[go: up one dir, main page]

JP4070452B2 - Electronic components - Google Patents

Electronic components Download PDF

Info

Publication number
JP4070452B2
JP4070452B2 JP2001380055A JP2001380055A JP4070452B2 JP 4070452 B2 JP4070452 B2 JP 4070452B2 JP 2001380055 A JP2001380055 A JP 2001380055A JP 2001380055 A JP2001380055 A JP 2001380055A JP 4070452 B2 JP4070452 B2 JP 4070452B2
Authority
JP
Japan
Prior art keywords
substrate
light
light emitting
emitting element
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001380055A
Other languages
Japanese (ja)
Other versions
JP2003179268A (en
Inventor
和司 東
和之 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001380055A priority Critical patent/JP4070452B2/en
Publication of JP2003179268A publication Critical patent/JP2003179268A/en
Application granted granted Critical
Publication of JP4070452B2 publication Critical patent/JP4070452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Light Receiving Elements (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品の組立方法、及び該組立方法にて組み立てられた電子部品に関する。
【0002】
【従来の技術】
近年、電子部品の小型、軽量化が進んでおり、より小型化を図るために多くの製造方法が提案されている。その中には、一つの機能を有するデバイスに対して二つ以上の機能を持つ電子部品を一体化することにより、上記小型化を図っているものも多い。
従来、電子部品を高精度に、かつ高信頼性にて配列するために、様々な実装プロセス及び設備が開発されてきた。以下に図を参照して電子部品の従来の組立方法について説明する。
図12は、フリップチップ実装工法による電子部品の従来の組立方法を示した図である。該フリップチップ実装工法では、まず、半導体ICチップ1に形成されている電極パッド7上に金の突起電極3を形成する。次に、実装基板2上に形成されている基板電極4と上記突起電極3との間に、導電性の接合材料として銀ペースト又は異方性導電材料5を設けた後、上記基板電極4と上記突起電極3とを位置合わせし、実装基板2上に半導体ICチップ1を実装する。その後、上記銀ペースト又は異方性導電材料5を硬化させて、半導体ICチップ1と実装基板2との導通を図る。
【0003】
図13は、ワイヤボンド工法による電子部品の従来の組立方法を示した図である。該ワイヤボンド工法では、半導体ICチップ1を接着剤8にて実装基板2へ接着した後、半導体ICチップ1の電極パッド7と、基板電極4とを金ワイヤ6にて結線する。
【0004】
【発明が解決しようとする課題】
しかしながら、複雑な部品構成持ったデバイスを上述のような工法によって組み立てる場合、実装基板4上に部品を一つ一つ置くという動作が行われる。よって、従来の組立方法では、実装精度がばらつくので、高精度が要求されるデバイスの組立方法としては不適である。又、上記銀ペースト5のような導電性接着剤上に部品を置くため、完成品の高さにばらつきが生じやすく、次工程の実装基板2への実装の際に、上記基板電極4と上記突起電極3とが非接触となるオープン不良が発生する可能性がある。又、部品点数が多い場合、実装終了までに長時間を要し、導電性接着剤7における部品実装品質、及びタクトより生じるコスト高という課題を有していた。
本発明はこのような問題点を解決するためになされたもので、容易であり、かつ高品質及び低コストの電子部品の組立方法、並びに該組立方法にて組み立てられた電子部品を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため本発明は以下のように構成する。
即ち、本発明の第1態様における電子部品組立方向は、発光素子を実装した第1基板と、受光部を形成した第2基板とを、遮光用貫通穴に上記発光素子を挿入してかつ上記発光素子と上記第2基板とを対向させて配置し、
該対向させて配置した状態にて、電極を形成した立体基板に上記第2基板を実装して、発光している上記発光素子に隣接する上記受光部への光の影響を防止する、
ことを特徴とする。
【0006】
上記立体基板が上記遮光用貫通穴を有するとき、上記発光素子と上記第2基板とを対向させて配置して上記発光素子と上記第2基板とを接合するとともに上記立体基板への上記第2基板の実装を行うこともできる。
【0007】
上記遮光用貫通穴が不透光な遮光用基板に形成されているとき、上記遮光用基板の上記遮光用貫通穴に挿入された上記発光素子に対向して上記第2基板を配置して上記第1基板と上記第2基板との間に上記遮光用基板を設けた状態で上記発光素子と上記第2基板とを合体させた後、上記第2基板を上記立体基板へ実装することもできる。
【0008】
上記第2基板はSi基板にてなり、該Si基板上に形成した突起電極を接合材料として上記発光素子は接合してもよい。
【0009】
上記立体基板への上記第2基板の実装後、紫外線硬化型の封止樹脂にて上記第2基板の封止を行うこともできる。
【0010】
又、本発明の第2態様の電子部品は、複数の発光素子を実装した第1基板と、
複数の受光部を形成した第2基板と、
上記発光素子に対応して形成され上記発光素子が挿入される複数の遮光用貫通穴、上記第1基板を透過した光を上記受光部へ供給する光供給用開口、及び上記第2基板と電気的に接続される基板電極を形成し、上記第1基板と上記第2基板とに挟まれて配置される立体基板とを有し、
上記立体基板と上記第1基板とを上記発光素子と上記遮光用貫通穴とを合わせることで配置し、かつ、上記発光素子に対向させて上記第2基板と装着したことを特徴とする。
【0011】
【発明の実施の形態】
本発明の実施形態である電子部品組立方法、及び該組立方法にて組み立てられた電子部品について、図を参照しながら以下に説明する。尚、各図において同じ構成部分については同じ符号を付している。
上記電子部品組立方法は以下のように行われる。
第1実施形態;
まず最初に、第1基板の機能を果たす一例に相当する石英基板111上に形成されている電極上に、金のボールボンディング技術を用いて、図5に示すように、突起電極112を形成する。尚、上記石英基板111には、コリメータレンズが形成されている。次のステップでは、石英基板111上のそれぞれの上記突起電極112に対して、350〜400℃の温度と、一つの突起電極112当たり約500〜1000mNの荷重を加えることで、発光素子113を熱圧着にて接合する。つまり、発光素子113に備わる一方の電極と上記突起電極112とを接合する。尚、上記発光素子113の機能を果たす一例として、本実施形態では、LED(発光ダイオード)を例に採る。又、各図において、図示の便宜上、発光素子113の一端面の全体に突起電極112が存在するような図示となっているが、実際には、発光素子113に備わる出射光窓の部分を除いた、上記一端面の一部のみに突起電極112が存在する。
【0012】
一方、第2基板の機能を果たす一例に相当するSi基板114に形成されている発光素子駆動用回路119に含まれる電極上に、金のボールボンディング技術を用いて、図7に示すように、突起電極115を形成する。該突起電極115は、外周電極118を除いて、それぞれの上記発光素子113の配列に対応して形成される。又、上記Si基板114には、上記石英基板111を通して供給される光を受光するための受光部117が形成されている。さらに、該受光部117と上記発光素子駆動用回路119とは電気的に接続されており、受光部117で検出した受信光に応じて発光素子駆動用回路119によって発光素子113から光が発せられる。
上記突起電極115の形成後、図8に示すように、突起電極115上に、転写法又はディスペンス法で導電性接着剤116を供給する。尚、上記導電性接着剤116の一例として、本実施形態では銀ペーストを使用する。
【0013】
さらに本実施形態では、不透光な材料にて成形され図1に示すような3次元立体基板120を用いる。該立体基板120は、その厚み方向に直交し互いに対向する両面のそれぞれを掘り込んで形成された第1凹部121及び第2凹部122を有し、第2凹部122内に基板電極125を形成するとともに該基板電極125と電気的に接続され当該立体基板120の外面に外部電極126を形成している。このような形態にてなるものを立体基板とする。尚、一般的に立体基板とは、凹部を有し、平面部分への配線形成に加えて上記凹部を形成する立上がり部分にも配線を形成した基板であり、部品実装の自由度を増し小型一体化を実現する基板である。さらに、当該立体基板120では、第1凹部121及び第2凹部122にて挟まれた隔壁123に、当該隔壁123を貫通した遮光用貫通穴124を有している。該遮光用貫通穴124は、上記発光素子113の配列に対応して形成される。又、石英基板111を通して供給される光を上記受光部117へ到達させるための光供給用開口128が上記隔壁123を貫通して、かつ受光部117に対応して形成されている。よって、遮光用貫通穴124と光供給用開口128との間には、発光している発光素子113に隣接する受光部117への光の影響を防止する遮光壁129が存在することになる。又、立体基板120には、基板電極125を含む回路パターンが形成されており、以下に説明するように、上記基板電極125にSi基板114の外周電極118が接合される。又、立体基板120は、上記第2凹部122に近接する場所に、上記回路パターンと電気的に接続されている外部電極126を有する。
【0014】
上述したように、発光素子113が取り付けられた石英基板111と、導電性接着剤116を設けたSi基板114と、立体基板120とについて、まず、上記遮光用貫通穴124に発光素子113を挿入しながら、発光素子113付きの石英基板111を第1凹部121に装着する。次に、遮光用貫通穴124に挿入されたそれぞれの発光素子113に対向させて、上記導電性接着剤116を設けたSi基板114上の各突起電極115を位置決めし、Si基板114を上記第2凹部122に装着する。該装着により、突起電極115は、発光素子113に備わる他方の電極と接触する。さらに、上記装着により、Si基板114の上記外周電極118が立体基板120の上記基板電極125に上記導電性接着剤116を介して接触する。又、光供給用開口128と受光部117とが対応して配置される。
さらに、遮光用貫通穴124に発光素子113が挿入され、かつ石英基板111とSi基板114とで上記隔壁123を挟み込んで石英基板111及びSi基板114を合体させることで、発光素子113が発する光は、上記遮光壁129にて遮られ、発光している発光素子113に隣接して配置されている受光部117への光の影響を防止することができる。
【0015】
尚、上述のように本実施形態では、発光素子113付きの石英基板111を第1凹部121に装着した後、Si基板114を上記第2凹部122に装着する手順を踏んでいるが、これに限定されず、発光素子113付きの石英基板111を第1凹部121に装着すると同時に、Si基板114を上記第2凹部122に装着してもよいし、先にSi基板114を上記第2凹部122に装着した後、発光素子113付きの石英基板111を第1凹部121に装着してもよい。
【0016】
上述のように石英基板111及びSi基板114を立体基板120へ装着した後、加熱して、上記導電性接着剤116を硬化させ、上記Si基板114の上記外周電極118と、立体基板120の上記基板電極125との電気的接続、及び突起電極115と発光素子113の上記他方の電極との電気的接続を図る。さらに、上記第2凹部122に装着されたSi基板114の周囲に封止材127を供給して、上記外周電極118と上記基板電極125との接続部分の封止を行う。ここで、本実施形態では封止材127として光硬化型樹脂を用い、上記外周電極118を上記基板電極125へ圧接した状態で、紫外線を照射することにより封止材127を硬化させる。尚、熱硬化型樹脂でも同様の構成が成り立つ。以上の製造工程にて、図1に示す電子部品101が形成される。
【0017】
上記封止材127による封止を行った後、図2に示すように、電極10上に半田ペースト12を設けた実装用基板11に、立体基板120の外部電極126を位置合わせし、リフロー方法により電極10と外部電極126との電気的接合を行う。これにて図2に示す実装済電子部品102が完成する。尚、該実装済電子部品102には、図示するように石英基板111上に、集光レンズを形成した第2石英レンズ141を取り付けることもできる。
【0018】
上述した電子部品101及び実装済電子部品102によれば、発光素子113は、石英基板111とSi基板114とに挟まれて装着され、一方、上記発光素子113とSi基板114とを接合するときにSi基板114は、立体基板120に装着される。よって、本実施形態の組立方法は、従来のように、一つ一つの部品を積み重ねて組み立てる方法ではないことから、高い実装精度を得ることができる。又、上述のように本実施形態では、石英基板111と発光素子113とは加熱、加圧にて接合しており、かつSi基板114と発光素子113との接合部分、及びSi基板114と立体基板120との接合部分のみに導電性接着剤116を用いていることから、従来のように部品高さにバラツキが生じ上記オープン不良が発生するということもない。これらの点から、本実施形態の組立方法、及び該組立方法にて組み立てられた電子部品は、組み立てが容易であり、かつ高品質及び低コストによる製造が可能である。
【0019】
又、発光素子113の発する光は、立体基板120にて遮光されることから、受光部117に影響を与えない。したがって発光素子113の配置間隔を従来に比べて小さくすることができ、電子部品の全体構成の小型化を図ることができ、又、光情報の処理精度を向上させることができる。
【0020】
第2実施形態;
上述の第1実施形態では、発光素子113は、立体基板120に形成した遮光用貫通穴124に挿入されることで、発光素子113が発する光の受光部117への影響を防止したが、該受光部117への光の影響防止用の構造は、これに限定されるものではない。例えば、図3〜図4、図9〜図11に示す構造を採ることもできる。
即ち、図9に示すように、ドライエッチング、又はウエットエッチングによって遮光用貫通穴131及び光供給用開口138を形成した遮光用基板130を、発光素子113を装着した石英基板111に装着する。上記遮光用基板130の機能を果たす一例として、本実施形態ではSi基板を用いるが、その他、上記貫通穴の加工を施した金属基板、セラミック基板、樹脂基板等の不透光な板材を使用することもできる。次のステップでは、図8に示すように各突起電極115に導電性接着剤116を設けた上記Si基板114を、上記突起電極115と発光素子113の上記他方の電極とが対応するように位置決めし接触させる。このとき、光供給用開口138と受光部117とが対応して配置される。そして、加熱して、上記導電性接着剤116を硬化させ、上記突起電極115と発光素子113との導通を得る。これにて図10に示すように、遮光用基板130、石英基板111、及びSi基板114が合体した合体基板105が形成される。
【0021】
次のステップでは、Si基板114の外周電極118と、立体基板135の基板電極125とが対向するように、立体基板135に対して上記合体基板105を位置決めする。ここで上記立体基板135は、上述の立体基板125に備わる隔壁123を除去した形態にてなる。よって、立体基板120の上記第2凹部122に対応する立体基板135の第2凹部137から、上記第1凹部121に対応する立体基板135の第1凹部136に向かって上記合体基板105を挿入して、合体基板105におけるSi基板114の外周電極118を、立体基板135の基板電極125に接触させる。そして、上記外周電極118に対して超音波エネルギーを作用させて、外周電極118と基板電極125とを接合し、図11に示すように、合体基板105におけるSi基板114を立体基板135に実装する。
【0022】
さらに、図3に示すように、上記第2凹部137に装着されたSi基板114の周囲に上記封止材127を供給して、上記外周電極118と上記基板電極125との接続部分の封止を行う。さらに、石英基板111上に、集光レンズを形成した第2石英レンズ141を取り付けることもできる。これにて、図3に示す電子部品103が完成する。
さらに、上記封止材127による封止を行った後、電極10上に半田ペースト12を設けた実装用基板11に、リフロー方法により、上記電子部品103を実装する。これにて図4に示す実装済電子部品104が完成する。
【0023】
このように第2実施形態では、遮光用基板130の遮光用貫通穴131に発光素子113が挿入され、かつ石英基板111とSi基板114とで遮光用基板130を挟み込んで石英基板111及びSi基板114を合体させることから、第1実施形態と同様に、高い実装精度を得ることができ、上記オープン不良が発生するということもなく、組み立てが容易であり、かつ高品質及び低コストによる製造が可能である。
又、発光素子113の発する光は、遮光用基板130にて、特に図1を参照して上述したように光供給用開口の両隣りに存在する遮光壁にて遮光され、発光している発光素子113に隣接する受光部117には影響しない。上述の第1実施形態と同様に、電子部品の小型化を図ることができ、又、光情報の処理精度を向上させることができる。
【0024】
尚、第2実施形態において、合体基板105におけるSi基板114の外周電極118を、立体基板135の基板電極125に接合する方法として、上述の超音波エネルギーを作用させる代わりに、外周電極118及び基板電極125間に接着材又は異方性導電接着材を用いて両者を熱圧着してもよい。
【0025】
以上説明した、図2及び図4に示す実装済電子部品102、104は、以下のように動作する。即ち、入力信号用光が、第2石英基板141及び石英基板111、並びに光供給用開口128、138を通りSi基板114に備わる受光部117へ供給され、該受光部117にて検出される。そして上記入力信号用光に応じた電気信号が受光部117から上記発光素子駆動回路119へ供給され、発光素子駆動回路119は上記電気信号に応じて発光素子113を動作させる。よって、発光素子113から上記電気信号に応じて光が送出され、石英基板111及び第2石英基板141を通して出射させる。
このような一連の動作において、上述したように、発光素子113の発する光は、立体基板120及び遮光用基板130にて遮光されることから、発光している発光素子113に隣接して配置されている受光部117に影響を与えない。したがって発光素子113の配置間隔を従来に比べて小さくすることができ、電子部品の小型化を図ることができ、又、光情報の処理精度を向上させることができる。
【0026】
【発明の効果】
以上詳述したように本発明の第1態様の電子部品組立方法、及び第2態様の電子部品によれば、遮光用貫通穴に発光素子を挿入して発光素子と第2基板とを対向させて配置した状態で、立体基板に上記第2基板を実装するようにした。したがって、部品点数が従来に比べて少ないので組み立てが容易となり、コスト低減を図ることができる。又、従来のように、一つ一つの部品を積み重ねて組み立てる方法ではないことから、高い実装精度を得ることができ、高品質及び低コストによる製造が可能となる。
又、発光素子の発する光は、遮光用貫通穴にて遮光されることから、発光している発光素子に隣接して配置されている受光部に影響を与えない。したがって発光素子の配置間隔を従来に比べて小さくすることができ、電子部品の小型化を図ることができ、又、光情報の処理精度を向上させ高速処理することができる。
【0027】
上記立体基板が上記遮光用貫通穴を有するとき、上記第1基板及び上記第2基板が実装される立体基板に上記遮光用貫通穴が存在することから、上記実装動作とともに上記発光素子の遮光用構成を完成することができ、構造がより簡単になり、高品質及び低コストによる製造が可能となる。
【0028】
又、遮光用基板に上記遮光用貫通穴を設ける場合、上記遮光用基板単体での取り扱いが可能であることから遮光用貫通穴の作製が容易である。よって、高品質及び低コストによる製造が可能となる。
又、第2基板に形成した突起電極を接合材料として発光素子を第2基板に接合するようにしたことで、接着剤等のみにて接合を行う場合に比べて上記オープン不良の発生を低減することができる。よって、接合が確実に行え接合品質の向上を図ることができる。
又、紫外線硬化型の封止樹脂を使用することで、電子部品に対する熱影響等を考慮することなく封止動作を行うことができ、高品質及び低コストによる製造が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施形態の電子部品組立方法にて組み立てられた電子部品の断面図である。
【図2】 図1に示す電子部品を実装用基板へ実装してなる実装済電子部品を示す図である。
【図3】 本発明の他の実施形態の電子部品組立方法にて組み立てられた電子部品の断面図である。
【図4】 図3に示す電子部品を実装用基板へ実装してなる実装済電子部品を示す図である。
【図5】 図1及び図3に示す電子部品の組立方法を説明するための図であって、上記電子部品を構成する石英基板を示す図である。
【図6】 図1及び図3に示す電子部品の組立方法を説明するための図であって、図5に示す石英基板に発光素子を装着した状態を示す図である。
【図7】 図1及び図3に示す電子部品の組立方法を説明するための図であって、上記電子部品を構成するSi基板を示す図である。
【図8】 図1及び図3に示す電子部品の組立方法を説明するための図であって、図7に示すSi基板に導電性接着剤を設けた状態を示す図である。
【図9】 図3に示す電子部品の組立方法を説明するための図であって、図6に示す石英基板に遮光用基板を取り付けた状態を示す図である。
【図10】 図3に示す電子部品の組立方法を説明するための図であって、図9に示す石英基板にSi基板を装着した状態を示す図である。
【図11】 図3に示す電子部品の組立方法を説明するための図であって、図10に示す合体基板を立体基板に装着した状態を示す図である。
【図12】 従来の電子部品組立方法であってフリップチップ方法を説明するための図である。
【図13】 従来の電子部品組立方法であってワイヤボンディング方法を説明するための図である。
【符号の説明】
101…電子部品、102…実装済電子部品、103…電子部品、
104…実装済電子部品、111…石英基板、113…発光素子、
114…Si基板、115…突起電極、117…受光部、120…立体基板、
124…遮光用貫通穴、125…基板電極、127…封止材、
130…遮光用基板、131…遮光用貫通穴、135…立体基板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component assembling method and an electronic component assembled by the assembling method.
[0002]
[Prior art]
In recent years, electronic components have been reduced in size and weight, and many manufacturing methods have been proposed in order to further reduce the size. Among them, many of the above-mentioned downsizing is achieved by integrating electronic components having two or more functions into a device having one function.
Conventionally, various mounting processes and equipment have been developed in order to arrange electronic components with high accuracy and high reliability. A conventional assembly method for an electronic component will be described below with reference to the drawings.
FIG. 12 is a view showing a conventional assembling method of an electronic component by a flip chip mounting method. In the flip chip mounting method, first, the gold bump electrode 3 is formed on the electrode pad 7 formed on the semiconductor IC chip 1. Next, after providing a silver paste or an anisotropic conductive material 5 as a conductive bonding material between the substrate electrode 4 formed on the mounting substrate 2 and the protruding electrode 3, the substrate electrode 4 and The protruding electrode 3 is aligned and the semiconductor IC chip 1 is mounted on the mounting substrate 2. Thereafter, the silver paste or the anisotropic conductive material 5 is cured, and the semiconductor IC chip 1 and the mounting substrate 2 are electrically connected.
[0003]
FIG. 13 is a view showing a conventional assembling method of an electronic component by a wire bonding method. In the wire bonding method, the semiconductor IC chip 1 is bonded to the mounting substrate 2 with the adhesive 8, and then the electrode pad 7 of the semiconductor IC chip 1 and the substrate electrode 4 are connected with the gold wire 6.
[0004]
[Problems to be solved by the invention]
However, when a device having a complicated component configuration is assembled by the above-described method, an operation of placing components one by one on the mounting substrate 4 is performed. Therefore, the conventional assembly method varies in mounting accuracy, and is not suitable as a device assembly method that requires high accuracy. Further, since the components are placed on the conductive adhesive such as the silver paste 5, the height of the finished product is likely to vary, and the substrate electrode 4 and the above-mentioned are mounted on the mounting substrate 2 in the next process. There is a possibility that an open defect that does not contact the protruding electrode 3 may occur. Further, when the number of parts is large, it takes a long time to complete the mounting, and there is a problem that the parts mounting quality in the conductive adhesive 7 and the cost resulting from tact are high.
The present invention has been made to solve such problems, and provides an easy and high-quality and low-cost method of assembling an electronic component, and an electronic component assembled by the assembling method. With the goal.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
That is, in the electronic component assembly direction according to the first aspect of the present invention, the first substrate on which the light emitting element is mounted and the second substrate on which the light receiving portion is formed are inserted into the light-shielding through hole, and The light emitting element and the second substrate are arranged to face each other,
The second substrate is mounted on a three-dimensional substrate on which electrodes are formed in a state of being opposed to each other, thereby preventing the influence of light on the light receiving unit adjacent to the light emitting element that emits light.
It is characterized by that.
[0006]
When the three-dimensional substrate has the light-shielding through hole, the light-emitting element and the second substrate are arranged to face each other to join the light-emitting element and the second substrate, and the second to the three-dimensional substrate. A board can also be mounted.
[0007]
When the light-shielding through hole is formed in the light-shielding light-shielding substrate, the second substrate is disposed so as to face the light-emitting element inserted in the light-shielding through-hole of the light-shielding substrate. The light emitting element and the second substrate can be combined with the light shielding substrate provided between the first substrate and the second substrate, and then the second substrate can be mounted on the three-dimensional substrate. .
[0008]
The second substrate may be a Si substrate, and the light emitting element may be bonded using a protruding electrode formed on the Si substrate as a bonding material.
[0009]
After mounting the second substrate on the three-dimensional substrate, the second substrate can be sealed with an ultraviolet curable sealing resin.
[0010]
The electronic component according to the second aspect of the present invention includes a first substrate on which a plurality of light emitting elements are mounted,
A second substrate on which a plurality of light receiving portions are formed;
A plurality of light shielding through holes formed corresponding to the light emitting elements, into which the light emitting elements are inserted , a light supply opening for supplying the light transmitted through the first substrate to the light receiving unit, and an electrical connection with the second substrate. A substrate electrode to be connected to each other, and a three-dimensional substrate disposed between the first substrate and the second substrate ,
The three-dimensional substrate and the first substrate are arranged by combining the light emitting element and the light shielding through hole, and are mounted on the second substrate so as to face the light emitting element.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An electronic component assembling method according to an embodiment of the present invention and an electronic component assembled by the assembling method will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected about the same component in each figure.
The electronic component assembling method is performed as follows.
1st Embodiment;
First, as shown in FIG. 5, a protruding electrode 112 is formed on an electrode formed on a quartz substrate 111 corresponding to an example that functions as a first substrate, using a gold ball bonding technique. . Note that a collimator lens is formed on the quartz substrate 111. In the next step, the light emitting element 113 is heated by applying a temperature of 350 to 400 ° C. and a load of about 500 to 1000 mN per protruding electrode 112 to each protruding electrode 112 on the quartz substrate 111. Join by crimping. That is, one electrode provided in the light emitting element 113 and the protruding electrode 112 are bonded. As an example of fulfilling the function of the light emitting element 113, an LED (light emitting diode) is taken as an example in the present embodiment. Further, in each drawing, for convenience of illustration, the protruding electrode 112 is illustrated on the entire end surface of the light emitting element 113. In practice, however, the portion of the emission light window provided in the light emitting element 113 is excluded. In addition, the protruding electrode 112 exists only on a part of the one end face.
[0012]
On the other hand, on the electrodes included in the light emitting element driving circuit 119 formed on the Si substrate 114 corresponding to an example that performs the function of the second substrate, as shown in FIG. The protruding electrode 115 is formed. The protruding electrodes 115 are formed corresponding to the arrangement of the light emitting elements 113 except for the outer peripheral electrode 118. The Si substrate 114 is formed with a light receiving portion 117 for receiving light supplied through the quartz substrate 111. Further, the light receiving unit 117 and the light emitting element driving circuit 119 are electrically connected, and light is emitted from the light emitting element 113 by the light emitting element driving circuit 119 in accordance with the received light detected by the light receiving unit 117. .
After the formation of the protruding electrode 115, as shown in FIG. 8, a conductive adhesive 116 is supplied onto the protruding electrode 115 by a transfer method or a dispensing method. As an example of the conductive adhesive 116, a silver paste is used in the present embodiment.
[0013]
Furthermore, in this embodiment, a three-dimensional three-dimensional substrate 120 formed of an opaque material as shown in FIG. 1 is used. The three-dimensional substrate 120 has a first recess 121 and a second recess 122 formed by digging each of both surfaces that are orthogonal to the thickness direction and face each other, and a substrate electrode 125 is formed in the second recess 122. In addition, an external electrode 126 is formed on the outer surface of the three-dimensional substrate 120 and is electrically connected to the substrate electrode 125. A substrate having such a form is a three-dimensional substrate. In general, a three-dimensional board is a board that has recesses and wiring is formed on the rising part that forms the recesses in addition to the wiring formation on the flat part, increasing the degree of freedom of component mounting and making it compact and integrated. This is a substrate that realizes the process. Further, in the three-dimensional substrate 120, the partition wall 123 sandwiched between the first recess 121 and the second recess 122 has a light shielding through hole 124 that penetrates the partition wall 123. The light shielding through holes 124 are formed corresponding to the arrangement of the light emitting elements 113. A light supply opening 128 for allowing light supplied through the quartz substrate 111 to reach the light receiving portion 117 is formed through the partition wall 123 and corresponding to the light receiving portion 117. Therefore, between the light shielding through hole 124 and the light supply opening 128, there is a light shielding wall 129 that prevents the influence of light on the light receiving portion 117 adjacent to the light emitting element 113 that emits light. In addition, a circuit pattern including a substrate electrode 125 is formed on the three-dimensional substrate 120, and an outer peripheral electrode 118 of the Si substrate 114 is bonded to the substrate electrode 125 as described below. In addition, the three-dimensional substrate 120 has an external electrode 126 that is electrically connected to the circuit pattern at a location close to the second recess 122.
[0014]
As described above, for the quartz substrate 111 to which the light emitting element 113 is attached, the Si substrate 114 provided with the conductive adhesive 116, and the three-dimensional substrate 120, first, the light emitting element 113 is inserted into the light shielding through hole 124. Meanwhile, the quartz substrate 111 with the light emitting element 113 is mounted in the first recess 121. Next, each protruding electrode 115 on the Si substrate 114 provided with the conductive adhesive 116 is positioned so as to face each light emitting element 113 inserted into the light shielding through hole 124, and the Si substrate 114 is moved to the first substrate. 2 Installed in the recess 122. By the mounting, the protruding electrode 115 comes into contact with the other electrode provided in the light emitting element 113. Furthermore, by the mounting, the outer peripheral electrode 118 of the Si substrate 114 comes into contact with the substrate electrode 125 of the three-dimensional substrate 120 via the conductive adhesive 116. Further, the light supply opening 128 and the light receiving portion 117 are arranged correspondingly.
Further, the light emitting element 113 is inserted into the light blocking through hole 124, and the quartz substrate 111 and the Si substrate 114 are combined by sandwiching the partition wall 123 between the quartz substrate 111 and the Si substrate 114. Is blocked by the light shielding wall 129 and can prevent the influence of light on the light receiving portion 117 disposed adjacent to the light emitting element 113 emitting light.
[0015]
As described above, in this embodiment, the quartz substrate 111 with the light emitting element 113 is attached to the first recess 121, and then the Si substrate 114 is attached to the second recess 122. Without being limited thereto, the Si substrate 114 may be mounted in the second recess 122 simultaneously with mounting the quartz substrate 111 with the light emitting element 113 in the first recess 121, or the Si substrate 114 may be mounted in the second recess 122 first. After the mounting, the quartz substrate 111 with the light emitting element 113 may be mounted in the first recess 121.
[0016]
After the quartz substrate 111 and the Si substrate 114 are mounted on the three-dimensional substrate 120 as described above, the conductive adhesive 116 is cured by heating, and the outer peripheral electrode 118 of the Si substrate 114 and the three-dimensional substrate 120 described above. Electrical connection with the substrate electrode 125 and electrical connection between the protruding electrode 115 and the other electrode of the light emitting element 113 are achieved. Further, a sealing material 127 is supplied around the Si substrate 114 mounted in the second recess 122 to seal the connection portion between the outer peripheral electrode 118 and the substrate electrode 125. Here, in this embodiment, a photocurable resin is used as the sealing material 127, and the sealing material 127 is cured by irradiating with ultraviolet rays in a state where the outer peripheral electrode 118 is pressed against the substrate electrode 125. A similar configuration can be established with thermosetting resins. Through the above manufacturing process, the electronic component 101 shown in FIG. 1 is formed.
[0017]
After sealing with the sealing material 127, as shown in FIG. 2, the external electrode 126 of the three-dimensional substrate 120 is aligned with the mounting substrate 11 provided with the solder paste 12 on the electrode 10, and a reflow method is performed. Thus, the electrode 10 and the external electrode 126 are electrically joined. Thus, the mounted electronic component 102 shown in FIG. 2 is completed. The mounted electronic component 102 can be attached with a second quartz lens 141 having a condensing lens formed on a quartz substrate 111 as shown.
[0018]
According to the electronic component 101 and the mounted electronic component 102 described above, the light emitting element 113 is mounted while being sandwiched between the quartz substrate 111 and the Si substrate 114, while the light emitting element 113 and the Si substrate 114 are bonded together. In addition, the Si substrate 114 is attached to the three-dimensional substrate 120. Therefore, since the assembly method of this embodiment is not a method of stacking and assembling individual parts as in the prior art, high mounting accuracy can be obtained. Further, as described above, in the present embodiment, the quartz substrate 111 and the light emitting element 113 are bonded together by heating and pressurizing, and the bonded portion between the Si substrate 114 and the light emitting element 113, and the Si substrate 114 and the three-dimensional structure. Since the conductive adhesive 116 is used only at the joint portion with the substrate 120, there is no variation in the component height as in the conventional case, and the above open defect does not occur. From these points, the assembly method of this embodiment and the electronic component assembled by the assembly method are easy to assemble and can be manufactured with high quality and low cost.
[0019]
Further, the light emitted from the light emitting element 113 is shielded by the three-dimensional substrate 120, and thus does not affect the light receiving unit 117. Therefore, the arrangement interval of the light emitting elements 113 can be reduced as compared with the conventional case, the overall configuration of the electronic component can be reduced, and the processing accuracy of optical information can be improved.
[0020]
A second embodiment;
In the first embodiment described above, the light emitting element 113 is inserted into the light shielding through hole 124 formed in the three-dimensional substrate 120 to prevent the light emitted from the light emitting element 113 from affecting the light receiving unit 117. The structure for preventing the influence of light on the light receiving unit 117 is not limited to this. For example, the structures shown in FIGS. 3 to 4 and FIGS. 9 to 11 can be adopted.
That is, as shown in FIG. 9, a light shielding substrate 130 in which a light shielding through hole 131 and a light supply opening 138 are formed by dry etching or wet etching is mounted on a quartz substrate 111 on which a light emitting element 113 is mounted. As an example of fulfilling the function of the light shielding substrate 130, an Si substrate is used in the present embodiment, but an opaque plate material such as a metal substrate, a ceramic substrate, a resin substrate or the like that has been processed with the through holes is also used. You can also In the next step, as shown in FIG. 8, the Si substrate 114 provided with the conductive adhesive 116 on each protruding electrode 115 is positioned so that the protruding electrode 115 and the other electrode of the light emitting element 113 correspond to each other. And contact. At this time, the light supply opening 138 and the light receiving portion 117 are arranged correspondingly. Then, by heating, the conductive adhesive 116 is cured, and conduction between the protruding electrode 115 and the light emitting element 113 is obtained. Thus, as shown in FIG. 10, a combined substrate 105 is formed in which the light shielding substrate 130, the quartz substrate 111, and the Si substrate 114 are combined.
[0021]
In the next step, the combined substrate 105 is positioned with respect to the three-dimensional substrate 135 so that the outer peripheral electrode 118 of the Si substrate 114 and the substrate electrode 125 of the three-dimensional substrate 135 face each other. Here, the three-dimensional substrate 135 has a form in which the partition wall 123 provided on the three-dimensional substrate 125 is removed. Therefore, the combined substrate 105 is inserted from the second recess 137 of the three-dimensional substrate 135 corresponding to the second recess 122 of the three-dimensional substrate 120 toward the first recess 136 of the three-dimensional substrate 135 corresponding to the first recess 121. Then, the outer peripheral electrode 118 of the Si substrate 114 in the combined substrate 105 is brought into contact with the substrate electrode 125 of the three-dimensional substrate 135. Then, ultrasonic energy is applied to the outer peripheral electrode 118 to join the outer peripheral electrode 118 and the substrate electrode 125, and the Si substrate 114 in the combined substrate 105 is mounted on the three-dimensional substrate 135 as shown in FIG. .
[0022]
Further, as shown in FIG. 3, the sealing material 127 is supplied around the Si substrate 114 mounted in the second recess 137 to seal the connection portion between the outer peripheral electrode 118 and the substrate electrode 125. I do. Furthermore, a second quartz lens 141 in which a condenser lens is formed can be mounted on the quartz substrate 111. Thus, the electronic component 103 shown in FIG. 3 is completed.
Furthermore, after sealing with the sealing material 127, the electronic component 103 is mounted on the mounting substrate 11 provided with the solder paste 12 on the electrode 10 by a reflow method. Thus, the mounted electronic component 104 shown in FIG. 4 is completed.
[0023]
As described above, in the second embodiment, the light emitting element 113 is inserted into the light shielding through hole 131 of the light shielding substrate 130, and the quartz substrate 111 and the Si substrate are sandwiched between the quartz substrate 111 and the Si substrate 114. Since the 114 is combined, high mounting accuracy can be obtained as in the first embodiment, the open defect does not occur, the assembly is easy, and the manufacture with high quality and low cost is possible. Is possible.
The light emitted from the light-emitting element 113 is light-shielded by the light-shielding substrate 130, in particular, by the light-shielding walls existing on both sides of the light supply opening as described above with reference to FIG. The light receiving portion 117 adjacent to the element 113 is not affected. Similar to the first embodiment described above, the electronic component can be reduced in size, and the processing accuracy of optical information can be improved.
[0024]
In the second embodiment, as a method of joining the outer peripheral electrode 118 of the Si substrate 114 in the combined substrate 105 to the substrate electrode 125 of the three-dimensional substrate 135, the outer peripheral electrode 118 and the substrate can be used instead of applying the above-described ultrasonic energy. Both may be thermocompression bonded between the electrodes 125 using an adhesive or an anisotropic conductive adhesive.
[0025]
The mounted electronic components 102 and 104 shown in FIGS. 2 and 4 described above operate as follows. That is, the input signal light is supplied to the light receiving unit 117 provided in the Si substrate 114 through the second quartz substrate 141 and the quartz substrate 111 and the light supply openings 128 and 138 and detected by the light receiving unit 117. An electric signal corresponding to the input signal light is supplied from the light receiving unit 117 to the light emitting element driving circuit 119, and the light emitting element driving circuit 119 operates the light emitting element 113 according to the electric signal. Therefore, light is transmitted from the light emitting element 113 according to the electrical signal, and is emitted through the quartz substrate 111 and the second quartz substrate 141.
In such a series of operations, as described above, the light emitted from the light-emitting element 113 is shielded by the three-dimensional substrate 120 and the light-shielding substrate 130, and thus is disposed adjacent to the light-emitting element 113 that emits light. The light receiving unit 117 is not affected. Therefore, the arrangement interval of the light emitting elements 113 can be reduced as compared with the conventional case, the electronic component can be downsized, and the processing accuracy of optical information can be improved.
[0026]
【The invention's effect】
As described above in detail, according to the electronic component assembling method of the first aspect of the present invention and the electronic component of the second aspect, the light emitting element is inserted into the light-shielding through hole so that the light emitting element and the second substrate face each other. In this state, the second substrate is mounted on the three-dimensional substrate. Therefore, since the number of parts is smaller than the conventional one, the assembly becomes easy and the cost can be reduced. Further, since it is not a method of stacking and assembling individual parts as in the prior art, high mounting accuracy can be obtained, and manufacturing with high quality and low cost is possible.
In addition, since light emitted from the light emitting element is shielded by the light shielding through hole, it does not affect the light receiving portion disposed adjacent to the light emitting element emitting light. Accordingly, the arrangement interval of the light emitting elements can be reduced as compared with the conventional one, the electronic component can be downsized, and the processing accuracy of optical information can be improved and high speed processing can be performed.
[0027]
When the three-dimensional board has the light-shielding through hole, the light-shielding through-hole exists in the three-dimensional board on which the first substrate and the second board are mounted. The configuration can be completed, the structure is simpler, and high quality and low cost manufacturing is possible.
[0028]
Further, when the light shielding through hole is provided in the light shielding substrate, the light shielding through hole can be easily manufactured because the light shielding substrate alone can be handled. Therefore, it is possible to manufacture with high quality and low cost.
In addition, since the light emitting element is bonded to the second substrate using the protruding electrode formed on the second substrate as a bonding material, the occurrence of the open defect is reduced as compared with the case where bonding is performed only with an adhesive or the like. be able to. Therefore, it is possible to reliably perform the bonding and improve the bonding quality.
Further, by using an ultraviolet curable sealing resin, it is possible to perform a sealing operation without considering the thermal influence on the electronic component, and it is possible to manufacture with high quality and low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electronic component assembled by an electronic component assembling method according to an embodiment of the present invention.
FIG. 2 is a view showing a mounted electronic component obtained by mounting the electronic component shown in FIG. 1 on a mounting substrate.
FIG. 3 is a cross-sectional view of an electronic component assembled by an electronic component assembling method according to another embodiment of the present invention.
4 is a view showing a mounted electronic component obtained by mounting the electronic component shown in FIG. 3 on a mounting board;
FIG. 5 is a view for explaining an assembly method of the electronic component shown in FIGS. 1 and 3, and is a view showing a quartz substrate constituting the electronic component.
6 is a view for explaining a method of assembling the electronic component shown in FIGS. 1 and 3, and is a view showing a state where a light emitting element is mounted on the quartz substrate shown in FIG.
7 is a view for explaining an assembly method of the electronic component shown in FIGS. 1 and 3, and is a view showing a Si substrate constituting the electronic component. FIG.
8 is a view for explaining a method for assembling the electronic component shown in FIGS. 1 and 3, and is a view showing a state in which a conductive adhesive is provided on the Si substrate shown in FIG. 7;
9 is a diagram for explaining a method of assembling the electronic component shown in FIG. 3, and is a diagram showing a state where a light shielding substrate is attached to the quartz substrate shown in FIG. 6;
10 is a view for explaining the method of assembling the electronic component shown in FIG. 3, and is a view showing a state in which a Si substrate is mounted on the quartz substrate shown in FIG. 9;
11 is a view for explaining the method of assembling the electronic component shown in FIG. 3, and is a view showing a state in which the combined substrate shown in FIG. 10 is mounted on the three-dimensional substrate.
FIG. 12 is a view for explaining a flip chip method as a conventional electronic component assembling method.
FIG. 13 is a diagram for explaining a wire bonding method as a conventional electronic component assembling method.
[Explanation of symbols]
101 ... electronic component, 102 ... mounted electronic component, 103 ... electronic component,
104 ... Mounted electronic component, 111 ... Quartz substrate, 113 ... Light emitting element,
114 ... Si substrate, 115 ... projection electrode, 117 ... light receiving portion, 120 ... three-dimensional substrate,
124 ... Through hole for light shielding, 125 ... Substrate electrode, 127 ... Sealant,
130: light shielding substrate, 131: light shielding through hole, 135: three-dimensional substrate.

Claims (5)

複数の発光素子(113)を実装した第1基板(111)と、A first substrate (111) mounted with a plurality of light emitting elements (113);
複数の受光部(117)を形成した第2基板(114)と、  A second substrate (114) on which a plurality of light receiving portions (117) are formed;
上記発光素子に対応して形成され上記発光素子が挿入される複数の遮光用貫通穴(124、131)、上記第1基板を透過した光を上記受光部へ供給する光供給用開口(128)、及び上記第2基板と電気的に接続される基板電極を形成し、上記第1基板と上記第2基板とに挟まれて配置される立体基板(120、135)とを有し、  A plurality of light shielding through holes (124, 131) formed corresponding to the light emitting elements and into which the light emitting elements are inserted, and a light supply opening (128) for supplying the light transmitted through the first substrate to the light receiving unit. And a three-dimensional substrate (120, 135) that forms a substrate electrode electrically connected to the second substrate and is disposed between the first substrate and the second substrate,
上記立体基板と上記第1基板とを上記発光素子と上記遮光用貫通穴とを合わせることで配置し、かつ、上記発光素子に対向させて上記第2基板と装着したことを特徴とする電子部品。  An electronic component characterized in that the three-dimensional substrate and the first substrate are arranged by aligning the light emitting element and the light shielding through hole, and are mounted on the second substrate so as to face the light emitting element. .
上記発光素子と上記第1基板とは熱圧着にて接合され、上記発光素子と上記第2基板とは導電性接着剤(116)にて接続される、請求項1記載の電子部品。The electronic component according to claim 1, wherein the light emitting element and the first substrate are joined by thermocompression bonding, and the light emitting element and the second substrate are connected by a conductive adhesive (116). 上記立体基板は、上記基板電極と電気的に接続され、さらに実装用基板と電気的に接続される外部電極(126)をさらに有する、請求項1又は2記載の電子部品。The electronic component according to claim 1, wherein the three-dimensional substrate further includes an external electrode (126) that is electrically connected to the substrate electrode and further electrically connected to the mounting substrate. 上記第2基板と上記立体基板とを電気的に接続した接続部分を封止する封止材を設けた、請求項3記載の電子部品。The electronic component according to claim 3, further comprising a sealing material that seals a connection portion that electrically connects the second substrate and the three-dimensional substrate. 上記第2基板はSi基板にてなり、該Si基板上に形成した突起電極(115)を接合材料として上記発光素子は接合される、請求項1から4のいずれかに記載の電子部品。5. The electronic component according to claim 1, wherein the second substrate is a Si substrate, and the light emitting element is bonded using a protruding electrode (115) formed on the Si substrate as a bonding material. 6.
JP2001380055A 2001-12-13 2001-12-13 Electronic components Expired - Fee Related JP4070452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380055A JP4070452B2 (en) 2001-12-13 2001-12-13 Electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380055A JP4070452B2 (en) 2001-12-13 2001-12-13 Electronic components

Publications (2)

Publication Number Publication Date
JP2003179268A JP2003179268A (en) 2003-06-27
JP4070452B2 true JP4070452B2 (en) 2008-04-02

Family

ID=19187064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380055A Expired - Fee Related JP4070452B2 (en) 2001-12-13 2001-12-13 Electronic components

Country Status (1)

Country Link
JP (1) JP4070452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162130A (en) * 2019-12-31 2020-05-15 芯思杰技术(深圳)股份有限公司 Chip packaging structure

Also Published As

Publication number Publication date
JP2003179268A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
US7242433B2 (en) Small-sized image pickup device having a solid-state image pickup element and a lens holder mounted on opposite sides of a transparent substrate
JP3527166B2 (en) Solid-state imaging device and method of manufacturing the same
EP1150351A2 (en) Semiconductor package and semiconductor package fabrication method
US20080251872A1 (en) Image sensor package, method of manufacturing the same, and image sensor module including the image sensor package
JP2006253936A (en) Imaging module and manufacturing method thereof
JPH09321439A (en) Lamination circuit board
JP2005045251A (en) Stacked-semiconductor-chip bga package and method for manufacturing the same
JP2002076252A (en) Semiconductor device
JP5673423B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3748779B2 (en) Semiconductor element mounting method and thermoplastic or thermosetting sheet
US7157789B2 (en) Semiconductor device and method for manufacturing the same
US20070159803A1 (en) MEMS device seal using liquid crystal polymer
US20080081456A1 (en) Chip-on-board package having flip chip assembly structure and manufacturing method thereof
JP3360669B2 (en) Semiconductor package element, three-dimensional semiconductor device, and manufacturing method thereof
CN109417081A (en) Chip-packaging structure, method and electronic equipment
JP2005123559A (en) Thermal enhanced package structure and its forming method
JP4070452B2 (en) Electronic components
JP3866777B2 (en) Semiconductor device and manufacturing method thereof
JP4934935B2 (en) Solid-state imaging device
JP2006245090A (en) Package for semiconductor and manufacturing method thereof
JP3712584B2 (en) Solid-state imaging device and manufacturing method thereof
JP4483016B2 (en) Solid-state imaging device and manufacturing method thereof
JP2006245359A (en) Photoelectric conversion device, and manufacturing method thereof
JPH09148482A (en) Semiconductor device
JP2002217221A (en) Manufacturing method for electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees