[go: up one dir, main page]

JP4069155B2 - Mobile station, base station, communication system and communication method - Google Patents

Mobile station, base station, communication system and communication method Download PDF

Info

Publication number
JP4069155B2
JP4069155B2 JP2007200219A JP2007200219A JP4069155B2 JP 4069155 B2 JP4069155 B2 JP 4069155B2 JP 2007200219 A JP2007200219 A JP 2007200219A JP 2007200219 A JP2007200219 A JP 2007200219A JP 4069155 B2 JP4069155 B2 JP 4069155B2
Authority
JP
Japan
Prior art keywords
data
signal
channel
axis
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007200219A
Other languages
Japanese (ja)
Other versions
JP2007329956A (en
Inventor
å’Œäŗŗ åŗ­é‡Ž
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007200219A priority Critical patent/JP4069155B2/en
Publication of JP2007329956A publication Critical patent/JP2007329956A/en
Application granted granted Critical
Publication of JP4069155B2 publication Critical patent/JP4069155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Description

ć“ć®ē™ŗę˜ŽćÆć€é«˜é€Ÿć§ćƒ‡ćƒ¼ć‚æé€šäæ”ć‚’č”Œć†ē§»å‹•å±€ć€åŸŗåœ°å±€ć€é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć€é€äæ”ę–¹ę³•ć€å—äæ”ę–¹ę³•ć€é€šäæ”ę–¹ę³•ć€ļ¼©ļ¼±å¤šé‡č£…ē½®åŠć³ļ¼©ļ¼±å¤šé‡ę–¹ę³•ć«é–¢ć™ć‚‹ć‚‚ć®ć§ć‚ć‚‹ć€‚ The present invention relates to a mobile station, a base station, a communication system, a transmission method, a reception method, a communication method, an IQ multiplexing apparatus, and an IQ multiplexing method that perform high-speed data communication.

ęŗåøÆé›»č©±ć«ä»£č”Øć•ć‚Œć‚‹ē§»å‹•ä½“ē„”ē·šé€šäæ”ę–¹å¼ćØć—ć¦ć€ē¬¬ļ¼“äø–ä»£ćØå‘¼ć°ć‚Œć‚‹č¤‡ę•°ć®é€šäæ”ę–¹å¼ćŒļ¼©ļ¼“ļ¼µļ¼ˆå›½éš›é›»ę°—é€šäæ”é€£åˆļ¼‰ć«ćŠć„ć¦ļ¼©ļ¼­ļ¼“ā€•ļ¼’ļ¼ļ¼ļ¼ćØć—ć¦ęŽ”ē”Øć•ć‚Œć€ćć®ć†ć”ć€ļ¼·āˆ’ļ¼£ļ¼¤ļ¼­ļ¼”ļ¼ˆļ¼·ļ½‰ļ½„ļ½…ļ½‚ļ½ļ½Žļ½„ ļ¼£ļ½ļ½„ļ½… ļ¼¤ļ½‰ļ½–ļ½‰ļ½“ļ½‰ļ½ļ½Ž ļ¼­ļ½•ļ½Œļ½”ļ½‰ļ½ļ½Œļ½…ļ¼”ļ½ƒļ½ƒļ½…ļ½“ļ½“ļ¼‰ę–¹å¼ć«ć¤ć„ć¦ćÆć€ļ¼’ļ¼ļ¼ļ¼‘å¹“ć«ę—„ęœ¬ć«ćŠć„ć¦å•†ē”Øć‚µćƒ¼ćƒ“ć‚¹ćŒé–‹å§‹ć•ć‚Œć¦ć„ć‚‹ć€‚
ļ¼·āˆ’ļ¼£ļ¼¤ļ¼­ļ¼”ę–¹å¼ćÆć€ē§»å‹•å±€å½“ć‚Šęœ€å¤§ļ¼’ļ¼­ļ½‚ļ½ļ½“ļ¼ˆļ½‚ļ½‰ļ½” ļ½ļ½…ļ½’ļ½“ļ½…ļ½ƒļ½ļ½Žļ½„ļ¼‰ēØ‹åŗ¦ć®é€šäæ”é€Ÿåŗ¦ćŒå¾—ć‚‰ć‚Œć‚‹ć“ćØć‚’ē›®ēš„ćØć—ć¦ćŠć‚Šć€č¦ę ¼åŒ–å›£ä½“ć§ć‚ć‚‹ļ¼“ļ¼§ļ¼°ļ¼°ļ¼ˆļ¼“ļ½’ļ½„ ļ¼§ļ½…ļ½Žļ½…ļ½’ļ½ļ½”ļ½‰ļ½ļ½Ž ļ¼°ļ½ļ½’ļ½”ļ½Žļ½…ļ½’ļ½“ļ½ˆļ½‰ļ½ļ¼°ļ½’ļ½ļ½Šļ½…ļ½ƒļ½”ļ¼‰ć«ćŠć„ć¦ć€ļ¼‘ļ¼™ļ¼™ļ¼™å¹“ć«ć¾ćØć‚ć‚‰ć‚ŒćŸč¦ę ¼ć®ćƒćƒ¼ć‚øćƒ§ćƒ³ć§ć‚ć‚‹ćƒŖćƒŖćƒ¼ć‚¹ļ¼™ļ¼™ļ¼ˆļ¼²ļ½…ļ½Œļ½…ļ½ļ½“ļ½…ļ¼‘ļ¼™ļ¼™ļ¼™ļ¼‰ē‰ˆćØć—ć¦ęœ€åˆć®ä»•ę§˜ćŒę±ŗå®šć•ć‚Œć¦ć„ć‚‹ć€‚
As mobile radio communication systems represented by mobile phones, a plurality of communication systems called third generations are adopted as IMT-2000 in the ITU (International Telecommunication Union), and among them, W-CDMA (Wideband Code Division Multiple Access) system In 2001, commercial service was started in Japan.
The purpose of the W-CDMA system is to obtain a communication speed of about 2 Mbps (bit per second) at the maximum per mobile station, and the version of the standard compiled in 1999 in 3GPP (3rd Generation Partnership Project), which is a standardization organization. The first specification has been determined as Release 99 (Release 1999) version.

å›³ļ¼’ļ¼‘ćÆå¾“ę„ć®é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć‚’ē¤ŗć™äø€čˆ¬ēš„ćŖę¦‚åæµå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼‘ćÆåŸŗåœ°å±€ć€ļ¼’ćÆåŸŗåœ°å±€ļ¼‘ćØē„”ē·šé€šäæ”ć‚’å®Ÿę–½ć™ć‚‹ē§»å‹•å±€ć€ļ¼“ćÆåŸŗåœ°å±€ļ¼‘ćŒē§»å‹•å±€ļ¼’ć«ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹éš›ć«ä½æē”Øć•ć‚Œć‚‹äø‹ć‚ŠćƒŖćƒ³ć‚Æć€ļ¼”ćÆē§»å‹•å±€ļ¼’ćŒåŸŗåœ°å±€ļ¼‘ć«ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹éš›ć«ä½æē”Øć•ć‚Œć‚‹äøŠć‚ŠćƒŖćƒ³ć‚Æć§ć‚ć‚‹ć€‚ FIG. 21 is a general conceptual diagram showing a conventional communication system. In FIG. 21, 1 is a base station, 2 is a mobile station that performs wireless communication with the base station 1, and 3 is a data that is transmitted from the base station 1 to the mobile station 2. 4 is an uplink used when the mobile station 2 transmits data to the base station 1.

å›³ļ¼’ļ¼’ćÆē§»å‹•å±€ļ¼’ć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼‘ļ¼‘ćÆå€‹åˆ„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ļ¼ˆļ¼¤ļ½…ļ½„ļ½‰ļ½ƒļ½ļ½”ļ½…ļ½„ ļ¼°ļ½ˆļ½™ļ½“ļ½‰ļ½ƒļ½ļ½Œ ļ¼¤ļ½ļ½”ļ½ļ¼£ļ¼Øļ½ļ½Žļ½Žļ½…ļ½Œļ¼‰ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øć‚’äø¦åˆ—ć«åˆ†é…ć—ć¦ć€č¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’å‡ŗåŠ›ć™ć‚‹åˆ†é…å™Øć€ļ¼‘ļ¼’ćÆåˆ†é…å™Øļ¼‘ļ¼‘ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–åŠć³åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ļ¼ˆļ¼¤ļ½…ļ½„ļ½‰ļ½ƒļ½ļ½”ļ½…ļ½„ ļ¼°ļ½ˆļ½™ļ½“ļ½‰ļ½ƒļ½ļ½Œ ļ¼£ļ½ļ½Žļ½”ļ½’ļ½ļ½Œļ¼£ļ¼Øļ½ļ½Žļ½Žļ½…ļ½Œļ¼‰ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć‚’ä¹—ē®—ć—ć¦ć‚¹ćƒšć‚Æćƒˆćƒ«ę‹”ę•£ć‚’č”Œć†ę‹”ę•£å™Øć€ļ¼‘ļ¼“ćÆę‹”ę•£å™Øļ¼‘ļ¼’ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ļ¼šļ¼©ļ½Žļ½ļ½ˆļ½ļ½“ļ½…äæ”å·ć€ļ¼±äæ”å·ļ¼šļ¼±ļ½•ļ½ļ½„ļ½’ļ½ļ½”ļ½•ļ½’ļ½…äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØć€ļ¼‘ļ¼”ćÆć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć«ć‚ˆć‚Šē”Ÿęˆć•ć‚ŒćŸč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē›“äŗ¤å¤‰čŖæć—ć¦å¤‰čŖæäæ”å·ć‚’ē”Ÿęˆć™ć‚‹å¤‰čŖæéƒØć€ļ¼‘ļ¼•ćÆå¤‰čŖæéƒØļ¼‘ļ¼”ć«ć‚ˆć‚Šē”Ÿęˆć•ć‚ŒćŸå¤‰čŖæäæ”å·ć‚’å‘Øę³¢ę•°å¤‰ę›ć—ć¦ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å‡ŗåŠ›ć™ć‚‹å‘Øę³¢ę•°å¤‰ę›éƒØć€ļ¼‘ļ¼–ćÆå‘Øę³¢ę•°å¤‰ę›éƒØļ¼‘ļ¼•ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’é€äæ”ć™ć‚‹ć‚¢ćƒ³ćƒ†ćƒŠć§ć‚ć‚‹ć€‚ FIG. 22 is a configuration diagram showing the internal configuration of the mobile station 2. In FIG. 22, reference numeral 11 indicates that data DPDCH of a dedicated data channel (Dedicated Physical Data Channel) is distributed in parallel, and data DPDCH1 to DPDCH6 of a plurality of data channels is distributed. 12 is a spread that performs spread spectrum by multiplying the data DPDCH1 to DPDCH6 output from the distributor 11 and the control data DPCCH of the control channel (Dedicated Physical Control Channel) by a spreading code for channel separation. 13 is a scrambler that generates a complex signal (I signal: Inphase signal, Q signal: Quadrature signal) by IQ multiplexing the output signal of the spreader 12, and 14 is generated by the scrambler 13. A modulation unit that orthogonally modulates the complex signals (I signal and Q signal) generated to generate a modulation signal, 15 a frequency conversion unit that frequency-converts the modulation signal generated by the modulation unit 14 and outputs a radio frequency signal; Reference numeral 16 denotes an antenna that transmits the radio frequency signal output from the frequency converter 15.

å›³ļ¼’ļ¼“ćÆę‹”ę•£å™Øļ¼‘ļ¼’åŠć³ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼’ļ¼‘ć€œļ¼’ļ¼–ćÆåˆ†é…å™Øļ¼‘ļ¼‘ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼‘ć€œļ¼£ļ½„ļ¼Œļ¼–ć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼’ļ¼—ćÆåˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼“ļ¼‘ć€œļ¼“ļ¼–ćÆä¹—ē®—å™Øļ¼’ļ¼‘ć€œļ¼’ļ¼–ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½„ć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼“ļ¼—ćÆä¹—ē®—å™Øļ¼’ļ¼—ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć§ć‚ć‚‹ć€‚
ļ¼“ļ¼˜ćÆä¹—ē®—å™Øļ¼“ļ¼‘ć€œļ¼“ļ¼“ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć‚‹åŠ ē®—å™Øć€ļ¼“ļ¼™ćÆä¹—ē®—å™Øļ¼“ļ¼”ć€œļ¼“ļ¼—ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć‚‹åŠ ē®—å™Øć€ļ¼”ļ¼ćÆåŠ ē®—å™Øļ¼“ļ¼™ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦č™šę•°ļ½Šć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼”ļ¼‘ćÆåŠ ē®—å™Øļ¼“ļ¼˜ć®å‡ŗåŠ›äæ”å·ćØä¹—ē®—å™Øļ¼”ļ¼ć®å‡ŗåŠ›äæ”å·ć‚’åŠ ē®—ć™ć‚‹åŠ ē®—å™Øć€ļ¼”ļ¼’ćÆåŠ ē®—å™Øļ¼”ļ¼‘ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ļ¼³ļ½„ļ½ļ½ƒļ½ˆ,ļ½Žć‚’ä¹—ē®—ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ä¹—ē®—å™Øć§ć‚ć‚‹ć€‚
FIG. 23 is a block diagram showing the internal configuration of the spreader 12 and the scrambler 13. In FIG. 23, reference numerals 21 to 26 denote channel separation spreading codes Cd, 1 for the data DPDCH1 to DPDCH6 output from the distributor 11. Multiplier for multiplying ~ Cd, 6, 27 is a multiplier for multiplying control data DPCCH of the control channel by a spreading code Cc for channel separation, 31-36 are for the output signals of the multipliers 21-26 A multiplier 37 multiplies the DPDCH amplitude coefficient βd. A multiplier 37 multiplies the output signal of the multiplier 27 by the DPCCH amplitude coefficient βc.
38 is an adder that adds the output signals of the multipliers 31 to 33, 39 is an adder that adds the output signals of the multipliers 34 to 37, and 40 is a multiplier that multiplies the output signal of the adder 39 by an imaginary number j. , 41 is an adder that adds the output signal of the adder 38 and the output signal of the multiplier 40, and 42 is a complex signal (multiplying the output signal of the adder 41 by a mobile station identification identification code Sdpch, n. It is a multiplier that outputs (I signal, Q signal).

ę¬”ć«å‹•ä½œć«ć¤ć„ć¦čŖ¬ę˜Žć™ć‚‹ć€‚
ē§»å‹•å±€ļ¼’ćŒåŸŗåœ°å±€ļ¼‘ć«ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹éš›ć®å‹•ä½œć‚’čŖ¬ę˜Žć™ć‚‹ć€‚ē§»å‹•å±€ļ¼’ćŒåŸŗåœ°å±€ļ¼‘ć«ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹å “åˆć€å›³ļ¼’ļ¼‘ć«ē¤ŗć™ć‚ˆć†ć«ć€äøŠć‚ŠćƒŖćƒ³ć‚Æļ¼”ć‚’ä½æē”Øć—ć¦ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹ćŒć€ļ¼·āˆ’ļ¼£ļ¼¤ļ¼­ļ¼”č¦ę ¼ć«ćŠć„ć¦ćÆć€ļ¼‘ć¤ć®ē§»å‹•å±€ļ¼’ćŒäøŠć‚ŠćƒŖćƒ³ć‚Æļ¼”ć‚’ä½æē”Øć™ć‚‹ć«éš›ć—ć¦ć€é€šäæ”ć‚µćƒ¼ćƒ“ć‚¹ć«åæ…č¦ćŖé€šäæ”é€Ÿåŗ¦ć«åæœć˜ć¦ć€ęœ€å¤§ļ¼–å€‹ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹ć“ćØćŒć§ćć‚‹ć€‚
ć“ć“ć§ćÆć€čŖ¬ę˜Žć®ä¾æå®œäøŠć€ļ¼–å€‹ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æćØļ¼‘å€‹ć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æćØć‚’é€äæ”ć™ć‚‹å “åˆć«ć¤ć„ć¦čŖ¬ę˜Žć™ć‚‹ć€‚
Next, the operation will be described.
An operation when the mobile station 2 transmits data to the base station 1 will be described. When the mobile station 2 transmits data to the base station 1, as shown in FIG. 21, data is transmitted using the uplink 4. In the W-CDMA standard, one mobile station 2 is connected to the uplink 4. When using, data of up to six data channels can be transmitted according to the communication speed required for the communication service.
Here, for convenience of explanation, a case will be described in which data of six data channels and control data of one control channel are transmitted.

ć¾ćšć€ē§»å‹•å±€ļ¼’ć®åˆ†é…å™Øļ¼‘ļ¼‘ćÆć€å€‹åˆ„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øć‚’äø¦åˆ—ć«åˆ†é…ć—ć¦ć€č¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’å‡ŗåŠ›ć™ć‚‹ć€‚
ę‹”ę•£å™Øļ¼‘ļ¼’ć®ä¹—ē®—å™Øļ¼’ļ¼‘ć€œļ¼’ļ¼–ćÆć€åˆ†é…å™Øļ¼‘ļ¼‘ćŒč¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’å‡ŗåŠ›ć™ć‚‹ćØć€ćć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼‘ć€œļ¼£ļ½„ļ¼Œļ¼–ć‚’ä¹—ē®—ć—ć€ę‹”ę•£å™Øļ¼‘ļ¼’ć®ä¹—ē®—å™Øļ¼’ļ¼—ćÆć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ć€‚
First, the distributor 11 of the mobile station 2 distributes the data DPDCH of the dedicated data channel in parallel and outputs the data DPDCH1 to DPDCH6 of the plurality of data channels.
When the distributor 11 outputs the data DPDCH1 to DPDCH6 of a plurality of data channels, the multipliers 21 to 26 of the spreader 12 output spread codes Cd, 1 to Cd, 6 for channel separation with respect to the data DPDCH1 to DPDCH6. And the multiplier 27 of the spreader 12 multiplies the control data DPCCH of the control channel by the spread code Cc for channel separation.

ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ćÆć€ę‹”ę•£å™Øļ¼‘ļ¼’ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹ć€‚
å³ć”ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®ä¹—ē®—å™Øļ¼“ļ¼‘ć€œļ¼“ļ¼–ćÆć€ę‹”ę•£å™Øļ¼‘ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼’ļ¼‘ć€œļ¼’ļ¼–ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½„ć‚’ä¹—ē®—ć—ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®ä¹—ē®—å™Øļ¼“ļ¼—ćÆć€ę‹”ę•£å™Øļ¼‘ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼’ļ¼—ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ć€‚
ć“ć“ć§ć€å›³ļ¼’ļ¼”ćÆęŒÆå¹…äæ‚ę•°Ī²ļ½„ļ¼ŒĪ²ļ½ƒćŒå–ć‚Šå¾—ć‚‹å€¤ć‚’ē¤ŗć™č”Øå›³ć§ć‚ć‚‹ć€‚ęŒÆå¹…äæ‚ę•°Ī²ļ½„ļ¼ŒĪ²ļ½ƒćÆćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ćØåˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć®ćƒ‘ćƒÆćƒ¼ęÆ”ć‚’ę±ŗå®šć™ć‚‹ćŸć‚ć®äæ‚ę•°ć§ć‚ć‚Šć€ļ¼“ļ¼§ļ¼°ļ¼°č¦ę ¼ć®ļ¼“ļ¼³ļ¼’ļ¼•ļ¼Žļ¼’ļ¼‘ļ¼“ļ½–ļ¼“ļ¼Žļ¼–ļ¼Žļ¼ļ¼ˆļ¼’ļ¼ļ¼ļ¼‘āˆ’ļ¼ļ¼–ļ¼‰ļ¼ˆļ¼²ļ½…ļ½Œļ½…ļ½ļ½“ļ½…ļ¼‘ļ¼™ļ¼™ļ¼™ļ¼‰ć«č¦å®šć•ć‚Œć¦ć„ć‚‹ć€‚ćŖćŠć€č”Øć®å³å“ćŒęŒÆå¹…äæ‚ę•° Ī²ļ½„ļ¼ŒĪ²ļ½ƒćŒå–ć‚Šå¾—ć‚‹å€¤ć§ć‚ć‚‹ć€‚
The scrambler 13 IQ multiplexes the output signal of the spreader 12 to generate a complex signal (I signal, Q signal).
That is, the multipliers 31 to 36 of the scramble unit 13 multiply the output signals of the multipliers 21 to 26 in the spreader 12 by the amplitude coefficient βd for DPDCH, and the multiplier 37 of the scramble unit 13 The output signal of the multiplier 27 is multiplied by the amplitude coefficient βc for DPCCH.
Here, FIG. 24 is a table showing the possible values of the amplitude coefficients βd and βc. The amplitude coefficients βd and βc are coefficients for determining the power ratio between the data DPDCH1 to DPDCH6 and the control data DPCCH, and are defined in 3GPP standard TS25.213v3.6.0 (2001-06) (Release 1999). The right side of the table shows the values that the amplitude coefficients βd and βc can take.

ćć—ć¦ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®åŠ ē®—å™Øļ¼“ļ¼˜ćÆć€ä¹—ē®—å™Øļ¼“ļ¼‘ć€œļ¼“ļ¼“ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®åŠ ē®—å™Øļ¼“ļ¼™ćÆć€ä¹—ē®—å™Øļ¼“ļ¼”ć€œļ¼“ļ¼—ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć‚‹ć€‚
ć¾ćŸć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®ä¹—ē®—å™Øļ¼”ļ¼ćÆć€åŠ ē®—å™Øļ¼“ļ¼™ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ćŸć‚ć€åŠ ē®—å™Øļ¼“ļ¼™ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦č™šę•°ļ½Šć‚’ä¹—ē®—ć™ć‚‹ć€‚
ć“ć“ć§ć€ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ļ¼Œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼“ļ¼Œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼•ć«ć¤ć„ć¦ćÆļ¼©č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć€ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼’ļ¼Œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼”ļ¼Œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć«ć¤ć„ć¦ćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć‚‹ćŒć€ļ¼©ļ¼ļ¼±č»øć«åÆ¾ć™ć‚‹ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®å‰²ć‚Šå½“ć¦ę–¹ćÆļ¼“ļ¼§ļ¼°ļ¼°č¦ę ¼ć®ļ¼“ļ¼³ļ¼’ļ¼•ļ¼Žļ¼’ļ¼‘ļ¼“ć«č¦å®šć•ć‚Œć¦ć„ć‚‹ć€‚
Then, the adder 38 of the scramble unit 13 adds the output signals of the multipliers 31 to 33, and the adder 39 of the scramble unit 13 adds the output signals of the multipliers 34 to 37.
The multiplier 40 of the scrambler 13 multiplies the output signal of the adder 39 by an imaginary number j in order to assign the output signal of the adder 39 to the Q axis.
Here, the data DPDCH1, DPDCH3, and DPDCH5 are assigned to the I axis, and the data DPDCH2, DPDCH4, and DPDCH6 are assigned to the Q axis, but the data channel assignment method for the I / Q axis is TS25.213 of the 3GPP standard. It is stipulated in.

ę¬”ć«ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®åŠ ē®—å™Øļ¼”ļ¼‘ćÆć€åŠ ē®—å™Øļ¼“ļ¼˜ć®å‡ŗåŠ›äæ”å·ćØä¹—ē®—å™Øļ¼”ļ¼ć®å‡ŗåŠ›äæ”å·ć‚’åŠ ē®—ć—ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ć®ä¹—ē®—å™Øļ¼”ļ¼’ćÆć€åŠ ē®—å™Øļ¼”ļ¼‘ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ļ¼³ļ½„ļ½ļ½ƒļ½ˆ,ļ½Žć‚’ä¹—ē®—ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ć€‚
å¤‰čŖæéƒØļ¼‘ļ¼”ćÆć€äøŠčØ˜ć®ć‚ˆć†ć«ć—ć¦ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼‘ļ¼“ćŒč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹ćØć€ćć®č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē›“äŗ¤å¤‰čŖæć—ć¦å¤‰čŖæäæ”å·ć‚’ē”Ÿęˆć™ć‚‹ć€‚
å‘Øę³¢ę•°å¤‰ę›éƒØļ¼‘ļ¼•ćÆć€å¤‰čŖæéƒØļ¼‘ļ¼”ćŒå¤‰čŖæäæ”å·ć‚’ē”Ÿęˆć™ć‚‹ćØć€ćć®å¤‰čŖæäæ”å·ć‚’å‘Øę³¢ę•°å¤‰ę›ć—ć¦ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’ē”Ÿęˆć—ć€ćć®ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å¢—å¹…ć—ć¦ć‚¢ćƒ³ćƒ†ćƒŠļ¼‘ļ¼–ć«å‡ŗåŠ›ć™ć‚‹ć€‚ć“ć‚Œć«ć‚ˆć‚Šć€ć‚¢ćƒ³ćƒ†ćƒŠļ¼‘ļ¼–ć‹ć‚‰ē„”ē·šå‘Øę³¢ę•°äæ”å·ćŒåŸŗåœ°å±€ļ¼‘ć«é€äæ”ć•ć‚Œć‚‹ć€‚
Next, the adder 41 of the scrambler 13 adds the output signal of the adder 38 and the output signal of the multiplier 40, and the multiplier 42 of the scrambler 13 identifies the mobile station with respect to the output signal of the adder 41. Multiplicative identification codes Sdpch, n are multiplied to output complex signals (I signal, Q signal).
When the scrambler 13 generates a complex signal (I signal, Q signal) as described above, the modulation unit 14 orthogonally modulates the complex signal (I signal, Q signal) to generate a modulated signal.
When the modulation unit 14 generates a modulation signal, the frequency conversion unit 15 converts the frequency of the modulation signal to generate a radio frequency signal, amplifies the radio frequency signal, and outputs the amplified signal to the antenna 16. As a result, a radio frequency signal is transmitted from the antenna 16 to the base station 1.

åŸŗåœ°å±€ļ¼‘ćÆć€ē§»å‹•å±€ļ¼’ć‹ć‚‰é€äæ”ć•ć‚ŒćŸē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å—äæ”ć™ć‚‹ćØć€ē§»å‹•å±€ļ¼’ćØé€†ć®å‹•ä½œć‚’č”Œć†ć“ćØć«ć‚ˆć‚Šćƒ‡ćƒ¼ć‚æć‚’å–å¾—ć™ć‚‹ć€‚
äøŠčØ˜ć®å¾“ę„ä¾‹ć§ćÆć€ļ¼–å€‹ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć‚’čØ­å®šć™ć‚‹ć‚‚ć®ć«ć¤ć„ć¦ē¤ŗć—ćŸćŒć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼•ä»„äø‹ć®å “åˆć€ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć‹ć‚‰é †ē•Ŗć«ļ¼©ļ¼ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć€äøč¦ćŖćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć«é–¢ć™ć‚‹å‡¦ē†ćÆč”Œć‚ć‚ŒćŖć„ć€‚ć¾ćŸć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćÆć€åæ…č¦ćØć•ć‚Œć‚‹é€šäæ”ć‚µćƒ¼ćƒ“ć‚¹ć‚„é€šäæ”é€Ÿåŗ¦ć«ć‚ˆć‚Šę±ŗå®šć•ć‚Œć‚‹ć€‚
When the base station 1 receives the radio frequency signal transmitted from the mobile station 2, the base station 1 acquires data by performing the reverse operation of the mobile station 2.
In the above conventional example, six data channels are set. However, when the number of data channels is five or less, the data DPDCH1 is assigned to the I / Q axis in order, and unnecessary data is used. No processing is performed on the channel. The number of data channels set is determined by the required communication service and communication speed.

ć“ć“ć§ć€å›³ļ¼’ļ¼•ćÆćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹å “åˆć«ćŠć‘ć‚‹č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚
ć“ć®å “åˆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ćÆļ¼©č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼ØćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć‚‹ć€‚
ć“ć‚Œć«ć‚ˆć‚Šć€ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ćØåˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼ØćŒäŗ’ć„ć«ē›“äŗ¤ć™ć‚‹ć®ć§ć€åŸŗåœ°å±€ļ¼‘ć§ćÆć€äø”ćƒćƒ£ćƒćƒ«ć‚’åˆ†é›¢ć—ć¦å¾©čŖæć™ć‚‹ć“ćØćŒåÆčƒ½ć«ćŖć‚‹ć€‚
ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼’ć€œļ¼–ć®å “åˆć«ć¤ć„ć¦ć‚‚åŒę§˜ć«ē¤ŗć™ć“ćØćŒåÆčƒ½ć§ć‚ć‚‹ć€‚ćŸć ć—ć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼’ć€œļ¼–ć®å “åˆć€åŒć˜č»øć®ćƒćƒ£ćƒćƒ«ęˆåˆ†ćÆćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć‚’ä½æē”Øć™ć‚‹ć“ćØć«ć‚ˆć‚Šåˆ†é›¢ć™ć‚‹ć“ćØćŒć§ćć‚‹ć€‚
Here, FIG. 25 is an explanatory diagram showing a complex plane when the number of data channels set is one.
In this case, data DPDCH1 of the data channel is assigned to the I axis, and control data DPCCH of the control channel is assigned to the Q axis.
Thereby, since data DPDCH1 and control data DPCCH are orthogonal to each other, base station 1 can separate and demodulate both channels.
The same applies to the case where the number of data channels set is 2-6. However, when the set number of data channels is 2 to 6, channel components on the same axis can be separated by using a spreading code for channel separation.

ćŖćŠć€äøŠčØ˜ć®å¾“ę„ä¾‹ć§ćÆć€åŸŗåœ°å±€ļ¼‘ćØē§»å‹•å±€ļ¼’ć®é–“ć«ć€äø‹ć‚ŠćƒŖćƒ³ć‚Æļ¼“ćØäøŠć‚ŠćƒŖćƒ³ć‚Æļ¼”ć‚’ļ¼‘ęœ¬ćšć¤čØ­å®šć™ć‚‹ć‚‚ć®ć«ć¤ć„ć¦ē¤ŗć—ćŸćŒć€åŸŗåœ°å±€ļ¼‘ćŒē§»å‹•å±€ļ¼’ć«é€äæ”ć™ć‚‹äø‹ć‚Šćƒ‡ćƒ¼ć‚æć®ę›“ćŖć‚‹é«˜é€ŸåŒ–ć‚’å®Ÿē¾ć™ć‚‹ćŸć‚ć€å›³ļ¼’ļ¼–ć«ē¤ŗć™ć‚ˆć†ć«ć€å¾“ę„ć®äø‹ć‚ŠćƒŖćƒ³ć‚Æļ¼“ć®ä»–ć«äø‹ć‚ŠćƒŖćƒ³ć‚Æļ¼•ć‚’ę–°ćŸć«čæ½åŠ ć™ć‚‹ļ¼Øļ¼³ļ¼¤ļ¼°ļ¼”ļ¼ˆļ¼Øļ½‰ļ½‡ļ½ˆ Speed ļ¼¤ļ½ļ½—ļ½Žļ½Œļ½‰ļ½Žļ½‹ ļ¼°ļ½ļ½ƒļ½‹ļ½…ļ½”ļ¼”ļ½ƒļ½ƒļ½…ļ½“ļ½“ļ¼‰ćŒęę”ˆćƒ»ę¤œčØŽć•ć‚Œć¦ć„ć‚‹ļ¼ˆļ¼“ļ¼²ļ¼’ļ¼•ļ¼Žļ¼˜ļ¼•ļ¼˜ļ½–ļ¼‘ļ¼Žļ¼ļ¼Žļ¼ļ¼ˆļ¼’ļ¼ļ¼ļ¼‘āˆ’ļ¼‘ļ¼’ļ¼‰ć€Œļ¼Øļ½‰ļ½‡ļ½ˆ Speed ļ¼¤ļ½ļ½—ļ½Žļ½Œļ½‰ļ½Žļ½‹ ļ¼°ļ½ļ½ƒļ½‹ļ½…ļ½”ļ¼”ļ½ƒļ½ƒļ½…ļ½“ļ½“ļ¼šļ¼°ļ½ˆļ½™ļ½“ļ½‰ļ½ƒļ½ļ½Œ Layer ļ¼”ļ½“ļ½ļ½…ļ½ƒļ½”ļ½“ļ¼ˆļ¼²ļ½…ļ½Œļ½…ļ½ļ½“ļ½…ļ¼•ļ¼‰ć€ć‚’å‚ē…§ļ¼‰ć€‚ In the above conventional example, one downlink 3 and one uplink 4 are set between the base station 1 and the mobile station 2, but downlink data transmitted from the base station 1 to the mobile station 2 is shown. As shown in FIG. 26, HSDPA (High Speed Downlink Packet Access) in which a downlink 5 is newly added in addition to the conventional downlink 3 has been proposed and studied (TR25. 858v1.0.0 (2001-12) "High Speed Downlink PacketAccess: Physical Layer Aspects (Release 5)").

ćŖćŠć€ę–°ćŸć«äø‹ć‚ŠćƒŖćƒ³ć‚Æļ¼•ć‚’čæ½åŠ ć™ć‚‹ć«éš›ć—ć¦ć€ē§»å‹•å±€ļ¼’ćŒäø‹ć‚Šć®é«˜é€Ÿćƒ‘ć‚±ćƒƒćƒˆćƒ‡ćƒ¼ć‚æć«åÆ¾ć™ć‚‹åæœē­”ćƒ‡ćƒ¼ć‚æļ¼ˆļ¼”ļ¼£ļ¼«ļ¼ļ¼®ļ¼”ļ¼£ļ¼«ļ¼‰ē­‰ć‚’åŸŗåœ°å±€ļ¼‘ć«é€äæ”ć™ć‚‹ć“ćØćŒę¤œčØŽć•ć‚Œć¦ć„ć‚‹ćŒć€å›³ļ¼’ļ¼–ć«ē¤ŗć™ć‚ˆć†ć«ć€ćć®åæœē­”ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹ćŸć‚ć®å°‚ē”Øć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ļ¼ˆäøŠć‚ŠćƒŖćƒ³ć‚Æćƒćƒ£ćƒćƒ«ļ¼–ļ¼‰ć«ć¤ć„ć¦ćÆć€å¾“ę„ć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ćØåŒę§˜ć«ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć«ć‚ˆć‚Šåˆ†é›¢ćƒ»č­˜åˆ„ć—ćŸć®ć”ć€å¾“ę„ć®äøŠć‚ŠćƒŖćƒ³ć‚Æļ¼”ć«čæ½åŠ å¤šé‡ć™ć‚‹ę–¹å‘ć§ę¤œčØŽć•ć‚Œć¦ć„ć‚‹ć€‚ļ¼“ļ¼²ļ¼’ļ¼•ļ¼Žļ¼˜ļ¼•ļ¼˜ć§ćÆć€å°‚ē”Øć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć‚’ "ļ½ļ½„ļ½„ļ½‰ļ½”ļ½‰ļ½ļ½Žļ½ļ½Œ DPCCH"ćØčØ˜čæ°ć•ć‚Œć¦ć„ć‚‹ć€‚
特開平10-341188号公報 特開2001-267959号公報
In addition, when newly adding the downlink 5, it is considered that the mobile station 2 transmits response data (ACK / NACK) or the like for the downlink high-speed packet data to the base station 1, as shown in FIG. In addition, a dedicated control channel (uplink channel 6) for transmitting the response data is separated and identified by a spreading code for channel separation in the same manner as the conventional control channel, and then the conventional uplink 4 In the direction of additional multiplexing. In TR25.858, a dedicated control channel is described as ā€œadditional DPCCHā€.
Japanese Patent Laid-Open No. 10-341188 JP 2001-267959 A

å¾“ę„ć®é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ćÆä»„äøŠć®ć‚ˆć†ć«ę§‹ęˆć•ć‚Œć¦ć„ć‚‹ć®ć§ć€ę–°ćŸć«čæ½åŠ ć™ć‚‹å°‚ē”Øć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć‚’ļ¼©č»øåˆćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹åæ…č¦ćŒć‚ć‚‹ćŒć€å°‚ē”Øć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć‚’ļ¼©č»øåˆćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ć“ćØć«ć‚ˆć£ć¦ļ¼©č»øåˆćÆļ¼±č»øć®ćƒ”ćƒ¼ć‚Æćƒ‘ćƒÆćƒ¼ćŒå¢—å¤§ć™ć‚‹ćØć€ä¾‹ćˆć°ć€ē§»å‹•å±€ļ¼’ć®å¤‰čŖæéƒØļ¼‘ļ¼”ćŒå†…č”µć™ć‚‹ē›“äŗ¤å¤‰čŖæå™Øļ¼ˆćŖć„ć—ćÆē›“äŗ¤å¤‰čŖæå¢—å¹…å™Øļ¼‰ć«ćŠć„ć¦ć€ćć®å…„å‡ŗåŠ›ē‰¹ę€§ć®éžē·šå½¢ćŖé ˜åŸŸć‚’ä½æē”Øć™ć‚‹ć“ćØć«ćŖć‚‹ćŸć‚ć«ę­ŖćæćŒē™ŗē”Ÿć™ć‚‹ć€‚ć¾ćŸć€ļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ć®ćƒćƒ©ćƒ³ć‚¹ćŒå“©ć‚Œć‚‹ćØć€å¤‰čŖæéƒØļ¼‘ļ¼”ć‹ć‚‰å‡ŗåŠ›ć•ć‚Œć‚‹ē›“äŗ¤å¤‰čŖæå¾Œć®å¤‰čŖæäæ”å·ć®ćƒ”ćƒ¼ć‚Æćƒ‘ćƒÆćƒ¼ćŒć€ļ¼©č»øćØļ¼±č»øć®ćƒćƒ©ćƒ³ć‚¹ćŒå–ć‚Œć¦ć„ć‚‹å “åˆćØęÆ”ć¹ć¦å¤§ćććŖć‚Šć€ä¾‹ćˆć°ć€ē§»å‹•å±€ļ¼’ć®å‘Øę³¢ę•°å¤‰ę›éƒØļ¼‘ļ¼•ćŒå†…č”µć™ć‚‹å¢—å¹…å™Øć‚’ē”Øć„ć¦ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å¢—å¹…ć™ć‚‹éš›ć€ćć®å¢—å¹…å™Øć®å…„å‡ŗåŠ›ē‰¹ę€§ć®éžē·šå½¢ćŖé ˜åŸŸć‚’ä½æē”Øć™ć‚‹ć“ćØć«ćŖć‚‹ćŸć‚ć«ę­ŖćæćŒē™ŗē”Ÿć™ć‚‹ć€‚ć“ć®ć‚ˆć†ć«å¢—å¹…å™Øć«ćŠć„ć¦ę­ŖćæćŒē™ŗē”Ÿć—ć¦éžē·šå½¢ęˆåˆ†ćŒå‡ŗåŠ›ć•ć‚Œć‚‹ćØć€ć“ć®éžē·šå½¢ęˆåˆ†ćŒéš£ęŽ„å‘Øę³¢ę•°åøÆåŸŸć®äæ”å·ęˆåˆ†ćØå¹²ęø‰ć—ć¦ć€éš£ęŽ„å‘Øę³¢ę•°åøÆåŸŸć‚’å¦Øå®³ć—ć¦ć—ć¾ć†čŖ²é”ŒćŒć‚ć£ćŸć€‚ Since the conventional communication system is configured as described above, it is necessary to allocate a newly added dedicated control channel to the I axis or Q axis, but to allocate the dedicated control channel to the I axis or Q axis. If the peak power of the I-axis or Q-axis increases as a result, for example, in a quadrature modulator (or quadrature modulation amplifier) built in the modulation unit 14 of the mobile station 2, a non-linear region of its input / output characteristics is used. Therefore, distortion occurs. Further, when the balance between the signal power of the I axis and the signal power of the Q axis is lost, the peak power of the modulated signal after orthogonal modulation output from the modulation unit 14 is balanced between the I axis and the Q axis. For example, when a radio frequency signal is amplified using an amplifier built in the frequency conversion unit 15 of the mobile station 2, a non-linear region of the input / output characteristics of the amplifier is used, so that distortion is caused. appear. As described above, when distortion occurs in the amplifier and a nonlinear component is output, the nonlinear component interferes with a signal component in the adjacent frequency band, thereby disturbing the adjacent frequency band.

ć“ć®ē™ŗę˜ŽćÆäøŠčØ˜ć®ć‚ˆć†ćŖčŖ²é”Œć‚’č§£ę±ŗć™ć‚‹ćŸć‚ć«ćŖć•ć‚ŒćŸć‚‚ć®ć§ć€å¢—å¹…å™Øć®ę­Ŗćæć®ē™ŗē”Ÿć‚’ęŠ‘åˆ¶ć—ć¦ć€éš£ęŽ„å‘Øę³¢ę•°åøÆåŸŸćøć®å¦Øå®³ć‚’ęŠ‘åˆ¶ć™ć‚‹ć“ćØćŒć§ćć‚‹ē§»å‹•å±€ć€åŸŗåœ°å±€ć€é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć€é€äæ”ę–¹ę³•ć€å—äæ”ę–¹ę³•ć€é€šäæ”ę–¹ę³•ć€ļ¼©ļ¼±å¤šé‡č£…ē½®åŠć³ļ¼©ļ¼±å¤šé‡ę–¹ę³•ć‚’å¾—ć‚‹ć“ćØć‚’ē›®ēš„ćØć™ć‚‹ć€‚ The present invention has been made in order to solve the above-described problems. A mobile station, a base station, a communication system, and a transmission capable of suppressing the occurrence of distortion in an amplifier and suppressing interference with an adjacent frequency band. It is an object to obtain a method, a receiving method, a communication method, an IQ multiplexing apparatus, and an IQ multiplexing method.

ć“ć®ē™ŗę˜Žć«äæ‚ć‚‹ē§»å‹•å±€ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®é€äæ”ćƒ‡ćƒ¼ć‚æćØåˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ć‚’ē”Ÿęˆć™ć‚‹ļ¼©ļ¼±å¤šé‡ę‰‹ę®µćØć€äøŠčØ˜ļ¼©ļ¼±å¤šé‡ę‰‹ę®µć«ć‚ˆć‚Šē”Ÿęˆć•ć‚ŒćŸč¤‡ē“ äæ”å·ć‚’å¤‰čŖæć—ć¦é€äæ”ć™ć‚‹é€äæ”ę‰‹ę®µćØć‚’å‚™ćˆć€äøŠčØ˜ļ¼©ļ¼±å¤šé‡ę‰‹ę®µćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®é€äæ”ćƒ‡ćƒ¼ć‚æć‚’ļ¼©č»øćŠć‚ˆć³ļ¼±č»øć«äŗ¤äŗ’ć«å‰²ć‚Šå½“ć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æć‚’čæ½åŠ ć™ć‚‹å “åˆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒå„‡ę•°ć§ć‚ć‚‹ć‹åˆćÆå¶ę•°ć§ć‚ć‚‹ć‹ć«åæœć˜ć¦ć€äøŠčØ˜čæ½åŠ ć™ć‚‹åˆ¶å¾”ćƒ‡ćƒ¼ć‚æć‚’ļ¼©č»øåˆćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ć“ćØć‚’ē‰¹å¾“ćØć™ć‚‹ć‚‚ć®ć§ć‚ć‚‹ć€‚ A mobile station according to the present invention modulates a complex signal generated by IQ multiplexing means for generating a complex signal by IQ-multiplexing transmission data of a data channel and control data of a control channel, and the IQ multiplexing means. The IQ multiplexing means alternately assigns the transmission data of the data channel to the I axis and the Q axis, and adds control data of the control channel, the number of setting of the data channel is an odd number The control data to be added is assigned to the I axis or the Q axis depending on whether it is an even number or an even number.

ć“ć®ē™ŗę˜Žć«ć‚ˆć‚Œć°ć€å¢—å¹…å™Øć®ę­Ŗćæć®ē™ŗē”Ÿć‚’ęŠ‘åˆ¶ć—ć¦ć€éš£ęŽ„å‘Øę³¢ę•°åøÆåŸŸćøć®å¦Øå®³ć‚’ęŠ‘åˆ¶ć™ć‚‹ć“ćØćŒć§ćć‚‹åŠ¹ęžœćŒć‚ć‚‹ć€‚ According to the present invention, there is an effect that it is possible to suppress the occurrence of distortion of the amplifier and to suppress the interference to the adjacent frequency band.

å®Ÿę–½ć®å½¢ę…‹ļ¼‘ļ¼Ž
å›³ļ¼‘ćÆć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹ē§»å‹•å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼•ļ¼‘ćÆå€‹åˆ„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øć‚’äø¦åˆ—ć«åˆ†é…ć—ć¦ć€č¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’å‡ŗåŠ›ć™ć‚‹åˆ†é…å™Øć€ļ¼•ļ¼’ćÆåˆ†é…å™Øļ¼•ļ¼‘ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–åŠć³åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼Œļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼ˆļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼šļ½ļ½„ļ½„ļ½‰ļ½”ļ½‰ļ½ļ½Žļ½ļ½Œļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼‰ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć‚’ä¹—ē®—ć—ć¦ć‚¹ćƒšć‚Æćƒˆćƒ«ę‹”ę•£ć‚’č”Œć†ę‹”ę•£å™Øć€ļ¼•ļ¼“ćÆę‹”ę•£å™Øļ¼•ļ¼’ć«ć‚ˆć‚‹ć‚¹ćƒšć‚Æćƒˆćƒ«ę‹”ę•£å¾Œć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’åˆ†é…ć™ć‚‹åˆ†é…å™Øć€ļ¼•ļ¼”ćÆę‹”ę•£å™Øļ¼•ļ¼’åŠć³åˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØć§ć‚ć‚‹ć€‚
ćŖćŠć€åˆ†é…å™Øļ¼•ļ¼‘ļ¼Œę‹”ę•£å™Øļ¼•ļ¼’ļ¼Œåˆ†é…å™Øļ¼•ļ¼“åŠć³ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć‹ć‚‰ļ¼©ļ¼±å¤šé‡ę‰‹ę®µćŒę§‹ęˆć•ć‚Œć¦ć„ć‚‹ć€‚
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a mobile station applied to a communication system according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 51 denotes a plurality of data channels by distributing data DPDCH of dedicated data channels in parallel. A distributor 52 outputs data DPDCH1 to DPDCH6, and 52 multiplies data DPDCH1 to DPDCH6 output from distributor 51 and control data DPCCH and ADPCCH (ADPCCH: additional DPCCH) for channel separation by a spreading code for channel separation. The spreader performs spread spectrum, 53 distributes the control data ADPCCH of the control channel after spread by the spreader 52, and 54 multiplexes the output signals of the spreaders 52 and 53 by IQ multiplexing. Scrambler for generating signals (I signal, Q signal) A.
The distributor 51, the spreader 52, the distributor 53, and the scrambler 54 constitute IQ multiplexing means.

ļ¼•ļ¼•ćÆć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć«ć‚ˆć‚Šē”Ÿęˆć•ć‚ŒćŸč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē›“äŗ¤å¤‰čŖæć—ć¦å¤‰čŖæäæ”å·ć‚’ē”Ÿęˆć™ć‚‹å¤‰čŖæéƒØć€ļ¼•ļ¼–ćÆå¤‰čŖæéƒØļ¼•ļ¼•ć«ć‚ˆć‚Šē”Ÿęˆć•ć‚ŒćŸå¤‰čŖæäæ”å·ć‚’å‘Øę³¢ę•°å¤‰ę›ć—ć¦ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å‡ŗåŠ›ć™ć‚‹å‘Øę³¢ę•°å¤‰ę›éƒØć€ļ¼•ļ¼—ćÆå‘Øę³¢ę•°å¤‰ę›éƒØļ¼•ļ¼–ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’é€äæ”ć™ć‚‹ć‚¢ćƒ³ćƒ†ćƒŠć§ć‚ć‚‹ć€‚
ćŖćŠć€å¤‰čŖæéƒØļ¼•ļ¼•ļ¼Œå‘Øę³¢ę•°å¤‰ę›éƒØļ¼•ļ¼–åŠć³ć‚¢ćƒ³ćƒ†ćƒŠļ¼•ļ¼—ć‹ć‚‰é€äæ”ę‰‹ę®µćŒę§‹ęˆć•ć‚Œć¦ć„ć‚‹ć€‚
55 is a modulation unit that generates a modulated signal by orthogonally modulating the complex signal (I signal, Q signal) generated by the scramble unit 54, and 56 is a radio frequency signal by frequency-converting the modulation signal generated by the modulation unit 55. Reference numeral 57 denotes an antenna for transmitting a radio frequency signal output from the frequency converter 56.
The modulation unit 55, the frequency conversion unit 56, and the antenna 57 constitute transmission means.

å›³ļ¼’ćÆć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹åŸŗåœ°å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼–ļ¼‘ćÆē§»å‹•å±€ļ¼’ć‹ć‚‰é€äæ”ć•ć‚ŒćŸē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å—äæ”ć™ć‚‹ć‚¢ćƒ³ćƒ†ćƒŠć€ļ¼–ļ¼’ćÆć‚¢ćƒ³ćƒ†ćƒŠļ¼–ļ¼‘ć«ć‚ˆć‚Šå—äæ”ć•ć‚ŒćŸē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å‘Øę³¢ę•°å¤‰ę›ć—ć¦ćƒ™ćƒ¼ć‚¹ćƒćƒ³ćƒ‰äæ”å·ć‚’å‡ŗåŠ›ć™ć‚‹å‘Øę³¢ę•°å¤‰ę›éƒØć€ļ¼–ļ¼“ćÆå‘Øę³¢ę•°å¤‰ę›éƒØļ¼–ļ¼’ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸćƒ™ćƒ¼ć‚¹ćƒćƒ³ćƒ‰äæ”å·ć‚’ē›“äŗ¤å¾©čŖæć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ē›“äŗ¤å¾©čŖæéƒØć§ć‚ć‚‹ć€‚
ćŖćŠć€ć‚¢ćƒ³ćƒ†ćƒŠļ¼–ļ¼‘ļ¼Œå‘Øę³¢ę•°å¤‰ę›éƒØļ¼–ļ¼’åŠć³ē›“äŗ¤å¾©čŖæéƒØļ¼–ļ¼“ć‹ć‚‰å—äæ”ę‰‹ę®µćŒę§‹ęˆć•ć‚Œć¦ć„ć‚‹ć€‚
2 is a block diagram showing a base station applied to the communication system according to Embodiment 1 of the present invention. In the figure, 61 is an antenna for receiving a radio frequency signal transmitted from the mobile station 2, and 62 is an antenna 61. The frequency conversion unit 63 converts the radio frequency signal received by frequency and outputs a baseband signal, and 63 orthogonally demodulates the baseband signal output from the frequency conversion unit 62 to generate a complex signal (I signal, Q signal). It is an orthogonal demodulator for output.
The antenna 61, the frequency conversion unit 62, and the quadrature demodulation unit 63 constitute reception means.

ļ¼–ļ¼”ćÆē›“äŗ¤å¾©čŖæéƒØļ¼–ļ¼“ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ć‚’ä¹—ē®—ć™ć‚‹é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØć€ļ¼–ļ¼•ćÆé€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć‚’ä¹—ē®—ć—ć¦å„ćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æć‚’åˆ†é›¢ć™ć‚‹é€†ę‹”ę•£å™Øć€ļ¼–ļ¼–ćÆćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’åˆä½“ć—ć¦ć€å€‹åˆ„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øć‚’å†ē¾ć™ć‚‹ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«åˆä½“éƒØć€ļ¼–ļ¼—ćÆļ¼©č»øåŠć³ļ¼±č»øć«é…åˆ†ć•ć‚Œć¦ć„ć‚‹åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’åˆęˆć™ć‚‹åˆęˆå™Øć§ć‚ć‚‹ć€‚
ćŖćŠć€é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ļ¼Œé€†ę‹”ę•£å™Øļ¼–ļ¼•ļ¼Œćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«åˆä½“éƒØļ¼–ļ¼–åŠć³åˆęˆå™Øļ¼–ļ¼—ć‹ć‚‰ļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µćŒę§‹ęˆć•ć‚Œć¦ć„ć‚‹ć€‚
64 is a descrambling unit that multiplies a complex signal (I signal, Q signal) output from the quadrature demodulation unit 63 by an identification code for identifying a mobile station, and 65 is a channel separation for the output signal of the descrambling unit 64. A despreader that multiplies the data for each channel by separating the data for each channel, 66 combines the data DPDCH1 to DPDCH6 for the data channel, and reproduces the data DPDCH for the dedicated data channel; A synthesizer 67 synthesizes control data ADPCCH of control channels allocated to the I axis and the Q axis.
The descrambler 64, the despreader 65, the data channel merger 66, and the combiner 67 constitute IQ separating means.

å›³ļ¼“ćÆę‹”ę•£å™Øļ¼•ļ¼’ļ¼Œåˆ†é…å™Øļ¼•ļ¼“åŠć³ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼—ļ¼‘ć€œļ¼—ļ¼–ćÆåˆ†é…å™Øļ¼•ļ¼‘ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼‘ć€œļ¼£ļ½„ļ¼Œļ¼–ć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼—ļ¼—ćÆåˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼—ļ¼˜ćÆę–°ćŸć«čæ½åŠ ć™ć‚‹åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒļ½ƒć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼˜ļ¼‘ć€œļ¼˜ļ¼–ćÆä¹—ē®—å™Øļ¼—ļ¼‘ć€œļ¼—ļ¼–ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½„ć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼˜ļ¼—ćÆä¹—ē®—å™Øļ¼—ļ¼—ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼˜ļ¼˜ļ¼Œļ¼˜ļ¼™ćÆåˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć§ć‚ć‚‹ć€‚ FIG. 3 is a block diagram showing the internal configuration of the spreader 52, distributor 53, and scrambler 54. In the figure, reference numerals 71 to 76 denote channel separation spreads for the data DPDCH1 to DPDCH6 output from the distributor 51. A multiplier that multiplies the codes Cd, 1 to Cd, 6, 77 is a multiplier that multiplies the control data DPCCH for the control channel by a spreading code Cc for channel separation, and 78 is a control for the control channel to be newly added. Multipliers that multiply the data ADPCCH by a spreading code Ccc for channel separation, 81-86 are multipliers that multiply the output signals of the multipliers 71-76 by the amplitude coefficient βd for DPDCH, and 87 is a multiplier 77. Multipliers 88 and 89 multiply the output signal of DPCCH by the amplitude coefficient βc for DPCCH. This is a multiplier for multiplying the number βcc.

ļ¼™ļ¼ćÆä¹—ē®—å™Øļ¼˜ļ¼‘ć€œļ¼˜ļ¼“ļ¼Œļ¼˜ļ¼˜ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć‚‹åŠ ē®—å™Øć€ļ¼™ļ¼‘ćÆä¹—ē®—å™Øļ¼˜ļ¼”ć€œļ¼˜ļ¼—ļ¼Œļ¼˜ļ¼™ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć‚‹åŠ ē®—å™Øć€ļ¼™ļ¼’ćÆåŠ ē®—å™Øļ¼™ļ¼‘ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦č™šę•°ļ½Šć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼™ļ¼“ćÆåŠ ē®—å™Øļ¼™ļ¼ć®å‡ŗåŠ›äæ”å·ćØä¹—ē®—å™Øļ¼™ļ¼’ć®å‡ŗåŠ›äæ”å·ć‚’åŠ ē®—ć™ć‚‹åŠ ē®—å™Øć€ļ¼™ļ¼”ćÆåŠ ē®—å™Øļ¼™ļ¼“ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ļ¼³ļ½„ļ½ļ½ƒļ½ˆ,ļ½Žć‚’ä¹—ē®—ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ä¹—ē®—å™Øć§ć‚ć‚‹ć€‚ 90 is an adder that adds the output signals of the multipliers 81 to 83, 88, 91 is an adder that adds the output signals of the multipliers 84 to 87, 89, and 92 is an imaginary number j for the output signal of the adder 91. A multiplier 93 for multiplying, an adder for adding the output signal of the adder 90 and an output signal of the multiplier 92, and 94 multiplying the output signal of the adder 93 by an identification code Sdpch, n for identifying a mobile station. The multiplier outputs a complex signal (I signal, Q signal).

å›³ļ¼”ćÆé€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ļ¼Œé€†ę‹”ę•£å™Øļ¼–ļ¼•åŠć³åˆęˆå™Øļ¼–ļ¼—ć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ć«ćŠć„ć¦ć€ļ¼‘ļ¼ļ¼ćÆē›“äŗ¤å¾©čŖæéƒØļ¼–ļ¼“ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ļ¼³ļ½„ļ½ļ½ƒļ½ˆ,ļ½Žć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼‘ļ¼ļ¼‘ć€œļ¼‘ļ¼ļ¼”ćÆé€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸļ¼©äæ”å·ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼‘ļ¼Œļ¼£ļ½„ļ¼Œļ¼“ļ¼Œļ¼£ļ½„ļ¼Œļ¼•ļ¼Œļ¼£ļ½ƒļ½ƒć‚’ćć‚Œćžć‚Œä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼‘ļ¼ļ¼•ć€œļ¼‘ļ¼ļ¼™ćÆé€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸļ¼±äæ”å·ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼’ļ¼Œļ¼£ļ½„ļ¼Œļ¼”ļ¼Œļ¼£ļ½„ļ¼Œļ¼–ļ¼Œļ¼£ļ½ƒļ¼Œļ¼£ļ½ƒļ½ƒć‚’ćć‚Œćžć‚Œä¹—ē®—ć™ć‚‹ä¹—ē®—å™Øć€ļ¼‘ļ¼‘ļ¼ć€œļ¼‘ļ¼‘ļ¼˜ćÆä¹—ē®—å™Øļ¼‘ļ¼ļ¼‘ć€œļ¼‘ļ¼ļ¼™ć®å‡ŗåŠ›äæ”å·ć‚’ę‹”ę•£ē¬¦å·ę™‚é–“é•·ć«ęø”ć£ć¦ę™‚é–“ē©åˆ†ć™ć‚‹ē©åˆ†å™Øć§ć‚ć‚‹ć€‚
ćŖćŠć€å›³ļ¼•ćÆć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚‹é€šäæ”ę–¹ę³•ć‚’ē¤ŗć™ćƒ•ćƒ­ćƒ¼ćƒćƒ£ćƒ¼ćƒˆć§ć‚ć‚‹ć€‚
FIG. 4 is a block diagram showing the internal configuration of the descrambler 64, the despreader 65, and the synthesizer 67. In FIG. 4, reference numeral 100 denotes a complex signal (I signal, Q signal) output from the orthogonal demodulator 63. Multipliers 101 to 104 multiply the identification signal Sdpch, n for identifying the mobile station, and the channel separation spread codes Cd, 1, Cd, 3, Cd, Multipliers 105 and 109 for multiplying 5 and Ccc respectively, respectively, apply spreading codes Cd, 2, Cd, 4, Cd, 6, Cc, and Ccc for channel separation to the Q signal output from the descrambling unit 64. Multipliers 110 to 118 are integrators for time-integrating the output signals of the multipliers 101 to 109 over the spreading code time length.
FIG. 5 is a flowchart showing a communication method according to Embodiment 1 of the present invention.

ę¬”ć«å‹•ä½œć«ć¤ć„ć¦čŖ¬ę˜Žć™ć‚‹ć€‚
ē§»å‹•å±€ļ¼’ćŒåŸŗåœ°å±€ļ¼‘ć«ćƒ‡ćƒ¼ć‚æć‚’é€äæ”ć™ć‚‹éš›ć®å‹•ä½œć‚’čŖ¬ę˜Žć™ć‚‹ć€‚
ć“ć“ć§ćÆć€čŖ¬ę˜Žć®ä¾æå®œäøŠć€ļ¼–å€‹ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æćØļ¼’å€‹ć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æćØć‚’é€äæ”ć™ć‚‹å “åˆć«ć¤ć„ć¦čŖ¬ę˜Žć™ć‚‹ć€‚
ć¾ćšć€ē§»å‹•å±€ļ¼’ć®åˆ†é…å™Øļ¼•ļ¼‘ćÆć€å€‹åˆ„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øć‚’äø¦åˆ—ć«åˆ†é…ć—ć¦ć€č¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’å‡ŗåŠ›ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼‘ļ¼‰ć€‚
Next, the operation will be described.
An operation when the mobile station 2 transmits data to the base station 1 will be described.
Here, for convenience of explanation, a case will be described in which data of six data channels and control data of two control channels are transmitted.
First, distributor 51 of mobile station 2 distributes data DPDCH of dedicated data channels in parallel and outputs data DPDCH1 to DPDCH6 of a plurality of data channels (step ST1).

ę‹”ę•£å™Øļ¼•ļ¼’ćÆć€åˆ†é…å™Øļ¼•ļ¼‘ćŒč¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć‚’å‡ŗåŠ›ć™ć‚‹ćØć€ćć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–åŠć³åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼Œļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć‚’ä¹—ē®—ć—ć¦ć‚¹ćƒšć‚Æćƒˆćƒ«ę‹”ę•£ć‚’č”Œć†ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼’ļ¼‰ć€‚
å³ć”ć€ę‹”ę•£å™Øļ¼•ļ¼’ć®ä¹—ē®—å™Øļ¼—ļ¼‘ć€œļ¼—ļ¼–ćÆć€åˆ†é…å™Øļ¼•ļ¼‘ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸč¤‡ę•°ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼‘ć€œļ¼£ļ½„ļ¼Œļ¼–ć‚’ä¹—ē®—ć—ć€ę‹”ę•£å™Øļ¼•ļ¼’ć®ä¹—ē®—å™Øļ¼—ļ¼—ćÆć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒć‚’ä¹—ē®—ć—ć€ę‹”ę•£å™Øļ¼•ļ¼’ć®ä¹—ē®—å™Øļ¼—ļ¼˜ćÆć€ę–°ćŸć«čæ½åŠ ć™ć‚‹åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒļ½ƒć‚’ä¹—ē®—ć™ć‚‹ć€‚
When the distributor 51 outputs data DPDCH1 to DPDCH6 of a plurality of data channels, the spreader 52 spreads the channel for the data DPDCH1 to DPDCH6 of the data channel and the control data DPCCH and ADPCCH of the control channel. Spectrum spreading is performed by multiplying the code (step ST2).
That is, the multipliers 71 to 76 of the spreader 52 multiply the data DPDCH1 to DPDCH6 of the plurality of data channels output from the distributor 51 by the spreading codes Cd, 1 to Cd, 6 for channel separation, The multiplier 77 of the spreader 52 multiplies the control data DPCCH of the control channel by the spread code Cc for channel separation, and the multiplier 78 of the spreader 52 adds control data ADPCCH of the control channel to be newly added. Is multiplied by a spreading code Ccc for channel separation.

åˆ†é…å™Øļ¼•ļ¼“ćÆć€ę‹”ę•£å™Øļ¼•ļ¼’ć®ä¹—ē®—å™Øļ¼—ļ¼˜ćŒåˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½ƒļ½ƒć‚’ä¹—ē®—ć™ć‚‹ćØć€ä¹—ē®—å™Øļ¼—ļ¼˜ć®å‡ŗåŠ›ćƒ‡ćƒ¼ć‚æć‚’ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜ļ¼Œļ¼˜ļ¼™ć«åˆ†é…ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼“ļ¼‰ć€‚
ćŖćŠć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜ļ¼Œļ¼˜ļ¼™ć«åÆ¾ć™ć‚‹åˆ†é…ęÆ”ćÆć€ļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ć‚’č€ƒę…®ć—ć¦ę±ŗå®šć—ć¦ć‚‚ć‚ˆć„ćŒć€ć“ć®ä¾‹ć§ćÆć€ļ¼‘ļ¼šļ¼‘ć®ęÆ”ć§åˆ†é…ć™ć‚‹ć‚‚ć®ćØć™ć‚‹ć€‚
When the multiplier 78 of the spreader 52 multiplies the control data ADPCCH for the control channel by the spreading code Ccc for channel separation, the distributor 53 multiplies the output data of the multiplier 78 by the multipliers 88 and 89 of the scramble unit 54. (Step ST3).
The distribution ratio of the scrambler 54 to the multipliers 88 and 89 may be determined in consideration of the I-axis signal power and the Q-axis signal power. In this example, the distribution ratio is 1: 1. Shall.

ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ćÆć€ę‹”ę•£å™Øļ¼•ļ¼’åŠć³åˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼”ļ¼‰ć€‚
å³ć”ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼‘ć€œļ¼˜ļ¼–ćÆć€ę‹”ę•£å™Øļ¼•ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼—ļ¼‘ć€œļ¼—ļ¼–ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½„ć‚’ä¹—ē®—ć—ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼—ćÆć€ę‹”ę•£å™Øļ¼•ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼—ļ¼—ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒć‚’ä¹—ē®—ć™ć‚‹ć€‚
ć¾ćŸć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜ćÆć€åˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒļ¼ˆļ¼©ļ¼‰ć‚’ä¹—ē®—ć—ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼™ćÆć€åˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒļ¼ˆļ¼±ļ¼‰ć‚’ä¹—ē®—ć™ć‚‹ć€‚
The scrambler 54 IQ multiplexes the output signals of the spreader 52 and the distributor 53 to generate a complex signal (I signal, Q signal) (step ST4).
That is, the multipliers 81 to 86 of the scramble unit 54 multiply the output signals of the multipliers 71 to 76 in the spreader 52 by the amplitude coefficient βd for DPDCH, and the multiplier 87 of the scramble unit 54 Is multiplied by the amplitude coefficient βc for DPCCH.
The multiplier 88 of the scrambler 54 multiplies the output signal of the distributor 53 by the amplitude coefficient βcc (I) for ADPCCH, and the multiplier 89 of the scrambler 54 applies to the output signal of the distributor 53. And multiply by the amplitude coefficient βcc (Q) for ADPCCH.

ćŖćŠć€ļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒļ¼ˆļ¼©ļ¼‰ļ¼ŒĪ²ļ½ƒļ½ƒļ¼ˆļ¼±ļ¼‰ćÆć€ļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ć‚’č€ƒę…®ć—ć¦ę±ŗå®šć™ć‚‹ć€‚å³ć”ć€åŠ ē®—å™Øļ¼™ļ¼“ć‹ć‚‰å‡ŗåŠ›ć•ć‚Œć‚‹ļ¼©äæ”å·ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±äæ”å·ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćŒå‡äø€ć«ćŖć‚‹ć‚ˆć†ć«ę±ŗå®šć™ć‚‹ć€‚
å› ćæć«ć€å›³ļ¼–ćÆćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć§ć‚ć‚‹ćŒć€ä¾‹ćˆć°ć€ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćŒ"ļ¼‘ļ¼Žļ¼•"ć€åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćŒ "ļ¼‘ļ¼Žļ¼"ć§ć‚ć‚Œć°ć€ļ¼©č»øć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼ˆļ¼©ļ¼‰ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćŒ"ļ¼‘ļ¼Žļ¼"ć€ļ¼±č»øć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øļ¼ˆļ¼±ļ¼‰ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćŒ"ļ¼ļ¼Žļ¼•"ć«ćŖć‚‹ć‚ˆć†ć«ć€ļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒļ¼ˆļ¼©ļ¼‰ļ¼ŒĪ²ļ½ƒļ½ƒļ¼ˆļ¼±ļ¼‰ćŒę±ŗå®šć•ć‚Œć‚‹ć€‚
The amplitude coefficients βcc (I) and βcc (Q) for ADPCCH are determined in consideration of the I-axis signal power and the Q-axis signal power. That is, the signal power of the I signal and the signal power of the Q signal output from the adder 93 are determined to be uniform.
Incidentally, FIG. 6 shows a complex plane when the number of data channels is set to 1. For example, the signal power of the data DPDCH1 is ā€œ1.5ā€ and the signal power of the control data DPCCH is ā€œ1.0ā€. If present, the amplitude coefficient for ADPCCH so that the signal power of the I-axis control data ADPCCH (I) is ā€œ1.0ā€ and the signal power of the Q-axis control data ADPCCH (Q) is ā€œ0.5ā€. βcc (I) and βcc (Q) are determined.

ę¬”ć«ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®åŠ ē®—å™Øļ¼™ļ¼ćÆć€ä¹—ē®—å™Øļ¼˜ļ¼‘ć€œļ¼˜ļ¼“ļ¼Œļ¼˜ļ¼˜ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®åŠ ē®—å™Øļ¼™ļ¼‘ćÆć€ä¹—ē®—å™Øļ¼˜ļ¼”ć€œļ¼˜ļ¼—ļ¼Œļ¼˜ļ¼™ć®å‡ŗåŠ›äæ”å·ć‚’č¶³ć—åˆć‚ć›ć‚‹ć€‚
ć¾ćŸć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼™ļ¼’ćÆć€åŠ ē®—å™Øļ¼™ļ¼‘ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ćŸć‚ć€åŠ ē®—å™Øļ¼™ļ¼‘ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦č™šę•°ļ½Šć‚’ä¹—ē®—ć™ć‚‹ć€‚
ę¬”ć«ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®åŠ ē®—å™Øļ¼™ļ¼“ćÆć€åŠ ē®—å™Øļ¼™ļ¼ć®å‡ŗåŠ›äæ”å·ćØä¹—ē®—å™Øļ¼™ļ¼’ć®å‡ŗåŠ›äæ”å·ć‚’åŠ ē®—ć—ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼™ļ¼”ćÆć€åŠ ē®—å™Øļ¼™ļ¼“ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ļ¼³ļ½„ļ½ļ½ƒļ½ˆ,ļ½Žć‚’ä¹—ē®—ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ć€‚
Next, the adder 90 of the scramble unit 54 adds the output signals of the multipliers 81 to 83, 88, and the adder 91 of the scramble unit 54 adds the output signals of the multipliers 84 to 87, 89.
Further, the multiplier 92 of the scramble unit 54 multiplies the output signal of the adder 91 by an imaginary number j in order to assign the output signal of the adder 91 to the Q axis.
Next, the adder 93 of the scrambler 54 adds the output signal of the adder 90 and the output signal of the multiplier 92, and the multiplier 94 of the scrambler 54 identifies the mobile station with respect to the output signal of the adder 93. Multiplicative identification codes Sdpch, n are multiplied to output complex signals (I signal, Q signal).

å¤‰čŖæéƒØļ¼•ļ¼•ćÆć€äøŠčØ˜ć®ć‚ˆć†ć«ć—ć¦ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ćŒč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹ćØć€ćć®č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē›“äŗ¤å¤‰čŖæć—ć¦å¤‰čŖæäæ”å·ć‚’ē”Ÿęˆć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼•ļ¼‰ć€‚
å‘Øę³¢ę•°å¤‰ę›éƒØļ¼•ļ¼–ćÆć€å¤‰čŖæéƒØļ¼•ļ¼•ćŒå¤‰čŖæäæ”å·ć‚’ē”Ÿęˆć™ć‚‹ćØć€ćć®å¤‰čŖæäæ”å·ć‚’å‘Øę³¢ę•°å¤‰ę›ć—ć¦ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’ē”Ÿęˆć—ć€ćć®ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å¢—å¹…ć—ć¦ć‚¢ćƒ³ćƒ†ćƒŠļ¼•ļ¼—ć«å‡ŗåŠ›ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼–ļ¼‰ć€‚ć“ć‚Œć«ć‚ˆć‚Šć€ć‚¢ćƒ³ćƒ†ćƒŠļ¼•ļ¼—ć‹ć‚‰ē„”ē·šå‘Øę³¢ę•°äæ”å·ćŒåŸŗåœ°å±€ļ¼‘ć«é€äæ”ć•ć‚Œć‚‹ć€‚
When the scrambling unit 54 generates a complex signal (I signal, Q signal) as described above, the modulation unit 55 performs quadrature modulation on the complex signal (I signal, Q signal) to generate a modulation signal (step ST5). ).
When the modulation unit 55 generates a modulation signal, the frequency conversion unit 56 frequency-converts the modulation signal to generate a radio frequency signal, amplifies the radio frequency signal, and outputs the amplified signal to the antenna 57 (step ST6). As a result, a radio frequency signal is transmitted from the antenna 57 to the base station 1.

åŸŗåœ°å±€ļ¼‘ć®å‘Øę³¢ę•°å¤‰ę›éƒØļ¼–ļ¼’ćÆć€ć‚¢ćƒ³ćƒ†ćƒŠļ¼–ļ¼‘ćŒē§»å‹•å±€ļ¼’ć‹ć‚‰é€äæ”ć•ć‚ŒćŸē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å—äæ”ć™ć‚‹ćØć€ćć®ē„”ē·šå‘Øę³¢ę•°äæ”å·ć‚’å‘Øę³¢ę•°å¤‰ę›ć—ć¦ćƒ™ćƒ¼ć‚¹ćƒćƒ³ćƒ‰äæ”å·ć‚’å‡ŗåŠ›ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼—ļ¼‰ć€‚
ē›“äŗ¤å¾©čŖæéƒØļ¼–ļ¼“ćÆć€å‘Øę³¢ę•°å¤‰ę›éƒØļ¼–ļ¼’ćŒćƒ™ćƒ¼ć‚¹ćƒćƒ³ćƒ‰äæ”å·ć‚’å‡ŗåŠ›ć™ć‚‹ćØć€ćć®ćƒ™ćƒ¼ć‚¹ćƒćƒ³ćƒ‰äæ”å·ć‚’ē›“äŗ¤å¾©čŖæć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼˜ļ¼‰ć€‚
When the antenna 61 receives the radio frequency signal transmitted from the mobile station 2, the frequency converter 62 of the base station 1 converts the radio frequency signal to output a baseband signal (step ST7).
When the frequency converter 62 outputs the baseband signal, the orthogonal demodulator 63 performs orthogonal demodulation on the baseband signal and outputs a complex signal (I signal, Q signal) (step ST8).

é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ćÆć€ē›“äŗ¤å¾©čŖæéƒØļ¼–ļ¼“ćŒč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’å‡ŗåŠ›ć™ć‚‹ćØć€ćć®č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ć‚’ä¹—ē®—ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼™ļ¼‰ć€‚
å³ć”ć€é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć®ä¹—ē®—å™Øļ¼‘ļ¼ļ¼ćŒē›“äŗ¤å¾©čŖæéƒØļ¼–ļ¼“ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸč¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć«åÆ¾ć—ć¦ē§»å‹•å±€č­˜åˆ„ē”Øć®č­˜åˆ„ē¬¦å·ļ¼³ļ½„ļ½ļ½ƒļ½ˆ,ļ½Žć‚’ä¹—ē®—ć™ć‚‹ć€‚
When the orthogonal demodulation unit 63 outputs a complex signal (I signal, Q signal), the descrambling unit 64 multiplies the complex signal (I signal, Q signal) by an identification code for identifying a mobile station (step ST9). ).
That is, the multiplier 100 of the descrambling unit 64 multiplies the complex signal (I signal, Q signal) output from the quadrature demodulation unit 63 by the identification code Sdpch, n for mobile station identification.

é€†ę‹”ę•£å™Øļ¼–ļ¼•ćÆć€é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć®å‡ŗåŠ›äæ”å·ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ć‚’ä¹—ē®—ć—ć¦å„ćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æć‚’åˆ†é›¢ć™ć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼‘ļ¼ļ¼‰ć€‚
å³ć”ć€é€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ä¹—ē®—å™Øļ¼‘ļ¼ļ¼‘ć€œļ¼‘ļ¼ļ¼”ćÆć€é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸļ¼©äæ”å·ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼‘ļ¼Œļ¼£ļ½„ļ¼Œļ¼“ļ¼Œļ¼£ļ½„ļ¼Œļ¼•ļ¼Œļ¼£ļ½ƒļ½ƒć‚’ćć‚Œćžć‚Œä¹—ē®—ć—ć€é€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ä¹—ē®—å™Øļ¼‘ļ¼ļ¼•ć€œļ¼‘ļ¼ļ¼™ćÆć€é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼–ļ¼”ć‹ć‚‰å‡ŗåŠ›ć•ć‚ŒćŸļ¼±äæ”å·ć«åÆ¾ć—ć¦ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£ē¬¦å·ļ¼£ļ½„ļ¼Œļ¼’ļ¼Œļ¼£ļ½„ļ¼Œļ¼”ļ¼Œļ¼£ļ½„ļ¼Œļ¼–ļ¼Œļ¼£ļ½ƒļ¼Œļ¼£ļ½ƒļ½ƒć‚’ćć‚Œćžć‚Œä¹—ē®—ć™ć‚‹ć€‚
ćć—ć¦ć€é€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ē©åˆ†å™Øļ¼‘ļ¼‘ļ¼ć€œļ¼‘ļ¼‘ļ¼˜ćÆć€ä¹—ē®—å™Øļ¼‘ļ¼ļ¼‘ć€œļ¼‘ļ¼ļ¼™ć®å‡ŗåŠ›äæ”å·ć‚’ę‹”ę•£ē¬¦å·ę™‚é–“é•·ć«ęø”ć£ć¦ę™‚é–“ē©åˆ†ć™ć‚‹ć“ćØć«ć‚ˆć‚Šć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ćØåˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å†ē¾ć™ć‚‹ć€‚
The despreader 65 multiplies the output signal of the descrambling unit 64 by a channel separation spreading code to separate the data of each channel (step ST10).
That is, the multipliers 101 to 104 of the despreader 65 multiply the I signal output from the descrambling unit 64 by the channel separation spreading codes Cd, 1, Cd, 3, Cd, 5, Ccc, respectively. The multipliers 105 to 109 of the despreader 65 multiply the Q signal output from the descrambling unit 64 by channel separation spreading codes Cd, 2, Cd, 4, Cd, 6, Cc, and Ccc, respectively. To do.
The integrators 110 to 118 of the despreader 65 control the data channels DPDCH1 to DPDCH6 and the control channel by time-integrating the output signals of the multipliers 101 to 109 over the spreading code time length. Reproduce the data DPCCH.

ćŖćŠć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć€œļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼–ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«åˆä½“éƒØļ¼–ļ¼–ć«ć‚ˆć‚Šåˆä½“ć•ć‚Œć¦ć€å€‹åˆ„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼ØćŒå†ē¾ć•ć‚Œć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼‘ļ¼‘ļ¼‰ć€‚
ć¾ćŸć€é€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ē©åˆ†å™Øļ¼‘ļ¼‘ļ¼“ć®å‡ŗåŠ›äæ”å·ćØē©åˆ†å™Øļ¼‘ļ¼‘ļ¼˜ć®å‡ŗåŠ›äæ”å·ćØćŒåˆęˆå™Øļ¼–ļ¼—ć«ć‚ˆć‚Šåˆęˆć•ć‚Œć¦ć€ę–°ćŸć«čæ½åŠ ć•ć‚Œć‚‹åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼ØćŒå†ē¾ć•ć‚Œć‚‹ļ¼ˆć‚¹ćƒ†ćƒƒćƒ—ļ¼³ļ¼“ļ¼‘ļ¼’ļ¼‰ć€‚
The data DPDCH1 to DPDCH6 for the data channel are merged by the data channel merger 66 to reproduce the data DPDCH for the dedicated data channel (step ST11).
Further, the output signal of the integrator 113 of the despreader 65 and the output signal of the integrator 118 are combined by the combiner 67 to reproduce the control data ADPCCH for the newly added control channel (step ST12). .

ä»„äøŠć§ę˜Žć‚‰ć‹ćŖć‚ˆć†ć«ć€ć“ć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚Œć°ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ćŒę‹”ę•£å™Øļ¼•ļ¼’åŠć³åˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ļ¼ˆļ¼©äæ”å·ć€ļ¼±äæ”å·ļ¼‰ć‚’ē”Ÿęˆć™ć‚‹éš›ć€ļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ć‚’č€ƒę…®ć—ć¦ć€ļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒļ¼ˆļ¼©ļ¼‰ļ¼ŒĪ²ļ½ƒļ½ƒļ¼ˆļ¼±ļ¼‰ć‚’ę±ŗå®šć™ć‚‹ć‚ˆć†ć«ę§‹ęˆć—ćŸć®ć§ć€ä¾‹ćˆć°ć€å‘Øę³¢ę•°å¤‰ę›éƒØļ¼•ļ¼–ć«ćŠć‘ć‚‹å¢—å¹…å™Øć®ć²ćšćæć®ē™ŗē”Ÿć‚’ęŠ‘åˆ¶ć—ć¦ć€éš£ęŽ„å‘Øę³¢ę•°åøÆåŸŸćøć®å¦Øå®³ć‚’ęŠ‘åˆ¶ć™ć‚‹ć“ćØćŒć§ćć‚‹åŠ¹ęžœć‚’å„ć™ć‚‹ć€‚ As apparent from the above, according to the first embodiment, when the scrambler 54 IQ multiplexes the output signals of the spreader 52 and the distributor 53 to generate a complex signal (I signal, Q signal), Since the amplitude coefficients βcc (I) and βcc (Q) for ADPCCH are determined in consideration of the signal power of the axis and the signal power of the Q axis, for example, generation of amplifier distortion in the frequency conversion unit 56 And the interference with the adjacent frequency band can be suppressed.

ćŖćŠć€ć“ć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć§ćÆć€ļ¼–å€‹ć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć‚’čØ­å®šć™ć‚‹ć‚‚ć®ć«ć¤ć„ć¦ē¤ŗć—ćŸćŒć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼•ä»„äø‹ć®å “åˆć€ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć‹ć‚‰é †ē•Ŗć«ļ¼©ļ¼ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć€äøč¦ćŖćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć«é–¢ć™ć‚‹å‡¦ē†ćÆč”Œć‚ć‚ŒćŖć„ć€‚ć¾ćŸć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćÆć€åæ…č¦ćØć•ć‚Œć‚‹é€šäæ”ć‚µćƒ¼ćƒ“ć‚¹ć‚„é€šäæ”é€Ÿåŗ¦ć«ć‚ˆć‚Šę±ŗå®šć•ć‚Œć‚‹ć€‚ In the first embodiment, six data channels are set. However, when the number of data channels is five or less, the data DPDCH1 is assigned to the I / Q axis in order, and is not necessary. No processing related to the data channel is performed. The number of data channels set is determined by the required communication service and communication speed.

å®Ÿę–½ć®å½¢ę…‹ļ¼’ļ¼Ž
å›³ļ¼—ćÆć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹ē§»å‹•å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚Šć€å›³ļ¼˜ćÆć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹åŸŗåœ°å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚å›³ć«ćŠć„ć¦ć€å›³ļ¼‘åŠć³å›³ļ¼’ćØåŒäø€ē¬¦å·ćÆåŒäø€ć¾ćŸćÆē›øå½“éƒØåˆ†ć‚’ē¤ŗć™ć®ć§čŖ¬ę˜Žć‚’ēœē•„ć™ć‚‹ć€‚
ļ¼•ļ¼˜ćÆę‹”ę•£å™Øļ¼•ļ¼’ć«ć‚ˆć‚‹ć‚¹ćƒšć‚Æćƒˆćƒ«ę‹”ę•£å¾Œć®åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜åˆćÆä¹—ē®—å™Øļ¼˜ļ¼™ć«å‡ŗåŠ›ć™ć‚‹ć‚»ćƒ¬ć‚Æć‚æļ¼ˆļ¼©ļ¼±å¤šé‡ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼˜ćÆé€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ē©åˆ†å™Øļ¼‘ļ¼‘ļ¼“åˆćÆē©åˆ†å™Øļ¼‘ļ¼‘ļ¼˜ć‹ć‚‰åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å…„åŠ›ć—ć¦å‡ŗåŠ›ć™ć‚‹ć‚»ćƒ¬ć‚Æć‚æļ¼ˆļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µļ¼‰ć§ć‚ć‚‹ć€‚
Embodiment 2. FIG.
7 is a block diagram showing a mobile station applied to a communication system according to Embodiment 2 of the present invention, and FIG. 8 is a block diagram showing a base station applied to the communication system according to Embodiment 2 of the present invention. is there. In the figure, the same reference numerals as those in FIG. 1 and FIG.
58 is a selector (IQ multiplexing means) that outputs control data ADPCCH of the control channel after spread spectrum by the spreader 52 to the multiplier 88 or the multiplier 89 of the scrambler 54, and 68 is the integrator 113 of the despreader 65 or It is a selector (IQ separation means) that inputs and outputs control data ADPCCH of the control channel from the integrator 118.

äøŠčØ˜å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć§ćÆć€åˆ†é…å™Øļ¼•ļ¼“ćŒę‹”ę•£å™Øļ¼•ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼—ļ¼˜ć®å‡ŗåŠ›ćƒ‡ćƒ¼ć‚æć‚’ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜ļ¼Œļ¼˜ļ¼™ć«åˆ†é…ć—ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜ļ¼Œļ¼˜ļ¼™ćŒļ¼©äæ”å·ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±äæ”å·ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćŒå‡äø€ć«ćŖć‚‹ć‚ˆć†ćŖļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øē”Øć®ęŒÆå¹…äæ‚ę•°Ī²ļ½ƒļ½ƒļ¼ˆļ¼©ļ¼‰ļ¼ŒĪ²ļ½ƒļ½ƒļ¼ˆļ¼±ļ¼‰ć‚’åˆ†é…å™Øļ¼•ļ¼“ć®å‡ŗåŠ›äæ”å·ć«ä¹—ē®—ć™ć‚‹ć‚‚ć®ć«ć¤ć„ć¦ē¤ŗć—ćŸćŒć€ļ¼©č»øåŠć³ļ¼±č»øć®ć†ć”ć€äæ”å·ćƒ‘ćƒÆćƒ¼ćŒå°ć•ć„ę–¹ć®č»øć«åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‰²ć‚Šå½“ć¦ć‚‹ćŸć‚ć€ć‚»ćƒ¬ć‚Æć‚æļ¼•ļ¼˜ćŒļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ć‚’č€ƒę…®ć—ć¦ć€ę‹”ę•£å™Øļ¼•ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼—ļ¼˜ć®å‡ŗåŠ›ćƒ‡ćƒ¼ć‚æć‚’ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜åˆćÆä¹—ē®—å™Øļ¼˜ļ¼™ć«å‡ŗåŠ›ć™ć‚‹ć‚ˆć†ć«ć—ć¦ć‚‚ć‚ˆć„ć€‚ In the first embodiment, the distributor 53 distributes the output data of the multiplier 78 in the spreader 52 to the multipliers 88 and 89 of the scramble unit 54, and the multipliers 88 and 89 of the scramble unit 54 have the signal power of the I signal. As described above, the output signal of the divider 53 is multiplied by the amplitude coefficients βcc (I) and βcc (Q) for ADPCCH so that the signal power of the Q signal becomes uniform. Since the control data ADPCCH of the control channel is allocated to the axis with the smaller signal power, the selector 58 scrambles the output data of the multiplier 78 in the spreader 52 in consideration of the I-axis signal power and the Q-axis signal power. The data may be output to the multiplier 88 or the multiplier 89 of the unit 54.

å³ć”ć€ļ¼“ļ¼§ļ¼°ļ¼°č¦ę ¼ć®ļ¼“ļ¼³ļ¼’ļ¼•ļ¼Žļ¼’ļ¼‘ļ¼“ć«ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚Œć°ć€ćć®ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć‚’ļ¼©č»øć«å‰²ć‚Šå½“ć¦ļ¼ˆå›³ļ¼™ć‚’å‚ē…§ļ¼‰ć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼’ć§ć‚ć‚Œć°ć€å„ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć‚’ļ¼©č»øćØļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ćØć„ć†ć‚ˆć†ć«ļ¼ˆå›³ļ¼‘ļ¼ć‚’å‚ē…§ļ¼‰ć€ļ¼©č»øåŠć³ļ¼±č»øć«åÆ¾ć—ć¦ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć‚’äŗ¤äŗ’ć«å‰²ć‚Šå½“ć¦ć‚‹ć‚ˆć†ć«č¦å®šć•ć‚Œć¦ć„ć‚‹ć€‚
ćć“ć§ć€ć“ć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć§ćÆć€ļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØć®ćƒćƒ©ćƒ³ć‚¹ć‚’å–ć‚‹č¦³ē‚¹ć‹ć‚‰ć€ē§»å‹•å±€ļ¼’ć®ć‚»ćƒ¬ć‚Æć‚æļ¼•ļ¼˜ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒå„‡ę•°ć§ć‚ć‚Œć°ć€ę‹”ę•£å™Øļ¼•ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼—ļ¼˜ć®å‡ŗåŠ›ćƒ‡ćƒ¼ć‚æć‚’ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼™ć«å‡ŗåŠ›ć—ć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ć‚ˆć†ć«ć™ć‚‹ć€‚
That is, in TS25.213 of the 3GPP standard, if the number of data channels is set to 1, the data channel is assigned to the I axis (see FIG. 9), and if the number of data channels is set to 2, Each data channel is assigned to the I axis and the Q axis (see FIG. 10), so that the data channels are alternately assigned to the I axis and the Q axis.
Therefore, in the second embodiment, from the viewpoint of balancing the signal power of the I axis and the signal power of the Q axis, the selector 58 of the mobile station 2 has a spreader if the set number of data channels is an odd number. 52, the output data of the multiplier 78 is output to the multiplier 89 of the scramble unit 54, and the control data ADPCCH of the control channel is assigned to the Q axis.

åŸŗåœ°å±€ļ¼‘ć®ć‚»ćƒ¬ć‚Æć‚æļ¼–ļ¼˜ćÆć€ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć¦ć„ć‚‹åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å¾—ć‚‹ćŸć‚ć€é€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ē©åˆ†å™Øļ¼‘ļ¼‘ļ¼˜ć‹ć‚‰åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å…„åŠ›ć—ć¦ć€ćć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‡ŗåŠ›ć™ć‚‹ć€‚
äø€ę–¹ć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒå¶ę•°ć§ć‚ć‚Œć°ć€ē§»å‹•å±€ļ¼’ć®ć‚»ćƒ¬ć‚Æć‚æļ¼•ļ¼˜ćÆć€ę‹”ę•£å™Øļ¼•ļ¼’ć«ćŠć‘ć‚‹ä¹—ē®—å™Øļ¼—ļ¼˜ć®å‡ŗåŠ›ćƒ‡ćƒ¼ć‚æć‚’ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®ä¹—ē®—å™Øļ¼˜ļ¼˜ć«å‡ŗåŠ›ć—ć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’ļ¼©č»øć«å‰²ć‚Šå½“ć¦ć‚‹ć‚ˆć†ć«ć™ć‚‹ć€‚
The selector 68 of the base station 1 inputs the control channel control data ADPCCH from the integrator 118 of the despreader 65 in order to obtain the control data ADPCCH of the control channel assigned to the Q axis. Output ADPCCH.
On the other hand, if the set number of data channels is an even number, the selector 58 of the mobile station 2 outputs the output data of the multiplier 78 in the spreader 52 to the multiplier 88 of the scramble unit 54 to control the control channel. Data ADPCCH is assigned to the I axis.

åŸŗåœ°å±€ļ¼‘ć®ć‚»ćƒ¬ć‚Æć‚æļ¼–ļ¼˜ćÆć€ļ¼©č»øć«å‰²ć‚Šå½“ć¦ć‚‰ć‚Œć¦ć„ć‚‹åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å¾—ć‚‹ćŸć‚ć€é€†ę‹”ę•£å™Øļ¼–ļ¼•ć®ē©åˆ†å™Øļ¼‘ļ¼‘ļ¼“ć‹ć‚‰åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å…„åŠ›ć—ć¦ć€ćć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‡ŗåŠ›ć™ć‚‹ć€‚
ć“ć‚Œć«ć‚ˆć‚Šć€ć“ć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć«ć‚ˆć‚Œć°ć€äøŠčØ˜å®Ÿę–½ć®å½¢ę…‹ļ¼‘ćØåŒę§˜ć«ć€ä¾‹ćˆć°ć€å‘Øę³¢ę•°å¤‰ę›éƒØļ¼•ļ¼–ć«ćŠć‘ć‚‹å¢—å¹…å™Øć®ć²ćšćæć®ē™ŗē”Ÿć‚’ęŠ‘åˆ¶ć—ć¦ć€éš£ęŽ„å‘Øę³¢ę•°åøÆåŸŸćøć®å¦Øå®³ć‚’ęŠ‘åˆ¶ć™ć‚‹ć“ćØćŒć§ćć‚‹åŠ¹ęžœć‚’å„ć™ć‚‹ć€‚
The selector 68 of the base station 1 inputs the control channel control data ADPCCH from the integrator 113 of the despreader 65 in order to obtain control data ADPCCH of the control channel assigned to the I axis, and the control data Output ADPCCH.
Thereby, according to this Embodiment 2, like the said Embodiment 1, generation | occurrence | production of the distortion of the amplifier in the frequency conversion part 56 can be suppressed, for example, and the disturbance to an adjacent frequency band can be suppressed. There is an effect.

ćŖćŠć€ć“ć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć§ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ć«åæœć˜ć¦åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‰²ć‚Šå½“ć¦ć‚‹č»øć‚’ę±ŗå®šć™ć‚‹ć‚‚ć®ć«ć¤ć„ć¦ē¤ŗć—ćŸćŒć€ē§»å‹•å±€ļ¼’ć®ć‚»ćƒ¬ć‚Æć‚æļ¼•ļ¼˜ćŒļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ć‚’čØˆęø¬ć—ć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‰²ć‚Šå½“ć¦ć‚‹č»øć‚’ę±ŗå®šć™ć‚‹ć‚ˆć†ć«ć—ć¦ć‚‚ć‚ˆć„ć€‚ In the second embodiment, the axis for allocating the control channel control data ADPCCH according to the set number of data channels is shown. However, the selector 58 of the mobile station 2 determines the signal power of the I axis and The axis to which the control data ADPCCH of the control channel is assigned may be determined by measuring the signal power of the Q axis.

å®Ÿę–½ć®å½¢ę…‹ļ¼“ļ¼Ž
äøŠčØ˜å®Ÿę–½ć®å½¢ę…‹ļ¼’ć§ćÆć€ļ¼©č»øåŠć³ļ¼±č»øć®ć†ć”ć€äæ”å·ćƒ‘ćƒÆćƒ¼ćŒå°ć•ć„ę–¹ć®č»øć«åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‰²ć‚Šå½“ć¦ć‚‹ć‚‚ć®ć«ć¤ć„ć¦ē¤ŗć—ćŸćŒć€å›³ļ¼‘ļ¼“åŠć³å›³ļ¼‘ļ¼”ć«ē¤ŗć™ć‚ˆć†ć«ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’åøøć«ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ć‚ˆć†ć«ć—ć¦ć‚‚ć‚ˆć„ć€‚ å³ć”ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć®ę‹”ę•£ē¬¦å·é•·ćÆļ¼’ļ¼•ļ¼–ēØ‹åŗ¦ć§ć‚ć£ć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć®ę‹”ę•£ē¬¦å·é•·ćØåŒēØ‹åŗ¦ć§ć‚ć‚‹ćØč€ƒćˆć‚‰ć‚Œć‚‹ć€‚
Embodiment 3 FIG.
In the second embodiment, the control channel ADPCCH for assigning the control data to the axis with the smaller signal power out of the I axis and the Q axis has been shown. However, as shown in FIGS. Channel control data ADPCCH may always be assigned to the Q axis. That is, the spreading code length of the control data ADPCCH for the control channel is about 256, which is considered to be the same as the spreading code length of the control data DPCCH for the control channel.

ć—ćŸćŒć£ć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ē­‰ć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØęÆ”ć¹ć¦å°ć•ćć€ć¾ćŸć€ä¾‹ćˆć°ć‚¤ćƒ³ć‚æćƒ¼ćƒćƒƒćƒˆćŖć©ć®åˆ©ē”Øć‚’č€ƒćˆćŸå “åˆć€äø‹ć‚ŠćƒŖćƒ³ć‚Æć§é€äæ”ć™ć‚‹ćƒ‡ćƒ¼ć‚æé‡ćØęÆ”ć¹ć¦äøŠć‚ŠćƒŖćƒ³ć‚Æć§é€äæ”ć™ć‚‹ćƒ‡ćƒ¼ć‚æé‡ćÆå¤šććŖć„ćØč€ƒćˆć‚‰ć‚Œć‚‹ć®ć§ć€ļ¼Øļ¼³ļ¼¤ļ¼°ļ¼”ē”ØćƒŖćƒ³ć‚Æć‚’čØ­å®šć™ć‚‹å¤šćć®å “åˆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹ć“ćØćŒč€ƒćˆć‚‰ć‚Œć‚‹ć€‚ Therefore, the signal power of the control data ADPCCH of the control channel is smaller than the signal power of the data DPDCH1 of the data channel, and compared with the amount of data transmitted on the downlink when considering the use of the Internet, for example. Therefore, it is considered that the amount of data to be transmitted in the uplink is not large, and therefore in many cases where the HSDPA link is set, the number of data channels set may be one.

ć“ć“ć§ć€å›³ļ¼‘ļ¼•ć€œå›³ļ¼’ļ¼ćÆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ļ¼ˆå›³äø­ć«ļ¼®ć§č”Øē¤ŗļ¼‰ć‚’å¤‰ćˆć¦ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’ļ¼©č»øć¾ćŸćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ćŸå “åˆć®ć€ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼•ļ¼”ć®å‡ŗåŠ›ę³¢å½¢ć«ćŠć‘ć‚‹ļ¼£ļ¼£ļ¼¤ļ¼¦ļ¼ˆļ¼£ļ½ļ½ļ½ļ½Œļ½‰ļ½ļ½…ļ½Žļ½”ļ½ļ½’ļ½™ ļ¼£ļ½•ļ½ļ½•ļ½Œļ½ļ½”ļ½‰ļ½–ļ½… ļ¼¤ļ½‰ļ½“ļ½”ļ½’ļ½‰ļ½‚ļ½•ļ½”ļ½‰ļ½ļ½Žļ¼¦ļ½•ļ½Žļ½ƒļ½”ļ½‰ļ½ļ½Žļ¼‰ē‰¹ę€§ć®ć‚·ćƒŸćƒ„ćƒ¬ćƒ¼ć‚·ćƒ§ćƒ³ä¾‹ć‚’ē¤ŗć—ć¦ć„ć‚‹ć€‚å›³äø­ć®"I"ćŒļ¼©č»øć«åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‰²ć‚Šå½“ć¦ćŸå “åˆć®ē‰¹ę€§ć‚’ē¤ŗć—ć€"ļ¼±"ćŒļ¼±č»øć«åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’å‰²ć‚Šå½“ć¦ćŸå “åˆć®ē‰¹ę€§ć‚’ē¤ŗć—ć¦ć„ć‚‹ć€‚ Here, FIG. 15 to FIG. 20 show the scramble unit 54 when the set number of data channels (indicated by N in the figure) is changed and the control data ADPCCH of the control channel is assigned to the I axis or the Q axis. 7 shows an example of simulation of CCDF (Complementary Cumulative Distribution Function) characteristics in the output waveform. In the figure, ā€œIā€ indicates a characteristic when the control data ADPCCH is assigned to the I axis, and ā€œQā€ indicates a characteristic when the control data ADPCCH is assigned to the Q axis.

ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ćØćÆć€ēž¬ę™‚ćƒ‘ćƒÆćƒ¼ćŒå¹³å‡ćƒ‘ćƒÆćƒ¼åÆ¾ć—ć¦ę™‚é–“ēš„ć«ć©ć‚Œćć‚‰ć„äøŠå›žć‚‹ć‹ć®å‰²åˆļ¼ˆļ¼…ļ¼‰ć‚’ē¤ŗć™ć‚‚ć®ć§ć‚ć‚‹ć€‚ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ćŒå³å“ć«ć„ćć»ć©ć€å¹³å‡ćƒ‘ćƒÆćƒ¼ć«ęÆ”ć¹ć¦å¤§ćć„ēž¬ę™‚ćƒ‘ćƒÆćƒ¼ć«ćŖć‚‹å‰²åˆćŒå¤§ćć„ļ¼ˆćƒ‘ćƒÆćƒ¼å¤‰å‹•ćŒå¤§ćć„ļ¼‰ć“ćØć‚’ę„å‘³ć™ć‚‹ć€‚ä¾‹ćˆć°ć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ļ¼ˆļ¼®ļ¼ļ¼‘ļ¼‰ć§ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’ļ¼±č»øć«å‰²ć‚Šå½“ć¦ćŸē‰¹ę€§ć‚’č¦‹ć‚‹ćØć€å¹³å‡ćƒ‘ćƒÆćƒ¼ć‹ć‚‰ļ¼“ļ¼Žļ¼•ļ½„ļ¼¢ēØ‹åŗ¦ä»„äøŠé«˜ć„ēž¬ę™‚ćƒ‘ćƒÆćƒ¼ćØćŖć‚‹ę™‚é–“ēš„å‰²åˆćÆļ¼ļ¼Žļ¼‘ļ¼…ć§ć‚ć‚‹ć€‚
å¢—å¹…å™ØćØć—ć¦ćÆć€å¤‰å‹•ć®å¤§ćć„äæ”å·ćŒå…„åŠ›ć™ć‚‹ć»ć©ę­ŖćŒē™ŗē”Ÿć—ć‚„ć™ććŖć‚Šć€ę­Ŗć‚’ęŠ‘ćˆć‚‹ćŸć‚ć«ć‚ˆć‚Šå¤§ćć„ćƒ‘ćƒÆćƒ¼ć¾ć§ē·šå½¢ę€§ćŒč¦ę±‚ć•ć‚Œć‚‹ć®ć§ę¶ˆč²»é›»ęµćŒå¢—åŠ ć™ć‚‹ć€‚
The CCDF characteristic indicates the ratio (%) of how much the instantaneous power exceeds the average power in terms of time. As the CCDF characteristic goes to the right, it means that the ratio of instantaneous power that is larger than the average power is larger (power fluctuation is larger). For example, when the number of data channels set is 1 (N = 1) and the characteristics of control channel control data ADPCCH assigned to the Q-axis are viewed, the temporal power is about 3.5 dB or more higher than the average power. The proportion is 0.1%.
As an amplifier, distortion is more likely to occur as a signal with large fluctuations is input, and current consumption increases because linearity is required up to higher power in order to suppress distortion.

å›³ļ¼‘ļ¼•ć‹ć‚‰åˆ†ć‹ć‚‹ć‚ˆć†ć«ć€ļ¼®ļ¼ļ¼‘ļ¼ˆćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ćÆļ¼¤ļ¼°ļ¼¤ļ¼£ļ¼Øļ¼‘ć®ćæļ¼‰ć®å “åˆćÆć€åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć®å‰²ć‚Šå½“ć¦č»øćŒļ¼©ć‹ļ¼±ć‹ć«ć‚ˆć‚Šå¤§ććē‰¹ę€§ćŒē•°ćŖć‚Šć€ļ¼±č»øć«å‰²ć‚Šå½“ć¦ćŸę–¹ćŒę­Ŗć®ē™ŗē”ŸćŒå°‘ćŖć„ć€‚åŒę§˜ć«ć—ć¦ć€ļ¼®ć«åæœć˜ć¦ē‰¹ę€§ć®č‰Æć„å‰²ć‚Šå½“ć¦č»øćŒå…„ć‚Œę›æć‚ć£ć¦ćŠć‚Šć€ļ¼®ćŒå„‡ę•°ć§ć‚ć‚Œć°ļ¼±č»øć«ć€ļ¼®ćŒå¶ę•°ć§ć‚ć‚Œć°ļ¼©č»øć«å‰²ć‚Šå½“ć¦ćŸę–¹ćŒļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ćŒč‰Æå„½ć§ć‚ć‚‹ć“ćØćŒåˆ†ć‹ć‚‹ć€‚ć“ć‚ŒćÆć€äøŠčØ˜å®Ÿę–½ć®å½¢ę…‹ļ¼’ć«ćŠć‘ć‚‹å‰²ć‚Šå½“ć¦ę–¹ę³•ćØäø€č‡“ć—ć¦ćŠć‚Šć€ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć®č¦³ē‚¹ć‹ć‚‰ę­Ŗć‚’ä½Žęø›ć§ćć‚‹ęœ€ć‚‚č‰Æć„ę–¹ę³•ć§ć‚ć‚‹ć“ćØćŒåˆ†ć‹ć‚‹ć€‚
ć—ć‹ć—ć€ļ¼®ļ¼ļ¼‘ć®å “åˆćØęÆ”ć¹ć¦ć€ļ¼®>ļ¼‘ć®å “åˆćÆć€ļ¼©č»øćØļ¼±č»øćØć®å·®ćŒå¤§ćććŖć„ć®ć§ć€ę­Ŗć®ēØ‹åŗ¦ć‚‚å·®ćŒå°ć•ć„ćØč€ƒćˆć‚‹ć“ćØćŒć§ćć‚‹ć€‚
ć‚ˆć£ć¦ć€ļ¼©č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØļ¼±č»øć®äæ”å·ćƒ‘ćƒÆćƒ¼ćØć®ćƒćƒ©ćƒ³ć‚¹ć‚’å–ć‚‹č¦³ē‚¹ćØć€å¢—å¹…å™Øć®å…„åŠ›äæ”å·ć®ē‰¹ę€§ć®č¦³ē‚¹ćØć‹ć‚‰ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼¤ļ¼°ļ¼£ļ¼£ļ¼ØćØäø€ē·’ć«ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć¦ć‚‚ć€å®Ÿē”ØäøŠå•é”Œć‚’ē”Ÿć˜ć‚‹ć“ćØćŒå°‘ćŖć„ćØč€ƒćˆć‚‰ć‚Œć‚‹ć€‚
As can be seen from FIG. 15, when N = 1 (the data channel is only DPDCH1), the characteristics vary greatly depending on whether the control data ADPCCH is assigned to the I or Q axis. Few. Similarly, the allocation axis with good characteristics is switched according to N, and it can be seen that the CCDF characteristic is better when it is allocated to the Q axis when N is an odd number and to the I axis when N is an even number. . This is consistent with the assignment method in the second embodiment, and it can be seen that this is the best method that can reduce distortion from the viewpoint of CCDF characteristics.
However, compared to the case of N = 1, when N> 1, the difference between the I axis and the Q axis is not large, so it can be considered that the degree of distortion is also small.
Therefore, from the viewpoint of balancing the I-axis signal power and the Q-axis signal power and from the viewpoint of the characteristics of the input signal of the amplifier, the control channel control data ADPCCH together with the control channel control data DPCCH. Even if is assigned to the Q axis, it is considered that there are few problems in practical use.

ć“ć®ć‚ˆć†ć«ć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æļ¼”ļ¼¤ļ¼°ļ¼£ļ¼£ļ¼Øć‚’åøøć«ļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹å “åˆć€å›³ļ¼‘ļ¼‘åŠć³å›³ļ¼‘ļ¼’ć«ē¤ŗć™ć‚ˆć†ć«ć€åˆ†é…å™Øļ¼•ļ¼“ć‚„åˆęˆå™Øļ¼–ļ¼—ć€ć‚ć‚‹ć„ćÆć€ć‚»ćƒ¬ć‚Æć‚æļ¼•ļ¼˜ļ¼Œļ¼–ļ¼˜ćŒäøč¦ć«ćŖć‚Šć€å›žč·Æę§‹ęˆć®ē°”ē•„åŒ–ć‚’å›³ć‚‹ć“ćØćŒć§ćć‚‹åŠ¹ęžœć‚’å„ć™ć‚‹ć€‚ As described above, when the control data ADPCCH of the control channel is always assigned to the Q axis, the distributor 53, the combiner 67, or the selectors 58 and 68 are not required as shown in FIGS. The effect which can aim at simplification of this is produced.

ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹ē§»å‹•å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the mobile station applied to the communication system by Embodiment 1 of this invention. ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹åŸŗåœ°å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the base station applied to the communication system by Embodiment 1 of this invention. ę‹”ę•£å™Øć€åˆ†é…å™ØåŠć³ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the internal structure of a diffuser, a divider | distributor, and a scramble part. é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØć€é€†ę‹”ę•£å™ØåŠć³åˆęˆå™Øć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the internal structure of a descrambling part, a despreader, and a combiner. ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼‘ć«ć‚ˆć‚‹é€šäæ”ę–¹ę³•ć‚’ē¤ŗć™ćƒ•ćƒ­ćƒ¼ćƒćƒ£ćƒ¼ćƒˆć§ć‚ć‚‹ć€‚It is a flowchart which shows the communication method by Embodiment 1 of this invention. ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows a complex plane in case the setting number of the channel for data is one. ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹ē§»å‹•å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the mobile station applied to the communication system by Embodiment 2 of this invention. ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼’ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹åŸŗåœ°å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the base station applied to the communication system by Embodiment 2 of this invention. ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows a complex plane in case the setting number of the channel for data is one. ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼’ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows a complex plane in case the setting number of the channel for data is two. ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼“ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹ē§»å‹•å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the mobile station applied to the communication system by Embodiment 3 of this invention. ć“ć®ē™ŗę˜Žć®å®Ÿę–½ć®å½¢ę…‹ļ¼“ć«ć‚ˆć‚‹é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć«é©ē”Øć•ć‚Œć‚‹åŸŗåœ°å±€ć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the base station applied to the communication system by Embodiment 3 of this invention. ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows a complex plane in case the setting number of the channel for data is one. ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼’ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows a complex plane in case the setting number of the channel for data is two. å¤‰čŖæę³¢å½¢ć®ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows the CCDF characteristic of a modulation waveform. å¤‰čŖæę³¢å½¢ć®ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows the CCDF characteristic of a modulation waveform. å¤‰čŖæę³¢å½¢ć®ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows the CCDF characteristic of a modulation waveform. å¤‰čŖæę³¢å½¢ć®ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows the CCDF characteristic of a modulation waveform. å¤‰čŖæę³¢å½¢ć®ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows the CCDF characteristic of a modulation waveform. å¤‰čŖæę³¢å½¢ć®ļ¼£ļ¼£ļ¼¤ļ¼¦ē‰¹ę€§ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows the CCDF characteristic of a modulation waveform. å¾“ę„ć®é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć‚’ē¤ŗć™ę¦‚åæµå›³ć§ć‚ć‚‹ć€‚It is a conceptual diagram which shows the conventional communication system. ē§»å‹•å±€ć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the internal structure of a mobile station. ę‹”ę•£å™ØåŠć³ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØć®å†…éƒØę§‹ęˆć‚’ē¤ŗć™ę§‹ęˆå›³ć§ć‚ć‚‹ć€‚It is a block diagram which shows the internal structure of a diffuser and a scramble part. ęŒÆå¹…äæ‚ę•°Ī²ļ½„ļ¼ŒĪ²ļ½ƒćŒå–ć‚Šå¾—ć‚‹å€¤ć‚’ē¤ŗć™č”Øå›³ć§ć‚ć‚‹ć€‚It is a table | surface figure which shows the value which amplitude coefficient (beta) d and (beta) c can take. ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒļ¼‘ć§ć‚ć‚‹å “åˆć®č¤‡ē“ å¹³é¢ć‚’ē¤ŗć™čŖ¬ę˜Žå›³ć§ć‚ć‚‹ć€‚It is explanatory drawing which shows a complex plane in case the setting number of the channel for data is one. å¾“ę„ć®é€šäæ”ć‚·ć‚¹ćƒ†ćƒ ć‚’ē¤ŗć™ę¦‚åæµå›³ć§ć‚ć‚‹ć€‚It is a conceptual diagram which shows the conventional communication system.

ē¬¦å·ć®čŖ¬ę˜ŽExplanation of symbols

51 åˆ†é…å™Øļ¼ˆļ¼©ļ¼±å¤šé‡ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼’ ę‹”ę•£å™Øļ¼ˆļ¼©ļ¼±å¤šé‡ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼“ åˆ†é…å™Øļ¼ˆļ¼©ļ¼±å¤šé‡ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼” ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼ˆļ¼©ļ¼±å¤šé‡ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼•å¤‰čŖæéƒØļ¼ˆé€äæ”ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼– å‘Øę³¢ę•°å¤‰ę›éƒØļ¼ˆé€äæ”ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼— ć‚¢ćƒ³ćƒ†ćƒŠļ¼ˆé€äæ”ę‰‹ę®µļ¼‰ć€ļ¼•ļ¼˜ ć‚»ćƒ¬ć‚Æć‚æļ¼ˆļ¼©ļ¼±å¤šé‡ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼‘ć‚¢ćƒ³ćƒ†ćƒŠļ¼ˆå—äæ”ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼’ å‘Øę³¢ę•°å¤‰ę›éƒØļ¼ˆå—äæ”ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼“ ē›“äŗ¤å¾©čŖæéƒØļ¼ˆå—äæ”ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼” é€†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØļ¼ˆļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼•é€†ę‹”ę•£å™Øļ¼ˆļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼– ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«åˆä½“éƒØļ¼ˆļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼— åˆęˆå™Øļ¼ˆļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µļ¼‰ć€ļ¼–ļ¼˜ć‚»ćƒ¬ć‚Æć‚æļ¼ˆļ¼©ļ¼±åˆ†é›¢ę‰‹ę®µļ¼‰ć€ļ¼—ļ¼‘ć€œļ¼—ļ¼– 乗算器、77 ä¹—ē®—å™Øć€ļ¼—ļ¼˜ ä¹—ē®—å™Øć€ļ¼˜ļ¼‘ć€œļ¼˜ļ¼– ä¹—ē®—å™Øć€ļ¼˜ļ¼— ä¹—ē®—å™Øć€ļ¼˜ļ¼˜ļ¼Œļ¼˜ļ¼™ ä¹—ē®—å™Øć€ļ¼™ļ¼åŠ ē®—å™Øć€ļ¼™ļ¼‘ åŠ ē®—å™Øć€ļ¼™ļ¼’ 乗算器、93 åŠ ē®—å™Øć€ļ¼™ļ¼” 乗算器、100 ä¹—ē®—å™Øć€ļ¼‘ļ¼ļ¼‘ć€œļ¼‘ļ¼ļ¼” ä¹—ē®—å™Øć€ļ¼‘ļ¼ļ¼•ć€œļ¼‘ļ¼ļ¼™ ä¹—ē®—å™Øć€ļ¼‘ļ¼‘ļ¼ć€œļ¼‘ļ¼‘ļ¼˜ē©åˆ†å™Øć€‚ 51 Distributor (IQ multiplexer), 52 Spreader (IQ multiplexer), 53 Distributor (IQ multiplexer), 54 Scrambler (IQ multiplexer), 55 Modulator (transmitter), 56 Frequency converter (Transmit) Means), 57 antenna (transmitting means), 58 selector (IQ multiplexing means), 61 antenna (receiving means), 62 frequency converting section (receiving means), 63 orthogonal demodulating section (receiving means), 64 de-scrambled section (IQ separation) Means), 65 despreader (IQ separation means), 66 data channel merger (IQ separation means), 67 combiner (IQ separation means), 68 selector (IQ separation means), 71-76 multiplier, 77 multiplication Multiplier, 78 multiplier, 81-86 multiplier, 87 multiplier, 88, 89 multiplier, 90 adder, 91 adder, 92 multiplier, 93 adder, 94 multiplier, 100 multiplier, 1 1-104 multiplier, 105 to 109 multipliers, 110-118 integrator.

Claims (1)

ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®é€äæ”ćƒ‡ćƒ¼ć‚æćØåˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æć‚’ļ¼©ļ¼±å¤šé‡ć—ć¦č¤‡ē“ äæ”å·ć‚’ē”Ÿęˆć™ć‚‹ļ¼©ļ¼±å¤šé‡ę‰‹ę®µćØć€äøŠčØ˜ļ¼©ļ¼±å¤šé‡ę‰‹ę®µć«ć‚ˆć‚Šē”Ÿęˆć•ć‚ŒćŸč¤‡ē“ äæ”å·ć‚’å¤‰čŖæć—ć¦é€äæ”ć™ć‚‹é€äæ”ę‰‹ę®µćØć‚’å‚™ćˆćŸē§»å‹•å±€ć«ćŠć„ć¦ć€äøŠčØ˜ļ¼©ļ¼±å¤šé‡ę‰‹ę®µćÆć€å„ćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æć«åÆ¾ć—ć¦ć‚¹ćƒšć‚Æćƒˆćƒ«ę‹”ę•£ć‚’č”Œć†ę‹”ę•£å™ØćØå„ćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æć‚’ļ¼©ļ¼±å¤šé‡ć—ćŸć‚‚ć®ć«åÆ¾ć—ć¦ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«å‡¦ē†ć‚’č”Œć†ć‚¹ć‚Æćƒ©ćƒ³ćƒ–ćƒ«éƒØćØć€å„‡ę•°ē•Ŗē›®ć®äøŠčØ˜ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®é€äæ”ćƒ‡ćƒ¼ć‚æć‚’åŠ ē®—ć™ć‚‹ļ¼©č»øåŠ ē®—å™ØćØć€å¶ę•°ē•Ŗē›®ć®äøŠčØ˜ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®é€äæ”ćƒ‡ćƒ¼ć‚æćØć€äøŠčØ˜åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æćØć‚’åŠ ē®—ć™ć‚‹ļ¼±č»øåŠ ē®—å™ØćØć€å„ćƒćƒ£ćƒćƒ«ć®ćƒ‡ćƒ¼ć‚æć«ćƒćƒ£ćƒćƒ«åˆ†é›¢ē”Øć®ę‹”ę•£äæ”å·ć‚’ä¹—ē®—ć™ć‚‹ä¹—ē®—å™ØćØć€åˆ¶å¾”ē”Øćƒćƒ£ćƒćƒ«ć®åˆ¶å¾”ćƒ‡ćƒ¼ć‚æć‚’čæ½åŠ ć™ć‚‹å “åˆć€ćƒ‡ćƒ¼ć‚æē”Øćƒćƒ£ćƒćƒ«ć®čØ­å®šę•°ćŒå„‡ę•°ć§ć‚ć‚‹ć‹åˆćÆå¶ę•°ć§ć‚ć‚‹ć‹ć«åæœć˜ć¦ć€äøŠčØ˜čæ½åŠ ć™ć‚‹åˆ¶å¾”ćƒ‡ćƒ¼ć‚æć‚’ļ¼©č»øåˆćÆļ¼±č»øć«å‰²ć‚Šå½“ć¦ć‚‹ć‚»ćƒ¬ć‚Æć‚æćØć€ć‚’å«ć‚€ć“ćØć‚’ē‰¹å¾“ćØć™ć‚‹ē§»å‹•å±€ć€‚ And IQ multiplexing means for generating a complex signal control data of the transmission data and control channel data channel IQ multiplexed with, and a transmitting means for transmitting by modulating the complex signal generated by the IQ multiplexing means In the mobile station, the IQ multiplexing means includes a spreader that performs spectrum spreading on the data of each channel, a scramble unit that performs scramble processing on the IQ multiplexed data of each channel, and an odd number for the data An I-axis adder for adding the transmission data of the channel, a Q-axis adder for adding the transmission data of the even-numbered data channel and the control data of the control channel, and channel separation for each channel data a multiplier for multiplying the spread signal, when adding control data of the control channel, or set number of data channels is an odd number The mobile station in response to either an even number, characterized in that it comprises a selector for allocating a control data to the aforementioned added to the I and Q axes.
JP2007200219A 2002-01-29 2007-07-31 Mobile station, base station, communication system and communication method Expired - Lifetime JP4069155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007200219A JP4069155B2 (en) 2002-01-29 2007-07-31 Mobile station, base station, communication system and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002020465 2002-01-29
JP2007200219A JP4069155B2 (en) 2002-01-29 2007-07-31 Mobile station, base station, communication system and communication method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006134715A Division JP4383540B2 (en) 2002-01-29 2006-05-15 Mobile station, base station, communication system and communication method

Publications (2)

Publication Number Publication Date
JP2007329956A JP2007329956A (en) 2007-12-20
JP4069155B2 true JP4069155B2 (en) 2008-04-02

Family

ID=38930057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007200219A Expired - Lifetime JP4069155B2 (en) 2002-01-29 2007-07-31 Mobile station, base station, communication system and communication method

Country Status (1)

Country Link
JP (1) JP4069155B2 (en)

Also Published As

Publication number Publication date
JP2007329956A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4383541B2 (en) Mobile station, base station, communication system and communication method
JP4024843B1 (en) Mobile station, base station, communication system and communication method
JP4069155B2 (en) Mobile station, base station, communication system and communication method
JP4069154B2 (en) Mobile station, base station, communication system and communication method
JP4069152B2 (en) Mobile station, base station, communication system and communication method
JP4024841B2 (en) Mobile station, base station, communication system and communication method
JP4024838B2 (en) Mobile station, base station, communication system and communication method
JP4383540B2 (en) Mobile station, base station, communication system and communication method
JP4069153B2 (en) Mobile station, base station, communication system and communication method
JP4024836B2 (en) Mobile station, base station, communication system and communication method
JP4015684B2 (en) Mobile station, base station, communication system and communication method
JP4024839B1 (en) Mobile station, base station, communication system and communication method
JP4015683B2 (en) Mobile station, base station, communication system and communication method
JP4024844B1 (en) Mobile station, base station, communication system and communication method
JP4024842B1 (en) Mobile station, base station, communication system and communication method
JP4024840B1 (en) Mobile station, base station, communication system and communication method
JP4024845B1 (en) Mobile station, base station, communication system and communication method
JP4024837B1 (en) Mobile station, base station, communication system and communication method
JP4015686B2 (en) Mobile station, base station, communication system and communication method
JP4015685B2 (en) Mobile station, base station, communication system and communication method
JP3559034B6 (en) Mobile station, base station, communication system, transmission method, reception method, communication method, IQ multiplexing apparatus and IQ multiplexing method
JP3588104B6 (en) Mobile station, base station, communication system, transmission method, reception method, communication method, IQ multiplexing apparatus and IQ multiplexing method
JP3588105B6 (en) Mobile station, base station, communication system, transmission method, reception method, communication method, IQ multiplexing apparatus and IQ multiplexing method
JP2004112774A6 (en) Mobile station, base station, communication system, transmission method, reception method, communication method, IQ multiplexing apparatus and IQ multiplexing method
JP2004173323A6 (en) Mobile station, base station, communication system, transmission method, reception method, communication method, IQ multiplexing apparatus and IQ multiplexing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20070928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

EXPY Cancellation because of completion of term