[go: up one dir, main page]

JP4071988B2 - Ground survey method using S-wave amplitude associated with impact penetration - Google Patents

Ground survey method using S-wave amplitude associated with impact penetration Download PDF

Info

Publication number
JP4071988B2
JP4071988B2 JP2002129182A JP2002129182A JP4071988B2 JP 4071988 B2 JP4071988 B2 JP 4071988B2 JP 2002129182 A JP2002129182 A JP 2002129182A JP 2002129182 A JP2002129182 A JP 2002129182A JP 4071988 B2 JP4071988 B2 JP 4071988B2
Authority
JP
Japan
Prior art keywords
wave
penetration
ground
amplitude
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129182A
Other languages
Japanese (ja)
Other versions
JP2003321828A (en
Inventor
芳信 村田
秀樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP2002129182A priority Critical patent/JP4071988B2/en
Publication of JP2003321828A publication Critical patent/JP2003321828A/en
Application granted granted Critical
Publication of JP4071988B2 publication Critical patent/JP4071988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、打撃貫入時に発生するS波振動の最大振幅から貫入抵抗値を推定して地盤の力学特性を評価する地盤調査方法に関するものである。この技術は、構造物などを建設する際の設計指針となる地盤のN値に相当する貫入抵抗値を簡便に且つ効率よく経済的に求めるのに有用である。
【0002】
【従来の技術】
自然物あるいは人工物からなる地盤に構造物などを建設する際には、予め当該地盤の力学的特性を把握し、それに基づいて適切な構造物設計を実施する必要がある。そのために、種々の地盤調査法が提案され実用に供されている。
【0003】
地盤の強度を調査する代表的な方法として、日本工業規格で定められている標準貫入試験法(JIS A 1219)がある。これは、原位置における土の硬軟、締まり具合の相対値を知るためのN値を求める試験法である。具体的には、ロッドの先端に標準貫入試験用サンプラを取り付け、削孔したボーリング孔底に降ろし、地上においてロッドをハンマ(63.5kg)の自由落下(落下高さ76cm)により打撃して、孔底より15〜45cm間の30cmを貫入させるのに必要な打撃回数(N値)を求める。この標準貫入試験法によって求められるN値は、複雑な地盤構成の我が国において、構造物の設計指標として長年用いられてきた。
【0004】
しかし、試験孔の掘進のためにボーリングマシン及びボーリングポンプ等を必要とし、また掘削に伴う孔壁の安定のために泥水(建設汚泥)の使用を余儀なくされ、試験に際しての孔底のスライムの除去作業や15cmの予備打ち作業など、調査作業が煩雑で、経験を要し、しかも調査に時間がかかる等の欠点があった。このような標準貫入試験は、本質的に、ハンマやノッキングヘッドの形状、ロッドの撓み、掘削孔の状況、作業の仕方、その他諸々の条件によって、打撃エネルギーが安定せず、測定値のばらつきが大きくなりやすい。しかも、測定間隔が広いため、深度方向の詳細な地盤情報が得にくい。そのため、最近では、設計荷重(特に地震外力)の増大や限界状態設計法(信頼性設計)の導入に伴い、いままでN値が内在してきた様々な誤差が大きな問題となってきている。
【0005】
標準貫入試験法に代わるサウンディング法の一つに、動的貫入試験法(オートマチックラムサウンディングなど)がある。これは、先端にコーンを取り付けたロッドをハンマ(63.5kg)の自由落下(落下高さ50cm)により地盤に連続的に打ち込み、貫入長20cm毎の打撃回数(Nd′値)を求める方法である。貫入に伴ってロッド周面には土との摩擦抵抗が生じるため、所定の貫入量毎にロッドに作用するトルクMvを測定して、次の補正式
Nd=Nd′−a・Mv(但し、aは係数)
によって先端部での貫入抵抗値Ndを求める。これによって得られたNd値は、Nd≒Nとして評価され利用される。
【0006】
【発明が解決しようとする課題】
ボーリングを必要としない動的貫入試験法では、砂礫などの貫入抵抗の大きな地層が介在すると、その打撃貫入に時間を要し、場合によっては貫入が不可能となる。更に、先端のコーンに連なるロッドと周囲地盤との摩擦による影響が先端部の貫入抵抗値Ndに影響することになる。即ち、ロッド地表側で打撃したエネルギーがロッドと周囲の摩擦による損失により先端のコーンに完全に伝達されないために、得られる貫入抵抗値が過大に評価される。このため前記のように、動的貫入試験においては、各貫入試験毎にロッドを回転させて最大トルクを測り、これをもってロッドと周囲地盤との摩擦力として補正することで、先端部での貫入抵抗値を求める手順を踏まなければならない。このような手順は、作業性を損ね、データの信頼性にも影響を及ぼす。
【0007】
本発明の目的は、単純な測定システムでありながら、測定データのばらつきが少なく、作業性が良好で、地盤強度を正しく評価できる方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者等は、地表面に地震計を設置して打撃貫入試験を行い、打撃貫入により発生した弾性波を検出し解析した結果、S波(剪断波)の最大振幅とN値との間に相関があることを見出した。例えば、地盤(測定対象土)のN値が大きい砂質土(砂や砂礫)の場合にはS波の振幅が大きくなり、N値が小さい粘性土の場合にはS波の振幅が小さくなる。S波振幅は打撃エネルギーの大きさに依存するので打撃エネルギーが安定することが条件となるが、S波の最大振幅を測定することで直接貫入抵抗を評価することができる。本発明は、かかる知得に基づき完成されたものである。
【0009】
本発明は、先端に貫入体を取り付けたロッドを地盤に打撃貫入し、それに伴い発生する弾性波を地表に設置したS波センサで検出し、貫入体深度とS波振動の最大振幅を求め、S波最大振幅については貫入体からS波センサまでの弾性波伝播距離に応じた減衰補正を行うこととし、調査現場の少なくとも一地点での打撃貫入試験によりS波最大振幅とN値に相当する貫入抵抗値との関係式を求め、調査現場の他地点での打撃貫入時に得られるS波最大振幅により前記関係式を用いて当該貫入体深度での値を推定することを特徴とする地盤調査方法である。
【0010】
本発明では、S波センサの検出信号を、A/D変換によりデジタル化し、データ収録部でデジタル記録すると共に、数値化したS波振幅をコンピュータでデータ処理して自動的にS波の最大振幅を求め、それぞれの貫入体深度における貫入抵抗値を解析する。この方法は、深度方向に連続的に打撃を行うことで、深度方向に連続的に地盤の貫入抵抗値を求めて表示することができる。使用するS波センサは、鉛直成分と水平成分の2成分を検出できる速度計タイプの地震計が好ましい。
【0011】
S波センサの設置位置は任意であるが、打撃貫入地点から、調査計画深さの0.5〜1.5倍の距離だけ離れた位置とするのが好ましく、調査計画深さと同程度の水平距離離れた位置に設定するのが最適である。打撃貫入地点に近すぎると作業ノイズが入りやすく、遠すぎると直接波を検知し難くなるからである。従って、調査計画深さが深くなるほど離れた位置に設置するのがよいが、S波センサ設置の作業性を考慮して、ある程度の深度範囲の調査を終えた時点でS波センサの設置位置を変えるのが好ましい。S波センサは、1個でよいが、複数個間隔をおいて配設してもよいことはいうまでもない。
【0012】
【発明の実施の形態】
先端に貫入体を取り付けたロッドを、ハンマの自然落下あるいは強制落下によって一定の打撃エネルギーで地盤に打撃貫入する。他方、打撃貫入地点から任意の距離(好ましくは貫入体深度と同程度の距離)離れた地表にS波センサを設置し、S波振幅を観測できるようにしておく。打撃貫入に伴い発生したS波振動をS波センサで検出する。S波検出信号をA/D変換によりデジタル化してデータ収録部でデジタル記録し、数値化したS波振幅をパーソナルコンピュータでデータ処理して自動的にS波の最大振幅を求め、それぞれの貫入体深度における貫入抵抗値を推定して地盤の力学特性を評価する。
【0013】
本発明方法では、深度方向に連続的に打撃を行い、深度方向に連続的に地盤の貫入抵抗値を求めることができる。打撃貫入は、従来同様ハンマの自由落下を利用してもよいが、打撃貫入能力の大きな貫入装置(例えば油圧ハンマやディーゼルハンマ等)を用いることもできる。それによって打撃貫入の作業効率が高まるほか、砂礫層や固結度の高い地盤など貫入抵抗の大きな地盤や大深度への適用が可能となる。
【0014】
観測した弾性波の波形は、データ収録部で収録・保存する。また、この時の貫入体とS波センサとの相対位置情報、利得情報、その他のデータ収録条件に関わる各種情報をヘッダに記録しておけば、事後の解析・結果表示が容易になるため好ましい。
【0015】
S波センサは、地表面に設置するのが作業性もよく好ましいが、既設の地質調査用のボーリング孔等の中に設置することも可能である。ハンマによる打撃により、先端の貫入体が地盤を破壊して地中に貫入する際に弾性波が発生する。この弾性波は周囲地盤中を伝播して、S波センサに到達する。勿論、地層境界があれば、そこでの反射波や屈折波などもS波センサに到達するが、この到達波を直接波と仮定した場合の最大振幅が地盤の貫入抵抗値に寄与する。先端の貫入体とS波センサとの相対位置は各打撃毎に変化し、弾性波の伝播距離に応じて減衰量が異なるので、振幅についての伝播距離減衰補正を行う必要がある。つまり貫入体深度からS波センサまでの伝播距離は計算可能なので、振幅の減衰をその伝播距離に応じて補えばよい。この補正は、パーソナルコンピュータによって自動的に行える。本発明のS波振幅を観測する方法は、50m程度以下の深度であれば十分に対応できる。
【0016】
予め貫入抵抗値が既知である地盤において、弾性波の振幅との関係付けを行っておけば、以後の測定においては、弾性波振幅から直接的に貫入抵抗値を求めることができる。これら一連の計算アルゴリズムは、コンピュータ内に組み込むことは容易であり、最大振幅の読み取りから貫入抵抗値の算出まで自動的に解析処理することもできる。
【0017】
本発明方法は、従来の動的貫入試験のようなロッドと周囲摩擦の補正作業を必要としないため、深度方向に連続的に調査を実施することができ、それ故、深度方向の貫入抵抗値の分布も連続的に求めることができる。これにより、従来方法に比較して、深度方向で密な貫入抵抗値分布を求めることができ、精度の良い地盤評価を行うことができる。
【0018】
【実施例】
図1は、本発明方法の実施に用いる測定システムの一例を示す説明図である。打撃貫入装置自体は、標準貫入試験やオートマッチックラムサウンディングなど従来用いられている装置をそのまま使用することができる。勿論、その他任意の打撃貫入装置を用いてもよいが、打撃エネルギーが安定していることが重要である。図1では、ロッド10の先端部(下端)にコーン12を取り付け、上端のノッキングヘッド14にハンマ16を所定位置から自由落下させることにより打撃貫入する構成のオートマッチックラムサウンディング装置を用いる例を示している。
【0019】
打撃貫入装置20から任意の距離Lだけ離れた地表面にS波センサ22を設置する。設置位置は、貫入体深度Dと同程度の距離離れた地点が最適であるが、その深度は打撃貫入によって変化するため、上記Lは(0.5〜1.5)D程度だけ離れた地点でよい。但し、コーンとS波センサとの相対位置を正しく把握できるようにする必要があり、打撃貫入毎にその貫入体深度Dも測定する。S波センサ22は、鉛直成分と水平成分の2成分を検出する地震計でよく、ここでは速度計タイプのものを用いている。S波センサ22の出力信号は、測定器24に導かれて、そこで増幅され、A/D変換されて、データ収録部で記録される。また、数値化されたS波振幅は、パーソナルコンピュータ(PC)26でデータ処理され、自動的にS波の最大振幅が求められ、それぞれの打撃箇所(貫入体深度)における貫入抵抗値が解析されて表示される。
【0020】
ハンマ16によるノッキングヘッド14への打撃により、先端のコーン12が地盤を破壊し、地中に貫入する。その際、弾性波が発生する。この弾性波は、周囲地盤中を伝播し、地表に設置したS波センサ22に到達する。貫入体位置から直接S波センサに至る直接波のみならず、地層境界があれば、そこでの反射波や屈折波もある。先端のコーン12とS波センサ22との相対位置は、打撃毎に変化することから、弾性波の伝播距離に応じて減衰量が異なることになるので、コーン12とS波センサ22との距離を用いて到達するS波最大振幅の距離減衰補正を行う。本方法では、貫入体深度が50m程度以浅であれば、S波の伝達経路に無関係に最大振幅からN値を推定することが可能である。
【0021】
図2に、標準貫入試験機を用いて、その打撃を振源とした場合の弾性波観測結果の一例を示す。Aは標準貫入試験によるN値を、Bは標準貫入試験機設置位置から20m離れた地点に設置した地震計で検出した振動波形を示し、Cは標準貫入試験により得られたN値と振幅の距離減衰補正後のS波最大振幅との対比を示す。この結果から、N値と弾性波の振幅に良好な対応傾向があることが確認できる。即ち、測定対象土のN値が大きい砂や砂礫の場合にはS波の振幅が大きくなり、地盤のN値が小さい粘土質の土の場合にはS波の振幅が小さくなる。
【0022】
次に動的貫入試験(オートマチックラムサウンディング)における動的貫入抵抗Nd値とS波振幅の関係を図3に示す。これは、ラムサウンディング試験を実施し、その1打撃毎にロッドの貫入量とその際に発生したS波を測定したものである。そして、1打撃毎の貫入量から、20cm当たりの打撃回数に換算したNd値(トルクによるロッド周面摩擦の影響を補正した先端部での貫入抵抗値)を求め、また、その打撃によるS波の最大振幅を距離減衰補正した。Aは地下水位以浅(不飽和)の場合であり、Bは地下水位以深(飽和)の場合である。なお、図3では深度11〜17m付近の砂礫層のデータは除いている。
【0023】
図3から、Nd値とS波振幅の関係は不飽和土と飽和土において異なるが、他方、土質による違いは殆ど無いことが分かる。これは、打撃貫入による土の急速な破壊は、土の透水性に関わらず非排水剪断強度に依存するためである。そのため、境界となる地下水位の把握が重要となる。この図3から得られたS波振幅とNd値の関係式を用いて、S波振幅よりNd値を推定し、これをNs値としてNd値並びにN値と比較した結果を図4に示す。図4から分かるように、全体的にNs値とNd値並びにN値は良く適合し、砂礫層に相当する深度11〜17mでは、動的貫入試験結果のNd値並びに標準貫入試験結果のN値が過大な値を示すことが分かる。
【0024】
実際の調査の手順を図5に示す。まず、必要に応じて使用する打撃貫入装置の適用試験を行う。従来の標準貫入試験により地質並びにN値が既知である地盤において、用いようとする打撃貫入装置と標準貫入試験とのそれぞれの貫入抵抗値の関係を明らかにする。これは、1箇所以上で行う。用いようとする打撃貫入装置が、オートマッチックラムサウンディング等の既にN値との相関が認められている装置の場合には、この適用試験を行う必要はない。この適用試験は、必ずしも調査現場で実施する必要はなく、任意の試験サイトで行ってよい。
【0025】
次に調査現場において予備調査を行う。この予備調査は、用いようとする打撃貫入装置とその打撃貫入によって発生した弾性波(S波)の最大振幅との関係を求めるための調査であり、最低1箇所で行う。この場合、オートマッチックラムサウンディングのように、それぞれの関係が既に明らかな場合には、その関係が適用できることを確認するだけでよい。即ち、調査現場において予め地質が既知の場合(標準貫入試験が行われている場合)には、その近傍で予備調査を実施することで、前記適用試験並びにこの予備調査の目的を達成することができる。標準貫入試験が行われていない場合は、標準貫入試験時にS波観測を行えばよい。それによってサンプラで同時に土質試料を採取することができる。
【0026】
そして本調査を行う。本調査は、上記の打撃貫入装置を使用し、その貫入体深度毎の弾性波(S波)測定を連続的に行って最大振幅を求めるものである。打撃貫入に伴うトルク測定は必要ない。貫入試験終了後は、貫入孔の孔内水位を測定し、地下水位を確認する。この作業は、調査現場内で必要箇所について繰り返し行う。
【0027】
最後に結果の整理を行う。S波振幅により得られた貫入抵抗値を深度毎に示し(貫入曲線)、その貫入抵抗値の分布状況から地質を想定して表す。本方法は、深度方向に連続的に実施することができるので、深度方向の貫入抵抗値の分布を連続的に求めることができる。これにより、従来方法に比較して、密な貫入抵抗値分布を求めることができ、精度の良い地盤評価(地層区分並びにN値の推定)を行うことが可能となる。
【0028】
【発明の効果】
本発明は上記のように、打撃貫入装置から任意の距離離れた地点にS波センサを設置して、貫入体深度と共に弾性波の最大振幅を測定する方法なので、簡単な測定システムで、容易に、経済的に、調査作業が行える。また、弾性波の振幅情報を用いるものなので、ロッドと周囲の摩擦によるデータのばらつきの影響が少なく、土質によらず地盤の強度を正しく評価することができる。
【0029】
本発明方法は、打撃貫入がハンマの自然落下に限られないため、油圧ハンマなど打撃貫入能力の大きな貫入装置を用いることもでき、貫入抵抗の大きな地盤や大深度への適用が可能となる。また、ロッドと周囲摩擦の補正作業を必要としないため、作業能率を大幅に向上させることができるし、連続的に密な測定が可能となる。
【図面の簡単な説明】
【図1】本発明方法で用いる試験装置の一例を示す説明図。
【図2】標準貫入試験のN値とS波最大振幅の対比関係を示す説明図。
【図3】動的貫入試験のNd値とS波振幅の関係を示す説明図。
【図4】換算Nd値、S波振幅から推定したNs値とN値の深度分布図。
【図5】調査手順を示す説明図。
【符号の説明】
10 ロッド
12 コーン
14 ノッキングヘッド
16 ハンマ
20 打撃貫入装置
22 S波センサ
24 測定器
26 パーソナルコンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground investigation method for estimating the penetration resistance value from the maximum amplitude of S wave vibration generated at the time of penetration and evaluating the mechanical characteristics of the ground. This technique is useful for obtaining a penetration resistance value corresponding to the N value of the ground, which is a design guideline for constructing a structure, etc. simply and efficiently economically.
[0002]
[Prior art]
When constructing a structure or the like on a ground made of natural or artificial objects, it is necessary to grasp the mechanical characteristics of the ground in advance and to perform an appropriate structure design based on that. For this purpose, various ground survey methods have been proposed and put into practical use.
[0003]
As a typical method for investigating the strength of the ground, there is a standard penetration test method (JIS A 1219) defined by Japanese Industrial Standards. This is a test method for obtaining an N value for knowing the relative values of the hardness and firmness of the soil at the original position. Specifically, a standard penetration test sampler is attached to the tip of the rod, it is lowered to the drilled borehole bottom, and the rod is hit on the ground by a free fall (drop height 76 cm) of a hammer (63.5 kg). The number of strikes (N value) required to penetrate 30 cm between 15 and 45 cm from the bottom of the hole is determined. The N value obtained by this standard penetration test method has been used for many years as a design index for structures in Japan with a complex ground configuration.
[0004]
However, a boring machine and a boring pump are required for drilling the test hole, and mud water (construction sludge) is forced to be used to stabilize the hole wall during drilling. The survey work such as the work and the 15 cm pre-striking work is complicated, requires experience, and takes time to investigate. Such a standard penetration test is essentially inconsistent in impact energy due to the shape of the hammer and knocking head, the deflection of the rod, the condition of the drilling hole, the way of working, and other conditions, and the variation in measured values Easy to grow. Moreover, since the measurement interval is wide, it is difficult to obtain detailed ground information in the depth direction. Therefore, recently, with the increase of design load (especially seismic external force) and the introduction of the limit state design method (reliability design), various errors in which the N value has existed until now have become a big problem.
[0005]
One of the sounding methods that replaces the standard penetration test method is a dynamic penetration test method (such as automatic ram sounding). This is a method in which a rod with a cone attached to the tip is driven continuously into the ground by a free fall (falling height 50 cm) of a hammer (63.5 kg), and the number of hits (Nd 'value) per 20 cm penetration length is obtained. is there. As the rod penetrates, frictional resistance against the soil is generated on the rod peripheral surface. Therefore, the torque Mv acting on the rod is measured for each predetermined penetration amount, and the following correction formula Nd = Nd′−a · Mv (however, a is a coefficient)
To obtain the penetration resistance value Nd at the tip. The Nd value obtained in this way is evaluated and used as Nd≈N.
[0006]
[Problems to be solved by the invention]
In a dynamic penetration test method that does not require boring, if a strata with a high penetration resistance such as gravel is present, it will take time to hit and may not be able to penetrate. Furthermore, the influence of the friction between the rod connected to the tip cone and the surrounding ground affects the penetration resistance value Nd of the tip. That is, since the energy hit on the surface of the rod is not completely transmitted to the cone at the tip due to loss due to friction between the rod and the surroundings, the obtained penetration resistance value is overestimated. For this reason, as described above, in the dynamic penetration test, the maximum torque is measured by rotating the rod for each penetration test, and this is corrected as the frictional force between the rod and the surrounding ground. The procedure for determining the resistance value must be taken. Such a procedure impairs workability and affects data reliability.
[0007]
An object of the present invention is to provide a method capable of correctly evaluating the ground strength while having a simple measurement system with little variation in measurement data, good workability.
[0008]
[Means for Solving the Problems]
The inventors of the present invention installed a seismometer on the ground surface, conducted a hit penetration test, detected and analyzed the elastic wave generated by the hit penetration, and found that the maximum amplitude of the S wave (shear wave) and the N value were between We found that there is a correlation. For example, the amplitude of the S wave increases in the case of sandy soil (sand or gravel) having a large N value on the ground (measuring soil), and the amplitude of the S wave decreases in the case of viscous soil with a small N value. . Since the S wave amplitude depends on the magnitude of the striking energy, it is a condition that the striking energy is stable. However, the penetration resistance can be directly evaluated by measuring the maximum amplitude of the S wave. The present invention has been completed based on such knowledge.
[0009]
The present invention hits and penetrates a rod with a penetrating body attached to the tip, and detects an elastic wave generated therewith with an S wave sensor installed on the ground surface, and determines the penetrating body depth and the maximum amplitude of S wave vibration, The S wave maximum amplitude is corrected for attenuation according to the elastic wave propagation distance from the penetrating body to the S wave sensor, and corresponds to the S wave maximum amplitude and N value by the impact penetration test at at least one point in the investigation site. Obtaining a relational expression with the penetration resistance value, and estimating the N value at the penetration depth by using the relational expression based on the maximum S- wave amplitude obtained at the time of impact penetration at another point of the investigation site. This is the survey method.
[0010]
In the present invention, the detection signal of the S wave sensor is digitized by A / D conversion and digitally recorded by the data recording unit, and the digitized S wave amplitude is automatically processed by a computer to automatically process the maximum amplitude of the S wave. The penetration resistance value at each penetration depth is analyzed. In this method, by continuously hitting in the depth direction, the penetration resistance value of the ground can be obtained and displayed continuously in the depth direction. The S wave sensor to be used is preferably a speedometer type seismometer capable of detecting two components, a vertical component and a horizontal component.
[0011]
The installation position of the S-wave sensor is arbitrary, but it is preferable that the S-wave sensor is located at a distance 0.5 to 1.5 times the survey plan depth from the impact penetration point, and the level is about the same as the survey plan depth. It is best to set it at a distance. This is because if it is too close to the impact penetration point, work noise is likely to enter, and if it is too far, it is difficult to detect the direct wave. Therefore, it is better to install the S-wave sensor at a more distant position as the survey plan depth becomes deeper. It is preferable to change. One S-wave sensor may be used, but it goes without saying that a plurality of S-wave sensors may be arranged at intervals.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A rod with a penetrating body at the tip is struck into the ground with a constant striking energy by the natural or forced drop of a hammer. On the other hand, an S wave sensor is installed on the surface of the ground at an arbitrary distance (preferably a distance similar to the penetration depth) from the impact penetration point so that the S wave amplitude can be observed. The S wave vibration generated with the impact penetration is detected by the S wave sensor. The S wave detection signal is digitized by A / D conversion, digitally recorded by the data recording unit, and the digitized S wave amplitude is processed by a personal computer to automatically obtain the maximum S wave amplitude, and each intruder Estimate the penetration resistance value at the depth and evaluate the mechanical properties of the ground.
[0013]
According to the method of the present invention, it is possible to continuously hit in the depth direction and obtain the ground penetration resistance value continuously in the depth direction. For hitting penetration, a free fall of a hammer may be used as in the prior art, but a penetrating device (for example, a hydraulic hammer, a diesel hammer, etc.) having a great hitting ability can also be used. As a result, the work efficiency of the impact intrusion is increased, and it is possible to apply it to a ground having a high penetration resistance such as a gravel layer or a ground with a high degree of consolidation and a large depth.
[0014]
The observed elastic wave waveform is recorded and stored in the data recording unit. In addition, it is preferable to record in the header various information related to the relative position information, gain information, and other data recording conditions between the penetrating body and the S wave sensor at this time because subsequent analysis and result display are facilitated. .
[0015]
The S wave sensor is preferably installed on the ground surface because of its good workability, but it can also be installed in an existing geological survey boring hole or the like. Elastic waves are generated when the penetrating body at the tip breaks the ground and penetrates into the ground by hammering. This elastic wave propagates through the surrounding ground and reaches the S wave sensor. Of course, if there is a stratum boundary, reflected waves, refracted waves, and the like reach the S wave sensor, but the maximum amplitude when the reaching wave is assumed to be a direct wave contributes to the penetration resistance value of the ground. The relative position between the penetrating body at the tip and the S wave sensor changes for each impact, and the attenuation varies depending on the propagation distance of the elastic wave. Therefore, it is necessary to correct the propagation distance attenuation for the amplitude. That is, since the propagation distance from the penetration body depth to the S wave sensor can be calculated, the attenuation of the amplitude may be compensated according to the propagation distance. This correction can be automatically performed by a personal computer. The method for observing the S-wave amplitude of the present invention can be sufficiently applied if the depth is about 50 m or less.
[0016]
If the ground having a known penetration resistance value is previously correlated with the amplitude of the elastic wave, the penetration resistance value can be directly determined from the amplitude of the elastic wave in subsequent measurements. These series of calculation algorithms can be easily incorporated in a computer, and can be automatically analyzed from reading the maximum amplitude to calculating the penetration resistance value.
[0017]
Since the method of the present invention does not require correction work of the rod and the surrounding friction as in the conventional dynamic penetration test, the investigation can be continuously performed in the depth direction, and hence the penetration resistance value in the depth direction. The distribution of can also be obtained continuously. Thereby, compared with the conventional method, dense penetration resistance value distribution can be calculated | required in the depth direction, and a highly accurate ground evaluation can be performed.
[0018]
【Example】
FIG. 1 is an explanatory diagram showing an example of a measurement system used for carrying out the method of the present invention. As the impact penetrating device itself, a conventionally used device such as a standard penetrating test or auto-match ram sounding can be used as it is. Of course, any other impact penetrating device may be used, but it is important that the impact energy is stable. In FIG. 1, an example using an auto-matchock ram sounding device having a configuration in which a cone 12 is attached to a tip (lower end) of a rod 10 and a hammer 16 is freely dropped from a predetermined position to a knocking head 14 at an upper end to allow a hammer to penetrate. Show.
[0019]
An S wave sensor 22 is installed on the ground surface separated from the impact penetrating device 20 by an arbitrary distance L. The installation position is optimal at a point that is approximately the same distance as the penetration depth D, but the depth changes due to the impact penetration, so L is a point that is separated by about (0.5 to 1.5) D. It's okay. However, it is necessary to be able to correctly grasp the relative position between the cone and the S wave sensor, and the penetration depth D is also measured for each impact penetration. The S wave sensor 22 may be a seismometer that detects two components, a vertical component and a horizontal component, and here, a speedometer type sensor is used. The output signal of the S wave sensor 22 is guided to the measuring device 24, where it is amplified, A / D converted, and recorded in the data recording unit. The digitized S-wave amplitude is processed by a personal computer (PC) 26, the maximum amplitude of the S-wave is automatically obtained, and the penetration resistance value at each hitting point (penetration depth) is analyzed. Displayed.
[0020]
When the hammer 16 strikes the knocking head 14, the cone 12 at the tip breaks the ground and penetrates into the ground. At that time, an elastic wave is generated. This elastic wave propagates through the surrounding ground and reaches the S wave sensor 22 installed on the ground surface. If there is a stratum boundary as well as a direct wave directly from the penetrator position to the S wave sensor, there are also reflected waves and refracted waves. Since the relative position between the tip cone 12 and the S-wave sensor 22 changes with each hit, the amount of attenuation differs depending on the propagation distance of the elastic wave, so the distance between the cone 12 and the S-wave sensor 22. Is used to correct the distance attenuation of the maximum amplitude of the S wave to reach. In this method, if the penetration depth is shallower than about 50 m, it is possible to estimate the N value from the maximum amplitude regardless of the transmission path of the S wave.
[0021]
FIG. 2 shows an example of an elastic wave observation result when using a standard penetration tester and using the impact as a vibration source. A shows the N value by the standard penetration test, B shows the vibration waveform detected by the seismometer installed 20 m away from the standard penetration test machine installation position, and C shows the N value and amplitude obtained by the standard penetration test. The comparison with the S wave maximum amplitude after the distance attenuation correction is shown. From this result, it can be confirmed that there is a good correspondence tendency between the N value and the amplitude of the elastic wave. That is, the amplitude of the S wave is large in the case of sand or gravel with a large N value of the measurement target soil, and the amplitude of the S wave is small in the case of clayey soil with a small N value of the ground.
[0022]
Next, FIG. 3 shows the relationship between the dynamic penetration resistance Nd value and the S wave amplitude in the dynamic penetration test (automatic ram sounding). This is a ram sounding test and the amount of penetration of the rod and the S wave generated at that time are measured for each impact. Then, the Nd value (penetration resistance value at the tip end corrected for the influence of the rod peripheral surface friction due to the torque) converted to the number of hits per 20 cm is obtained from the penetration amount per hit, and the S wave due to the hit is obtained. The maximum amplitude was corrected for distance attenuation. A is the case below the groundwater level (unsaturated), and B is the case below the groundwater level (saturated). In FIG. 3, the data of the gravel layer near the depth of 11 to 17 m is excluded.
[0023]
From FIG. 3, it can be seen that the relationship between the Nd value and the S wave amplitude differs between unsaturated soil and saturated soil, but there is almost no difference due to soil quality. This is because rapid destruction of soil due to impact penetration depends on undrained shear strength regardless of soil permeability. Therefore, it is important to understand the groundwater level that is the boundary. FIG. 4 shows a result of estimating the Nd value from the S wave amplitude using the relational expression between the S wave amplitude and the Nd value obtained from FIG. 3 and comparing it with the Nd value and the N value as the Ns value. As can be seen from FIG. 4, the Ns value, the Nd value, and the N value are generally well matched. At a depth of 11 to 17 m corresponding to the gravel layer, the Nd value of the dynamic penetration test result and the N value of the standard penetration test result are obtained. It can be seen that indicates an excessive value.
[0024]
The actual investigation procedure is shown in FIG. First, an application test of the impact penetrating device to be used is performed as necessary. The relationship between the respective penetration resistance values of the hitting penetration device to be used and the standard penetration test is clarified in the ground whose geology and N value are known by the conventional standard penetration test. This is done at one or more locations. If the impact penetrating device to be used is a device that has already been correlated with the N value, such as auto-match ram sounding, this application test need not be performed. This application test does not necessarily have to be performed at the survey site, and may be performed at any test site.
[0025]
Next, a preliminary survey is conducted at the survey site. This preliminary investigation is an investigation for obtaining the relationship between the impact penetrating device to be used and the maximum amplitude of the elastic wave (S wave) generated by the impact penetrating, and is performed at least at one location. In this case, if each relationship is already clear, as in auto-match crum sounding, it is only necessary to confirm that the relationship is applicable. That is, when the geology is known in advance at the survey site (when the standard penetration test is performed), the preliminary test is performed in the vicinity to achieve the purpose of the application test and the preliminary survey. it can. When the standard penetration test is not performed, S-wave observation may be performed during the standard penetration test. As a result, it is possible to collect soil samples simultaneously with the sampler.
[0026]
And this survey is conducted. In this investigation, the above-mentioned impact penetrating device is used, and the maximum amplitude is obtained by continuously measuring the elastic wave (S wave) at each penetration depth. It is not necessary to measure the torque associated with the impact penetration. After the penetration test, measure the water level in the penetration hole and check the groundwater level. This work is repeated for necessary parts in the survey site.
[0027]
Finally, organize the results. The penetration resistance value obtained by the S wave amplitude is shown for each depth (penetration curve), and the geology is assumed from the distribution state of the penetration resistance value. Since this method can be carried out continuously in the depth direction, the distribution of penetration resistance values in the depth direction can be obtained continuously. Thereby, compared with the conventional method, dense penetration resistance value distribution can be calculated | required and it becomes possible to perform an accurate ground evaluation (estimate division and N value estimation).
[0028]
【The invention's effect】
As described above, the present invention is a method of measuring the maximum amplitude of elastic waves together with the depth of the penetration body by installing an S wave sensor at an arbitrary distance away from the impact penetrating device. Investigate economically. Further, since the amplitude information of the elastic wave is used, the influence of data variation due to the friction between the rod and the surroundings is small, and the strength of the ground can be correctly evaluated regardless of the soil quality.
[0029]
The method according to the present invention is not limited to the natural fall of the hammer, so that it is possible to use a penetrating device having a large striking penetration capability, such as a hydraulic hammer, and it can be applied to the ground having a large penetration resistance and a large depth. In addition, since correction work for the rod and the surrounding friction is not required, the work efficiency can be greatly improved, and continuous dense measurement is possible.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a test apparatus used in the method of the present invention.
FIG. 2 is an explanatory diagram showing a comparison relationship between an N value and a S-wave maximum amplitude in a standard penetration test.
FIG. 3 is an explanatory diagram showing a relationship between an Nd value and an S wave amplitude in a dynamic penetration test.
FIG. 4 is an Ns value estimated from a converted Nd value and an S wave amplitude, and a depth distribution diagram of the N value.
FIG. 5 is an explanatory diagram showing an investigation procedure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rod 12 Cone 14 Knocking head 16 Hammer 20 Impact penetrating device 22 S wave sensor 24 Measuring instrument 26 Personal computer

Claims (5)

先端に貫入体を取り付けたロッドを地盤に打撃貫入し、それに伴い発生する弾性波を地表に設置したS波センサで検出し、貫入体深度とS波振動の最大振幅を求め、S波最大振幅については貫入体からS波センサまでの弾性波伝播距離に応じた減衰補正を行うこととし、調査現場の少なくとも一地点での打撃貫入試験によりS波最大振幅とN値に相当する貫入抵抗値との関係式を求め、調査現場の他地点での打撃貫入時に得られるS波最大振幅により前記関係式を用いて当該貫入体深度での値を推定することを特徴とする地盤調査方法。A rod fitted with a penetrating member to the tip struck penetrate the ground, is detected by the S-wave sensor disposed an elastic wave to the surface to be generated with it, determine the maximum amplitude of the penetration body depth and S-wave vibration, S-wave maximum amplitude Is to perform attenuation correction according to the elastic wave propagation distance from the penetrating body to the S wave sensor, and the penetration resistance value corresponding to the S wave maximum amplitude and the N value is determined by the impact penetration test at at least one point in the investigation site. A ground survey method characterized in that the N value at the penetration depth is estimated by using the relational equation based on the maximum S- wave amplitude obtained at the time of impact penetration at another point of the survey site . S波センサの検出信号をA/D変換によりデジタル化し、データ収録部でデジタル記録すると共に、数値化したS波振幅をコンピュータでデータ処理して自動的にS波の最大振幅を求め、それぞれの貫入体深度における貫入抵抗値を解析する請求項1記載の地盤調査方法。The detection signal of the S wave sensor is digitized by A / D conversion, digitally recorded by a data recording unit, and the digitized S wave amplitude is processed by a computer to automatically obtain the maximum S wave amplitude. The ground investigation method according to claim 1, wherein the penetration resistance value at the penetration depth is analyzed. 深度方向に連続的に打撃貫入を行い、深度方向に連続的に地盤の貫入抵抗値を求めて表示する請求項2記載の地盤調査方法。The ground investigation method according to claim 2, wherein the impact intrusion is continuously performed in the depth direction, and the penetration resistance value of the ground is continuously obtained in the depth direction and displayed. S波センサが、鉛直成分と水平成分の2成分を検出する地震計である請求項1乃至3のいずれかに記載の地盤調査方法。The ground survey method according to any one of claims 1 to 3, wherein the S wave sensor is a seismometer that detects two components of a vertical component and a horizontal component. S波センサの設置地点の打撃貫入地点からの水平距離を、調査計画深さの0.5〜1.5倍の範囲に設定する請求項4記載の地盤調査方法。The ground survey method according to claim 4, wherein the horizontal distance from the impact penetration point of the installation point of the S wave sensor is set to a range of 0.5 to 1.5 times the planned depth of survey.
JP2002129182A 2002-04-30 2002-04-30 Ground survey method using S-wave amplitude associated with impact penetration Expired - Fee Related JP4071988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129182A JP4071988B2 (en) 2002-04-30 2002-04-30 Ground survey method using S-wave amplitude associated with impact penetration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129182A JP4071988B2 (en) 2002-04-30 2002-04-30 Ground survey method using S-wave amplitude associated with impact penetration

Publications (2)

Publication Number Publication Date
JP2003321828A JP2003321828A (en) 2003-11-14
JP4071988B2 true JP4071988B2 (en) 2008-04-02

Family

ID=29542684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129182A Expired - Fee Related JP4071988B2 (en) 2002-04-30 2002-04-30 Ground survey method using S-wave amplitude associated with impact penetration

Country Status (1)

Country Link
JP (1) JP4071988B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1028061C1 (en) * 2004-09-29 2006-03-30 Jan Wind Method for positioning concrete piles as well as piles, columns and formwork suitable for use in this method.
KR100643055B1 (en) 2005-06-24 2006-11-10 (주) 토건테크 Compaction Management and Roadbed Evaluation System
KR100742774B1 (en) 2006-01-12 2007-07-26 고려대학교 산학협력단 Wing penetration type seismic velocity measuring device and measuring method using the same
KR100756892B1 (en) 2006-05-26 2007-09-07 한국해양연구원 Instrument for testing in-hole seismic wave
FR2938276B1 (en) * 2008-09-19 2012-11-16 Sol Solution METHOD FOR IN SITU MEASUREMENT OF SOIL PROPERTIES USING A PENETROMETER
KR101231654B1 (en) * 2010-12-10 2013-02-08 한국건설기술연구원 Measuring apparatus of sheer module for soil
JP5766974B2 (en) * 2011-02-24 2015-08-19 東亜建設工業株式会社 Investigation method of cast-in-place pile driving ground and ground surveying machine attachment
CN105155504B (en) * 2015-10-09 2017-06-06 铁道第三勘察设计院集团有限公司 The lateral seismic transmission nondestructive detection system of railway bed and detection method
KR20170082247A (en) * 2016-01-06 2017-07-14 동양대학교 산학협력단 An image processing method for soil analysis
JP6602675B2 (en) * 2016-01-12 2019-11-06 戸田建設株式会社 Geological exploration method in front of the face
JP6944899B2 (en) * 2018-03-23 2021-10-06 五洋建設株式会社 Ground structure estimation method
CN110924932A (en) * 2019-12-09 2020-03-27 中铁第五勘察设计院集团有限公司 Penetration test equipment and penetration test recorder thereof
JP7499036B2 (en) * 2020-02-03 2024-06-13 清水建設株式会社 Device
CN113293810A (en) * 2021-07-08 2021-08-24 邱玉双 Foundation quality detection device for hydraulic engineering

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142486A (en) * 1987-11-30 1989-06-05 Central Res Inst Of Electric Power Ind Subsoil through-vision method
JP2958362B2 (en) * 1990-04-28 1999-10-06 孝次 時松 Measurement, analysis and judgment method of ground structure
JP2000180561A (en) * 1998-12-17 2000-06-30 Ohbayashi Corp Ground investigation method

Also Published As

Publication number Publication date
JP2003321828A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4071988B2 (en) Ground survey method using S-wave amplitude associated with impact penetration
JP4458465B2 (en) Ground investigation method and device by measuring excess pore water pressure during impact penetration
JP2014122464A (en) Subsurface exploration method and subsurface exploration apparatus
Lo et al. MEASUREMENT OF UNKNOWN BRIDGE FOUNDATION DEPTH BY PARALLEL SEISMIC METHOD.
US7152467B2 (en) Parallel seismic depth testing using a cone penetrometer
KR100742773B1 (en) Elastic wave velocity measuring device and measuring method using the same
JPH08226975A (en) Method for surveying geology in front of face of tunnel
Sack et al. Combined measurement of unknown foundation depths and soil properties with nondestructive evaluation methods
KR101011013B1 (en) Evaluation Method and Measuring Device for Bearing Capacity and Settlement Capacity of Standard Ground Using Standard Penetration Test Equipment
Žaržojus et al. Energy transfer measuring in dynamic probing test in layered geological strata
JP2000337070A (en) Geological / geological change judgment method during excavation or drilling
JP3072621B2 (en) Ground survey method and device using S-wave generator and cone penetration device mounted on ground survey vehicle
CN117072158A (en) Method for inverting stratum dynamic rock mechanical parameters through underground standard penetration number
Grizi et al. Pile Driving Vibration Attenuation Relationships: Overview and Calibration Using Field Measurements
JP2001342619A (en) Judgment method for geological and geological changes during drilling or drilling
Gandolfo* et al. The parallel seismic method for foundation depth evaluation: A case study in Arthur Alvim, São Paulo, Brazil
KR102283609B1 (en) Method for evaluating the embedment depth and ground bearing capacity of unknown bridge foundation
JP2004138447A (en) Physical property evaluating method for base rock
Sack et al. Combined parallel seismic and cone penetrometer testing of existing bridge foundations and levee sheet piles for length and capacity evaluations
Noor et al. Dynamic load test of full-scale pile for the construction and rehabilitation of bridges
Ghafghazi et al. Instrumented Becker penetration test for improved characterization of gravelly deposits
Sack et al. Combined parallel seismic and cone penetrometer testing of existing foundations for foundation length and evaluation
JP2000186319A (en) Ground investigation method
JP2000180561A (en) Ground investigation method
Grizi et al. Understanding the Energy Transfer Mechanism in the Near Field of Impact Driven Piles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees