JP4069580B2 - マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置 - Google Patents
マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置 Download PDFInfo
- Publication number
- JP4069580B2 JP4069580B2 JP2000315821A JP2000315821A JP4069580B2 JP 4069580 B2 JP4069580 B2 JP 4069580B2 JP 2000315821 A JP2000315821 A JP 2000315821A JP 2000315821 A JP2000315821 A JP 2000315821A JP 4069580 B2 JP4069580 B2 JP 4069580B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- transparent substrate
- electro
- microlens array
- optical device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Projection Apparatus (AREA)
Description
【発明の属する技術分野】
本発明は、マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置に関するものである。
【0002】
【従来の技術】
液晶プロジェクタなどの投射型表示装置は、光源から照射された光をライトバルブとしての電気光学装置で光変調した後、前方へ拡大投射するように形成されている。電気光学装置の一例である液晶装置としては、表示品位を高めるためにアクティブマトリクス型の液晶装置が多く用いられている。
【0003】
アクティブマトリクス型の液晶装置では、図15に示すように、アクティブマトリクス基板10の側に、画素電極9aを備える画素がマトリクス状に形成されているとともに、各画素毎にTFT30(薄膜トランジスタ)などのアクティブ素子が形成されている。このようなアクティブマトリクス型の液晶装置は、高いコントラスト比を容易に得ることができる反面、各画素毎にTFT30や容量部などを作り込む必要があるため、十分な開口率を得ることが難しいという問題点がある。
【0004】
このような問題点を解消するために、液晶装置を構成する一対の基板のうち、光入射側に位置する基板に、多数の微少なマイクロレンズ500を形成し、各マイクロレンズ500によって、ブラックマトリクスなどと称せられる遮光膜、アクティブ素子、容量部などにより反射、遮光されて損失していた入射光を、矢印L1で示すように、各画素の開口部分に集光させることにより、透過光量を増大させ、開口率を向上させた場合と同様の効果を得る技術が採用されている。
【0005】
このようなマイクロレンズ500は、石英基板からなる第1の透明基板20の表面上に微少な凹曲面部26をエッチング形成した後、この凹曲面部26に対して、第1の透明基板20とは異なる屈折率を備えた透明な樹脂210を充填することにより構成される。また、第1の透明基板20には、樹脂210を介して第2の透明基板250が貼り合わされて、マイクロレンズアレイ付きの対向基板200が形成される。
【0006】
このように構成された対向基板200は、シール材52(光硬化性の接着剤)によって所定の間隙を介してアクティブマトリクス基板10(第3の透明基板)と貼り合わされ、その間隙に液晶50などといった電気光学物質が充填されることにより液晶装置1が構成される。ここで、第1の透明基板20、第2の透明基板250およびアクティブマトリクス基板10には、従来、石英基板が用いられる。
【0007】
【発明が解決しようとする課題】
このように構成した液晶装置1において、石英基板は、透過性が高いが、高価であるため、第1の透明基板20、第2の透明基板250およびアクティブマトリクス基板10については、より安価な透明基板を使用して、液晶装置1の低価格化を図りたいという要求がある。また、他の透明基板が有する性質を利用して、液晶装置1の品質を向上したいという要求もある。
【0008】
しかしながら、アクティブマトリクス基板10では、各画素に各種の構成要素が作り込まれるため、少しでも高い透過性を確保したい。また、製造工程において、高温に耐える必要があり、耐熱性という観点からも、石英基板以外の基板を使用することができない。また、第1の透明基板20では、マイクロレンズ500を構成するための凹曲面部26をエッチング形成したとき、透明基板に含まれる不純物などに起因して、凹曲面部26の内周面が粗れるのを防止したいという観点から、石英基板以外の基板を使用することができない。
【0009】
さらに、液晶装置1において、対向基板200とアクティブマトリクス基板10とを貼り合わすときには、各構成要素の位置を基板間で合わせ、この状態でシール材などの接着剤を光硬化させるので、各構成要素の位置が基板間でずれないように、接着剤に大きなパワーの紫外線を照射して短時間のうちに接着剤を硬化させる必要がある。また、対向基板200とアクティブマトリクス基板10との間隙は、シール材52に含まれるギャップ材によって規定される。すなわち、対向基板200とアクティブマトリクス基板10とをシール材52を介して貼り合わせた状態で基板間を狭めるような力を加え、この状態でシール材52に紫外線を照射してシール材52を硬化させて、基板間の間隙寸法を出す。従って、基板間の間隙に高い精度を得るには、シール材52に対して大きなパワーの紫外線を照射してシール材52を短時間で硬化させる必要がある。
【0010】
しかしながら、対向基板200およびアクティブマトリクス基板10に用いた石英基板は、図14に示すように、樹脂210を変質させる360nm以下の波長域の光に対しても高い透過率を有している。このため、大きなパワーの紫外線をシール材52に照射したとき、第1の透明基板20と第2の透明基板250とを接着している樹脂210が紫外線によって変質し、対向基板200の透過率が低下するという問題点がある。特に、マイクロレンズ500の特性を高めるために、屈折率の高い樹脂210を用いたとき、このような変質が顕著な傾向にある。
【0011】
以上の問題点に鑑みて、本発明の課題は、石英基板以外の透明基板を用いることにより、低価格化を図ることのできるマイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置を提供することにある。
【0012】
また、本発明の課題は、電気光学装置を製造する際に、第1の透明基板と第2の透明基板とを接着固定している樹脂を変質させることなく、マイクロレンズアレイ付き基板と第3の基板とを光硬化性の接着剤によって短時間のうちに接着固定することのできるマイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明では、石英基板からなる第1の透明基板の一方の面に形成した凹曲面部に前記第1の透明基板と屈折率の異なる樹脂を充填するとともに、該樹脂を介して前記第1の透明基板に第2の透明基板が貼着されてなるマイクロレンズアレイ付き基板において、前記第2の透明基板として、前記第1の透明基板と異なる材質からなる透明基板のうち、熱膨張係数が−10×10-7/℃から+10×10-7/℃までの範囲にある透明基板を用いたことを特徴とする。
【0014】
マイクロレンズアレイ付き基板を用いた電気光学装置では、入射した光を効率よく出射するので、マイクロレンズアレイ付き基板を用いた電気光学装置を投射型表示装置の光変調手段(ライトバルブ)として用いると、明るい投射画像を得ることができる。また、投射型表示装置では、光源から強い光が入射するので、マイクロレンズアレイ付き基板では、かなりの温度上昇が発生するが、このような状況にあっても、本発明では、第2の透明基板の熱膨張係数は、−10×10-7/℃から+10×10-7/℃までの範囲にあり、石英基板を用いた第1の透明基板と同等である。従って、第2の透明基板として石英基板以外の透明基板を用いても、マイクロレンズアレイ付き基板に歪みなどの不具合は発生しない。それ故、第2の透明基板として、石英基板以外の安価な透明基板を用いて、マイクロレンズアレイ付き基板、電気光学装置、および投射型表示装置の低価格化を図ることができる。
【0015】
本発明において、前記第2の透明基板としては、例えば、アルミナシリケイトガラスを用いることができる。
【0016】
本発明において、前記第2の透明基板として、波長が360nm以下の光成分を減少させる材質の透明基板を用いることが好ましい。この場合に、前記第2の透明基板は、波長が350nm以下の光に対する透過率が30%未満であることが好ましい。このように構成すると、後述するように、マイクロレンズアレイ付き基板を用いて電気光学装置を製造するにあたって、シール材などの光硬化性の接着剤を硬化させるとき、第2の透明基板をフィルタとして利用して特定波長域の光を除去して接着剤に照射することができる。従って、第1の透明基板と第2の透明基板とを接着固定している樹脂には、紫外線に含まれる360nm以下の波長域の光が照射されないので、樹脂が変質することを防止することができる。また、液晶層に接する配向膜が紫外線で劣化するのを防止できる。
【0017】
本発明に係るマイクロレンズアレイ付き基板を用いて電気光学装置を製造するときには、前記マイクロレンズアレイ付き基板に対して所定の間隙を介して第3の透明基板が光硬化性の接着剤を介して貼り合わされ、当該第3の透明基板と前記マイクロレンズアレイ付き基板との間に電気光学物質が保持される。
【0018】
この電気光学装置において、前記接着剤は、例えば、前記電気光学物質を保持する領域を区画するシール材であり、該シール材には、前記マイクロレンズアレイ付き基板と前記第3の透明基板とを貼り合わせたときの間隙を規定するギャップ材が含まれている。このようなシール材を用いたときには、後述するように、かなりパワーの大きな紫外線を照射してシール材を短時間のうちに硬化させる。それでも、前記第2の透明基板として、波長が360nm以下の光成分を減少させる材質の透明基板を用い、この第2の透明基板をフィルタとして利用して特定波長域の光を除去して照射すれば、第1の透明基板と第2の透明基板とを接着固定している樹脂は、紫外線に含まれる波長が360nm以下の光によって変質することがない。
【0019】
本発明において、前記第1の透明基板および前記第2の透明基板のうち、前記第1の透明基板が前記第3の透明基板に対向するように前記マイクロレンズアレイ付き基板と前記第3の透明基板とが貼り合わされている構成を採用することができる。このような構成とは反対に、前記第1の透明基板および前記第2の透明基板のうち、前記第2の透明基板が前記第3の透明基板に対向するように前記マイクロレンズアレイ付き基板と前記第3の透明基板とを貼り合わされている構成であってもよい。後者によれば、第2の透明基板を所定の厚さまで研磨して薄くする必要があるが、前者によれば第1の透明基板を薄くするので、360nm以下の光成分を減光させる効果が大きい。
【0020】
また、本発明では、石英基板からなる第1の透明基板の一方の面に凹曲面部を形成する基板エッチング工程と、前記凹曲面部に前記第1の透明基板と屈折率の異なる樹脂を充填するとともに、該樹脂を介して前記第1の透明基板に第2の透明基板を貼着する充填工程とを有するマイクロレンズアレイ付き基板の製造方法において、前記第2の透明基板として、前記第1の透明基板と異なる材質からなる透明基板のうち、熱膨張係数が−10×10-7/℃から+10×10-7/℃までの範囲にある透明基板を用いることを特徴とする。
【0021】
このようなマイクロレンズアレイ付き基板を用いた電気光学装置の製造方法では、前記マイクロレンズアレイ付き基板に対して、電気光学物質を保持するための所定の間隙を介して第3の透明基板を光硬化性の接着剤により貼り合わせ、この状態で当該接着剤に光照射を行なって当該接着剤を光硬化させる貼り合わせ工程を行なう。ここで、前記貼り合わせ工程では、前記接着剤に対して、波長が360nm以下の光成分を減少させた光を照射することが好ましい。マイクロレンズアレイ付き基板と第3の透明基板とを貼り合わせて電気光学装置を組み立てるときには、各構成要素の位置を基板間で合わせ、この状態でシール材などの接着剤を硬化させるので、各構成要素の位置が基板間でずれないように、シール材などの接着剤に大きなパワーの紫外線を照射して短時間のうちに硬化させる必要がある。しかしながら、このような大きなパワーの紫外線を接着剤に照射したとき、第1の透明基板と第2の透明基板とを接着している樹脂が紫外線によって変質し、マイクロレンズアレイ付き基板の透過率が低下するおそれがあるが、本発明では、樹脂の変質の原因となる360nm以下の波長域の光成分を減少させた光を照射するので、大きなパワーの紫外線が樹脂が照射されても、樹脂が変質するのを防止することができる。それ故、透過率の高いマイクロレンズアレイ付き基板を製造できる。
【0022】
本発明に係る電気光学装置の製造方法において、前記接着剤は、例えば、前記電気光学物質を保持する領域を区画するシール材であり、該シール材には、前記マイクロレンズアレイ付き基板と前記第3の透明基板とを貼り合わせたときの間隙を規定するギャップ材が含まれている。このような構成の電気光学装置を組み立てるにあたっては、マイクロレンズアレイ付き基板と第3の透明基板とを、ギャップ材含有のシール材を介して貼り合わせた状態で基板間を狭めるような力を加え、この状態でシール材に紫外線を照射してシール材を硬化させて、基板間の間隙寸法を出す。従って、基板間の間隙に高い精度を得るには、シール材に対して大きなパワーをもって紫外線照射を行なってシール材を短時間で硬化させる必要がある。それでも、本発明では、樹脂の変質の原因となる360nm以下の波長域の光成分を減少させた光を照射するので、大きなパワーの紫外線が樹脂が照射されても、樹脂が変質するのを防止することができる。それ故、透過率の高いマイクロレンズアレイ付き基板を備えた電気光学装置を製造できる。
【0023】
本発明において、前記第2の透明基板として、波長が360nm以下の光成分を減少させる材質のものを用い、前記貼り合わせ工程では、前記樹脂に対して前記第2の透明基板が位置する側から前記接着剤に紫外線を照射することにより、波長が360nm以下の光成分を減少した光を前記接着剤に照射する方法を採用することができる。この場合、前記第2の透明基板は、波長が350nm以下の光に対する透過率が30%未満であることが好ましい。このように構成すると、シール材などの接着剤に紫外線を照射してそれを硬化させるとき、第2の透明基板がフィルタとして、樹脂の変質の原因となる360nm以下の波長域の光成分を減少させるので、大きなパワーの紫外線が樹脂が照射されても、樹脂が変質するのを防止することができる。それ故、透過率の高いマイクロレンズアレイ付き基板を備えた電気光学装置を製造できる。また、本発明では、第2の透明基板自身をフィルタとして利用するので、別体のフィルタを用いなくてもよいという利点がある。
【0024】
本発明において、前記貼り合わせ工程では、波長が360nm以下の光成分を減少可能なフィルタを介して前記接着剤に対して紫外線を照射することにより、波長が360nm以下の光成分を減少した光を前記接着剤に照射してもよい。この場合、前記フィルタは、波長が350nm以下の光に対する透過率が30%未満であることが好ましい。このように構成した場合も、シール材などの接着剤に紫外線を照射してそれを硬化させるとき、樹脂の変質の原因となる360nm以下の波長域の光成分をフィルタが減少させるので、大きなパワーの紫外線が樹脂が照射されても、樹脂が変質するのを防止することができる。それ故、透過率の高いマイクロレンズアレイ付き基板を備えた電気光学装置を製造できる。また、本形態では、別体のフィルタを用いるので、マイクロレンズアレイ付き基板および第3の透明基板のいずれの側から紫外線を照射してもよいという利点がある。
【0025】
本発明に係る電気光学装置の製造方法において、前記第2の透明基板は、例えば、アルミナシリケイトガラスを用いることができる。
【0026】
このように構成した電気光学装置は、入射した光を高い効率で出射されるので、投射型表示装置において、前記マイクロレンズアレイ付き基板および前記第3の透明基板のうち、前記マイクロレンズアレイ付き基板の側から光が入射するように配置された光変調手段として用いると、明るい投射画像を得ることができる。また、投射型表示装置では、光源から強い光が入射するので、マイクロレンズアレイ付き基板では、かなりの温度上昇が発生するが、このような状況にあっても、第1の透明基板と第2の透明とは熱膨張係数が同等であるため、第2の透明基板として石英基板以外の基板を用いても、不具合が発生しない。
【0027】
【発明の実施の形態】
添付図面を参照して本発明に係る実施形態について説明する。本発明を適用して得たマイクロレンズアレイ付き基板は、各種の光学機器に使用することができるが、以下の説明では、投射型表示装置のライトバルブとして用いた液晶装置の対向基板側に本発明を適用した例を説明する。
【0028】
[実施の形態1]
(電気光学装置の全体構成)
先ず、本発明が適用される液晶装置(電気光学装置)の全体構成について、図1および図2を参照して説明する。ここでは、駆動回路内蔵型のTFTアクティブマトリクス駆動方式の液晶装置を例にとる。
【0029】
図1は、本発明を適用した液晶装置のアクティブマトリクス基板(TFTアレイ基板)をその上に形成された各構成要素と共に、対向基板の側から見た平面図である。図2は、図1のH−H´線における断面を模式的に示した説明図である。図3および図4は、本形態の液晶装置の対向基板に用いた第1および第2の透明基板のうち、第2の透明基板に用いたアルミナシリケイトガラスの熱膨張曲線、および透過率曲線を示すグラフである。図5は、本形態の液晶装置の対向基板において、第1および第2の透明基板を貼り合わせるのに用いた透明な樹脂に含まれる触媒の吸光度曲線を示すグラフである。なお、図2においては、各層や各部材を図面上で認識可能な程度の大きさとするため、各層や各部材毎に縮尺を異ならしめてある。また、図2においては、集光の様子を理解し易く描くために、マイクロレンズおよびTFTの位置関係を実際の配置関係とは異ならしめてある。
【0030】
図1および図2において、本形態の液晶装置1は、対向基板200と、石英基板を用いたアクティブマトリクス基板10(第3の透明基板)とがシール材52によって貼り合わされた構成を有している。
【0031】
本形態において、対向基板200は、多数のマイクロレンズ500が形成されたマイクロレンズアレイ付き基板であり、このようなマイクロレンズ500を形成するにあたって、対向基板200は、石英基板からなる第1の透明基板20と、後述するアルミナシリケイトガラスからなる第2の透明基板250とを透明な樹脂210で貼り合わされた貼り合わせ基板として構成されている。
【0032】
本形態で用いたアルミナシリケイトガラス(第2の透明基板250)は、例えば、日本電気硝子株式会社製の商品名、ネオセラムN−Oであり、図3に、各温度における熱膨張率を実線L11で示し、石英基板の各温度における熱膨張率を点線L12で示すように、石英基板と同等の熱膨張率を有すると共に同等の熱膨張係数を有している。すなわち、本形態で用いたアルミナシリケイトガラス(第2の透明基板250)と、石英基板とは、温度変化に対する変化の傾向(膨張、収縮)は異なるものの、熱膨張係数が−10×10-7/℃から+10×10-7/℃までの範囲にある。
【0033】
また、本形態で用いたアルミナシリケイトガラス(第2の透明基板250)は、図4に実線L13で示すように、波長が360nm以下の光を吸収する性質を有しており、波長が350nm以下の光に対する透過率は30%未満である。
【0034】
図2に示す樹脂210は、第1の透明基板20と異なる屈折率を有する光硬化性の接着剤からなり、第1の透明基板20に形成された略半球状の凹曲面部26に充填されていることにより、集光レンズとして機能するマイクロレンズ500を構成している。
【0035】
ここで、樹脂210に含まれる光硬化性触媒は、図5に実線L14で示すように、波長が340nm以下の光を吸収する性質を有しており、このような波長域の光を過度に照射すると、変質し、その透明度が低下する傾向にある。
【0036】
再び図1および図2において、マイクロレンズ500はそれぞれ、入射した光をアクティブマトリクス基板10に形成されている画素電極9aのそれぞれに集光するようにマトリクス状に形成され、かつ、第2の透明基板250には、複数のマイクロレンズ500の相互の境界にそれぞれ対向する位置に遮光膜23が形成されている。画素電極9aは、ITO膜(インジウム・ティン・オキサイド膜)から形成されている。
【0037】
シール材52は、アクティブマトリクス基板10と、対向基板200とを貼り合わせてパネルとするための紫外線硬化性の接着剤からなり、アクティブマトリクス基板10上に塗布された後、アクティブマトリクス基板10と対向基板200とを重ねた状態で、後述する条件下で、紫外線照射により硬化させたものである。液晶装置1が投射型表示装置用のように小型で、拡大表示を行うものであれば、シール材52中には、両基板内の間隙(基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材(スペーサ)が配合される。また、液晶装置1が液晶ディスプレイや液晶テレビのように大型で等倍表示を行うものであれば、このようなギャップ材は、液晶50の中に点在させる場合もある。
【0038】
本形態の液晶装置1では、シール材52の形成領域の内側には、この領域に沿って画像表示領域10aを規定する見切り用の遮光膜53が対向基板200の側に形成されている。シール材52は、液晶50(電気光学物質)の封入領域を区画形成しており、その途切れ部分によって液晶注入口108が形成されている。この液晶注入口108は液晶50の注入を終えた後、シール材52と同一あるいは異なる材料からなる封止材109で塞がれている。
【0039】
また、シール材52が形成された領域の外側の周辺領域には、データ線駆動回路101および外部回路接続端子102がアクティブマトリクス基板10の一辺に沿って形成され、走査線駆動回路104は、この一辺に隣接する2辺に沿って設けられている。さらに、アクティブマトリクス基板10の残る一辺には、画像表示領域10aの両側に設けられた走査線駆動回路104間をつなぐための複数の配線105が形成されている。さらにまた、対向基板200のコーナー部の少なくとも一箇所には、アクティブマトリクス基板10と対向基板200との間で電気的導通をとるための上下導通材106が設けられている。
【0040】
アクティブマトリクス基板10上には、画素スイッチング用TFT30や走査線、データ線、容量線等の配線が形成された後の画素電極9aの表面に、スピンコート法により成膜されたポリイミド系材料からなる配向膜(図示せず)が形成されている。
【0041】
また、対向基板200の側において、第2の透明基板250上には、各画素毎に非開口領域を規定するブラックマスク又はブラックマトリクスなどと称される遮光膜23、対向電極21が形成され、その表面には、スピンコート法により成膜されたポリイミド系材料からなる配向膜(図示せず)が形成されている。
【0042】
これらの配向膜はそれぞれ、ポリイミド系の樹脂材料を塗布し、焼成した後、液晶層50中の液晶を所定方向に配向させると共に、液晶に所定のプレチルト角を付与するように配向処理が施されている。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、配向膜間で所定の配向状態をとる。遮光膜23は、表示画像におけるコントラストの向上を図る機能を有している。
【0043】
なお、アクティブマトリクス基板10の方にも、走査線および容量線に沿って縞状の遮光膜を形成する場合があり、この遮光膜は、TFT30のチャネル領域を含む領域をアクティブマトリクス基板10の裏面側からそれぞれ覆っているため、アクティブマトリクス基板10の側からの裏面反射(戻り光)や複数の液晶装置1をプリズム等を介して組み合わせて1つの光学系を構成する場合に、他の液晶装置1からプリズム等を突き抜けてくる光などがTFT30に入射するの未然に防ぐことができる。
【0044】
本形態の液晶装置1は、後述する投射型表示装置において、各色に分離された色光が入射するため、カラーフィルタが形成されていないが、第2の透明基板250の表面にカラーフィルタが形成される場合もある。この場合に、遮光膜23は、カラーフィルタを形成する色材の混色を防止する機能も有する。
【0045】
(電気光学装置の画像表示領域の構成)
図6を参照して、本形態の液晶装置1の画素部を説明する。図6は、液晶装置1の画像表示領域10aを構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。
【0046】
図6に示すように、本形態の液晶装置1において、画像表示領域10aを構成するマトリクス状に形成された複数の画素は、画素電極9aを制御するためのTFT30がマトリクス状に複数形成されており、画素信号が供給されるデータ線6aがTFT30のソースに電気的に接続されている。データ線6aに書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、相隣接する複数のデータ線6a同士に対して、グループ毎に供給するようにしても良い。また、TFT30のゲートに走査線3aが電気的に接続されており、所定のタイミングで、走査線3aにパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9aは、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6aから供給される画像信号S1、S2、…、Snを所定のタイミングで書き込む。画素信号9aを介して液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板に形成された対向電極との間で一定期間保持される。液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能にする。ノーマリーホワイトモードであれば、印加された電圧に応じて液晶部分を透過する入射光の透過光量が減少し、ノーマリーブラックモードであれば、印加された電圧に応じて液晶部分を透過する入射光の透過光量が増加し、全体として液晶装置1からは画像信号に応じたコントラストを持つ光が出射する。ここで、保持された画像信号がリークするのを防ぐために、画素電極9aと対向電極との間に形成される液晶容量と並列に蓄積容量90を付加する。
【0047】
(マイクロレンズアレイ付き基板の製造方法)
図7、図8および図9を参照して、本発明に係るマイクロレンズアレイ付き基板の製造方法を説明する。
【0048】
図7、図8および図9は、いずれも本実施形態に係るマイクロレンズアレイ付き基板(対向基板200)の製造方法を模式的に示す工程断面図である。
【0049】
本実施形態では、まず、図7(a)に示すように、石英基板からなる第1の透明基板20の表面上にアモルファスシリコンからなるマスク層60を形成する(マスク層形成工程)。このマスク層60は蒸着法、スパッタリング法等によって形成できる。特にプラズマCVD法やLPCVD法によって成膜することによって制御性良く形成できる。本形態において、マスク層60として用いたアモルファスシリコンは、第1の透明基板20との密着性が高いため、後述するエッチング工程においてマスク層60の剥離が発生しにくい。それ故、凹曲面部26(図2を参照)を高い形状精度で形成できる。なお、マスク層60として窒化シリコン(Si3N4)を用いた場合も、第1の透明基板20との密着性が高いため、後述するエッチング工程においてマスク層60の剥離が発生しにくい。
【0050】
次に、基板エッチング用開口部形成工程を行なう。この基板エッチング用開口部形成工程では、まず、図7(b)に示すように、マスク層60の表面にレジストマスク70を形成した後、図7(c)に示すように、所定のマスクパターンを備えた露光マスク80を用いてレジストマスク70を露光し、さらに現像を行なって、図7(d)に示すように、レジストマスク70にマスク層エッチング用開口部71を形成する。次に、マスク層エッチング用開口部71からマスク層60に対してドライエッチングといった異方性エッチング処理を行なうことにより、図8(e)に示すように、マスク層70に対して基板エッチング用開口部61を形成する。しかる後に、図8(f)に示すように、レジストマスク70を除去する。
【0051】
次に、図8(g)に示すように、マスク層60の基板エッチング用開口部61から第1の透明基板20の表面を等方的にエッチング処理し、凹曲面部26を形成する(基板エッチング工程)。
【0052】
このエッチング処理は、フッ酸を主体とするエッチング液を用いたウエットエッチングである。
【0053】
なお、本実施形態では、第1の透明基板20の表面に平面視円形の輪郭を有する略半球状の穴部を設けて凹曲面部26を形成したが、凹曲面部26の平面形状は円形に限らず、矩形など種々の形状に形成しても良い。凹曲面部26の平面形状は、基板エッチング用開口部61の平面形状によって決定される。また、凹曲面部26の径はマイクロレンズアレイの使用目的に応じて適宜形成されるもので任意であり、その径はエッチング時間を制御する事により容易に変更できる。例えば1〜100μm、好ましくは10〜50μm程度であり、本実施形態のように、液晶装置1に入射する光を集光するために用いる場合には、液晶装置1の画素サイズと同等の大きさに形成される。
【0054】
次に、図8(h)に示すように、マスク層60をエッチング処理によって除去する。このエッチング処理には、マスク層60を除去可能で、かつ、第1の透明基板20に影響をほとんど与えないエッチング方法、例えば50℃以上に加熱した10%程度のテトラメチル水酸化アンモニウム水溶液によるウエットエッチングを行なう。このようなテトラメチル水酸化アンモニウム水溶液であれば、第1の透明基板20とマスク層60に対するエッチング選択比が大きいので、第1の透明基板20への影響なく、マスク層60をエッチング除去することができる。
【0055】
なお、窒化シリコンからなるマスク層60を用いた場合には、マスク層60を高温のリン酸により除去する。このようなリン酸であれば、第1の透明基板20とマスク層60に対するエッチング選択比が大きいため、第1の透明基板20への影響なく、マスク層60をエッチング除去することができる。
【0056】
このようにして表面上に多数の凹曲面部26を形成した第1の透明基板20に対して、図9(i)に示すように、透明な樹脂210を凹曲面部26に充填するとともに、この樹脂210を介して、アルミナシリケイトガラスからなる第2の透明基板250を接着する(充填工程)。
【0057】
樹脂210としては、第1の透明基板20とは屈折率の異なる透明材料、本形態では、第1の透明基板20より屈折率の大きな樹脂を用いる。また、樹脂210としては、第1の透明基板20および第2の透明基板250に対して強い接着力を有するものを用いる。本形態では、樹脂210として光硬化性を有するものを用いたので、第1の透明基板20と第2の透明基板250とを樹脂210を介して重ね合わせた後、光照射工程を行なって樹脂210を硬化させる。この工程により、樹脂210が凹曲面部26内に充填され、凹曲面部26を有する第1の透明基板20と、屈折率の異なる樹脂210との境界面によって、マイクロレンズ500が構成される。
【0058】
次に、図9(j)に示すように、第1の透明基板20を研削、研磨などによって薄く形成する。これは、第1透明基板20の厚さと画素ピッチで決まるレンズの焦点距離を液晶層中に位置するように設定するためである。予め、第1の透明基板20を厚くしておくのは、図9(i)を参照して説明した第1の透明基板20と第2の透明基板250との接着工程を容易に行うとともに、この薄肉化工程において第1の透明基板20の表面を平滑化する狙いもある。
【0059】
次に、図9(k)に示すように、第1の透明基板20の表面上に印刷法、蒸着法、スパッタリング法などを用いてブラックマトリクス、金属膜などからなる遮光膜23を選択的に形成する。この遮光膜23は、本来、後述する画素領域間に形成された画素間領域を光が通過することによる液晶装置のコントラスト比の低下を抑制するためのものである。従って、アクティブマトリクス基板10に形成されたTFT30や配線と重なる領域に遮光膜23が選択的に形成される。
【0060】
しかる後に、図9(l)に示すように、透明な対向電極21を形成して、マイクロレンズアレイ付きの対向基板200が完成する。
【0061】
このようにして得たマイクロレンズアレイ付きの対向基板200を用いて液晶装置1を製造するには、対向電極21の表面に配向膜(図示せず)を塗布し、配向膜をラビング処理する。そして、図2に示すように、第1の透明基板20がアクティブマトリクス基板10に向くように、対向基板200とアクティブマトリクス基板10とを位置合わせした状態で対向配置し、シール材52で貼り合わせる。
【0062】
ここで、シール材52は、紫外線硬化性の接着剤であるため、対向基板200とアクティブマトリクス基板10とをシール材52を介して貼り合わせた状態で、図2に矢印UVで示すように、シール材52に対して紫外線を照射してシール材52を硬化させる。
【0063】
このとき、対向基板200とアクティブマトリクス基板10との間で各構成要素の位置がずれないように、シール材52に対して大きなパワーの紫外線を照射して短時間のうちに硬化させる。また、対向基板200とアクティブマトリクス基板10とをシール材52を介して貼り合わせた状態で基板間を狭めるような力を加え、この状態でシール材52に対して大きなパワーの紫外線を照射してシール材52を短時間で硬化させることにより、基板間の間隙に高い寸法精度を出す。このようなパワーの大きな紫外線を照射しても、本形態において、第2の透明基板250は、図4に示すように、波長が360nm以下の光を吸収する性質を有しており、波長が350nm以下の光に対する透過率は30%未満である。従って、シール材52を硬化させるために照射された紫外線は、波長が360nm以下の光が減衰した状態で照射される。従って、樹脂210にパワーの大きな紫外線が照射されたときでも、樹脂210は変質しないので、透明度が低下しない。また、液晶層に接する配向膜が紫外線で劣化するのを防止できる。よって、透過率の高いマイクロレンズアレイ付きの対向基板200および液晶装置1を製造できる。
【0064】
また、本形態のマイクロレンズアレイ付きの対向基板200を用いた液晶装置1では、入射した光をマイクロレンズ500によって、効率よく出射するので、後述する投射型表示装置の光変調手段(ライトバルブ)として用いると、明るい投射画像を得ることができる。
【0065】
この投射型表示装置では、光源から強い光が入射するので、マイクロレンズアレイ付きの対向基板200では、かなりの温度上昇が発生するが、このような状況にあっても、アルミナシリケイトガラスからなる第2の透明基板250の熱膨張係数は、−10×10-7/℃から+10×10-7/℃までの範囲にあり、石英基板を用いた第1の透明基板20と同等である。従って、第2の透明基板250として石英基板以外の透明基板、例えば、安価で、かつ、前述のフィルタ作用を有するアルミナシリケイトガラスを用いても、マイクロレンズアレイ付きの対向基板200に歪みなどの不具合が発生しない。それ故、第2の透明基板20として、石英基板以外の安価な透明基板を用いることにより、マイクロレンズアレイ付きの対向基板200、液晶装置1、および投射型表示装置の低価格化を図ることができる。
【0066】
[実施の形態2]
図10および図12を参照して、本発明の実施の形態2に係るマイクロレンズアレイ付きの対向基板、およびそれを用いた液晶装置1の構成を説明する。なお、本形態は、基本的な構成が実施の形態1と同様であるため、共通する機能を有する部分には共通の符号を付して、それらの説明を省略する。
【0067】
図10は、本形態の液晶装置の断面を模式的に示した説明図である。図11は、この液晶装置に用いたマイクロレンズアレイ付きの対向基板の製造工程のうち、特徴的な工程を示す工程断面図である。
【0068】
図10において、本形態の液晶装置1も、対向基板200と、石英基板を用いたアクティブマトリクス基板(第3の透明基板)とがシール材52によって貼り合わされた構成を有している。対向基板200は、多数のマイクロレンズ500が形成されたマイクロレンズアレイ付き基板である。このようなマイクロレンズ500を形成するにあたって、対向基板200は、石英基板からなる第1の透明基板20と、アルミナシリケイトガラスからなる第2の透明基板250とを透明な樹脂210で貼り合わされた貼り合わせ基板として構成されている。すなわち、第1の透明基板20に形成された凹曲面部26に樹脂210が充填されていることにより、集光レンズとして機能するマイクロレンズ500が形成されている。
【0069】
本形態で用いたアルミナシリケイトガラス(第2の透明基板250)も、実施の形態1と同様、図3に示す熱膨張特性、および図4に示す透過率特性を有している。また、本形態で用いた樹脂210に含まれる光硬化触媒も、波長が340nm以下の光を吸収する性質を有しており、このような波長域の光を過度に照射すると、変質し、その透明度が低下する傾向にある。
【0070】
本形態では、実施の形態1と違って、第2の透明基板250の表面に遮光膜23および対向電極21が形成されている。従って、マイクロレンズアレイ付きの対向基板200は、第2の透明基板250をアクティブマトリクス基板10に向けてシール材52で貼り合わされている。
【0071】
このように構成したマイクロレンズアレイ付き基板(対向基板200)を製造するときも、実施の形態1において図7(a)から図8(h)を参照して説明した工程と同様な工程を行なう。このような工程を行なって、図11(i’)に示すように、第1の透明基板20の表面に多数の凹曲面部26を形成した後、第1の透明基板20の凹曲面部26に対して透明な樹脂210を充填するとともに、この樹脂210を介して、アルミナシリケイトガラスからなる第2の透明基板250を接着する(充填工程)。
【0072】
樹脂210としては、第1の透明基板20とは屈折率の異なる透明材料、本形態では、第1の透明基板20より屈折率の大きな樹脂を用いる。また、樹脂210としては、第1の透明基板20および第2の透明基板250に対して強い接着力を有するものを用いる。本形態において、樹脂210は光硬化性を有するので、第1の透明基板20と第2の透明基板250とを樹脂210を介して重ね合わせた後、光照射工程を行なって樹脂210を硬化させる。この工程により、樹脂210が凹曲面部26内に充填されるため、凹曲面部26を有する第1の透明基板20と、屈折率の異なる樹脂210との境界面によって、マイクロレンズ500が構成される。
【0073】
次に、図11(j’)に示すように、第2の透明基板250を研削、研磨などによって薄く形成する。これは、第1透明基板20の厚さと画素ピッチで決まるレンズの焦点距離を液晶層中に位置するように設定するためである。予め、第2の透明基板250を厚くしておくのは、図11(i’)を参照して説明した第1の透明基板20と第2の透明基板250との接着工程を容易に行うとともに、この薄肉化工程において第2の透明基板250の表面を平滑化する狙いもある。
【0074】
次に、図11(k’)に示すように、第2の透明基板20の表面上に印刷法、蒸着法、スパッタリング法などを用いてブラックマトリクス、金属膜などからなる遮光膜23を選択的に形成する。
【0075】
しかる後に、図11(l’)に示すように、透明な対向電極21を形成して、マイクロレンズアレイ付きの対向基板200が完成する。
【0076】
このようにして得たマイクロレンズアレイ付きの対向基板200を用いて液晶装置1を製造するには、対向電極21の表面に配向膜(図示せず)を塗布し、配向膜をラビング処理する。そして、図10に示すように、第2の透明基板250がアクティブマトリクス基板10に向くように、対向基板200とアクティブマトリクス基板10とを位置合わせした状態で対向配置し、シール材52で貼り合わせる。
【0077】
ここで、シール材52は、紫外線硬化性の接着剤であるため、対向基板200とアクティブマトリクス基板10とをシール材52を介して貼り合わせた状態で、図10に矢印UVで示すように、シール材52に対して大きなパワーの紫外線を接着剤210に対して第2の透明基板250の側から照射してシール材52を短時間のうちに硬化させる。このような紫外線照射を行なっても、第2の透明基板250は、図4に示すように、波長が360nm以下の光を吸収する性質を有しており、波長が350nm以下の光に対する透過率は30%未満である。従って、シール材52を硬化させるために照射された紫外線は、波長が360nm以下の光が減衰した状態で照射される。それ故、樹脂210にパワーの大きな紫外線が照射されたときでも、樹脂210は変質しないので、透明度が低下しない。また、液晶層に接する配向膜が紫外線で劣化するのを防止できる。よって、透過率の高いマイクロレンズアレイ付きの対向基板200および液晶装置1を製造できる。
【0078】
また、本形態のマイクロレンズアレイ付きの対向基板200を用いた液晶装置1では、入射した光をマイクロレンズ500によって効率よく出射するので、後述する投射型表示装置の光変調手段(ライトバルブ)として用いると、明るい投射画像を得ることができる。また、投射型表示装置では、マイクロレンズアレイ付きの対向基板200がかなりの温度上昇を起こすが、このような状況にあっても、アルミナシリケイトガラスからなる第2の透明基板250の熱膨張係数は、−10×10-7/℃から+10×10-7/℃までの範囲にあり、石英基板を用いた第1の透明基板20と同等である。従って、第2の透明基板250として石英基板以外の透明基板、例えば、安価で、かつ、前述のフィルタ作用を有するアルミナシリケイトガラスを用いても、マイクロレンズアレイ付きの対向基板200に歪みなどの不具合が発生しない。それ故、第2の透明基板20として、石英基板以外の安価な透明基板を用いることにより、マイクロレンズアレイ付きの対向基板200、液晶装置1、および投射型表示装置の低価格化を図ることができる。
【0079】
[その他の実施の形態]
上記の実施の形態1、2では、シール材52などの接着剤に紫外線を照射してそれを硬化させるとき、第2の透明基板250がフィルタとして、樹脂の変質の原因となる360nm以下の波長域の光成分を減少したが、図2および図10に一点鎖線で追加して示すフィルタ300によって、360nm以下の波長域の光成分を減少させた状態、好ましくは、波長が350nm以下の光を30%未満まで減少させた状態で紫外線をシール材52に照射してもよい。このようなフィルタ300としては、第2の透明基板250として用いたアルミナシリケイトガラスを用いることができる。このような構成によれば、別体のフィルタ300によって所定の波長域の光を減少させるので、マイクロレンズアレイ付きの対向基板20の側、およびアクティブマトリクス基板10(第3の透明基板)の側のいずれの側から紫外線を照射してもよいという利点がある。
【0080】
また、上記の実施の形態1、2では、第2の透明基板250として日本電気硝子株式会社製の商品名、ネオセラムN−Oを用いた例を説明したが、これに代えて、例えば、第2の透明基板250として、コーニング社の商品名、バイコールUVを用いてもよい。この透明基板は、石英基板と略同様な組成を有するが、セリウムが添加されている。このため、石英基板と同様、熱膨張係数は、+8×10-7/℃であり、−10×10-7/℃から+10×10-7/℃までの範囲にある。また、透過率特性は、図12に示すように、360nm以下の波長域の光成分を減少させ、波長が350nm以下の光については、30%未満まで減少させる。
【0081】
[投射型表示装置の構成]
図13は、本発明を適用した液晶装置1をライトバルブ(光変調手段)として用いた投射型表示装置(プロジェクタ)の構成を示す概略図である。
【0082】
この図に示されるように、投射型表示装置1100の内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、内部に配置された3枚のミラー1106および2枚のダイクロイックミラー1108によってRGBの3原色に分離されて、各原色に対応するライトバルブ1R、1Gおよび1Bにそれぞれ導かれる。ここで、ライトバルブ1R、1Gおよび1Bの構成は、上述した液晶装置1と同様であり、画像信号処理回路(図示省略)から供給されるR、G、Bの原色信号でそれぞれ駆動されるものである。なお、ライトバルブ1R、1Gおよび1Bは、図2あるいは図10に示すマイクロレンズアレイ付きの対向基板200およびアクティブマトリクス基板10のうち、マイクロレンズアレイ付きの対向基板200の側から光が入射するように配置される。
【0083】
なお、B色の光は他のR色やG色を比較すると、光路が長いので、その損失を防ぐために、入射レンズ1122、リレーレンズ1123および出射レンズ1124からなるリレーレンズ系1121を介して導かれる。
【0084】
このように構成した投射型表示装置1100において、ライトバルブ1R、1G、1Bによってそれぞれ変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112において、R色およびB色の光は90度に屈折する一方、G色の光は直進する。したがって、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン1120にカラー画像が投射されることとなる。
【0085】
なお、ライトバルブ1R、1Gおよび1Bには、ダイクロイックミラー1108によって、R、G、Bの各原色に対応する光が入射するので、上述したようにカラーフィルタを設ける必要はない。
【0086】
【発明の効果】
以上説明したように、本発明では、電気光学装置にマイクロレンズアレイ付き基板を用いるので、入射した光を効率よく出射する。それ故、本発明に係る電気光学装置を投射型表示装置の光変調手段(ライトバルブ)として用いると、明るい投射画像を得ることができる。また、投射型表示装置では、光源から強い光が入射するので、マイクロレンズアレイ付き基板では、かなりの温度上昇が発生するが、このような状況にあっても、本発明では、第2の透明基板の熱膨張係数は、−10×10-7/℃から+10×10-7/℃までの範囲にあり、石英基板を用いた透明基板と同等である。従って、第2の透明基板として石英基板以外の透明基板を用いても、マイクロレンズアレイ付き基板に歪みなどの不具合は発生しない。それ故、第2の透明基板として、石英基板以外の安価な透明基板を用いて、マイクロレンズアレイ付き基板、電気光学装置、および投射型表示装置の低価格化を図ることができる。
【図面の簡単な説明】
【図1】本発明が適用される液晶装置のアクティブマトリクス基板(TFTアレイ基板)をその上に形成された各構成要素と共に、対向基板の側から見た平面図である。
【図2】図1に示す液晶装置を図1のH−H´線で切断したときの断面を模式的に示した説明図である。
【図3】本発明を適用した液晶装置の対向基板に用いた第1および第2の透明基板のうち、第2の透明基板に用いたアルミナシリケイトガラスの熱膨張特性を示すグラフである。
【図4】本発明を適用した液晶装置の対向基板に用いた第1および第2の透明基板のうち、第2の透明基板に用いたアルミナシリケイトガラスの透過率曲線を示すグラフである。
【図5】本発明を適用した液晶装置の対向基板において、第1および第2の透明基板を貼り合わせるのに用いた透明な樹脂に含まれる触媒の吸光度曲線を示すグラフである。
【図6】図1に示す液晶装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路である。
【図7】(a)〜(d)は、本発明に係るマイクロレンズアレイ付きの対向基板の製造方法を示す工程断面図である。
【図8】(e)〜(h)は、本発明に係るマイクロレンズアレイ付きの対向基板の製造方法において、図7に示す工程に続いて行なう各工程の工程断面図である。
【図9】(i)〜(l)は、本発明に係るマイクロレンズアレイ付きの対向基板の製造方法において、図8に示す工程に続いて行なう各工程の工程断面図である。
【図10】本発明を適用した別の液晶装置の断面を模式的に示した説明図である。
【図11】(i’)〜(l’)は、図10に示す液晶装置に用いたマイクロレンズアレイ付きの対向基板の製造工程のうち、特徴的な工程を示す工程断面図である。
【図12】本発明を適用した別の液晶装置のマイクロレンズアレイ付きの対向基板において、第2の透明基板として使用可能な透明基板の透過率曲線を示すグラフである。
【図13】投射型表示装置の光学系の要部を模式的に示す説明図である。
【図14】石英基板の透過率曲線を示すグラフである。
【図15】本発明の従来例を示す図である。
【符号の説明】
1 液晶装置
1R、1G、1B ライトバルブ(光変調手段)
9a 画素電極
10 アクティブマトリクス基板(第3の透明基板)
10a 画像表示領域
20 第1の透明基板
23 遮光膜
26 凹曲面部
30 TFT
50 液晶
52 シール材(光硬化性の接着剤)
53 見切り用の遮光膜
200 対向基板(マイクロレンズアレイ付き基板)
210 透明な樹脂
250 第2の透明基板
300 フィルタ
500 マイクロレンズ
1100 投射型表示装置(プロジェクタ)
Claims (16)
- 石英基板からなる第1の透明基板の一方の面に形成した凹曲面部に前記第1の透明基板と屈折率の異なる樹脂を充填するとともに、該樹脂を介して前記第1の透明基板に第2の透明基板が貼着されてなるマイクロレンズアレイ付き基板において、
前記第2の透明基板は、前記第1の透明基板と異なる材質からなる透明基板のうち、熱膨張係数が−10×10-7/℃から+10×10-7/℃までの範囲にあり、且つ波長が360nm以下の光成分を減少させる材質の透明基板を用いたことを特徴とするマイクロレンズアレイ付き基板。 - 請求項1において、前記第2の透明基板は、アルミナシリケイトガラスであることを特徴とするマイクロレンズアレイ付き基板。
- 請求項1又は2に記載のマイクロレンズアレイ付き基板において、
前記第2の透明基板は、波長が350nm以下の光に対する透過率が30%未満であることを特徴とするマイクロレンズアレイ付き基板。 - 請求項1乃至3のいずれかに記載のマイクロレンズアレイ付き基板を用いた電気光学装置において、
前記マイクロレンズアレイ付き基板に対して所定の間隙を介して第3の透明基板が光硬化性の接着剤を介して貼り合わされ、
当該第3の透明基板と前記マイクロレンズアレイ付き基板との間に電気光学物質が保持されていることを特徴とする電気光学装置。 - 請求項4に記載の電気光学装置において
前記接着剤は、前記電気光学物質を保持する領域を区画するシール材であり、
該シール材には、前記マイクロレンズアレイ付き基板と前記第3の透明基板とを貼り合せたときの間隙を規定するギャップ材が含まれていることを特徴とする電気光学装置。 - 請求項4又は5に記載の電気光学装置において、
前記第1の透明基板および前記第2の透明基板のうち、前記第1の透明基板が前記第3の透明基板に対向するように前記マイクロレンズアレイ付き基板と前記第3の透明基板とが貼り合わされていることを特徴とする電気光学装置。 - 請求項4又は5に記載の電気光学装置において、
前記第1の透明基板および前記第2の透明基板のうち、前記第2の透明基板が前記第3の透明基板に対向するように前記マイクロレンズアレイ付き基板と前記第3の透明基板とが貼り合わされていることを特徴とする電気光学装置。 - 石英基板からなる第1の透明基板の一方の面に凹曲面部を形成する基板エッチング工程と、前記凹部曲面部に前記第1の透明基板と屈折率の異なる樹脂を充填すると共に、該樹脂を介して前記第1の透明基板に第2の透明基板を貼着する充填工程とを有するマイクロレンズアレイ付き基板の製造方法において、
前記第2の透明基板として、前記第1の透明基板と異なる材質からなる透明基板のうち、熱膨張係数が−10×10-7/℃から+10×10-7/℃までの範囲にあり、且つ波長が360nm以下の光成分を減少させる材質の透明基板を用いたことを特徴とするマイクロレンズアレイ付き基板の製造方法。 - 請求項8において、前記第2の透明基板は、アルミナシリケイトガラスであることを特徴とするマイクロレンズアレイ付き基板の製造方法。
- 請求項1に記載のマイクロレンズアレイ付き基板を用いた電気光学装置の製造方法であって、
前記マイクロレンズアレイ付き基板に対して、電気光学物質を保持するための所定の間隙を介して第3の透明基板を光硬化性の接着剤により貼り合わせ、この状態で当該接着剤に光照射を行なって当該接着剤を光硬化させる貼り合わせ工程を有し、
該貼り合わせ工程では、前記接着剤に対して、波長が360nm以下の光成分を減少させた光を照射することを特徴とする電気光学装置の製造方法。 - 請求項10に記載の電気光学装置の製造方法において、
前記接着剤は、前記電気光学物質を保持する領域を区画するシール材であり、
該シール材には、前記マイクロレンズアレイ付き基板と前記第3の透明基板とを貼り合わせたときの間隙を規定するギャップ材が含まれていることを特徴とする電気光学装置の製造方法。 - 請求項10又は11に記載の電気光学装置の製造方法において、
前記貼り合わせ工程では、前記樹脂に対して前記第2の透明基板が位置する側から前記接着剤に紫外線を照射することにより、波長が360nm以下の光成分を減少した光を前記接着剤に照射することを特徴とする電気光学装置の製造方法。 - 請求項12に記載の電気光学装置の製造方法において、
前記第2の透明基板は、波長が350nm以下の光に対する透過率が30%未満であることを特徴とする電気光学装置の製造方法。 - 請求項10又は11に記載の電気光学装置の製造方法において、
前記貼り合わせ工程では、波長が360nm以下の光成分を減少可能なフィルタを介して前記接着剤に対して紫外線を照射することにより、波長が360nm以下の光成分を減少した光を前記接着剤に照射することを特徴とする電気光学装置の製造方法。 - 請求項14に記載の電気光学装置の製造方法において、
前記第2の透明基板は、波長が350nm以下の光に対する透過率が30%未満であることを特徴とする電気光学装置の製造方法。 - 請求項1乃至3のいずれかに記載のマイクロレンズアレイ付き基板、又は請求項4乃至8のいずれかに記載の電気光学装置を用いた投射型表示装置において、
前記マイクロレンズアレイ付き基板の側から光が入射するように配置された前記電気光学装置を光変調手段として用いたことを特徴とする投射型表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000315821A JP4069580B2 (ja) | 2000-10-16 | 2000-10-16 | マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000315821A JP4069580B2 (ja) | 2000-10-16 | 2000-10-16 | マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002122709A JP2002122709A (ja) | 2002-04-26 |
JP4069580B2 true JP4069580B2 (ja) | 2008-04-02 |
Family
ID=18794864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000315821A Expired - Fee Related JP4069580B2 (ja) | 2000-10-16 | 2000-10-16 | マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4069580B2 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3888223B2 (ja) * | 2002-05-13 | 2007-02-28 | ソニー株式会社 | 液晶表示素子の製造方法 |
JP4135088B2 (ja) * | 2003-07-31 | 2008-08-20 | 日本電気株式会社 | 液晶表示装置及び液晶プロジェクタ |
JP4956903B2 (ja) * | 2005-03-22 | 2012-06-20 | セイコーエプソン株式会社 | マイクロレンズ基板及びその製造方法、電気光学装置及びその製造方法、並びに電子機器 |
CN100419467C (zh) * | 2005-04-26 | 2008-09-17 | 精工爱普生株式会社 | 微透镜基板及其制造方法、及其应用 |
JP2007322503A (ja) * | 2006-05-30 | 2007-12-13 | Disco Abrasive Syst Ltd | マイクロレンズアレイの製造方法 |
CN104024921B (zh) * | 2011-08-19 | 2018-09-21 | 光学物理有限责任公司 | 具有减小的厚度的任选地可转移光学系统 |
JP2016212358A (ja) * | 2015-05-13 | 2016-12-15 | 住友電工ファインポリマー株式会社 | 光学シートの製造方法、フィルター及び光学シート |
JP7491851B2 (ja) * | 2019-01-16 | 2024-05-28 | ソニーセミコンダクタソリューションズ株式会社 | 表示素子及び投射型表示装置 |
-
2000
- 2000-10-16 JP JP2000315821A patent/JP4069580B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002122709A (ja) | 2002-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6636192B1 (en) | Electrooptic panel, projection display, and method for manufacturing electrooptic panel | |
JP3270821B2 (ja) | 反射型液晶表示装置およびその製造方法 | |
US8773615B2 (en) | Liquid crystal device and projector | |
JP6337604B2 (ja) | 電気光学装置の製造方法、電気光学装置、および電子機器 | |
JP2016151735A (ja) | レンズアレイ基板、電気光学装置、および電子機器、並びにレンズアレイ基板の製造方法 | |
JP6179235B2 (ja) | 電気光学装置及び電子機器 | |
JP4069580B2 (ja) | マイクロレンズアレイ付き基板、電気光学装置、それらの製造方法、および投射型表示装置 | |
JP3767254B2 (ja) | 電気光学装置および投射型表示装置 | |
JP2007248494A (ja) | マイクロレンズ基板及びその製造方法、電気光学装置並びに電子機器 | |
JP6398361B2 (ja) | マイクロレンズアレイ基板、電気光学装置、および電子機器 | |
US20070297710A1 (en) | Electro-optical apparatus, method of manufacturing electro-optical apparatus, and electronic equipment | |
JP3824818B2 (ja) | 電気光学装置および投射型表示装置 | |
JP3826649B2 (ja) | 電気光学装置及び投射型表示装置 | |
JP4315084B2 (ja) | マイクロレンズアレイ板及びその製造方法、並びにこれを備えた電気光学装置及び電子機器 | |
JP4161582B2 (ja) | マイクロレンズアレイ板、電気光学装置、及び電子機器 | |
JP4956903B2 (ja) | マイクロレンズ基板及びその製造方法、電気光学装置及びその製造方法、並びに電子機器 | |
JP4333373B2 (ja) | マイクロレンズの製造方法及びマイクロレンズ、並びにこれを備えた電気光学装置及び電子機器 | |
JP2002182586A (ja) | マイクロレンズ基板の製造方法、マイクロレンズ基板、電気光学装置の製造方法、電気光学装置、および投射型表示装置 | |
JP3702902B2 (ja) | 電気光学装置の製造方法 | |
JP3697945B2 (ja) | 電気光学装置の製造方法 | |
JP3690195B2 (ja) | 電気光学装置およびその製造方法ならびに投射型表示装置 | |
JP6299493B2 (ja) | マイクロレンズアレイ基板、電気光学装置、および電子機器 | |
JP5011894B2 (ja) | プリズム、電気光学装置、及びプロジェクタ | |
JP4337777B2 (ja) | 電気光学装置および投射型表示装置 | |
JP2001235756A (ja) | 電気光学装置の製造方法、電気光学装置および投射型表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071225 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110125 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120125 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130125 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140125 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |