軌道34上で移動可能である。また、従動移動体33も例えば板状のもので構成され、車輪を有し、任意軌道34上で移動可能である。従動移動体33の任意軌道は、例えば、駆動移動体32の存在する空間と、従動移動体33の存在する空間とを仕切る隔壁などで構成される。
【0071】
前述したように、駆動磁石11及び従動磁石12は略同形状で形成され、互いに略平行な対向面と、対向面間の外周を覆う周側面とで囲まれた立体をしており、周側面の一面全面を一方の極の磁極Nとし、周側面の一面と反対の面である他面全面を他方の極の磁極Sとする両面2極型磁石でそれぞれ構成される。
【0072】
従動移動体33に設けられる従動磁石12が、駆動磁石11に対して対向面同士が略平行で、かつ駆動磁石11の略平行な対向面の中央を共通に通る中央延長線に対して、従動磁石12の略平行な対向面の中央を共通に通る中央延長線が平行になるように配置される。
【0073】
駆動磁石11を駆動磁石11の中央延長線を交差する方向、例えば直交する方向に移動させたとき、駆動磁石11と従動磁石12との磁力により、従動移動体33が隔壁などの軌道34上を走行する。
【0074】
また、図3に示したリニア磁気駆動装置は、回転磁気駆動装置と同様に、4種類の組合わせ((a)〜(d))が考えられる。
図3(a)に示す同極直交型はあまり実用向きでない。図3(b)に示す異極直交型は摺動軸受けに最適な磁気特性があり、スラストが0または浮上力となって重量物の重さを軽くすることができる。図3(c)に示す同極平行型は異極直交型に比較して推力があり、転がり軸受け型で大型装置に向いている。図3(d)に示す異極平行型はずれ量が小さいので移動体を正確に一定位置に停止する装置に最適である。
【0075】
なお、リニア磁気駆動装置の移動方向は、必ずしも水平方向でなく、中央延長線13と交差している方向であればよい。
【0076】
また、従動移動体33が、その場で自転してしまうと、すべての磁気特性は磁石の特性上、異極平行型へ移行してしまうので、それが好ましくない場合は、駆動移動体32と従動移動体33はレールやガイドのようなものの上を移動させる。つまり、移動方向に対する、駆動磁石11と従動磁石12の角度は、常に一定を保たせる必要がある。
【0077】
また、図3では、それぞれの駆動磁石11は、すべて従動磁石12と中央延長線を一致させて位置しているが、(a)同極直交型と(c)同極平行型については、磁力の反発により従動移動体が、図3で示した位置より少し右か左にずれた状態で安定する。
【0078】
図4に、上述した駆動回転体22と従動回転体23を備えた、材料45の撹拌を行う撹拌装置を示す。撹拌槽44の底部を隔壁として駆動回転体22と従動回転体23を対向して取り付ける。駆動回転体22中央に挿通孔を設け、撹拌槽44外部に、モーター41の軸に固定し、モーター41は支持体46で隔壁47に適宜すき間をあけて設置する。従動回転体23の中央にも挿通孔を設け、撹拌翼43を備える。従動回転体23の挿通孔を撹拌槽44内部底壁に備えられた支持軸42に回転自在に挿通する。上記、駆動回転体22を回転手段により回転させ、磁力により従動回転体23を回転させ撹拌翼により撹拌する構成を撹拌体48とする。
【0079】
なお、撹拌体48は必ずしも底部のみでなく、上部、側面部、または撹拌に適したどの位置でもよいが、上述した異極直交型磁気特性で構成し、撹拌槽44の底部に備えることが好ましい。従動回転体23の自重と、マイナスのスラストによる浮力が打ち消しあい、従動回転体23が支持軸42の軸受けに接することなく回転するので、軸受けとの磨耗が発生しない。したがって、粉塵の発生を抑えることができるので、材料45を高純度で撹拌することができる。
【0080】
図5に、材料を効率よく混合する混合装置を示す。容器51は、供給口52と吐出口53とを備え、上述した撹拌体48を容器51内に対向して2組備えている。供給口52aから液体A、供給口52bから液体Bを供給する。モーター41によって、駆動回転体22を回転させ、従動回転体23と一体になった撹拌翼43を駆動させる。供給された液体Aと液体Bは、撹拌翼43により、混合され、吐出口53より吐出される。
【0081】
実施によると、モーター41の回転を同じ方向にして、かつ、容器51内の対向した位置に設置すると、撹拌翼43の回転方向は異なるため、効率の良い撹拌ができる。数種類の混合する液体を連続に供給すると容器51の中で瞬時に混合し、混合された材料は連続に吐出される。
【0082】
なお、撹拌体48を対向して設置する際に、容器51の上下に設置する場合は、下側の撹拌体48は、異極直交型で構成することで、負のスラストと自重が打ち消し合い、軸受けとの磨耗が発生せず、上側は、それ以外の磁気特性で構成した撹拌体48を備えることで、正のスラストと自重が打ち消し合い、軸受けとの磨耗が発生しないので好ましい。
【0083】
また、撹拌に限らずポンプの役目を果たすことも可能である。撹拌体48の設置位置と撹拌翼48の形状を適宜選ぶことで、液体を供給口52から吐出口53方向に送ることができる。
【0084】
図6に、撹拌体48と浮揚磁石65を備えた基板処理装置の概略を示す。
【0085】
真空容器66内の鉛直回転軸67は、上部に従動回転体23、下部基板保持体68と浮揚磁石65を備える。真空容器66上方には、駆動回転体22が備えられ、モーター41により回転する。真空容器66底部外壁中央には、超電導体64が接合されている。超電導体64は、超低温冷凍体61の先端である超冷凍部62に接合されている。霜付き防止と断熱効果のため、超冷凍部62と超電導体64は、低温真空容器63に蔽われている。超電導体64を超電導臨界温度まで下げると、磁気浮上磁石65はマイスナー効果により浮上しピン止め効果によりピン止めされ、鉛直回転軸67の軸振れを防止する。
【0086】
モーター41が回転すると隔壁を介して従動回転体23が回転し、鉛直回転軸67を中心に基板保持体68が回転する。鉛直回転軸67と基板保持体68は真空容器66に接触せずに回転する。したがって回転磨耗の塵埃発生は起こらない。また、鉛直回転軸67は、上部と下部で2点支持されことで、安定して回転することができる。
【0087】
鉛直回転軸67に備えられた基板保持体68上に、ウェーハを置き成膜時に回転させることで、均一に成膜することができる。その他、半導体産業のスパッタリング、フォトレジスト塗布、現像処理等の非接触回転装置に効果がある。
【0088】
図7に液体の撹拌を行う撹拌装置を示す。図6の説明に付け加えれば、密閉撹拌槽70は液体の撹拌を行う目的のものである。鉛直回転軸67に撹拌の目的に応じた撹拌翼71を設ける。磁気浮上した鉛直回転軸67に回転を与えると非接触で塵埃発生の起こらない高純度な撹拌をおこなうことができる。また、鉛直回転軸67は、上部と下部で2点支持されことで、安定して回転することができる。
【0089】
図8に、その他の撹拌装置を示す。図7の説明に付け加えれば、鉛直回転軸67を有さず、撹拌体48が超電導体64の近傍にある。駆動回転体22は、低温真空容器63を軸として回転する。駆動回転体22は同時に被駆動プーリーとして機能する。駆動プーリー81がモーター41により回転すると、回転力は、ベルト82により駆動回転体22へ伝えられる。図8では、紙面手前側部分のベルト82を省略して示している。磁気浮上撹拌翼85は従動回転体23を密封内蔵している。従動回転体の回転中心に浮揚磁石65を備える。超電導効果により浮上し、ピン止めされている磁気浮上撹拌翼85は、撹拌体48で回転を与えられると磁気浮上したまま非接触で撹拌ができる。超電導体64と撹拌体48それぞれの磁気回路が影響しないように、適度の距離を設けたり磁気遮蔽壁を設ける。
【0090】
回転駆動部と超電導体を密閉撹拌槽70の底部に備えたので、上部には、備える必要がなく、構造が簡単である。また鉛直回転軸67を有していない分、構造が簡単で、メンテナンスも容易である。
【0091】
【発明の効果】
本発明によれば、駆動力の増大にともないスラストを低減できる。
【図面の簡単な説明】
【図1】 本実施例にかかる磁気駆動装置の平面図と正面図である。
【図2】 本実施例にかかる回転体の平面図である。
【図3】 本実施例にかかる移動体の正面図である。
【図4】 本実施例にかかる撹拌体を備えた撹拌装置の側断面図である。
【図5】 本実施例にかかる撹拌体を複数備えた混合装置の側断面図である。
【図6】 本実施例にかかる基板処理装置の側断面図である。
【図7】 本実施例にかかる超伝導体を備えた撹拌装置の側断面図である。
【図8】 本実施例にかかるその他の撹拌装置である。
【図9】 本実施例にかかる回転体のずれ角と、トルクおよびスラストとの関係を示すグラフである。
【図10】 本実施例にかかる回転体に備える磁気駆動装置の磁石の形状例である。
【図11】 本実施例にかかる回転体のずれ角と、トルクおよびスラストとの関係を測定する測定機の概略図である。
【図12】 従来のマグネチックスターラの側断面図である。
【符号の説明】
11 駆動磁石
11a 駆動磁石の上面
11b 駆動磁石の下面
11c 駆動磁石のN極面
11d 駆動磁石のS極面
12 従動磁石
12a 従動磁石の上面
12b 従動磁石の下面
12c 従動磁石のN極面
12d 従動磁石のS極面
13 中央延長線
C 矢印方向(移動方向)
N 一方の極の磁極
S 他方の極の磁極[0001]
[Industrial application fields]
The present invention relates to a magnetic drive device, a stirring device, a mixing device, and a substrate processing device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a magnetic rotation transmission device called a magnetic stirrer is known as a U-shaped magnet that is arranged to face a stirrer and that rotates the stirrer only by the attraction between the two poles. .
[0003]
The mechanism will be described with reference to FIG. 12. A rod-like stirrer 112 is disposed in a container 114 that contains a liquid 115, a U-shaped magnet 111 is disposed in the vicinity of the bottom wall outside the container 114, and a drive motor 113 The stirrer 112 is rotated by rotating the letter magnet 111.
[0004]
There is also a magnetic rotation transmission device called a magnetic coupling, which includes a radial type and an axial type.
[0005]
[Problems to be solved by the invention]
In the conventional magnetic stirrer described above, the stirrer 112 is rotated by the magnetic force between the stirrer 112 and the U-shaped magnet 111. For this reason, there is a problem that the transmission torque is small and the stirrer 112 is easily detached. Also, the diameter of the magnetic flux is relatively small.
[0006]
However, in order to meet the demand for improvement of the stirring capacity, the magnetic force of the stirring bar 112 and the opposing U-shaped magnet 111 is strengthened, and only the attractive force between the different poles is increased, so that the rotating capacity of the stirring bar 112 is increased. Trying to improve.
[0007]
However, if an attempt is made to increase the attractive force only between the different poles, the load in the thrust direction increases.
[0008]
Loss of rotational torque occurs due to an increase in the load in the thrust direction of the drive motor 113, and wear of the bearings occurs. Further, the increase in friction at the rotating contact portion of the stirrer 112 causes a loss of rotational torque, the wear of the rotating contact portion of the stirrer 112 increases, and further noise caused by frictional noise at the rotating contact portion of the stirrer 112. An increase may occur. In particular, if the rotating contact portion of the stirrer 112 is worn, the wear powder is mixed with the liquid in the container, which is not preferable.
[0009]
On the other hand, in the above-described magnetic coupling, the radial type has an advantage that a thrust force is not applied as compared with the axial type, but has a disadvantage that the partition wall has a complicated shape. On the other hand, the axial type has the advantage that the structure is simpler than the radial type, the axial length can be shortened, and the partition shape can be simplified. It had the disadvantage of being proportional.
[0010]
The magnetic rotation transmission device according to Japanese Patent No. 2678569 reduces the thrust, but has not yet achieved a negative thrust.
[0011]
The above-mentioned problem is not limited to the magnetic stirrer, but is common to magnetic drive devices in general, and the thrust increases as the driving force increases.
[0012]
An object of the present invention is to provide a magnetic drive device, a stirrer, a mixing device, and a substrate processing device that eliminate the above-mentioned drawbacks of the prior art and have a characteristic that thrust is reduced as the driving force increases.
[0013]
[Means for Solving the Problems]
The first invention for solving the above-described problems is
A magnetic drive device in which one magnet is a drive magnet and the other magnet is a driven magnet, the drive magnet and the driven magnet are magnetically coupled in a non-contact manner, and the driven magnet is driven as the drive magnet moves. In
The drive magnet and the driven magnet are formed in substantially the same shape and have a solid shape surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces, and the entire surface of the peripheral side surface Each of which is a magnetic pole of one pole, and a double-sided two-pole magnet having the entire other surface opposite to one surface of the peripheral side surface as the magnetic pole of the other pole,
A central extension line that makes the opposing surfaces of the drive magnet and the driven magnet substantially parallel to each other and passes through the center of the substantially parallel opposing surfaces of the drive magnet, and a center of the substantially parallel opposing surfaces of the driven magnet The drive magnet and the driven magnet are provided facing each other so that the central extension line that passes in common matches.
By moving the drive magnet in a direction crossing the central extension line of the drive magnet, the movement is transmitted to the driven magnet by the magnetic force generated between the magnetic pole of the drive magnet and the magnetic pole of the driven magnet. This is a magnetic drive device.
[0014]
The second invention is
A drive rotator that rotates about a rotation axis;
A driven rotator provided opposite to the drive rotator and rotating about an extension line of the rotation axis of the drive rotator;
At least three drive magnets provided at equal intervals on the circumference of a virtual circle drawn around the rotation axis of the drive rotator on the surface of the drive rotator facing the driven rotator;
On the surface of the driven rotator facing the drive rotator, on the circumference of a virtual circle drawn around the rotation axis of the driven rotator corresponding to the virtual circle drawn on the drive rotator, etc. The same number of driven magnets as the drive magnets provided at intervals,
In a magnetic drive device comprising:
The drive magnet and the driven magnet are formed in substantially the same shape, and have a solid shape surrounded by opposing surfaces parallel to each other and a peripheral side surface covering the outer periphery between the opposing surfaces. It is composed of a double-sided two-pole magnet having one pole as a magnetic pole and the other surface as a whole opposite the one side of the peripheral side surface.
The opposing surfaces of the driving magnet and the driven magnet are substantially parallel to each other, and a central extension line passing through the center of the opposing surface of the driving magnet is parallel to a central extension line passing through the center of the opposing surface of the driven magnet. Attaching the driving magnet and the driven magnet to the driving rotating body and the driven rotating body, respectively,
When the drive rotator is rotated around the rotation axis of the drive rotator, the driven rotator rotates about the rotation axis of the driven rotator by the magnetic force of the drive magnet and the driven magnet. It is a magnetic drive device.
[0015]
The third invention is
In a magnetic drive device that causes the driven moving body to travel by providing a driven magnet in the driven moving body and driving the driven magnet with the movement of the driving magnet,
The drive magnet and the driven magnet are formed in substantially the same shape and have a solid shape surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces, and the entire surface of the peripheral side surface Each of which is a magnetic pole of one pole, and a double-sided two-pole magnet having the entire other surface opposite to one surface of the peripheral side surface as the magnetic pole of the other pole,
The driven magnet provided in the driven moving body is configured such that the opposed surfaces of the driven magnet are substantially parallel to each other and the central extension line passing through the center of the substantially parallel opposed surface of the drive magnet in common. The central extension line that passes through the center of the substantially parallel facing surface of the driven magnet is arranged in parallel,
When the driving magnet is moved in a direction crossing a central extension line of the driving magnet, the driven moving body travels on an arbitrary track by the magnetic force of the driving magnet and the driven magnet. It is a drive device.
[0016]
The fourth invention is:
The magnetic drive device according to the second invention is a stirring device used as a means for stirring the liquid inside the stirring tank,
An insertion hole through which a support shaft provided in the stirring tank is inserted into the driven rotator constituting the magnetic drive device so that the driven rotator is rotatably supported around the support shaft; and the driven A stirring blade for stirring the liquid by rotation of the rotating body, respectively,
When the driven rotator is pivotally supported by the support shaft, the drive rotator constituting the magnetic drive device is placed outside the agitation tank so as to face the drive rotator via the tank wall of the agitation tank. It is arrange | positioned, It is a stirring apparatus characterized by the said driven rotary body rotating centering | focusing on the said support shaft by rotation of the said rotational drive body.
[0017]
The fifth invention is:
In the stirring tank, the stirring device according to the fourth invention has a predetermined number of liquid supply ports for allowing the liquid to be mixed to flow in and a liquid discharge port for discharging the liquid after the mixing process. A plurality of mixing devices are used as means for controlling the mixing state of the liquid.
[0018]
The sixth invention is:
A vacuum vessel for processing a substrate, a substrate holder provided in the vacuum vessel so as to be rotatable around a vertical rotation axis, and a rotating force applied to the vertical rotation axis from above the vertical rotation axis A rotation drive unit that rotates the substrate holder, and a shaft shake prevention mechanism that prevents the vertical rotation shaft from swinging while the substrate holder floats against the gravity from below the substrate holder. In the substrate processing apparatus provided,
The magnetic drive device according to the second aspect of the present invention is used as the drive rotation unit, and the driven rotation body is connected to the vertical rotation shaft by connecting the vertical rotation shaft to the rotation shaft of the driven rotation body constituting the magnetic drive device. A drive rotating body constituting the magnetic drive device is connected to the substrate holder via a rotating shaft, and is arranged outside the vacuum container so as to face the rotary follower via an upper wall of the vacuum container. The substrate rotating body is rotated about the vertical rotation axis via the driven rotating body by the rotation of the driving rotating body,
The shaft shake prevention mechanism includes a levitation magnet provided on the substrate holder, and a superconductor provided outside the vacuum vessel so as to face the levitation magnet via a bottom wall of the vacuum vessel. By cooling the superconductor to a superconducting critical temperature or less, the substrate holder is levitated in the vacuum vessel by the Meissner effect of the superconductor and the levitating magnet, and the vertical rotation shaft is pinned by the pinning effect. The substrate processing apparatus is characterized by being stopped.
[0019]
The seventh invention
A hermetically sealed agitation tank that contains the liquid to be agitated, an agitation blade that is provided in the agitation tank so as to be rotatable around a vertical rotation axis, and the vertical rotation axis from above the vertical rotation axis A rotation drive unit that applies a rotational force to the stirring blade and rotates the stirring blade, and a shaft shake prevention mechanism that prevents the vertical rotation shaft from swinging while the stirring blade floats against the gravity from below the stirring blade In a stirring device comprising:
The magnetic drive device according to the second aspect of the present invention is used as the rotation drive unit, and the driven rotation body is connected to the vertical rotation shaft by connecting the vertical rotation shaft to the rotation shaft of the driven rotation body constituting the magnetic drive device. The rotating rotating shaft is connected to the stirring blade, and the driving rotating body constituting the magnetic driving device is arranged outside the stirring tank so as to face the rotating follower via the upper wall of the stirring tank. And configured to rotate the stirring blade about the vertical rotation axis through the driven rotating body by the rotation of the driving rotating body,
The shaft shake prevention mechanism includes a levitation magnet provided on the stirring blade, and a superconductor provided outside the stirring tank so as to face the levitation magnet via a bottom wall of the stirring tank, By cooling the superconductor to a superconducting critical temperature or lower, the vertical rotating shaft is pinned by the pinning effect while the stirring blade is levitated in the stirring tank by the Meissner effect of the superconductor and the levitating magnet. This is a stirrer characterized by the above.
[0020]
The eighth invention
An agitation tank containing a liquid to be agitated, an agitation blade provided rotatably in the lower part of the agitation tank, a rotation drive unit for rotating the agitation blade, and the agitation blade floated against its gravity While the stirring device provided with a shaft shake prevention mechanism for preventing the shake of the rotation center of the stirring blade,
The magnetic drive device according to the second invention is used as the rotational drive unit, the stirring blade is attached to one driven rotary body constituting the magnetic drive device, and the other drive rotary body constituting the magnetic drive device Is arranged outside the stirring tank so as to face the rotary follower through the bottom wall of the stirring tank, and the driven blade rotates the driven blade through the driven rotary body by the rotation of the driven rotary body. Configured to rotate around the body's axis of rotation,
The shaft shake prevention mechanism is provided so as to face the levitation magnet at a levitation magnet provided at the rotation center of the driven rotator and at a rotation center of the drive rotator disposed outside the agitation tank. A superconductor, and cooling the superconductor to a superconducting critical temperature or less, so that the center of rotation can be achieved while the stirring blade is levitated in the stirring tank by the Meissner effect of the superconductor and the levitation magnet. The stirring device is characterized by being pinned by a pinning effect.
[0021]
[Embodiments of the Invention]
Embodiments of a magnetic drive device according to the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining the principle of a magnetic drive device constructed by combining two magnets of the present embodiment. The magnetic drive device is hereinafter referred to as ( a) is referred to as a homopolar orthogonal type, (b) is referred to as a heteropolar orthogonal type, (c) is referred to as a homopolar parallel type, and (d) is referred to as a heteropolar parallel type. In the figure, (a) is a plan view and (b) is a front view.
[0022]
The magnetic drive devices shown in the above (a) to (c) have the following common configuration.
The magnetic drive device is composed of two permanent magnets. The two permanent magnets are stacked in the vertical direction with their magnetic poles oriented in a specific direction. Note that the overlapping direction may be left and right, diagonal, or the like. Moreover, there are four types of combinations of the directions of the upper and lower permanent magnets ((a) to (c)) as described above. The direction will be described later.
[0023]
The lower magnet is the drive side drive magnet 11, and the upper magnet is the driven side driven magnet 12. The driving magnet 11 and the driven magnet 12 are magnetically coupled in a non-contact manner with an appropriate interval, and the driving magnet 11 is moved in the arrow direction C parallel to the paper surface so that the driven magnet 12 is driven in the same direction. It has become.
[0024]
The drive magnet 11 and the driven magnet 12 are formed in a substantially identical solid, for example, a rectangular parallelepiped. The rectangular parallelepiped drive magnet 11 and driven magnet 12 are stacked with their longitudinal directions oriented horizontally. In the rectangular parallelepiped, the opposed surfaces substantially parallel to each other are the upper and lower surfaces 11a, 11b, and 12a, 12b. Moreover, the peripheral side surface which covers the outer periphery between the upper and lower surfaces 11a, 11b and 12a, 12b is a total of four side surfaces 11c, 11d and 12c, 12d parallel to the longitudinal direction and two side surfaces parallel to the lateral direction. The entire surface of one side surface 12c, which is one side surface parallel to the longitudinal direction, is one magnetic pole N of one pole. The entire surface of the other surface 12d, which is the surface opposite to the one side surface 12c, is defined as the magnetic pole S of the other pole. The drive magnet 11 and the driven magnet 12 are each composed of such a double-sided bipolar magnet.
[0025]
The central extension line 13 which makes the upper surface 11a of the drive magnet 11 and the lower surfaces 12b of the driven magnet 12 substantially parallel to each other and passes through the centers of the upper and lower surfaces 11a, 11b of the drive magnet 11 and the upper and lower surfaces 12a, 12b of the driven magnet 12 The driving magnet 11 and the driven magnet 12 are provided so as to face each other so that a central extension line 13 that passes through the center of each of them coincides.
[0026]
Then, the drive magnet 11 is moved in the direction intersecting the central extension line 13 of the drive magnet 11, for example, the arrow direction C described above, so that the directions of the drive magnet 11 and the driven magnet 12 are maintained. Movement in the same direction is transmitted to the driven magnet 12 by the magnetic force generated between the magnetic pole NS and the magnetic pole NS of the driven magnet 12.
[0027]
Further, the magnetic drive device shown in the above (a) to (b) has the following different configurations. The same-orthogonal type (a), which has been referred to above for convenience, has the drive magnet 11 and the driven magnet 12 orthogonal to each other, and the magnetic poles NS of the drive magnet 11 and the driven magnet 12 that are orthogonal to each other in plan view. They are placed on the same side. Therefore, the same-polarity-type homopolarity means that when the drive magnet 11 and the driven magnet 12 are overlapped so that the directions of the drive magnet 11 and the driven magnet 12 are aligned, the opposing magnetic poles of the drive magnet 11 and the driven magnet 12 are the same polarity. Means that.
[0028]
In addition, the meaning of the heteropolar orthogonal type in (b) is that the drive magnet 11 and the driven magnet 12 are orthogonal to each other, but the magnetic poles NS of the orthogonal drive magnet 11 and the driven magnet 12 are different on the opposite side in plan view. It is arranged in the direction. Therefore, the different polarity of the different pole orthogonal type means that when the driving magnet 11 and the driven magnet 12 are overlapped with their orthogonal directions being aligned, the opposing magnetic poles of the driving magnet 11 and the driven magnet 12 are different polarities. Means that. The illustrated example (b) can be realized by rotating the lower driving magnet 11 with respect to the upper driven magnet 12 in FIG.
[0029]
(C) The same-polar parallel type means that the drive magnet 11 and the driven magnet 12 are aligned in the longitudinal direction (short direction), and the magnetic poles NS of the matched drive magnet 11 and the driven magnet 12 are viewed in a plan view. It is arranged toward the same side. That is, the drive magnet 11 and the driven magnet 12 are arranged in parallel with the same polarity. In plan view (A), the drive magnet 11 is hidden behind the driven magnet 12 and cannot be seen.
[0030]
The meaning of the heteropolar parallel type in (d) is that the drive magnet 11 and the driven magnet 12 are made to coincide with each other in the longitudinal direction (short direction), but the magnetic poles NS of the matched drive magnet 11 and the driven magnet 12 are planar. They are arranged in different directions on the opposite side. That is, the drive magnet 11 and the driven magnet 12 are arranged in parallel with different polarities. In plan view (A), the drive magnet 11 is hidden behind the driven magnet 12 and cannot be seen.
In addition, the direction of the magnetic pole NS of the combination mentioned above is not limited to the example of illustration, You may replace the magnetic pole NS per group.
[0031]
A magnetic drive device having four types of combinations according to the arrangement of the magnets 11 and 12 moves the drive magnet 11 in a direction intersecting the central extension line 13 of the drive magnet 11, for example, in the arrow direction C described above. The movement in the same direction is transmitted to the driven magnet 12 by the magnetic force generated between the magnetic pole NS of the driving magnet 11 and the magnetic pole NS of the driven magnet 12 while maintaining the directions of the driving magnet 11 and the driven magnet 12. Here, the direction intersecting with the central extension line 13 of the drive magnet 11 includes a direction orthogonal to the central extension line 13, a direction intersecting with the central extension line 13 obliquely, and a combination direction thereof. However, the rotation direction around the central extension line 13, the same direction overlapping the central extension line 13, and the direction parallel to the central extension line 13 are not included. In addition, in addition to moving while maintaining the states (a) to (d), in some situations, the state (a), in other situations (b), and in the next scene (c) It is also possible to use a combination in which the state is arbitrarily changed, such as the state (d) in a different situation.
[0032]
When the drive magnet 11 of the magnetic drive device described above is moved in a direction orthogonal to the central extension line 13, the driven magnet 12 is displaced in the horizontal direction. At this time, the lines of magnetic force are also shifted in the direction in which the driven magnet is located, that is, in the horizontal direction, so that the horizontal component of the lines of magnetic force increases and the vertical component decreases. That is, the attractive force in the driving direction increases and the attractive force in the vertical direction decreases. Accordingly, the moving force of the driven magnet 12 increases, and the thrust of the driven magnet 12 with respect to the drive magnet 11 decreases.
[0033]
Now, the characteristics of the magnetic drive device having the above-described four types of combinations will be described as follows. A common characteristic is that when the amount of displacement 15 of the driven magnet 12 with respect to the drive magnet 11 increases, the moving force of the driven magnet 12 increases and the thrust is reduced rather than increased. Here, the shift amount is a delay amount or an advance amount of the driven magnet 12 with respect to the drive magnet L11, although the driven magnet 12 is delayed or moved when the drive magnet 11 is moved in the arrow direction C. In the figure, reference numeral 11e indicated by a two-dot chain line indicates the drive magnet after movement.
[0034]
The individual characteristics are roughly as follows when described with reference to FIG.
The homopolar orthogonal type (a) has a characteristic that both the moving force and the thrust increase and decrease at a relatively low rate as the shift amount increases. The movement force is not so great. In addition, there is little reduction in thrust.
In the heteropolar orthogonal type of (b), there is a region where the thrust becomes negative when the deviation amount reaches near the peak.
In the homopolar parallel type of (c), the moving force increases linearly as the amount of deviation increases, but the thrust reduction rate is relatively small compared to the increasing rate of the moving force. Thrust is not negative. The distance reached by the magnetic force between the drive magnet 11 and the driven magnet 12 is the largest.
In the heteropolar parallel type of (d), the moving force increases rapidly while the amount of deviation is small, but the absolute value of the thrust remains relatively large. The range covered by magnetic force is the smallest.
[0035]
The reason why the above-described characteristics and characteristic differences occur is not necessarily clear. However, when the driving magnet 11 moves in a direction crossing the central extension line 13 as estimated from the above-described moving force and thrust characteristics, This is probably because the component perpendicular to the central extension line 13 increased and the component parallel to the central extension line 13 decreased. Further, it is considered that four poles coexist on the left and right sides of the opposing surface of the double-sided two-pole magnet, and a repulsive action occurs simultaneously with the attracting action.
[0036]
In addition, the magnetic drive device should just be what the driven magnet 12 moves by moving the drive magnet 11 in the direction which cross | intersects the center extension line 13. FIG. Accordingly, the magnets do not have to have exactly the same shape, and do not have to be exact cubes. Further, the central extension line 13 may not be completely coincident. The size of an appropriate gap provided between the drive magnet upper surface 11a and the driven magnet lower surface 12b is within a range where the magnetic force between the magnets is reached when the drive magnet 11 is moved, and if the driven magnet 12 is moved accordingly. Good.
[0037]
Next, a first embodiment in which the above-described magnetic drive device is applied to a rotary magnetic drive device will be described with reference to FIG. This rotary magnetic drive device is constructed by assembling four sets of concentric magnetic drive devices composed of one set of magnets described in FIG. 1 on upper and lower rotary bodies. The rotating body is composed of a disk.
[0038]
FIG. 2 is a plan view of the rotary magnetic drive device, and from the combination arrangement between the magnets, as in FIG. 1, (a) is a homopolar orthogonal type, (b) is a heteropolar orthogonal type, (c) Is referred to as a homopolar parallel type, and (d) is referred to as a heteropolar parallel type. The rotating magnetic drive apparatus shown in the above (a) to (b) has the following common configuration.
[0039]
The rotating magnetic drive device includes two rotating bodies 22 and 23. The two rotating bodies are made of, for example, discs having the same diameter and are stacked in the vertical direction. Although not shown in the figure, the lower rotating body is referred to as a driving rotating body 22, and the upper rotating body is referred to as a driven rotating body 23. The drive rotator 22 rotates around the rotation shaft 21. The driven rotator 23 provided to face the drive rotator 22 has a rotation shaft 21 on an extension line of the rotation shaft 21 of the drive rotator 22, that is, the shaft centers thereof coincide with each other. Rotate around.
[0040]
Four drive magnets 11 are attached at equal intervals on the upper surface of the drive rotator 22 facing the driven rotator 23 and on the circumference of a virtual circle drawn around the rotation shaft 21 of the drive rotator 22. Further, a virtual circle drawn around the rotation axis 21 of the driven rotator 23 corresponding to the virtual circle drawn on the drive rotator 22 on the lower surface of the driven rotator 23 facing the drive rotator 22. The same number of driven magnets 12 as drive magnets 22 are attached at equal intervals on the circumference. The attachment of the magnets 11 and 12 to the rotating bodies 22 and 23 is fixed by screwing or welding. In the illustrated example, the number of the magnets 11 and 12 mounted on the rotating bodies 22 and 23 is four in each example, but is not limited thereto. In order to stably support the driven rotating body 23 in a plane with respect to the driving rotating body 22, at least three are sufficient.
[0041]
The drive magnet 22 and the driven magnet 23 are constituted by the double-sided bipolar magnet described in FIG. That is, it has a rectangular parallelepiped shape formed by substantially the same shape and surrounded by upper and lower surfaces 11a, 11b and 12a, 12b which are parallel to each other and four side surfaces covering the outer periphery between the upper and lower surfaces. Is a magnetic pole N of one pole, and a double-sided two-pole magnet having the entire other side face 12d opposite to the one side face 12c as a magnetic pole S of the other pole (see FIG. 1).
[0042]
The driving magnet 11 and the driven magnet 12 have their opposing surfaces substantially parallel to each other, and a central extension passing through the center of the opposing surface of the driving magnet 11 and a central extension passing through the center of the opposing surface of the driven magnet 12. It is attached to the drive rotator 22 and the driven rotator 23 so that the lines are parallel to each other. When the drive rotator 22 is rotated about the rotation shaft 21 of the drive rotator 22, the driven rotator 23 rotates about the rotation shaft 21 of the driven rotator 23 by the magnetic force of the drive magnet 11 and the driven magnet 12. To do.
[0043]
Next, the magnetic drive device shown in FIGS. 2A to 2B has the following different configuration. The different configuration is in the magnet arrangement. Moreover, the relative position between the drive magnet 11 and the driven magnet 12 shown in the figure shows an equilibrium state in which the rotating bodies 22 and 23 are balanced by magnetic force.
[0044]
The magnet arrangement of the homopolar orthogonal type in FIG. 2A is as follows.
In the drive rotator 22, the upper surface of the drive rotator 22 is virtually equally divided into four regions with two orthogonal diameters. The drive magnet 11 consisting of one double-sided bipolar magnet is attached to each of the four regions. In each region, the double-sided bipolar magnet is such that the magnetic pole N of one pole faces radially inward and the magnetic pole S of the other pole faces radially outward. Further, a surface parallel to the longitudinal direction on which the magnetic pole N is formed is arranged in parallel with one diameter, and a surface parallel to the short side direction is arranged in parallel with the other diameter. That is, the double-sided bipolar magnet is attached with a plane parallel to the longitudinal direction inclined by 45 degrees with respect to the diameter passing through the center thereof. The center of the double-sided dipole magnet exists on the circumference of the virtual circle, and also exists in the center of the region. Double-sided dipole magnets attached to opposing regions are arranged point-symmetrically.
[0045]
The driven rotator 23 basically has the same configuration as the drive rotator 22. That is, the upper surface of the driven rotating body 23 is divided into four regions, and one double-sided bipolar magnet is attached to each region, the center of which is on the circumference of the virtual circle, and the center of the region. The points arranged symmetrically are also the same. The difference is the direction in which the driven magnet 12 is attached. The driven magnet 12 has a plane parallel to the longitudinal direction shifted by 45 degrees with respect to the drive magnet 11. That is, when the drive rotator 22 or the driven rotator 23 is rotated and the centers of the driven magnet 12 and the drive magnet 11 attached thereto are overlapped, the drive magnet 11 is arranged orthogonal to the driven magnet 12. It is attached so that.
[0046]
As shown in FIG. 2A, when the rotation direction of the drive rotator 22 is clockwise, the drive rotator 23 is provided on the driven rotator 23 with respect to the drive magnet 11 provided on the drive rotator 22. When the driven magnet 12 corresponding to the driving magnet 11 is delayed by 45 degrees, the driving rotating body 22 and the driven rotating body 23 are in an equilibrium state by the magnetic interaction between the four driving magnets 11 and the four driven magnets 12. become.
[0047]
2B is different from the same-orthogonal type in FIG. 2A in that the orientation of the magnetic poles is different. As a result, when the drive magnet 11 and the driven magnet 12 are perpendicular to each other with their centers overlapped, the drive rotating body 22 and the follower are driven by magnetic interaction between the four drive magnets 11 and the four driven magnets 12. The rotating body 23 is in an equilibrium state.
[0048]
The homopolar parallel type in FIG. 2C is the same as the homopolar orthogonal type in FIG. The difference is that the double-sided dipole magnet attached to the drive rotator 22 and the driven rotator 23 has a plane parallel to the longitudinal direction that is not inclined by 45 degrees with respect to the diameter passing through the center, and is parallel to the diameter. It is a point attached to. That is, all double-sided bipolar magnets are attached radially. Thereby, when the drive magnet 11 is located in the middle between the driven magnets 12 or when the driven magnet 12 is located in the middle between the drive magnets 11, the mutual magnetic force between the four drive magnets 11 and the four driven magnets 12 is determined. As a result, the drive rotor 22 and the driven rotor 23 are in an equilibrium state.
[0049]
The different-polarity parallel type in FIG. 2D is different in the direction of the magnetic poles from that in FIG. 2C and the driving magnet 11 and the driven magnet 12 are opposite. As a result, when the drive magnet 11 overlaps the driven magnet 12, the drive rotator 22 and the driven rotator 23 are in an equilibrium state due to the magnetic interaction between the four drive magnets 11 and the four driven magnets 12.
[0050]
The crossing angle between the magnets 11 and 12 of the rotating bodies 22 and 23 in the equilibrium state shown in FIGS. a , Θ b , Θ c , Θ d Θ a = 45 degrees, θ b = 0 degrees, θ c = 45 degrees, θ d = 0 degrees. Further, when the driving rotator 22 is rotated while breaking the equilibrium state, the driven rotator 23 is also rotated accordingly. It is called θ.
[0051]
Next, each magnetic characteristic (torque characteristic and thrust characteristic) with respect to the deviation angle of the rotary magnetic drive device shown in FIGS. 2A to 2D will be described with reference to FIG. This magnetic property was measured with a magnetometer shown in FIG. The test magnet attached to the rotating body is a rare earth magnet and has a magnetic force of 380 mT. The dimensions are 25 mm × 15 mm × 10 mm, the magnetic pole surface is 25 mm × 15 mm, the opposing surface is 10 mm × 15 mm, the distance between the magnets is 7 mm, and the turning radius of the center of the magnet is 40 mm. The unit of torque is × 10 Ncm, and the unit of thrust is N (kgf). For torque measurement, rotational torque meter SS-1R manufactured by Yamazaki Seiki Laboratories Co., Ltd. (torque measurement range 0-98 Ncm (0-10 kgcm)), for thrust measurement, round spring tension gauge manufactured by Oba Keiki Seisakusho An in-place type (measurement range 0 to 196N (0 to 20 kgf)) was used.
[0052]
A method for measuring torque and thrust by the above-described magnetic measuring apparatus will be described. The drive rotator 22 is rotated and held by the rotary handle 95. The rotation angle of the drive rotator 22 is shown in the angle scale plate A100. The driven rotator 23 is rotated by the magnetic force. The rotation angle of the driven rotor 23 is shown in the angle scale plate B101. The difference between the values indicated by the angle scale plate A100 and the angle scale plate B101 is the deviation angle between the drive rotator 22 and the driven rotator 23. First, read the value of the torque meter while maintaining this deviation angle.
[0053]
On the driven rotator 23, a thrust acting to slide the moving base 99 in the direction of the drive rotator 22 acts. By restricting the movement of the moving body 99 by the stopper 103, the distance between the drive rotating body 22 and the driven rotating body 23 is kept constant. From this state, the driven rotating body 23 is pulled away from the driving rotating body 22 by turning the moving table pulling screw 102. The pulling force is shown on the spring balance 92. At the moment when the pulling force exceeds the thrust acting on the driven rotating body 23, the moving table 99 moves away from the stopper 103 at a stretch. Since the pointer of the spring balance 92 is a placement needle and always shows the maximum value, it indicates the value at the moment of separation. The thrust which is the value indicated by the spring balance 92 at that time is read.
[0054]
When the thrust is negative, that is, when the thrust is acting in the direction in which the driven rotor 23 is away from the drive rotor 22, the moving base 99, which is separated from the stopper 103, is turned by rotating the moving base tension screw 102 in reverse. Return to the position of the stopper 103. The value of the spring balance 92 at that time is the thrust.
[0055]
The torque and thrust characteristics shown in FIG. 9 measured by the method described above will be described. 1) Homopolar orthogonal magnetic characteristics (Fig. 9 (a))
This is a characteristic corresponding to FIG. 2A. As the deviation angle θ increases, the torque increases, but conversely, the thrust decreases. When the deviation angle exceeded 20 degrees, a repulsive magnetic field was entered and measurement was impossible. However, a negative torque was observed in this non-measurable region, and a position where thrust due to repulsion was near zero was observed.
[0056]
At equilibrium, the torque is 0 and the thrust is 16.17 (1.65 kgf). When the deviation angle θ was 10 degrees, the torque started to increase to 1.6 and the thrust started to decrease slightly to 14.7 (1.5 kgf). As the deviation angle θ increases, the torque increases and the thrust decreases. The maximum torque is 2.7 and the minimum thrust is 10.29 (1.05 kgf) near the deviation angle of 20 degrees.
[0057]
In a rotary magnetic drive device, it is better that the torque is larger and the thrust is smaller. This is preferable because the thrust is minimized when the torque is maximum. It is considered that the thrust at the maximum torque is a component of the suction action.
[0058]
2) Heteropolar orthogonal magnetic characteristics
The characteristic corresponds to FIG. 2B, where the torque is 0 and the thrust is 3.234 (0.33 kgf) in the equilibrium state. When the deviation angle θ was 4 degrees, the torque started to increase to 1.8, and the thrust started to decrease to 2.45 (0.25 kgf). As the deviation angle θ increases, the torque increases and the thrust decreases. When the deviation angle is about 8 degrees, the thrust becomes zero. Further, as the deviation angle θ was increased, the thrust showed a negative value of −2.254 (−0.23 kgf) around 12 degrees. Near 16 degrees, the maximum torque is 4.6 and the minimum thrust is -4.9 (-0.5 kgf).
[0059]
This is preferable because the thrust becomes negative when the torque is maximum. Thrust 3.234 (0.33 kgf) in the equilibrium state is considered to be a component component when the magnetic field lines are twisted. When the drive rotator 22 is rotated from the equilibrium state, the suction action between the different poles decreases, and the repulsion action between the same poles increases. From this, it is considered that a negative thrust was generated due to magnetic levitation in the vicinity of the deviation angle of 16 degrees.
[0060]
3) Homopolar parallel magnetic characteristics
The characteristic corresponds to FIG. 2 (c), the torque is 0 in the equilibrium state, the thrust is 16.17 (1.65 kgf), and when the deviation angle θ is 10 degrees, the torque starts to increase to 2.5, The thrust began to decrease to 15.68 (1.60 kgf). As the deviation angle θ increases, the torque increases and the thrust decreases. In the vicinity of the deviation angle of 25 degrees, the maximum torque becomes 7.6 and the minimum thrust is 6.37 (0.65 kgf).
[0061]
This is preferable because the thrust is minimized when the torque is maximum. However, in order to obtain the maximum torque with a negative value of the thrust, the heteropolar perpendicular magnetic characteristics are good. This property is good if it is not necessary to obtain a negative thrust. If the ratio of the maximum torque to the minimum thrust (ratio) = (maximum torque) / (minimum thrust) is increased, this characteristic is the best. Thrust 16.17 (1.65 kgf) is generated in an equilibrium state. This component is considered to be a component component of the attraction force between different poles.
[0062]
4) Heteropolar parallel magnetic characteristics
The characteristic corresponds to FIG. 2D. When the torque is zero in the equilibrium state, the thrust is as large as 88.2 (9 kgf), and the torque increases as the deviation angle θ increases, but the tendency of the thrust to decrease is slight. In the vicinity of the deviation angle of 7 degrees, the maximum torque is 9.0 and the minimum thrust is 80.36 (8.2 kgf).
[0063]
When the torque is maximum, the thrust is minimized, and the value of the minimum thrust is the largest of the above four magnetic characteristics.
[0064]
To summarize the above four types of characteristics:
Figure 0004087593
It becomes.
[0065]
In the rotary magnetic drive device described above, the case where four magnets are mounted on the drive rotary plate and the driven rotary plate has been described. However, the present invention is not limited to this. What is necessary is just to provide at least three magnets. This is because the surface is stabilized by supporting three points.
[0066]
Moreover, although the shape of the magnet mentioned above demonstrated the case of a rectangular parallelepiped, various cubic shapes can be taken according to practical use. FIG. 10 is a plan view showing various practical shapes of the drive magnets 121, 123, 125, 127 and the driven magnets 122, 124, 126, 128 attached to the rotating body. In addition, in the center part of the rotary bodies 22 and 23 which attach these, the insertion hole 120 for inserting in the axis | shaft mentioned later is provided.
[0067]
FIG. 10A is a diagram in which four sector pole-shaped magnets 121 and 122 having a fan-shaped cross section are arranged. This is advantageous when a strong magnetic force is obtained in a limited space. FIG. 10B is a substantially rectangular parallelepiped, and the inner surface parallel to the short side direction on the radially inner side and the outer surface parallel to the short direction on the radially outer side are the insertion hole 120 and It is the figure which has arrange | positioned four magnets 123 and 124 comprised by the curved surface along the outer periphery of the rotating plates 22 and 23, respectively. In practice, this shape is suitable for practical use. FIG. 10C is a diagram in which four cubic magnets 125 and 126 are arranged. In practice, this shape is suitable for practical use. FIG. 10D is a diagram in which eight columnar magnets 127 and 128 are arranged. In practice, this shape is suitable for practical use. As the shape of the magnet, any shape other than those described above can be selected according to the magnetic action and the embodiment.
[0068]
In addition, the shape of each rotary body does not necessarily need to be a disk. For example, a cross shape or an equilateral triangle may be used as long as the shape can rotate stably when rotated around the rotation axis.
[0069]
Next, a second embodiment will be described with reference to FIG. This is the one in which the magnetic drive device described in FIG. 1 is applied to a linear magnetic drive device. This linear magnetic drive device is constructed by incorporating a set of magnets on upper and lower moving bodies. The linear magnetic drive apparatus shown in FIGS. 3A to 3B has the following common configuration.
[0070]
The linear magnetic drive device causes the driven moving body 33 to travel on the arbitrary track 34 by moving the driven moving body 33 along with the movement of the drive moving body 32 traveling on the arbitrary track 34. The drive moving body 32 is composed of, for example, a plate, has wheels, and can move on an arbitrary track 34. The follower moving body 33 is also formed of a plate shape, for example, has wheels, and can move on an arbitrary track 34. The arbitrary trajectory of the driven moving body 33 includes, for example, a partition that partitions a space where the driving moving body 32 exists and a space where the driven moving body 33 exists.
[0071]
As described above, the drive magnet 11 and the driven magnet 12 are formed in substantially the same shape, and have a solid shape surrounded by opposing surfaces that are substantially parallel to each other and a peripheral side surface that covers the outer periphery between the opposing surfaces. Is formed of a double-sided two-pole magnet having the entire surface of one side as a magnetic pole N of one pole and the entire surface of the other surface, which is the surface opposite to the one surface of the peripheral side surface, as the magnetic pole S of the other pole.
[0072]
The driven magnet 12 provided on the driven moving body 33 is driven with respect to a central extension line in which the opposed surfaces are substantially parallel to the drive magnet 11 and pass through the center of the substantially parallel opposed surface of the drive magnet 11 in common. It arrange | positions so that the center extension line which passes along the center of the substantially parallel opposing surface of the magnet 12 may become parallel.
[0073]
When the drive magnet 11 is moved in a direction crossing the central extension line of the drive magnet 11, for example, a direction orthogonal thereto, the driven moving body 33 moves on the track 34 such as a partition wall by the magnetic force of the drive magnet 11 and the driven magnet 12. Run.
[0074]
In addition, the linear magnetic drive device shown in FIG. 3 can be considered in four types of combinations ((a) to (d)), similarly to the rotary magnetic drive device.
The homopolar orthogonal type shown in FIG. 3A is not very practical. The heteropolar orthogonal type shown in FIG. 3B has optimum magnetic characteristics for the sliding bearing, and the weight of the heavy object can be reduced because the thrust is 0 or the levitation force. The homopolar parallel type shown in FIG. 3 (c) has a thrust as compared with the heteropolar orthogonal type, and is a rolling bearing type suitable for a large apparatus. The heteropolar parallel type shown in FIG. 3 (d) is optimal for a device that accurately stops the moving body at a fixed position because the deviation amount is small.
[0075]
The moving direction of the linear magnetic drive device is not necessarily the horizontal direction, but may be a direction intersecting with the central extension line 13.
[0076]
Further, if the driven moving body 33 rotates on the spot, all the magnetic characteristics are shifted to the heteropolar parallel type due to the characteristics of the magnets. The follower moving body 33 moves on a rail or a guide. That is, the angles of the drive magnet 11 and the driven magnet 12 with respect to the moving direction must always be kept constant.
[0077]
In FIG. 3, all of the drive magnets 11 are positioned with the driven magnet 12 and the central extension line aligned with each other. However, in the case of (a) homopolar orthogonal type and (c) homopolar parallel type, the magnetic force Due to this repulsion, the driven moving body is stabilized in a state where it is shifted slightly to the right or left from the position shown in FIG.
[0078]
FIG. 4 shows a stirrer that stirs the material 45 and includes the drive rotator 22 and the driven rotator 23 described above. The drive rotator 22 and the driven rotator 23 are attached to face each other with the bottom of the stirring tank 44 as a partition. An insertion hole is provided in the center of the drive rotator 22, and is fixed to the shaft of the motor 41 outside the stirring tank 44. The motor 41 is installed in the partition wall 47 by a support 46 with an appropriate gap. An insertion hole is also provided in the center of the driven rotor 23 and a stirring blade 43 is provided. The insertion hole of the driven rotor 23 is rotatably inserted into the support shaft 42 provided on the inner bottom wall of the stirring tank 44. The configuration in which the driving rotating body 22 is rotated by rotating means, the driven rotating body 23 is rotated by a magnetic force, and stirring is performed by the stirring blade is referred to as a stirring body 48.
[0079]
The stirring body 48 is not necessarily limited to the bottom, but may be an upper part, a side part, or any position suitable for stirring. However, the stirring body 48 is preferably configured with the above-described different pole orthogonal magnetic characteristics and provided at the bottom of the stirring tank 44. . The weight of the driven rotating body 23 and the buoyancy caused by the negative thrust cancel each other, and the driven rotating body 23 rotates without coming into contact with the bearing of the support shaft 42, so that wear with the bearing does not occur. Therefore, since generation | occurrence | production of dust can be suppressed, the material 45 can be stirred with high purity.
[0080]
FIG. 5 shows a mixing apparatus for efficiently mixing materials. The container 51 includes a supply port 52 and a discharge port 53, and includes two sets of the above-described stirring bodies 48 facing the inside of the container 51. Liquid A is supplied from the supply port 52a and liquid B is supplied from the supply port 52b. The drive rotator 22 is rotated by the motor 41 to drive the stirring blade 43 integrated with the driven rotator 23. The supplied liquid A and liquid B are mixed by the stirring blade 43 and discharged from the discharge port 53.
[0081]
According to the implementation, when the rotation of the motor 41 is set in the same direction and installed in the opposite position in the container 51, the rotation direction of the stirring blade 43 is different, so that efficient stirring can be performed. When several kinds of liquids to be mixed are continuously supplied, they are instantaneously mixed in the container 51, and the mixed materials are continuously discharged.
[0082]
In addition, when installing the stirring body 48 in opposition, when installing it on the upper and lower sides of the container 51, the lower stirring body 48 is constituted by a different-polarity orthogonal type, so that the negative thrust and its own weight cancel each other. It is preferable that the upper side is provided with an agitator 48 having other magnetic characteristics so that the positive thrust and the self-weight cancel each other and wear with the bearing does not occur.
[0083]
Moreover, it is possible not only to agitate but also to serve as a pump. By appropriately selecting the installation position of the stirring body 48 and the shape of the stirring blade 48, the liquid can be sent from the supply port 52 toward the discharge port 53.
[0084]
In FIG. 6, the outline of the substrate processing apparatus provided with the stirring body 48 and the levitating magnet 65 is shown.
[0085]
The vertical rotation shaft 67 in the vacuum container 66 includes an upper driven rotor 23, a lower substrate holder 68, and a levitating magnet 65. A drive rotator 22 is provided above the vacuum container 66 and is rotated by a motor 41. A superconductor 64 is joined to the center of the outer wall of the bottom of the vacuum vessel 66. The superconductor 64 is joined to the super freezing unit 62 that is the tip of the cryogenic refrigerator 61. The super refrigeration unit 62 and the superconductor 64 are covered with a low-temperature vacuum vessel 63 for preventing frost formation and heat insulation. When the superconductor 64 is lowered to the superconducting critical temperature, the magnetic levitation magnet 65 is levitated by the Meissner effect and pinned by the pinning effect, thereby preventing the axial rotation of the vertical rotating shaft 67.
[0086]
When the motor 41 rotates, the driven rotor 23 rotates through the partition wall, and the substrate holder 68 rotates around the vertical rotation shaft 67. The vertical rotation shaft 67 and the substrate holder 68 rotate without contacting the vacuum container 66. Therefore, no dust is generated due to rotational wear. Further, the vertical rotation shaft 67 is supported at two points at the upper part and the lower part, so that it can rotate stably.
[0087]
By depositing a wafer on the substrate holder 68 provided on the vertical rotation shaft 67 and rotating it at the time of film formation, the film can be uniformly formed. In addition, it is effective for non-contact rotating devices such as sputtering, photoresist coating, and development processing in the semiconductor industry.
[0088]
FIG. 7 shows a stirring device for stirring the liquid. In addition to the description of FIG. 6, the sealed stirring tank 70 is for the purpose of stirring the liquid. The vertical rotating shaft 67 is provided with a stirring blade 71 corresponding to the purpose of stirring. When the magnetically levitated vertical rotary shaft 67 is rotated, high-purity stirring that does not cause dust generation without contact can be performed. Further, the vertical rotation shaft 67 is supported at two points at the upper part and the lower part, so that it can rotate stably.
[0089]
FIG. 8 shows another stirring device. In addition to the description of FIG. 7, the stirring body 48 is not near the superconductor 64 without the vertical rotation shaft 67. The drive rotator 22 rotates around the low temperature vacuum vessel 63. The driving rotator 22 simultaneously functions as a driven pulley. When the driving pulley 81 is rotated by the motor 41, the rotational force is transmitted to the driving rotating body 22 by the belt 82. In FIG. 8, the belt 82 on the front side of the drawing is omitted. The magnetic levitation stirring blade 85 has the driven rotor 23 sealed therein. A levitation magnet 65 is provided at the rotation center of the driven rotor. When the magnetic levitation agitating blade 85 that is levitated and pinned by the superconducting effect is rotated by the agitator 48, it can be agitated in a non-contact manner while being magnetically levitated. An appropriate distance or a magnetic shielding wall is provided so that the magnetic circuits of the superconductor 64 and the stirrer 48 are not affected.
[0090]
Since the rotation drive unit and the superconductor are provided at the bottom of the hermetic stirring tank 70, it is not necessary to provide the upper part and the structure is simple. Further, since the vertical rotation shaft 67 is not provided, the structure is simple and maintenance is easy.
[0091]
【The invention's effect】
According to the present invention, thrust can be reduced as the driving force increases.
[Brief description of the drawings]
FIG. 1 is a plan view and a front view of a magnetic drive device according to an embodiment of the present invention.
FIG. 2 is a plan view of a rotating body according to the present embodiment.
FIG. 3 is a front view of the moving body according to the embodiment.
FIG. 4 is a side sectional view of a stirring device provided with a stirring body according to the present embodiment.
FIG. 5 is a side sectional view of a mixing apparatus including a plurality of stirring bodies according to the present embodiment.
FIG. 6 is a side sectional view of the substrate processing apparatus according to the present embodiment.
FIG. 7 is a side cross-sectional view of a stirrer provided with a superconductor according to this example.
FIG. 8 shows another stirring device according to the present embodiment.
FIG. 9 is a graph showing a relationship between a deviation angle of a rotating body, torque, and thrust according to the embodiment.
FIG. 10 is an example of a shape of a magnet of a magnetic drive device provided in the rotating body according to the embodiment.
FIG. 11 is a schematic view of a measuring instrument that measures the relationship between the deviation angle of the rotating body, torque, and thrust according to the present embodiment.
FIG. 12 is a side sectional view of a conventional magnetic stirrer.
[Explanation of symbols]
11 Drive magnet
11a Top surface of drive magnet
11b The bottom surface of the drive magnet
11c N pole face of drive magnet
11d S pole surface of drive magnet
12 Driven magnet
12a Top surface of driven magnet
12b Underside of driven magnet
12c N pole face of driven magnet
12d S pole surface of driven magnet
13 Central extension line
C Arrow direction (moving direction)
N Magnetic pole of one pole
S Magnetic pole of the other pole

Claims (7)

回転軸を中心に回転する駆動回転体と、
前記駆動回転体と対向して設けられ、前記駆動回転体の回転軸の延長線を回転軸として回転する従動回転体と、
前記駆動回転体の前記従動回転体と対向する面上に、前記駆動回転体の回転軸を中心に描かれる仮想円の円周上に等間隔に設けられた少なくとも3つの駆動磁石と
前記従動回転体の前記駆動回転体と対向する面上に、前記駆動回転体に描かれた仮想円と対応して前記従動回転体の回転軸を中心に描かれる仮想円の円周上に等間隔に設けられた前記駆動磁石と同数の従動磁石と、
を備えた磁気駆動装置において、
前記駆動磁石及び前記従動磁石は略同形状で形成され、互いに平行な対向面と、該対向面間の外周を覆う周側面とで囲まれた立体をしており、前記周側面の一面全面を一方の極の磁極とし、該周側面の一面と反対の面である他面全面を他方の極の磁極とする両面2極型磁石でそれぞれ構成され、
前記駆動磁石と前記従動磁石とを、前記駆動磁石と前記従動磁石との対向面同士が略平行で、異極直交型となるよう配置し、かつ前記駆動磁石の略平行な対向面の中央を共通に通る中央延長線と前記従動磁石の略平行な対向面の中央を共通に通る中央延長線とが一致するように対向して配置し、
このように配置した前記駆動磁石及び前記従動磁石を前記駆動回転体及び前記従動回転体にそれぞれ取り付け、
前記駆動回転体を前記駆動回転体の回転軸を中心に回転させると、前記駆動磁石と前記従動磁石との磁力により前記従動回転体が前記従動回転体の回転軸を中心に回転することを特徴とする磁気駆動装置。
A drive rotator that rotates about a rotation axis;
A driven rotator provided opposite to the drive rotator and rotating about an extension line of the rotation axis of the drive rotator;
At least three drive magnets provided at equal intervals on the circumference of a virtual circle drawn around the rotation axis of the drive rotator on the surface of the drive rotator facing the driven rotator;
On the surface of the driven rotator facing the drive rotator, on the circumference of a virtual circle drawn around the rotation axis of the driven rotator corresponding to the virtual circle drawn on the drive rotator, etc. The same number of driven magnets as the drive magnets provided at intervals,
In a magnetic drive device comprising:
The drive magnet and the driven magnet are formed in substantially the same shape, and have a solid shape surrounded by opposing surfaces parallel to each other and a peripheral side surface covering the outer periphery between the opposing surfaces. It is composed of a double-sided two-pole magnet having one pole as a magnetic pole and the other surface as a whole opposite the one side of the peripheral side surface.
The driving magnet and the driven magnet are arranged so that the facing surfaces of the driving magnet and the driven magnet are substantially parallel to each other and are of different polar orthogonal type, and the center of the substantially parallel facing surfaces of the driving magnet is arranged. common to the central extension line passing through the center of the central extension line substantially parallel to the facing surface of the front SL driven magnets in common through which opposite to coincide arranged,
The drive magnet and the driven magnet arranged in this way are attached to the drive rotator and the driven rotator,
When the drive rotator is rotated around the rotation axis of the drive rotator, the driven rotator is rotated around the rotation axis of the driven rotator by the magnetic force of the drive magnet and the driven magnet. Magnetic drive device.
回転軸を中心に回転する駆動回転体と、
前記駆動回転体と対向して設けられ、前記駆動回転体の回転軸の延長線を回転軸として回転する従動回転体と、
前記駆動回転体の前記従動回転体と対向する面上に、前記駆動回転体の回転軸を中心に描かれる仮想円の円周上に等間隔に設けられた少なくとも3つの駆動磁石と
前記従動回転体の前記駆動回転体と対向する面上に、前記駆動回転体に描かれた仮想円と対応して前記従動回転体の回転軸を中心に描かれる仮想円の円周上に等間隔に設けられた前記駆動磁石と同数の従動磁石と、
を備えた磁気駆動装置において、
前記駆動磁石及び前記従動磁石は略同形状で形成され、互いに平行な対向面と、該対向面間の外周を覆う周側面とで囲まれた立体をしており、前記周側面の一面全面を一方の極の磁極とし、該周側面の一面と反対の面である他面全面を他方の極の磁極とする両面2極型磁石でそれぞれ構成され、
前記駆動磁石と前記従動磁石とを、前記駆動磁石と前記従動磁石との対向面同士が略平行で、同極平行型となるよう配置し、かつ前記駆動磁石の略平行な対向面の中央を共通に通る中央延長線と前記従動磁石の略平行な対向面の中央を共通に通る中央延長線とが一致するように対向して配置し、
このように配置した前記駆動磁石及び前記従動磁石を前記駆動回転体及び前記従動回転体にそれぞれ取り付け、
前記駆動回転体を前記駆動回転体の回転軸を中心に回転させると、前記駆動磁石と前記従動磁石との磁力により前記従動回転体が前記従動回転体の回転軸を中心に回転することを特徴とする磁気駆動装置。
A drive rotator that rotates about a rotation axis;
A driven rotator provided opposite to the drive rotator and rotating about an extension line of the rotation axis of the drive rotator;
At least three drive magnets provided at equal intervals on the circumference of a virtual circle drawn around the rotation axis of the drive rotator on the surface of the drive rotator facing the driven rotator;
On the surface of the driven rotator facing the drive rotator, on the circumference of a virtual circle drawn around the rotation axis of the driven rotator corresponding to the virtual circle drawn on the drive rotator, etc. The same number of driven magnets as the drive magnets provided at intervals,
In a magnetic drive device comprising:
The drive magnet and the driven magnet are formed in substantially the same shape, and have a solid shape surrounded by opposing surfaces parallel to each other and a peripheral side surface covering the outer periphery between the opposing surfaces. It is composed of a double-sided two-pole magnet having one pole as a magnetic pole and the other surface as a whole opposite the one side of the peripheral side surface.
The driving magnet and the driven magnet are arranged so that the opposing surfaces of the driving magnet and the driven magnet are substantially parallel to each other and have the same polar parallel type, and the center of the substantially parallel opposing surfaces of the driving magnet is arranged. The central extension line that passes in common and the central extension line that passes in common through the center of the substantially parallel facing surface of the driven magnet are arranged to face each other ,
The drive magnet and the driven magnet arranged in this way are attached to the drive rotator and the driven rotator,
When the drive rotator is rotated around the rotation axis of the drive rotator, the driven rotator is rotated around the rotation axis of the driven rotator by the magnetic force of the drive magnet and the driven magnet. Magnetic drive device.
請求項1又は2に記載の磁気駆動装置が、撹拌槽の内部の液体を撹拌する手段として用いられる撹拌装置であって、前記磁気駆動装置を構成する従動回転体に、前記撹拌槽内にThe magnetic drive device according to claim 1 or 2, wherein the magnetic drive device is used as a means for stirring the liquid inside the stirring tank, and the driven rotating body constituting the magnetic driving device is provided in the stirring tank. 設けた支持軸が挿通されて前記支持軸を中心に前記従動回転体を回転自在に軸支するための挿通孔と、前記従動回転体の回転により前記液体を撹拌するための撹拌翼とをそれぞれ設け、前記従動回転体を前記支持軸に軸支したとき、前記磁気駆動装置を構成する駆動回転体が、前記撹拌槽の槽壁を介して前記駆動回転体と対向するように前記撹拌槽の外部に配置されて、前記回転駆動体の回転により前記従動回転体が前記支持軸を中心に回転することを特徴とする撹拌装置。An insertion hole through which the provided support shaft is inserted to rotatably support the driven rotary body around the support shaft, and an agitating blade for stirring the liquid by rotation of the driven rotary body, respectively And when the driven rotating body is pivotally supported by the support shaft, the driving rotating body constituting the magnetic driving device faces the driving rotating body via the tank wall of the stirring tank. A stirrer arranged outside, wherein the driven rotating body rotates around the support shaft by the rotation of the rotary driving body. 請求項3に記載の撹拌装置が、混合対象の液体を流入させる所定数の液供給口と混合処理を終えた液体を排出する液排出口とを有する前記撹拌槽内に、該撹拌槽内の液体の混合状態を制御する手段として複数個用いられる混合装置。The stirring apparatus according to claim 3, wherein the stirring tank having a predetermined number of liquid supply ports for allowing the liquid to be mixed to flow in and a liquid discharge port for discharging the liquid after the mixing process are provided in the stirring tank. A mixing apparatus used as a plurality of means for controlling the mixed state of the liquid. 基板を処理する真空容器と、A vacuum vessel for processing the substrate;
前記真空容器内に鉛直回転軸を中心に回転自在に設けられ前記基板を保持する基板保持体と、A substrate holder provided in the vacuum vessel so as to be rotatable around a vertical rotation axis and holding the substrate;
前記鉛直回転軸の上方から該鉛直回転軸に回転力を付与して前記基板保持体を回転させる回転駆動部と、A rotation drive unit that rotates the substrate holder by applying a rotational force to the vertical rotation shaft from above the vertical rotation shaft;
前記基板保持体の下方から該基板保持体をその重力に抗して浮上させつつ前記鉛直回転軸の振れを防止する軸振れ防止機構とを備えた基板処理装置において、In the substrate processing apparatus provided with the shaft shake prevention mechanism for preventing the shake of the vertical rotation shaft while floating the substrate holder against the gravity from below the substrate holder,
前記駆動回転部として請求項1又は2に記載の磁気駆動装置が用いられ、The magnetic drive device according to claim 1 or 2 is used as the drive rotation unit,
前記磁気駆動装置を構成する従動回転体の回転軸に前記鉛直回転軸を連結することにより、前記従動回転体を前記鉛直回転軸を介して前記基板保持体に接続し、By connecting the vertical rotating shaft to a rotating shaft of a driven rotating body constituting the magnetic drive device, the driven rotating body is connected to the substrate holder via the vertical rotating shaft,
前記磁気駆動装置を構成する駆動回転体を前記真空容器の上壁を介して前記回転従動体と対向するように前記真空容器の外部に配置して、前記駆動回転体の回転により前記従動回転体を介して前記基板保持体を前記鉛直回転軸を中心に回転させるように構成し、A driven rotating body constituting the magnetic drive device is disposed outside the vacuum container so as to face the rotating driven body via an upper wall of the vacuum container, and the driven rotating body is rotated by the rotation of the driving rotating body. Configured to rotate the substrate holder about the vertical rotation axis via
前記軸振れ防止機構が、前記基板保持体に設けられた浮揚磁石と、前記真空容器の外部に前記真空容器の底壁を介して前記浮揚磁石と対向するように設けられる超電導体とを備えて、該超電導体を超電導臨界温度以下に冷却することによって、前記超電導体と前記浮揚磁石とのマイスナー効果により前記基板保持体を前記真空容器内で浮上させつつ前記鉛直回転軸をピン止め効果によりピン止めするようにしたことを特徴とする基板処理装置。The shaft shake prevention mechanism includes a levitation magnet provided on the substrate holder, and a superconductor provided outside the vacuum vessel so as to face the levitation magnet via a bottom wall of the vacuum vessel. By cooling the superconductor to a superconducting critical temperature or less, the substrate holder is levitated in the vacuum vessel by the Meissner effect of the superconductor and the levitating magnet, and the vertical rotation shaft is pinned by the pinning effect. A substrate processing apparatus characterized by being stopped.
撹拌すべき液体を収容する密閉型の撹拌槽と、A closed stirring tank containing the liquid to be stirred;
前記撹拌槽内に鉛直回転軸を中心に回転自在に設けられ前記液体を撹拌する撹拌翼と、A stirring blade for stirring the liquid provided in the stirring tank so as to be rotatable around a vertical rotation axis;
前記鉛直回転軸の上方から該鉛直回転軸に回転力を付与して前記撹拌翼を回転させる回転駆動部と、A rotation drive unit that rotates the stirring blade by applying a rotational force to the vertical rotation shaft from above the vertical rotation shaft;
前記撹拌翼の下方から該撹拌翼をその重力に抗して浮上させつつ前記鉛直回転軸の振れを防止する軸振れ防止機構とを備えた撹拌装置において、In the stirring device provided with a shaft shake prevention mechanism for preventing the shake of the vertical rotation shaft while floating the stirring blade against the gravity from below the stirring blade,
前記回転駆動部として請求項1又は2に記載の磁気駆動装置が用いられ、前記磁気駆動装置を構成する従動回転体の回転軸に前記鉛直回転軸を連結することにより、前記従動回転体を前記鉛直回転軸を介して前記撹拌翼に接続し、前記磁気駆動装置を構成する駆動回転体を前記撹拌槽の上壁を介して前記回転従動体と対向するように前記撹拌槽の外部に配置して、前記駆動回転体の回転により前記従動回転体を介して前記撹拌翼を前記鉛直回転軸を中心に回転させるように構成し、The magnetic drive device according to claim 1 or 2 is used as the rotary drive unit, and the driven rotary body is connected to the rotary shaft of the driven rotary body constituting the magnetic drive device, whereby the driven rotary body is Connected to the agitation blade via a vertical rotation shaft, and arranged on the outside of the agitation tank so that the drive rotator constituting the magnetic drive device faces the rotary follower via the upper wall of the agitation tank. And configured to rotate the stirring blade about the vertical rotation axis through the driven rotating body by the rotation of the driving rotating body,
前記軸振れ防止機構が、前記撹拌翼に設けられた浮揚磁石と、前記撹拌槽の外部に前記撹拌槽の底壁を介して前記浮揚磁石と対向するように設けられる超電導体とを備えて、該超電導体を超電導臨界温度以下に冷却することによって、前記超電導体と前記浮揚磁石とのマイスナー効果により前記撹拌翼を前記撹拌槽内で浮上させつつ前記鉛直回転軸をピン止め効果によりピン止めするようにしたことを特徴とする撹拌装置。The shaft shake prevention mechanism includes a levitation magnet provided on the stirring blade, and a superconductor provided outside the stirring tank so as to face the levitation magnet via a bottom wall of the stirring tank, By cooling the superconductor to a superconducting critical temperature or lower, the vertical rotating shaft is pinned by the pinning effect while the stirring blade is levitated in the stirring tank by the Meissner effect of the superconductor and the levitating magnet. A stirrer characterized by the above.
撹拌すべき液体を収容する撹拌槽と、前記撹拌槽内の下方に回転自在に設けられる撹拌翼と、該撹拌翼を回転させる回転駆動部と、前記撹拌翼をその重力に抗して浮上させつつ 前記撹拌翼の回転中心の振れを防止する軸振れ防止機構とを備えた撹拌装置において、
前記回転駆動部として請求項1又は2に記載の磁気駆動装置が用いられ、前記磁気駆動装置を構成する一方の従動回転体に前記撹拌翼を取り付け、前記磁気駆動装置を構成する他方の駆動回転体を前記撹拌槽の底壁を介して前記回転従動体と対向するように前記撹拌槽の外部に配置して、前記駆動回転体の回転により前記従動回転体を介して前記撹拌翼を前記従動回転体の回転軸を中心に回転させるように構成し、
前記軸振れ防止機構が、前記従動回転体の回転中心に設けられた浮揚磁石と、前記撹拌槽の外部に配置された前記駆動回転体の回転中心に、前記浮揚磁石と対向するように設けられた超電導体とを備えて、該超電導体を超電導臨界温度以下に冷却することによって、前記超電導体と前記浮揚磁石とのマイスナー効果により前記撹拌翼を前記撹拌槽内で浮上させつつ前記回転中心をピン止め効果によりピン止めするようにしたことを特徴とする撹拌装置。
A stirring tank for storing a liquid to be stirred, a stirring blade rotatably provided in the stirring tank, a rotation driving unit that rotates the stirring blade, and the stirring blade is lifted against its gravity. While the stirring device provided with a shaft shake prevention mechanism for preventing the shake of the rotation center of the stirring blade
The magnetic drive device according to claim 1 or 2 is used as the rotation drive unit, and the stirring blade is attached to one driven rotating body constituting the magnetic drive device, and the other drive rotation constituting the magnetic drive device. A body is disposed outside the agitation tank so as to face the rotation follower via the bottom wall of the agitation tank, and the agitation blade is driven by the driven rotator via the driven rotator. It is configured to rotate around the rotation axis of the rotating body,
The shaft shake prevention mechanism is provided so as to face the levitation magnet at the rotation center of the driving rotator disposed outside the stirring tank and the levitation magnet provided at the rotation center of the driven rotator. A superconductor, and cooling the superconductor to a superconducting critical temperature or less, so that the center of rotation can be achieved while the stirring blade is levitated in the stirring tank by the Meissner effect of the superconductor and the levitation magnet. A stirrer characterized by being pinned by a pinning effect .
JP2001353024A 2001-11-19 2001-11-19 Magnetic drive device, stirring device, mixing device, and substrate processing device Expired - Lifetime JP4087593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001353024A JP4087593B2 (en) 2001-11-19 2001-11-19 Magnetic drive device, stirring device, mixing device, and substrate processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353024A JP4087593B2 (en) 2001-11-19 2001-11-19 Magnetic drive device, stirring device, mixing device, and substrate processing device

Publications (2)

Publication Number Publication Date
JP2003144891A JP2003144891A (en) 2003-05-20
JP4087593B2 true JP4087593B2 (en) 2008-05-21

Family

ID=19165116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001353024A Expired - Lifetime JP4087593B2 (en) 2001-11-19 2001-11-19 Magnetic drive device, stirring device, mixing device, and substrate processing device

Country Status (1)

Country Link
JP (1) JP4087593B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233253A (en) * 2004-02-18 2005-09-02 Nippon Pulse Motor Co Ltd Drive transmitting mechanism
JP4581533B2 (en) * 2004-07-27 2010-11-17 アイシン精機株式会社 Non-contact stirrer
JP2007020387A (en) * 2005-06-07 2007-01-25 Maguneo Giken:Kk Superconductive non-contact rotation device
JP2010174817A (en) * 2009-01-30 2010-08-12 Nokodai Tlo Kk Syringe pump
JP5792652B2 (en) 2012-02-07 2015-10-14 武蔵エンジニアリング株式会社 Stirring device, discharge device including the same, and discharge method
CN112791648B (en) * 2020-12-23 2023-09-22 无锡市昌顺科技有限公司 Paddle type double-shaft mixer capable of preventing noise

Also Published As

Publication number Publication date
JP2003144891A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
US20070080595A1 (en) Superconductive non-contact rotary device
WO1995020264A1 (en) Magnetic levitation device
US7112904B2 (en) Magnetic rotation transmitting device, hermetic stirring unit, and electric furnace
EP0619049A1 (en) Magnetic field levitation
EP0467341A1 (en) Superconducting bearing device
JP2018086646A (en) Magnetic stirrer device and mixer
IE850634L (en) Magnetic bearing
JP2005127222A (en) Magnetic levitating pump
US6737777B2 (en) Magnetic bearing and use thereof
JP4087593B2 (en) Magnetic drive device, stirring device, mixing device, and substrate processing device
JP4070326B2 (en) Non-contact stirring device
US4843268A (en) Asymmetric field electromagnetic motor
JP2006122785A (en) Non-contact stirring machine
JP2905508B2 (en) Magnetic levitation device
JP4581533B2 (en) Non-contact stirrer
US3248583A (en) Magnetic coupling
GB2082930A (en) Magnetic stirring element
JP2004039949A (en) Superconducting member and magnetic levitation device
CN104478035B (en) A kind of magnetic suspension hydraulic centrifugal device
JPH0681845A (en) Supercondctive bearing device
CN118074373B (en) Control method of magnetic levitation motor and magnetic levitation equipment
JPS58123578A (en) Electromagnetic indicator
JPH01295019A (en) Bearing
JP3616856B2 (en) Bearing device
WO2023032812A1 (en) Bearing and rotary device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term