[go: up one dir, main page]

JP4064292B2 - Ground fault detector - Google Patents

Ground fault detector Download PDF

Info

Publication number
JP4064292B2
JP4064292B2 JP2003123642A JP2003123642A JP4064292B2 JP 4064292 B2 JP4064292 B2 JP 4064292B2 JP 2003123642 A JP2003123642 A JP 2003123642A JP 2003123642 A JP2003123642 A JP 2003123642A JP 4064292 B2 JP4064292 B2 JP 4064292B2
Authority
JP
Japan
Prior art keywords
voltage
ground fault
positive
resistor
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003123642A
Other languages
Japanese (ja)
Other versions
JP2004325382A (en
Inventor
敏明 有吉
隆史 鶴見
宜一 野本
充昭 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003123642A priority Critical patent/JP4064292B2/en
Publication of JP2004325382A publication Critical patent/JP2004325382A/en
Application granted granted Critical
Publication of JP4064292B2 publication Critical patent/JP4064292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車両等に搭載された地絡検知装置に関する。
【0002】
【従来の技術】
従来、例えば高圧直流電源を具備する直流回路の陽極側および陰極側に対して、地絡検出用の電流検出器あるいは電圧検出器を選択的に切替接続することによって、直流回路の適宜の位置における地絡発生の有無を検出する地絡検出方法が知られている(例えば、特許文献1参照)。
さらに、このような地絡検出方法において高圧直流電源の電源電圧を検出し、この電源電圧の検出値によって、電源電圧の変動に伴う地絡検出用の電流検出器あるいは電圧検出器の検出結果の変動を補正する検出方法が知られている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開平4−12616号公報
【特許文献2】
特許第2838462号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術に係る地絡検出方法においては、高圧直流電源の電源電圧を検出するための電圧検出部を備える必要があり、さらに、この電圧検出部による検出結果に基づき、地絡検出用の電流検出器あるいは電圧検出器の検出結果の変動を補正する構成が必要となり、装置構成が複雑化するという問題が生じる。
また、高圧直流電源を具備する直流回路に、例えば浮遊容量成分等が存在すると、地絡検出用の電流検出器あるいは電圧検出器の切替接続に伴う電流変化や電圧変化に時間依存性が生じることから、単に、切替接続の実行時に電流検出器あるいは電圧検出器で検出を行うだけでは、地絡発生の有無を精度良く検出することができない虞がある。
本発明は上記事情に鑑みてなされたもので、装置構成が複雑化することを防止しつつ、地絡発生の有無を精度良く検出することが可能な地絡検知装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の地絡検知装置は、車両に搭載された直流電源と、該直流電源の正端子(例えば、実施の形態での正極側端子11A)または負端子(例えば、実施の形態での負極側端子11B)の何れか一方と車両のアースとの間に直列に接続された地絡検出抵抗(例えば、実施の形態での正極側検出抵抗33a、負極側検出抵抗33b)およびスイッチング素子(例えば、実施の形態での正極側スイッチング素子32a、負極側スイッチング素子32b)および保護抵抗(例えば、実施の形態での正極側保護抵抗31a、負極側保護抵抗31b)と、前記直流電源の正端子または負端子の何れか他方と車両のアースとの間に接続された定電流源(例えば、実施の形態での正極側定電流源34a、負極側定電流源34b)と、前記地絡検出抵抗と前記保護抵抗との接続および遮断を行う前記スイッチング素子により前記地絡検出抵抗と前記保護抵抗とを接続した後に、前記地絡検出抵抗の両端に発生する端子電圧の収束値を予測する予測手段(例えば、実施の形態でのステップS01〜ステップS07)と、前記端子電圧の収束値に基づいて車両のアースと前記直流電源の正端子または負端子との間に発生する地絡の有無を検出する検出手段(例えば、実施の形態でのステップS08〜ステップS10)とを備えることを特徴としている。
【0006】
上記構成の地絡検知装置によれば、直流電源を具備する直流回路に、例えば浮遊容量成分等が存在したり、例えば直流電源の出力に対してリップル電流の発生を抑制するためのコンデンサが備えられたり、例えば直流電源からの電力供給によって車両の走行用モータを駆動制御するインバータに平滑コンデンサが備えられる場合等であっても、地絡検出抵抗の両端に発生する端子電圧の収束値に基づいて精度良く地絡発生の有無を検知することができる。
【0007】
【発明の実施の形態】
以下、本発明の一実施形態に係る地絡検知装置について添付図面を参照しながら説明する。
本実施の形態による地絡検知装置10は、例えば燃料電池車両やハイブリッド車両等の車両に搭載され、例えば接地された車体から電気的に絶縁された非接地直流電源(以下、単に、直流電源と呼ぶ)11の正極側あるいは負極側に発生する地絡、つまり絶縁破壊の有無を検知する。
ここで、直流電源11は、例えば電気二重層コンデンサや電解コンデンサ等からなる複数のキャパシタセルが直列に接続されてなるキャパシタや、例えば複数のセル(例えばリチウムイオン電池等の二次電池)が直列に接続されてなるバッテリであり、例えば図1に示すように、車両の駆動源としてのモータ12の駆動および回生作動を制御するモータ駆動回路13に接続されている。
【0008】
また、モータ駆動回路13は、例えばトランジスタ等のスイッチング素子を複数用いてブリッジ接続したスイッチング回路から構成されたパルス幅変調(PWM)によるPWMインバータを備え、例えば複数相のモータ12の固定子巻線への通電を順次転流させるようになっている。
すなわち、モータ駆動回路13は、例えばモータ12の駆動時に、モータ制御装置(図示略)から出力されるトルク指令に基づき、直流電源11から供給される直流電力を交流電力に変換してモータ12へ供給する。一方、例えば車両の減速時等の回生作動時において駆動輪側からモータ12側に駆動力が伝達されると、モータ駆動回路13はモータ12を発電機として作動させ、いわゆる回生制動力を発生させ、車体の運動エネルギーを電気エネルギーとして回収する。
【0009】
本実施の形態による地絡検知装置10は、例えば図1に示すように、直流電源11に並列に接続された正極側検知部21および負極側検知部22と、制御部23と、地絡判定部24とを備えて構成されている。
正極側検知部21は、例えば、直流電源11の正極側端子11Aから負極側端子11Bに向かい順次、直列に接続された正極側保護抵抗31a(抵抗値R1)と、正極側スイッチング素子32aと、正極側検出抵抗33a(抵抗値R2)と、正極側定電流源34aと、さらに、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aとを備えて構成されている。
負極側検知部22は、例えば、直流電源11の負極側端子11Bから正極側端子11Aに向かい順次、直列に接続された負極側保護抵抗31b(抵抗値R3)と、負極側スイッチング素子32bと、負極側検出抵抗33b(抵抗値R4)と、負極側定電流源34bと、さらに、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bとを備えて構成されている。
【0010】
ここで、正極側スイッチング素子32aは、例えばnチャネルMOSFET(Metal Oxide Semi-conductor Field Effect Transistor)等のFETとされ、ドレインは正極側保護抵抗31aに接続され、ソースは正極側検出抵抗33aに接続され、ゲートは制御部23に接続されている。
また、負極側スイッチング素子32bは、例えばpチャネルMOSFET等のFETとされ、ドレインは負極側保護抵抗31bに接続され、ソースは負極側検出抵抗33bに接続され、ゲートは制御部23に接続されている。
さらに、正極側検出抵抗33aと正極側定電流源34aとの接続部および負極側検出抵抗33bと負極側定電流源34bとの接続部は、例えば車体等に接続されることで接地されている。
【0011】
また、例えば図1に示すように、直流電源11およびモータ駆動回路13に並列に接続された正極側コンデンサ36a(容量C1)および負極側コンデンサ36b(容量C2)は、例えば直流電源11からのリップル電流を抑制するコンデンサや、例えばモータ駆動回路13に具備される平滑コンデンサや、例えば回路における浮遊容量成分等を示すものであって、正極側コンデンサ36a(容量C1)と負極側コンデンサ36b(容量C2)との接続部は接地されている。
【0012】
正極側定電流源34aは、例えば図2に示すように、オペアンプ41aと、例えばpチャネルMOSFET等のFETからなるスイッチング素子42aと、抵抗43a(抵抗値Ra)と、電流制限抵抗44aとを備えて構成されている。
抵抗43aの一方の端子は正極側検出抵抗33aに接続されることで接地されており、他方の端子はオペアンプ41aの非反転入力端子およびスイッチング素子42aのソースに接続されている。また、スイッチング素子42aのドレインは直流電源11の負極側端子11Bに接続され、スイッチング素子42aのゲートは電流制限抵抗44aを介してオペアンプ41aの出力端子に接続されている。
【0013】
ここで、オペアンプ41aの反転入力端子には適宜の基準電圧Vriが入力されており、オペアンプ41aの非反転入力端子には抵抗43aに流れる電流Iに応じた電圧(I×Ra)が入力されており、この電圧(I×Ra)と基準電圧Vriとに差ΔV=(I×Ra−Vri)があると、この差ΔVを適宜の利得Amで増幅して得た電圧Am×ΔVがオペアンプ41aからスイッチング素子42aのベースへ入力される。ここで、スイッチング素子42aのソースの電位、つまりオペアンプ41aの非反転入力端子に入力される電圧は、ベースに入力される電圧Am×ΔVにスイッチング素子42aでのゲート・ソース端子間のPN接合の順方向電圧Vfを加算して得た値(Am×ΔV+Vf)となるが、この値は、例えば利得Amが十分に大きな値に設定されていると、基準電圧Vriにほぼ等しくなり、抵抗43bに流れる電流Iは一定の電流値(例えば、Vri/Ra)となる。
これにより、抵抗43aに流れる電流Iの電流値は、基準電圧Vriに応じた適宜の電流値以下の値となるように規制される。
なお、オペアンプ41aの反転入力端子へ入力される基準電圧Vriおよび非反転入力端子へ入力される電圧(I×Ra)は負の電圧とされている。
【0014】
同様にして、負極側定電流源34bは、例えば図2に示すように、オペアンプ41bと、例えばnチャネルMOSFET等のFETからなるスイッチング素子42bと、抵抗43b(抵抗値Rb)と、電流制限抵抗44bとを備えて構成されている。
抵抗43bの一方の端子は負極側検出抵抗33bに接続されることで接地されており、他方の端子はオペアンプ41bの反転入力端子およびスイッチング素子42bのソースに接続されている。また、スイッチング素子42bのドレインは直流電源11の正極側端子11Aに接続され、スイッチング素子42bのゲートは電流制限抵抗44bを介してオペアンプ41bの出力端子に接続されている。
【0015】
ここで、オペアンプ41bの非反転入力端子には適宜の基準電圧Vriが入力されており、オペアンプ41bの反転入力端子には抵抗43bに流れる電流Iに応じた電圧(I×Rb)が入力されており、この電圧(I×Rb)と基準電圧Vriとに差ΔV=(Vri−I×Rb)があると、この差ΔVを適宜の利得Amで増幅して得た電圧Am×ΔVがオペアンプ41bからスイッチング素子42bのベースへ入力される。ここで、スイッチング素子42bのソースの電位、つまりオペアンプ41bの反転入力端子に入力される電圧は、ベースに入力される電圧Am×ΔVからスイッチング素子42bでのゲート・ソース端子間のPN接合の順方向電圧Vfを減算して得た値(Am×ΔV−Vf)となるが、この値は、例えば利得Amが十分に大きな値に設定されていると、基準電圧Vriにほぼ等しくなり、抵抗43bに流れる電流Iは一定の電流値(例えば、Vri/Rb)となる。
これにより、抵抗43bに流れる電流Iの電流値は、基準電圧Vriに応じた適宜の電流値以下の値となるように規制される。
なお、オペアンプ41bの非反転入力端子へ入力される基準電圧Vriおよび反転入力端子へ入力される電圧(I×Rb)は正の電圧とされている。
【0016】
制御部23は、正極側検知部21の正極側スイッチング素子32aおよび負極側検知部22の負極側スイッチング素子32bのオン/オフ切替制御と、正極側定電流源34aおよび負極側定電流源34bの各スイッチング素子42a,42bのオン/オフ切替制御を実行する。
例えば、制御部23は、地絡検知処理の実行時に、正極側検知部21の正極側スイッチング素子32aおよび負極側検知部22の負極側スイッチング素子32bをオン状態に設定するオン信号を各スイッチング素子32a,32bのベースへ入力する。一方、地絡検知処理の非実行時には、各スイッチング素子32a,32bをオフ状態に設定するオフ信号を各ベースへ入力する。
【0017】
地絡検知処理の実行時に、制御部23によって正極側検知部21の正極側スイッチング素子32aがオン状態に設定されると、正極側定電流源34aから供給される所定の電流Iが正極側保護抵抗31aおよび正極側検出抵抗33aに流れ、負極側検知部22の負極側スイッチング素子32bがオン状態に設定されると、負極側定電流源34bから供給される所定の電流Iが負極側保護抵抗31bおよび負極側検出抵抗33bに流れる。
ここで、例えば直流電源11の正極側の適宜の位置で地絡が発生した場合、この地絡に係る適宜の大きさの地絡抵抗Rgに正極側定電流源34aから供給される所定の電流Iが分流する。
【0018】
すなわち、例えば図3に示すように、地絡が発生していない場合、正極側定電流源34aから供給される所定の電流Iは、順次、直流電源11、正極側保護抵抗31a、正極側スイッチング素子32a、正極側検出抵抗33aを流れる。
そして、地絡が発生した場合、正極側定電流源34aから供給される所定の電流Iは、例えば第1電流成分IAおよび第2電流成分IB(I=IA+IB)に分流し、第1電流成分IAは、順次、直流電源11、正極側保護抵抗31a、正極側スイッチング素子32a、正極側検出抵抗33aを流れ、第2電流成分IBは、順次、直流電源11、地絡抵抗Rgを流れる。
このため、正極側検出抵抗33aに並列に接続された正極側電圧検出器35aによって検出される出力電圧の電圧値V2は、地絡が発生していない場合にV2=I×R2となり、地絡が発生した場合にV2=IA×R2となり、検出される電圧値V2の大きさが変化する。
なお、地絡が発生した場合に検出される出力電圧の電圧値V2=IA×R2は、例えば下記数式(1)に示すように、直流電源11の出力電圧には依存しない値となる。ただし、下記数式(1)においては、正極側コンデンサ36aおよび負極側コンデンサ36bの各容量C1,C2を無視した。
【0019】
【数1】

Figure 0004064292
【0020】
同様にして、例えば直流電源11の負極側の適宜の位置で地絡が発生した場合、この地絡に係る適宜の大きさの地絡抵抗Rgに負極側定電流源34bから供給される所定の電流Iが分流する。
すなわち、例えば図4に示すように、地絡が発生していない場合、負極側定電流源34bから供給される所定の電流Iは、順次、負極側検出抵抗33b、負極側スイッチング素子32b、負極側保護抵抗31b、直流電源11を流れる。
そして、地絡が発生した場合、負極側定電流源34bから供給される所定の電流Iは、例えば第1電流成分IAおよび第2電流成分IB(I=IA+IB)に分流し、第1電流成分IAは、順次、負極側検出抵抗33b、負極側スイッチング素子32b、負極側保護抵抗31b、直流電源11を流れ、第2電流成分IBは、順次、地絡抵抗Rg、直流電源11を流れる。
このため、負極側検出抵抗33bに並列に接続された負極側電圧検出器35bによって検出される出力電圧の電圧値V4は、地絡が発生していない場合にV4=I×R4となり、地絡が発生した場合にV4=IA×R4となり、検出される出力電圧の電圧値V4の大きさが変化する。
なお、地絡が発生した場合に検出される電圧値V4=IA×R4は、例えば下記数式(2)に示すように、直流電源11の出力電圧には依存しない値となる。ただし、下記数式(2)においては、正極側コンデンサ36aおよび負極側コンデンサ36bの各容量C1,C2を無視した。
【0021】
【数2】
Figure 0004064292
【0022】
また、地絡検知処理の実行時に、制御部23によって正極側検知部21の正極側スイッチング素子32aまたは負極側検知部22の負極側スイッチング素子32bがオン状態に設定されると、直流電源11は、正極側保護抵抗31aおよび正極側検出抵抗33aを介して、あるいは、負極側保護抵抗31bおよび負極側検出抵抗33bを介して、例えば車体等に接続されることで接地される。
このため、制御部23は、正極側保護抵抗31aおよび正極側検出抵抗33aに流れる電流が所定の電流値を超えて過剰に大きくなった場合には、正極側スイッチング素子32aをオフ状態に設定するオフ信号を出力し、負極側保護抵抗31bおよび負極側検出抵抗33bに流れる電流が所定の電流値を超えて過剰に大きくなった場合には、負極側スイッチング素子32bをオフ状態に設定するオフ信号を出力する。
すなわち、例えば図5に示すように、正極側電圧検出器35aによって検出される正極側検出抵抗33aの両端に発生する出力電圧の電圧値V2に対して所定の保護電圧Vgateが設定されており、例えば地絡が発生していない場合等のように、地絡抵抗Rgが相対的に大きいときに、出力電圧の電圧値V2が保護電圧Vgateを超えることがないように設定されている。同様にして、負極側電圧検出器35bによって検出される負極側検出抵抗33bの両端に発生する出力電圧の電圧値V4は所定の保護電圧Vgateを超えることがないように設定されている。
【0023】
地絡判定部24は、正極側電圧検出器35aによって検出される出力電圧の電圧値V2または負極側電圧検出器35bによって検出される出力電圧の電圧値V4に基づき、直流電源11の正極側または負極側において地絡が発生したか否かを判定する。
ここで、正極側電圧検出器35aおよび負極側電圧検出器35bによって検出される出力電圧の各電圧値V2,V4は、例えば下記数式(3),(4)に示すように、正極側コンデンサ36aおよび負極側コンデンサ36bの各容量C1,C2に応じて、指数関数的な時間変化を示す。
このため、地絡判定部24は、出力電圧の各電圧値V2,V4の時間変化に対する収束値を予測し、予測した収束値に基づいて地絡発生の有無を判定する。
【0024】
【数3】
Figure 0004064292
【0025】
【数4】
Figure 0004064292
【0026】
例えば図6に示すように、正極側電圧検出器35aによって検出される出力電圧Vの電圧値V2は、制御部23によって正極側検知部21の正極側スイッチング素子32aがオン状態に設定された時点(例えば、t=0)から、上記数式(3)に応じて増大傾向に変化し、上記数式(1)に示す電圧値V2を収束値として収束する。
なお、正極側コンデンサ36aおよび負極側コンデンサ36bの各容量C1,C2に対しては、各容量が大きくなるほど収束に要する時間が長くなり、例えば図6に示す容量Cbでは、より小さな容量Ca(Ca<Cb)に比べて、出力電圧Vの電圧値V2の単位時間あたりの増大率が小さくなる。
【0027】
ここで、指数関数的な時間変化を示す出力電圧Vを、正極側スイッチング素子32aがオン状態に設定された時点(例えば、t=0)から所定周期Δtで検出して得た電圧値の時系列データを、順次、V,V,V,…,V,Vn+1,…とすれば、例えば下記数式(5)に示すように、所定周期Δtにおける電圧値の増大量(例えば、(V−V),(V−V),…,(Vn+1−V),…)の変化率(例えば、(V−V)/(V−V),(V−V)/(V−V),…,(Vn+2−Vn+1)/(Vn+1−V),…)が一定値Aとなる。
なお、下記数式(5)においてτは所定係数である。
【0028】
【数5】
Figure 0004064292
【0029】
従って、任意の時刻tにおける電圧値Vは、この時刻tよりも前の時刻に検出された少なくとも3点の電圧値によって記述され、例えば直前の3点の時刻tm−1,tm−2,tm−3での電圧値Vm−1,Vm−2,Vm−3によれば、例えば下記数式(6)に示すように記述される。(ただし、mは少なくとも4以上の任意の自然数である)
【0030】
【数6】
Figure 0004064292
【0031】
つまり、正極側スイッチング素子32aがオン状態に設定された時点(例えば、t=0)から、少なくとも初めの3点の時刻t,t(=t+Δt),t(=t+Δt)での電圧値V,V,Vのみを検出することによって、任意の時刻tにおける電圧値Vを予測することができる。
これにより、地絡判定部24は、後述するように、少なくとも初めの3点の時刻t,t,tでの電圧値V,V,Vの検出結果に基づき、順次、任意の時刻tにおける電圧値V(つまり、V,…,V,Vn+1,…)を算出し、算出した電圧値Vが収束値であるか否かを判定する。
そして、地絡判定部24は、算出した電圧値Vが収束値である場合には、この電圧値Vが所定の地絡判定閾電圧Vearth未満であるか否かを判定し、電圧値Vが所定の地絡判定閾電圧Vearth未満であると判定した場合には、地絡が発生していると判断し、この判定結果を、例えば警報装置(図示略)等へ出力する。
同様にして、地絡判定部24は、負極側電圧検出器35bによって検出される出力電圧Vに対して、任意の時刻tにおける電圧値Vを算出し、この電圧値Vに基づき、地絡発生の有無を判定する。
【0032】
本実施の形態による地絡検知装置10は上記構成を備えており、次に、この地絡検知装置10の動作、特に各スイッチング素子32a,32bがオン状態に設定された後において各電圧検出器35a,35bにより検出される出力電圧Vの各電圧値V2,V4の収束値(収束電圧)を予測し、この収束値に基づき、地絡発生の有無を判定する処理について添付図面を参照しながら説明する。
【0033】
先ず、図7に示すステップS01においては、任意の自然数nに1を設定する。
次に、ステップS02においては、各スイッチング素子32a,32bがオン状態に設定された時点(例えば、t=0)から、所定周期Δtで各電圧検出器35a,35bによって検出して得た電圧値のうち、初めの3点の電圧値、V,V,Vを取得する。
次に、ステップS03においては、例えば下記数式(7)に基づき、時刻tn+3における電圧値Vn+3を、この時刻tn+3の直前における3点の電圧値Vn+2,Vn+1,V(例えば、n=1である初回の処理においては、取得した電圧値V,V,V)により算出する。
【0034】
【数7】
Figure 0004064292
【0035】
次に、ステップS04においては、例えば下記数式(8)に基づき、時刻tn+4における電圧値Vn+4を、この時刻tn+4の直前における3点の電圧値Vn+3,Vn+2,Vn+1(例えば、n=1である初回の処理においては、取得した電圧値V,VおよびステップS03にて算出した電圧値V)により算出する。
【0036】
【数8】
Figure 0004064292
【0037】
次に、ステップS05においては、ステップS04にて算出した時刻tn+4における電圧値Vn+4と、ステップS03にて算出した時刻tn+3における電圧値Vn+3との差の絶対値が、所定の収束判定閾電圧Vth未満か否かを判定する。
この判定結果が「NO」の場合には、算出した電圧値Vn+4が収束していないと判断して、ステップS06に進み、任意の自然数nに1を加算して得た値を新たに自然数nに設定して、上述したステップS03に戻る。
一方、この判定結果が「YES」の場合には、算出した電圧値Vn+4が収束したと判断して、ステップS07に進む。
【0038】
ステップS07においては、ステップS04にて算出した時刻tn+4における電圧値Vn+4を収束電圧として設定する。
ステップS08においては、ステップS07にて設定した収束電圧に設定した電圧値Vn+4が所定の所定の地絡判定閾電圧Vearth未満であるか否かを判定する。
この判定結果が「YES」の場合には、ステップS09に進み、地絡が発生していると判断し、例えば、この判定結果を警報装置(図示略)等へ出力して、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、ステップS10に進み、地絡が発生していないと判断して、一連の処理を終了する。
【0039】
上述したように、本実施の形態による地絡検知装置10によれば、各検出抵抗33a,33bの両端に発生する出力電圧は、各検出抵抗33a,33bの抵抗値R2,R4と、各検出抵抗33a,33bに流れる電流の電流値とによって変化し、直流電源11の出力電圧には依存しない。これにより、例えば車両に搭載された直流電源11の出力電圧がバッテリやキャパシタ等のように車両の運転状態等に応じて相対的に大きく変動するような場合であっても、直流電源11の出力電圧を検出したり、この検出値に応じて各検出抵抗33a,33bの両端に発生する出力電圧の測定値を補正するための特別な構成を備える必要無しに、精度良く地絡発生の有無を検知することができる。
しかも、直流電源11を具備する回路系に、例えば浮遊容量成分等が存在したり、例えば直流電源11の出力に対してリップル電流の発生を抑制するためのコンデンサが備えられたり、例えば直流電源からの電力供給によって車両の走行用モータを駆動制御するインバータに平滑コンデンサが備えられる場合等であっても、各検出抵抗33a,33bの両端に発生する出力電圧の収束値を予測することにより、この予測値に基づいて精度良く地絡発生の有無を検知することができる。さらに、スイッチング素子32aがオン状態に設定された時点(例えば、t=0)から、少なくとも初めの3点の時刻t,t(=t+Δt),t(=t+Δt)での電圧値V,V,Vのみを検出することによって、任意の時刻tにおける電圧値Vを予測することができ、地絡検知に要する時間を短縮することができる。
また、各定電流源34a,34bを備えることによって、各検出抵抗33a,33bや回路系に過剰に大きな電流が流れてしまうことを防止することができ、例えば過電流保護装置等の特別な構成を必要とせずに装置構成を簡略化することができる。
【0040】
なお、上述した本実施の形態においては、正極側定電流源34aおよび負極側定電流源34bの各スイッチング素子42a,42bをMOSFET等のFETとしたが、これに限定されず、例えば他のトランジスタ等でもよい。
また、例えば地絡検知処理の実行状態等に応じて、各スイッチング素子42a,42bをオン状態に設定するオン信号またはオフ状態に設定するオフ信号を制御部23から出力することで、各抵抗43a,43bに流れる電流Iの電流値を、基準電圧Vriに応じた適宜の電流値以下の値となるように規制してもよい。
【0041】
【発明の効果】
以上説明したように、請求項1に記載の本発明の地絡検知装置によれば、定電流源を備えることにより、直流電源の出力電圧の変動に関わらずに地絡発生の有無を検知することができることに加えて、地絡検出抵抗の両端に発生する端子電圧の収束値に基づいて地絡発生の有無を検知することにより、検知精度を向上させることができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る地絡検知装置の構成図である。
【図2】 図1に示す正極側定電流源および負極側定電流源の構成図である。
【図3】 図1に示す正極側検知部の構成図である。
【図4】 図1に示す負極側検知部の構成図である。
【図5】 正極側電圧検出器によって検出される出力電圧の電圧値V2の地絡抵抗Rgに応じた変化と所定の保護電圧Vgateを示すグラフ図である。
【図6】 正極側電圧検出器によって検出される出力電圧の電圧値V2の時間変化を示すグラフ図である。
【図7】 図1に示す地絡検知装置の動作を示すフローチャートである。
【符号の説明】
10 地絡検知装置
11 非接地直流電源
11A 正極側端子(正端子)
11B 負極側端子(負端子)
12 モータ
23 制御部
24 地絡判定部(検出手段)
32a 正極側スイッチング素子(スイッチング素子)
32b 負極側スイッチング素子(スイッチング素子)
33a 正極側検出抵抗(地絡検出抵抗)
33b 負極側検出抵抗(地絡検出抵抗)
34a 正極側定電流源(定電流源)
34b 負極側定電流源(定電流源)
35a 正極側電圧検出器(検出手段)
35b 負極側電圧検出器(検出手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ground fault detection device mounted on a vehicle or the like, for example.
[0002]
[Prior art]
Conventionally, for example, by selectively switching and connecting a ground fault detection current detector or voltage detector to the anode side and the cathode side of a DC circuit equipped with a high-voltage DC power supply, the DC circuit can be connected at an appropriate position. A ground fault detection method for detecting the presence or absence of occurrence of a ground fault is known (see, for example, Patent Document 1).
Further, in such a ground fault detection method, the power source voltage of the high-voltage DC power source is detected, and the detection result of the current detector or the voltage detector for ground fault detection accompanying the fluctuation of the power source voltage is detected according to the detected value of the power source voltage. A detection method for correcting the fluctuation is known (see, for example, Patent Document 2).
[0003]
[Patent Document 1]
JP-A-4-12616 [Patent Document 2]
Japanese Patent No. 2838462 [0004]
[Problems to be solved by the invention]
However, in the ground fault detection method according to the above-described prior art, it is necessary to include a voltage detection unit for detecting the power supply voltage of the high-voltage DC power supply. Further, based on the detection result by the voltage detection unit, ground fault detection This requires a configuration for correcting fluctuations in the detection result of the current detector or voltage detector, resulting in a problem that the device configuration becomes complicated.
In addition, if there is a stray capacitance component in a DC circuit equipped with a high-voltage DC power supply, for example, a current dependency or a voltage change due to the switching connection of a current detector for detecting a ground fault or a voltage detector will be time-dependent. Therefore, there is a possibility that the presence / absence of the ground fault cannot be accurately detected only by performing detection with the current detector or the voltage detector at the time of executing the switching connection.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a ground fault detection device capable of accurately detecting the presence or absence of a ground fault while preventing the device configuration from becoming complicated. To do.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, a ground fault detection device according to the present invention includes a DC power source mounted on a vehicle and a positive terminal of the DC power source (for example, an embodiment). The ground fault detection resistor (for example, the embodiment) connected in series between either one of the positive terminal 11A) or the negative terminal (for example, the negative terminal 11B in the embodiment) and the vehicle ground. Positive electrode side detection resistor 33a, negative electrode side detection resistor 33b) and switching element (for example, positive electrode side switching element 32a, negative electrode side switching element 32b in the embodiment) and protective resistor (for example, positive electrode side in the embodiment) A constant current source (for example, positive side constant constant in the embodiment) connected between the protective resistor 31a and the negative side protective resistor 31b) and either the positive terminal or the negative terminal of the DC power source and the vehicle ground. Electric The ground fault detection resistor and the protection resistor are connected by the switching element that connects and disconnects the ground fault detection resistor and the protection resistor. Prediction means for predicting the convergence value of the terminal voltage generated at both ends of the detection resistor (for example, step S01 to step S07 in the embodiment), the ground of the vehicle and the DC power source based on the convergence value of the terminal voltage It is characterized by comprising detection means (for example, step S08 to step S10 in the embodiment) for detecting the presence or absence of a ground fault occurring between the positive terminal and the negative terminal.
[0006]
According to the ground fault detection device having the above-described configuration, the DC circuit including the DC power supply includes, for example, a stray capacitance component or the like, or includes a capacitor for suppressing generation of a ripple current with respect to the output of the DC power supply, for example. For example, even if a smoothing capacitor is provided in an inverter that drives and controls a vehicle running motor by supplying power from a DC power supply, etc., based on the convergence value of the terminal voltage generated at both ends of the ground fault detection resistor Therefore, it is possible to accurately detect the occurrence of a ground fault.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a ground fault detection apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The ground fault detection device 10 according to the present embodiment is mounted on a vehicle such as a fuel cell vehicle or a hybrid vehicle, for example, and is, for example, an ungrounded DC power source (hereinafter simply referred to as a DC power source) that is electrically insulated from a grounded vehicle body. 11) A ground fault occurring on the positive electrode side or negative electrode side of 11, that is, the presence or absence of dielectric breakdown is detected.
Here, the DC power source 11 includes, for example, a capacitor in which a plurality of capacitor cells made of, for example, an electric double layer capacitor or an electrolytic capacitor are connected in series, or a plurality of cells (for example, a secondary battery such as a lithium ion battery) in series. For example, as shown in FIG. 1, the battery is connected to a motor drive circuit 13 that controls the drive and regenerative operation of the motor 12 as a drive source of the vehicle.
[0008]
The motor drive circuit 13 includes a PWM inverter based on pulse width modulation (PWM), which is configured by a bridge circuit using a plurality of switching elements such as transistors, for example. The energization is sequentially commutated.
That is, for example, when the motor 12 is driven, the motor drive circuit 13 converts the DC power supplied from the DC power supply 11 into AC power to the motor 12 based on a torque command output from a motor control device (not shown). Supply. On the other hand, when the driving force is transmitted from the driving wheel side to the motor 12 side during regenerative operation such as when the vehicle is decelerated, the motor drive circuit 13 operates the motor 12 as a generator to generate a so-called regenerative braking force. The kinetic energy of the car body is recovered as electric energy.
[0009]
For example, as shown in FIG. 1, the ground fault detection apparatus 10 according to the present embodiment includes a positive electrode side detection unit 21 and a negative electrode side detection unit 22 connected in parallel to the DC power supply 11, a control unit 23, and a ground fault determination. And a unit 24.
The positive electrode side detection unit 21 includes, for example, a positive electrode side protective resistor 31a (resistance value R1) connected in series sequentially from the positive electrode side terminal 11A of the DC power supply 11 to the negative electrode side terminal 11B, a positive electrode side switching element 32a, A positive-side detection resistor 33a (resistance value R2), a positive-side constant current source 34a, and a positive-side voltage detector 35a connected in parallel to the positive-side detection resistor 33a are configured.
The negative electrode side detection unit 22 includes, for example, a negative electrode side protective resistor 31b (resistance value R3) connected in series sequentially from the negative electrode side terminal 11B of the DC power source 11 to the positive electrode side terminal 11A, a negative electrode side switching element 32b, A negative electrode side detection resistor 33b (resistance value R4), a negative electrode side constant current source 34b, and a negative electrode side voltage detector 35b connected in parallel to the negative electrode side detection resistor 33b are configured.
[0010]
Here, the positive side switching element 32a is an FET such as an n-channel MOSFET (Metal Oxide Semi-conductor Field Effect Transistor), the drain is connected to the positive side protection resistor 31a, and the source is connected to the positive side detection resistor 33a. The gate is connected to the control unit 23.
The negative-side switching element 32b is an FET such as a p-channel MOSFET, the drain is connected to the negative-side protection resistor 31b, the source is connected to the negative-side detection resistor 33b, and the gate is connected to the control unit 23. Yes.
Furthermore, the connection part between the positive electrode side detection resistor 33a and the positive electrode side constant current source 34a and the connection part between the negative electrode side detection resistor 33b and the negative electrode side constant current source 34b are grounded, for example, by being connected to a vehicle body or the like. .
[0011]
Further, as shown in FIG. 1, for example, a positive side capacitor 36a (capacitance C1) and a negative side capacitor 36b (capacitance C2) connected in parallel to the DC power supply 11 and the motor drive circuit 13 are, for example, ripples from the DC power supply 11. A capacitor that suppresses current, a smoothing capacitor provided in the motor drive circuit 13, for example, a stray capacitance component in the circuit, and the like, and includes a positive side capacitor 36a (capacitance C1) and a negative side capacitor 36b (capacitance C2). ) Is grounded.
[0012]
For example, as shown in FIG. 2, the positive-side constant current source 34a includes an operational amplifier 41a, a switching element 42a made of an FET such as a p-channel MOSFET, a resistor 43a (resistance value Ra), and a current limiting resistor 44a. Configured.
One terminal of the resistor 43a is grounded by being connected to the positive detection resistor 33a, and the other terminal is connected to the non-inverting input terminal of the operational amplifier 41a and the source of the switching element 42a. The drain of the switching element 42a is connected to the negative terminal 11B of the DC power supply 11, and the gate of the switching element 42a is connected to the output terminal of the operational amplifier 41a via the current limiting resistor 44a.
[0013]
Here, an appropriate reference voltage Vri is input to the inverting input terminal of the operational amplifier 41a, and a voltage (I × Ra) corresponding to the current I flowing through the resistor 43a is input to the non-inverting input terminal of the operational amplifier 41a. If there is a difference ΔV = (I × Ra−Vri) between the voltage (I × Ra) and the reference voltage Vri, the voltage Am × ΔV obtained by amplifying the difference ΔV with an appropriate gain Am is the operational amplifier 41a. To the base of the switching element 42a. Here, the source potential of the switching element 42a, that is, the voltage input to the non-inverting input terminal of the operational amplifier 41a is the voltage Am × ΔV input to the base of the PN junction between the gate and source terminals of the switching element 42a. The value obtained by adding the forward voltage Vf (Am × ΔV + Vf) is obtained. For example, when the gain Am is set to a sufficiently large value, the value is substantially equal to the reference voltage Vri, and the resistance 43b The flowing current I has a constant current value (for example, Vri / Ra).
As a result, the current value of the current I flowing through the resistor 43a is regulated to be a value equal to or less than an appropriate current value according to the reference voltage Vri.
The reference voltage Vri input to the inverting input terminal of the operational amplifier 41a and the voltage (I × Ra) input to the non-inverting input terminal are negative voltages.
[0014]
Similarly, as shown in FIG. 2, for example, the negative-side constant current source 34b includes an operational amplifier 41b, a switching element 42b made of an FET such as an n-channel MOSFET, a resistor 43b (resistance value Rb), and a current limiting resistor. 44b.
One terminal of the resistor 43b is grounded by being connected to the negative electrode side detection resistor 33b, and the other terminal is connected to the inverting input terminal of the operational amplifier 41b and the source of the switching element 42b. The drain of the switching element 42b is connected to the positive terminal 11A of the DC power supply 11, and the gate of the switching element 42b is connected to the output terminal of the operational amplifier 41b via the current limiting resistor 44b.
[0015]
Here, an appropriate reference voltage Vri is input to the non-inverting input terminal of the operational amplifier 41b, and a voltage (I × Rb) corresponding to the current I flowing through the resistor 43b is input to the inverting input terminal of the operational amplifier 41b. If there is a difference ΔV = (Vri−I × Rb) between the voltage (I × Rb) and the reference voltage Vri, the voltage Am × ΔV obtained by amplifying the difference ΔV with an appropriate gain Am is the operational amplifier 41b. To the base of the switching element 42b. Here, the potential of the source of the switching element 42b, that is, the voltage input to the inverting input terminal of the operational amplifier 41b is the order of the PN junction between the gate and the source terminal of the switching element 42b from the voltage Am × ΔV input to the base. A value (Am × ΔV−Vf) obtained by subtracting the direction voltage Vf is obtained. This value, for example, is substantially equal to the reference voltage Vri and the resistance 43b when the gain Am is set to a sufficiently large value. The current I flowing in the current has a constant current value (for example, Vri / Rb).
As a result, the current value of the current I flowing through the resistor 43b is regulated to be a value equal to or less than an appropriate current value according to the reference voltage Vri.
Note that the reference voltage Vri input to the non-inverting input terminal of the operational amplifier 41b and the voltage (I × Rb) input to the inverting input terminal are positive voltages.
[0016]
The control unit 23 performs on / off switching control of the positive electrode side switching element 32a of the positive electrode side detection unit 21 and the negative electrode side switching element 32b of the negative electrode side detection unit 22, and the positive electrode side constant current source 34a and the negative electrode side constant current source 34b. On / off switching control of each switching element 42a, 42b is executed.
For example, when executing the ground fault detection process, the control unit 23 outputs an ON signal for setting the positive side switching element 32a of the positive side detection unit 21 and the negative side switching element 32b of the negative side detection unit 22 to the ON state. Input to the bases of 32a and 32b. On the other hand, when the ground fault detection process is not executed, an off signal for setting each switching element 32a, 32b to an off state is input to each base.
[0017]
When the control unit 23 sets the positive-side switching element 32a of the positive-side detection unit 21 to the on state during the execution of the ground fault detection process, the predetermined current I supplied from the positive-side constant current source 34a is protected from the positive-side protection. When the negative electrode side switching element 32b of the negative electrode side detection unit 22 is set to the on state, the predetermined current I supplied from the negative electrode side constant current source 34b is supplied to the negative electrode side protective resistor. It flows to 31b and the negative electrode side detection resistor 33b.
Here, for example, when a ground fault occurs at an appropriate position on the positive electrode side of the DC power supply 11, a predetermined current supplied from the positive constant current source 34a to the ground fault resistor Rg of an appropriate magnitude related to the ground fault. I shunts.
[0018]
That is, for example, as shown in FIG. 3, when a ground fault has not occurred, the predetermined current I supplied from the positive-side constant current source 34a is sequentially supplied from the DC power source 11, the positive-side protection resistor 31a, and the positive-side switching. It flows through the element 32a and the positive electrode side detection resistor 33a.
When a ground fault occurs, the predetermined current I supplied from the positive-side constant current source 34a is divided into, for example, a first current component IA and a second current component IB (I = IA + IB), and the first current component The IA sequentially flows through the DC power supply 11, the positive protection resistor 31a, the positive switching element 32a, and the positive detection resistor 33a, and the second current component IB sequentially flows through the DC power supply 11 and the ground fault resistance Rg.
Therefore, the voltage value V2 of the output voltage detected by the positive voltage detector 35a connected in parallel to the positive detection resistor 33a is V2 = I × R2 when no ground fault occurs, and the ground fault When V2 occurs, V2 = IA × R2, and the detected voltage value V2 changes.
Note that the voltage value V2 = IA × R2 of the output voltage detected when a ground fault occurs is a value that does not depend on the output voltage of the DC power supply 11 as shown in the following formula (1), for example. However, in the following mathematical formula (1), the capacitances C1 and C2 of the positive capacitor 36a and the negative capacitor 36b are ignored.
[0019]
[Expression 1]
Figure 0004064292
[0020]
Similarly, for example, when a ground fault occurs at an appropriate position on the negative electrode side of the DC power supply 11, a predetermined value supplied from the negative constant current source 34b to the ground fault resistor Rg of an appropriate magnitude related to the ground fault is provided. The current I is shunted.
That is, for example, as shown in FIG. 4, when a ground fault has not occurred, the predetermined current I supplied from the negative-side constant current source 34b is sequentially supplied to the negative-side detection resistor 33b, the negative-side switching element 32b, and the negative-electrode It flows through the side protection resistor 31 b and the DC power supply 11.
When a ground fault occurs, the predetermined current I supplied from the negative-side constant current source 34b is divided into, for example, a first current component IA and a second current component IB (I = IA + IB), and the first current component IA sequentially flows through the negative electrode side detection resistor 33b, the negative electrode side switching element 32b, the negative electrode side protection resistor 31b, and the DC power source 11, and the second current component IB sequentially flows through the ground fault resistor Rg and the DC power source 11.
Therefore, the voltage value V4 of the output voltage detected by the negative side voltage detector 35b connected in parallel to the negative side detection resistor 33b is V4 = I × R4 when no ground fault occurs, and the ground fault Is generated, V4 = IA × R4, and the voltage value V4 of the detected output voltage changes.
Note that the voltage value V4 = IA × R4 detected when a ground fault occurs is a value that does not depend on the output voltage of the DC power supply 11 as shown in the following formula (2), for example. However, in the following mathematical formula (2), the capacitances C1 and C2 of the positive capacitor 36a and the negative capacitor 36b are ignored.
[0021]
[Expression 2]
Figure 0004064292
[0022]
Further, when the control unit 23 sets the positive side switching element 32a of the positive side detection unit 21 or the negative side switching element 32b of the negative side detection unit 22 to the on state during the execution of the ground fault detection process, the DC power source 11 is The grounding is performed by being connected to, for example, the vehicle body through the positive electrode side protection resistor 31a and the positive electrode side detection resistor 33a, or via the negative electrode side protection resistor 31b and the negative electrode side detection resistor 33b.
For this reason, the control part 23 sets the positive electrode side switching element 32a to an OFF state, when the electric current which flows into the positive electrode side protection resistance 31a and the positive electrode side detection resistance 33a exceeds a predetermined electric current value, and becomes large excessively. An off signal that outputs an off signal and sets the negative side switching element 32b to an off state when the current flowing through the negative side protection resistor 31b and the negative side detection resistor 33b exceeds a predetermined current value and becomes excessively large. Is output.
That is, for example, as shown in FIG. 5, a predetermined protection voltage Vgate is set for the voltage value V2 of the output voltage generated at both ends of the positive electrode side detection resistor 33a detected by the positive electrode side voltage detector 35a. For example, the voltage value V2 of the output voltage is set so as not to exceed the protection voltage Vgate when the ground fault resistance Rg is relatively large, such as when no ground fault occurs. Similarly, the voltage value V4 of the output voltage generated at both ends of the negative electrode side detection resistor 33b detected by the negative electrode side voltage detector 35b is set so as not to exceed a predetermined protection voltage Vgate.
[0023]
The ground fault determination unit 24 determines whether the positive voltage side of the DC power source 11 is based on the voltage value V2 of the output voltage detected by the positive voltage detector 35a or the voltage value V4 of the output voltage detected by the negative voltage detector 35b. It is determined whether a ground fault has occurred on the negative electrode side.
Here, the voltage values V2 and V4 of the output voltage detected by the positive side voltage detector 35a and the negative side voltage detector 35b are, for example, as shown in the following formulas (3) and (4), the positive side capacitor 36a. In addition, an exponential time change is shown according to the capacitances C1 and C2 of the negative electrode side capacitor 36b.
For this reason, the ground fault determination unit 24 predicts a convergence value with respect to a temporal change of each of the voltage values V2 and V4 of the output voltage, and determines whether or not a ground fault has occurred based on the predicted convergence value.
[0024]
[Equation 3]
Figure 0004064292
[0025]
[Expression 4]
Figure 0004064292
[0026]
For example, as shown in FIG. 6, the voltage value V2 of the output voltage V detected by the positive side voltage detector 35a is the time when the positive side switching element 32a of the positive side detection unit 21 is set to the ON state by the control unit 23. From (for example, t = 0), it changes in an increasing tendency according to the above formula (3), and converges with the voltage value V2 shown in the above formula (1) as a convergence value.
For each of the capacitances C1 and C2 of the positive electrode side capacitor 36a and the negative electrode side capacitor 36b, the time required for convergence increases as the capacitance increases. For example, in the capacitance Cb shown in FIG. Compared to <Cb), the increase rate per unit time of the voltage value V2 of the output voltage V is small.
[0027]
Here, when the output voltage V indicating an exponential time change is a voltage value obtained by detecting at a predetermined period Δt from the time (for example, t = 0) when the positive side switching element 32a is set to the ON state. Assuming that the series data is sequentially V 1 , V 2 , V 3 ,..., V n , V n + 1 ,. , (V 2 −V 1 ), (V 3 −V 2 ),..., (V n + 1 −V n ),...) (For example, (V 3 −V 2 ) / (V 2 −V 1 )) , (V 4 −V 3 ) / (V 3 −V 2 ),..., (V n + 2 −V n + 1 ) / (V n + 1 −V n ),.
In the following formula (5), τ is a predetermined coefficient.
[0028]
[Equation 5]
Figure 0004064292
[0029]
Therefore, the voltage value V m at an arbitrary time t m is described by at least three voltage values detected at a time before the time t m , for example, the time t m−1 , t at the previous three points. According to the voltage values V m−1 , V m−2 , and V m−3 at m−2 and t m−3 , for example, they are described as shown in the following formula (6). (Where m is an arbitrary natural number of at least 4 or more)
[0030]
[Formula 6]
Figure 0004064292
[0031]
That is, at least the first three times t 1 , t 2 (= t 1 + Δt), t 3 (= t 2 + Δt) from the time (for example, t = 0) when the positive side switching element 32a is set to the ON state. The voltage value V m at an arbitrary time t m can be predicted by detecting only the voltage values V 1 , V 2 , V 3 at).
Thereby, as will be described later, the ground fault determination unit 24 sequentially, based on the detection results of the voltage values V 1 , V 2 , V 3 at least at the first three times t 1 , t 2 , t 3 , A voltage value V m (that is, V 4 ,..., V n , V n + 1 ,...) At an arbitrary time t m is calculated, and it is determined whether or not the calculated voltage value V m is a convergence value.
Then, when the calculated voltage value V m is a convergence value, the ground fault determination unit 24 determines whether or not the voltage value V m is less than a predetermined ground fault determination threshold voltage V earth , If it is determined that the value V m is less than the predetermined ground fault determination threshold voltage V earth, it is determined that a ground fault has occurred, and this determination result is output to, for example, an alarm device (not shown). .
Similarly, the ground fault determination unit 24 calculates a voltage value V m at an arbitrary time t m with respect to the output voltage V detected by the negative voltage detector 35b, and based on this voltage value V m , Determine if a ground fault has occurred.
[0032]
The ground fault detection device 10 according to the present embodiment has the above-described configuration. Next, each voltage detector after the operation of the ground fault detection device 10, particularly after the switching elements 32 a and 32 b are set to the ON state. A process of predicting the convergence value (convergence voltage) of each of the voltage values V2 and V4 of the output voltage V detected by 35a and 35b and determining the presence or absence of the occurrence of a ground fault based on the convergence value with reference to the accompanying drawings. explain.
[0033]
First, in step S01 shown in FIG. 7, 1 is set to an arbitrary natural number n.
Next, in step S02, voltage values obtained by detecting the voltage detectors 35a and 35b at a predetermined period Δt from the time when the switching elements 32a and 32b are set to the ON state (for example, t = 0). Among them, the first three voltage values, V 1 , V 2 , and V 3 are acquired.
Next, in step S03, for example, based on the following equation (7), the voltage value V n + 3 at time t n + 3, the voltage value of the three points in the immediately preceding this time t n + 3 V n + 2 , V n + 1, V n ( e.g., In the first process where n = 1, the obtained voltage values V 1 , V 2 , V 3 ) are calculated.
[0034]
[Expression 7]
Figure 0004064292
[0035]
Next, in step S04, for example, based on the following equation (8), the voltage value V n + 4 at time t n + 4, the voltage value V n + 3 of three points in the immediately preceding this time t n + 4, V n + 2, V n + 1 ( e.g., In the first process where n = 1, the voltage values V 2 and V 3 acquired and the voltage value V 4 calculated in step S03) are calculated.
[0036]
[Equation 8]
Figure 0004064292
[0037]
Next, in step S05, a voltage value V n + 4 at time t n + 4 calculated in step S04, the absolute value is a predetermined convergence determination of the difference between the voltage value V n + 3 at time t n + 3 calculated in step S03 It is determined whether or not it is lower than the threshold voltage Vth.
When this determination result is “NO”, it is determined that the calculated voltage value V n + 4 has not converged, and the process proceeds to step S06, where a value obtained by adding 1 to an arbitrary natural number n is newly set as a natural number. n is set, and the process returns to step S03 described above.
On the other hand, if the determination result is “YES”, it is determined that the calculated voltage value V n + 4 has converged, and the process proceeds to step S07.
[0038]
In step S07, voltage value V n + 4 at time t n + 4 calculated in step S04 is set as the convergence voltage.
In step S08, it is determined whether or not voltage value V n + 4 set to the convergence voltage set in step S07 is less than a predetermined predetermined ground fault determination threshold voltage V earth .
If the determination result is “YES”, the process proceeds to step S09, where it is determined that a ground fault has occurred. For example, the determination result is output to an alarm device (not shown) or the like, and a series of processing is performed. finish.
On the other hand, if this determination is “NO”, the flow proceeds to step S 10, it is determined that no ground fault has occurred, and the series of processes is terminated.
[0039]
As described above, according to the ground fault detection device 10 according to the present embodiment, the output voltages generated at both ends of the detection resistors 33a and 33b are the resistance values R2 and R4 of the detection resistors 33a and 33b and the detection values. It varies depending on the current value of the current flowing through the resistors 33a and 33b, and does not depend on the output voltage of the DC power supply 11. Thereby, for example, even when the output voltage of the DC power supply 11 mounted on the vehicle fluctuates relatively greatly depending on the driving state of the vehicle, such as a battery or a capacitor, the output of the DC power supply 11 The presence or absence of occurrence of a ground fault can be accurately detected without the need to provide a special configuration for detecting the voltage or correcting the measured value of the output voltage generated at both ends of each of the detection resistors 33a and 33b according to the detected value. Can be detected.
In addition, the circuit system including the DC power supply 11 includes, for example, a stray capacitance component, or is provided with a capacitor for suppressing the generation of ripple current with respect to the output of the DC power supply 11, for example, from the DC power supply. Even when a smoothing capacitor is provided in an inverter that drives and controls a vehicle driving motor by supplying electric power, the convergence value of the output voltage generated at both ends of each of the detection resistors 33a and 33b is predicted. It is possible to accurately detect the occurrence of a ground fault based on the predicted value. Further, at least the first three times t 1 , t 2 (= t 1 + Δt), t 3 (= t 2 + Δt) from the time when the switching element 32a is set to the on state (for example, t = 0). By detecting only the voltage values V 1 , V 2 , and V 3 , the voltage value V m at an arbitrary time t m can be predicted, and the time required for ground fault detection can be shortened.
Also, by providing the constant current sources 34a and 34b, it is possible to prevent an excessively large current from flowing through the detection resistors 33a and 33b and the circuit system. For example, a special configuration such as an overcurrent protection device or the like. The apparatus configuration can be simplified without the need for
[0040]
In the above-described embodiment, the switching elements 42a and 42b of the positive-side constant current source 34a and the negative-side constant current source 34b are FETs such as MOSFETs. However, the present invention is not limited to this. For example, other transistors Etc.
Further, for example, according to the execution state of the ground fault detection process, each resistor 43a is output by outputting from the control unit 23 an ON signal for setting each switching element 42a, 42b to an ON state or an OFF signal for setting the OFF state. , 43b may be regulated so that the current value of the current I flowing through the output current 43b is equal to or less than an appropriate current value according to the reference voltage Vri.
[0041]
【The invention's effect】
As described above, according to the ground fault detection device of the present invention described in claim 1, by providing the constant current source, the presence or absence of the ground fault is detected regardless of the fluctuation of the output voltage of the DC power supply. In addition, the detection accuracy can be improved by detecting the presence or absence of the occurrence of a ground fault based on the convergence value of the terminal voltage generated at both ends of the ground fault detection resistor.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a ground fault detection apparatus according to an embodiment of the present invention.
2 is a configuration diagram of a positive-side constant current source and a negative-side constant current source shown in FIG.
FIG. 3 is a configuration diagram of a positive electrode side detection unit shown in FIG. 1;
4 is a configuration diagram of a negative electrode side detection unit shown in FIG. 1. FIG.
FIG. 5 is a graph showing a change according to a ground fault resistance Rg of a voltage value V2 of an output voltage detected by a positive voltage detector and a predetermined protection voltage Vgate.
FIG. 6 is a graph showing the change over time of the voltage value V2 of the output voltage detected by the positive voltage detector.
FIG. 7 is a flowchart showing the operation of the ground fault detection apparatus shown in FIG. 1;
[Explanation of symbols]
10 Ground fault detection device 11 Ungrounded DC power supply 11A Positive terminal (positive terminal)
11B Negative terminal (negative terminal)
12 Motor 23 Control unit 24 Ground fault determination unit (detection means)
32a Positive side switching element (switching element)
32b Negative side switching element (switching element)
33a Positive side detection resistor (ground fault detection resistor)
33b Negative electrode side detection resistor (ground fault detection resistor)
34a Positive current source (constant current source)
34b Negative current source (constant current source)
35a Positive side voltage detector (detection means)
35b Negative voltage detector (detection means)

Claims (1)

車両に搭載された直流電源と、
該直流電源の正端子または負端子の何れか一方と車両のアースとの間に直列に接続された地絡検出抵抗およびスイッチング素子および保護抵抗と、
前記直流電源の正端子または負端子の何れか他方と車両のアースとの間に接続された定電流源と、
前記地絡検出抵抗と前記保護抵抗との接続および遮断を行う前記スイッチング素子により前記地絡検出抵抗と前記保護抵抗とを接続した後に、前記地絡検出抵抗の両端に発生する端子電圧の収束値を予測する予測手段と、
前記端子電圧の収束値に基づいて車両のアースと前記直流電源の正端子または負端子との間に発生する地絡の有無を検出する検出手段と
を備えることを特徴とする地絡検知装置。
DC power supply mounted on the vehicle,
A ground fault detection resistor, a switching element, and a protective resistor connected in series between either the positive terminal or the negative terminal of the DC power supply and the vehicle ground;
A constant current source connected between either the positive terminal or the negative terminal of the DC power supply and the ground of the vehicle;
The convergence value of the terminal voltage generated at both ends of the ground fault detection resistor after the ground fault detection resistor and the protection resistor are connected by the switching element that connects and disconnects the ground fault detection resistor and the protection resistor. A prediction means for predicting
A ground fault detection device, comprising: a detecting means for detecting the presence or absence of a ground fault occurring between a vehicle ground and a positive terminal or a negative terminal of the DC power source based on a convergence value of the terminal voltage.
JP2003123642A 2003-04-28 2003-04-28 Ground fault detector Expired - Fee Related JP4064292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123642A JP4064292B2 (en) 2003-04-28 2003-04-28 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123642A JP4064292B2 (en) 2003-04-28 2003-04-28 Ground fault detector

Publications (2)

Publication Number Publication Date
JP2004325382A JP2004325382A (en) 2004-11-18
JP4064292B2 true JP4064292B2 (en) 2008-03-19

Family

ID=33501472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123642A Expired - Fee Related JP4064292B2 (en) 2003-04-28 2003-04-28 Ground fault detector

Country Status (1)

Country Link
JP (1) JP4064292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603903A (en) * 2016-11-16 2018-09-28 株式会社Lg化学 Apparatus and method for calculating insulation resistance of battery

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220520A (en) * 2005-02-10 2006-08-24 Honda Motor Co Ltd Insulation resistance measuring apparatus and method for non-grounded DC power supply
JP5077513B2 (en) * 2005-12-26 2012-11-21 スズキ株式会社 Device for estimating open-circuit voltage of vehicle battery
JP4705495B2 (en) * 2006-03-23 2011-06-22 株式会社ケーヒン Leakage detection circuit and battery electronic control device
JP4989205B2 (en) * 2006-12-05 2012-08-01 三洋電機株式会社 Electric leakage detection method for electric vehicle
US9030788B2 (en) * 2011-03-31 2015-05-12 Toyota Jidosha Kabushiki Kaisha Power supply system for vehicle
EP2715379B1 (en) * 2011-06-01 2018-09-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Detection of an insulation defect
KR101908637B1 (en) * 2012-01-05 2018-10-17 에스케이이노베이션 주식회사 Circuit for measuring insulatioin resistance
JP5947584B2 (en) 2012-03-27 2016-07-06 矢崎総業株式会社 Insulation state detector
JP6051909B2 (en) * 2013-02-12 2016-12-27 株式会社デンソー Power supply
KR101771226B1 (en) * 2014-10-02 2017-09-05 주식회사 엘지화학 Isolation resistance measurement apparatus that can rapidly measure isolation resistance
KR101936220B1 (en) 2015-11-16 2019-01-08 주식회사 엘지화학 System and apparatus for measuring of insulation resistance
JP7468287B2 (en) * 2020-10-12 2024-04-16 株式会社デンソー Leakage detection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108603903A (en) * 2016-11-16 2018-09-28 株式会社Lg化学 Apparatus and method for calculating insulation resistance of battery
US11193981B2 (en) 2016-11-16 2021-12-07 Lg Chem, Ltd. Apparatus and method for calculating insulation resistance of battery

Also Published As

Publication number Publication date
JP2004325382A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4056923B2 (en) Ground fault detector
JP4064292B2 (en) Ground fault detector
US8004284B2 (en) Leak detecting circuit
JP4538047B2 (en) Failure detection device for power element
WO2013190733A1 (en) Leak detection device
US10505363B2 (en) Overcurrent protection circuit
US20240106347A1 (en) Systems and methods for controlled active discharge for inverter for electric vehicle
EP3116129B1 (en) Preventive apparatus
JP4930866B2 (en) Failure detection device for power element
US9653912B2 (en) Inrush current limiter
JP2013123329A (en) Switching-element driving circuit and driving device having the same
JP4166680B2 (en) Ground fault detector
US9859739B2 (en) Load driver circuit including load model parameter estimation
EP3667341A1 (en) Power source control device
JP6322123B2 (en) Current limit circuit
JP2012013433A (en) Voltage detection circuit and power supply device
JP6607161B2 (en) In-vehicle battery system control method
WO2022264314A1 (en) Motor drive device calculating insulation resistance value of motor
JP6642074B2 (en) Driving device for switching element
US20240356458A1 (en) Electronic control of protection parameters for a semiconductor switch
JP6443558B2 (en) Inverter device for electric vehicle
US11205986B2 (en) Inverter device
JP5926796B2 (en) Leak detector
JP2017153184A (en) Power conversion device and power conversion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees