[go: up one dir, main page]

JP4062292B2 - Light alloy casting manufacturing method - Google Patents

Light alloy casting manufacturing method Download PDF

Info

Publication number
JP4062292B2
JP4062292B2 JP2004267768A JP2004267768A JP4062292B2 JP 4062292 B2 JP4062292 B2 JP 4062292B2 JP 2004267768 A JP2004267768 A JP 2004267768A JP 2004267768 A JP2004267768 A JP 2004267768A JP 4062292 B2 JP4062292 B2 JP 4062292B2
Authority
JP
Japan
Prior art keywords
casting
mold
cavity
quenching
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004267768A
Other languages
Japanese (ja)
Other versions
JP2005169498A (en
Inventor
勉 益田
康博 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004267768A priority Critical patent/JP4062292B2/en
Priority to CNB2004100957438A priority patent/CN100381230C/en
Priority to US10/991,603 priority patent/US20050103407A1/en
Publication of JP2005169498A publication Critical patent/JP2005169498A/en
Application granted granted Critical
Publication of JP4062292B2 publication Critical patent/JP4062292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

この発明は、鋳型を用いてアルニミウム合金やマグネシウム合金などの軽合金製鋳物を鋳造するような軽合金製鋳物の製造方法に関する。   The present invention relates to a method for manufacturing a light alloy casting in which a light alloy casting such as an aluminum alloy or a magnesium alloy is cast using a mold.

一般に、アルミニウム合金製鋳物またはマグネシウム合金製鋳物は、強度などの機械的特性の向上を目的として熱処理が施される。
上述の熱処理としてはT6処理(溶体化処理後に人工時効硬化処理する熱処理)が有効であり、アルミニウム合金製鋳物の場合のT6処理は、例えば500℃前後で8〜10時間の溶体化処理を施した後に、180℃前後で5〜10時間の人工時効処理が行なわれており、この人工時効処理はアルミニウム合金製鋳物を加熱炉(時効炉)内に配置して行なわれるので、熱処理炉としての加熱炉が必要なことは勿論、エネルギ消費が大となる問題点があった。
Generally, an aluminum alloy casting or a magnesium alloy casting is subjected to heat treatment for the purpose of improving mechanical properties such as strength.
As the above heat treatment, T6 treatment (heat treatment for artificial age hardening after solution treatment) is effective. In the case of an aluminum alloy casting, T6 treatment is performed, for example, at a temperature of about 500 ° C. for 8 to 10 hours. After that, an artificial aging treatment is performed at around 180 ° C. for 5 to 10 hours, and this artificial aging treatment is performed by placing an aluminum alloy casting in a heating furnace (aging furnace). In addition to the necessity of a heating furnace, there is a problem that energy consumption becomes large.

一方、鋳型を用いてアルミニウム合金製鋳物を鋳造する方法としては、次のような方法がある。
すなわち、V型エンジンのシリンダブロックをアルミニウム合金製鋳物で鋳造する場合、シリンダブロックの燃焼室側と対応する部分を金型で構成し、その他の部分を砂型で構成し、これら金型および砂型で形成されたキャビティおよび押し湯部に対して、シーリング機構を介してランナを取付け、アルミニウム合金の溶湯を下方からランナ、開放されたシーリング機構、および押し湯部を介してキャビティに注湯し、次にシーリング機構を閉塞した後に、金型および砂型から成る鋳型全体を反転させ、溶湯の凝固後に、まず金型を分離し、分離部分の鋳物面を液体の冷却媒体を用いて冷却して、指向性凝固させるものである(特許文献1参照)。
On the other hand, as a method for casting an aluminum alloy casting using a mold, there are the following methods.
That is, when the cylinder block of the V-type engine is cast with an aluminum alloy casting, the part corresponding to the combustion chamber side of the cylinder block is constituted by a mold, and the other part is constituted by a sand mold, and these molds and sand molds are used. A runner is attached to the formed cavity and feeder part via a sealing mechanism, and molten aluminum alloy is poured from below into the cavity via the runner, open sealing mechanism and feeder part, and then After closing the sealing mechanism, the entire mold consisting of a mold and a sand mold is reversed, and after the molten metal solidifies, the mold is first separated, and the casting surface of the separated portion is cooled with a liquid cooling medium, and oriented. (See Patent Document 1).

しかし、特許文献1に開示されたこの従来方法においては、鋳型全体を反転させる必要があるので、鋳造装置が複雑化する問題点があり、また鋳造後において溶体化処理(焼入れ)および時効処理を施す点については何等の記載も示唆もないので、アルミニウム合金製鋳物の強度などの充分な機械的特性が得られない問題点があった。   However, in this conventional method disclosed in Patent Document 1, since it is necessary to invert the entire mold, there is a problem that the casting apparatus becomes complicated, and solution treatment (quenching) and aging treatment are performed after casting. Since there is no description or suggestion about the application point, there is a problem that sufficient mechanical properties such as strength of an aluminum alloy casting cannot be obtained.

また他の従来方法としては、アルミニウム合金の溶湯を49MPa以上の鋳込圧力で金型内に加圧充填して凝固させ、凝固完了後に鋳物を金型より取り出して直ちに水に浸漬して焼入れを施し、焼入れ後に人工時効処理を実施するものがある(特許文献2参照)。   As another conventional method, a molten aluminum alloy is pressurized and filled in a mold at a casting pressure of 49 MPa or more and solidified, and after the solidification is completed, the casting is taken out of the mold and immediately immersed in water for quenching. There is one that performs artificial aging treatment after application and quenching (see Patent Document 2).

この特許文献2に開示された従来方法は、全て金型を用いて鋳造する方法であるうえ、上述の熱処理(焼入れ、人工時効処理)は製品(鋳物)を金型から取り出した後の処理である関係上、人工時効処理には必然的に時効炉が必要となり、エネルギ消費が大となるものと推考される。
特許第3068185号公報 特開平8−225903号公報
The conventional method disclosed in Patent Document 2 is a method of casting using a mold, and the above heat treatment (quenching, artificial aging treatment) is a process after taking a product (casting) out of the mold. For some reasons, artificial aging treatments inevitably require an aging furnace, which is considered to increase energy consumption.
Japanese Patent No. 3068185 JP-A-8-225903

そこで、この発明は、押し湯部をもった砂型と、金型とでキャビティを構成し、鋳込み後に金型のみを分離して、金型が分離された鋳物の表面を冷却媒体により局部冷却して焼入れ(溶体化処理)し、その後、押し湯部の保有熱を有効利用して時効処理を行なうことにより、熱処理炉(時効炉)を何等必要とすることなく、T6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる軽合金製鋳物の製造方法の提供を目的とする。   Therefore, the present invention forms a cavity with a sand mold having a feeder part and a mold, separates only the mold after casting, and locally cools the surface of the casting from which the mold is separated by a cooling medium. The product is subjected to T6 treatment without requiring any heat treatment furnace (aging furnace) by effectively using the heat retained in the hot-water supply section and performing aging treatment by quenching (solution treatment). An object of the present invention is to provide a light alloy casting manufacturing method capable of sufficiently improving mechanical properties such as strength.

この発明による軽合金製鋳物の製造方法は、押し湯部を形成する砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、鋳込み後、金型を分離する分離工程と、金型が分離された鋳物の表面に冷却媒体を接触させて、鋳物を焼入れする焼入れ工程と、鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えたものである。   The light alloy casting manufacturing method according to the present invention provides a preparation for preparing a mold that constitutes a cavity with a sand mold that forms a feeder part and a mold that is arranged apart from the feeder part and forms a part of the cavity. A casting step of casting a light alloy molten metal into the cavity, a separation step of separating the mold after casting, and quenching by quenching the casting by bringing a cooling medium into contact with the surface of the casting from which the mold has been separated. And a aging treatment step of covering the casting with the sand mold and the heat retaining means and keeping the entire casting at the aging treatment temperature for a predetermined time by the heat retained in the hot water feeder.

上述の軽合金としてはJIS規格AC4Bなどのアルミニウム合金や、JIS規格MC1などのマグネシウム合金を用いることができる。また冷却媒体としては水を用いることができ、製造される鋳物はエンジンのシリンダヘッドに設定してもよい。   As the light alloy, an aluminum alloy such as JIS standard AC4B or a magnesium alloy such as JIS standard MC1 can be used. Further, water can be used as the cooling medium, and the manufactured casting may be set in the cylinder head of the engine.

上記構成によれば、準備工程で、砂型と金型との両者によりキャビティを備えた鋳型が構成され、鋳込み工程で、キャビティに軽合金溶湯が鋳込まれ、次の分離工程で、鋳込み後において砂型を残した状態で金型のみが分離(離型)され、次の焼入れ工程で、金型が分離された鋳物の表面に冷却媒体を接触させて、鋳物を焼き入れし、次の時効処理工程で、鋳物を上述の砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to the above configuration, in the preparation process, a mold having a cavity is configured by both the sand mold and the mold, in the casting process, the light alloy molten metal is cast into the cavity, and in the next separation process, after casting. Only the mold is separated (released) with the sand mold left, and in the next quenching process, the cooling medium is brought into contact with the surface of the cast from which the mold has been separated, and the casting is quenched, and the next aging treatment is performed. In the process, the casting is covered with the above-mentioned sand mold and heat retaining means, and the entire casting is kept at the aging treatment temperature for a predetermined time with the retained heat of the hot water feeder.

このように、金型分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に行なうことができ、しかも時効処理は鋳物を砂型と保温手段とで覆って、押し湯部の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   Thus, after the mold separation, the necessary part is quenched by the local cooling with the cooling medium, and the retained heat of the hot-water supply part is effectively used to perform quenching (solution treatment) and aging treatment easily. In addition, the aging treatment is carried out by covering the casting with a sand mold and heat retaining means and effectively using the heat retained in the hot water feeder section, so that no heat treatment furnace (aging furnace) is required and energy consumption is also required. However, the T6 treatment can be applied to sufficiently improve the mechanical properties such as the strength of the product.

この発明による軽合金製鋳物の製造方法は、また、押し湯部を形成する砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、鋳込み後、金型を分離する分離工程と、金型が分離された鋳物の表面に冷却媒体を吹付けて、鋳物を焼入れする焼入れ工程と、上記冷却媒体の吹付け状態を所定時間継続した後に、吹付けを停止する継続工程と、鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えたものである。   The light alloy casting manufacturing method according to the present invention also prepares a mold that forms a cavity with a sand mold that forms a feeder part and a mold that is arranged away from the feeder part and forms a part of the cavity. A casting step of casting a light alloy molten metal into the cavity, a separation step of separating the mold after casting, and quenching the casting by spraying a cooling medium on the surface of the casting from which the mold has been separated. A quenching process, a continuation process in which the spraying state of the cooling medium is continued for a predetermined time, and then the spraying is stopped. The casting is covered with the sand mold and the heat retaining means, and the entire casting is aged with the retained heat of the hot water portion. And an aging treatment step of maintaining the treatment temperature for a predetermined time.

上記構成によれば、準備工程で、砂型と金型との両者によりキャビティを備えた鋳型が構成され、鋳込み工程で、キャビティに軽合金溶湯が鋳込まれ、次の分離工程で、鋳込み後において砂型を残した状態で金型のみが分離(離型)され、次の焼入れ工程で、金型が分離された鋳物の表面に冷却媒体を吹付けて、鋳物を焼入れし、次の継続工程で、冷却媒体の吹付け状態を所定時間継続した後に、吹付けを停止し、次の時効処理工程で、鋳物を上述の砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to the above configuration, in the preparation process, a mold having a cavity is configured by both the sand mold and the mold, in the casting process, the light alloy molten metal is cast into the cavity, and in the next separation process, after casting. Only the mold is separated (released) while leaving the sand mold, and in the next quenching process, the cooling medium is sprayed onto the surface of the casting from which the mold has been separated, and the casting is quenched, and in the next continuation process After the cooling medium spraying state has been continued for a predetermined time, the spraying is stopped, and in the next aging treatment process, the casting is covered with the above-mentioned sand mold and heat retaining means, and the entire casting is aged with the retained heat of the hot water feeder. Maintain the processing temperature for a predetermined time.

このように、金型分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に行なうことができ、しかも時効処理は鋳物を砂型と保温手段とで覆って、押し湯部の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   Thus, after the mold separation, the necessary part is quenched by the local cooling with the cooling medium, and the retained heat of the hot-water supply part is effectively used to perform quenching (solution treatment) and aging treatment easily. In addition, the aging treatment is performed by covering the casting with the sand mold and the heat retaining means and effectively using the heat retained in the hot water portion, so that no heat treatment furnace (aging furnace) is required and energy consumption is also required. However, the T6 treatment can be applied to sufficiently improve the mechanical properties such as the strength of the product.

この発明による軽合金製鋳物の製造方法は、さらに、押し湯部を形成する砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、鋳込み後、金型を分離する分離工程と、金型が分離された鋳物の表面に焼入れ用の冷却媒体を吹付けて鋳物を焼入れする焼入れ工程と、焼入れ後に上記鋳物の表面に調整冷却用の冷却媒体を吹付けて冷却を所定時間継続した後に、吹付けを停止する継続工程と、鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えたものである。   The light alloy casting manufacturing method according to the present invention further provides a mold that forms a cavity with a sand mold that forms a feeder part and a mold that is arranged away from the feeder part and forms a part of the cavity. A casting process in which a molten light alloy is cast into the cavity, a separating process in which the mold is separated after casting, and a quenching cooling medium is sprayed onto the surface of the casting from which the mold has been separated. A quenching process for quenching, a cooling medium for adjusting cooling is sprayed on the surface of the casting after quenching and cooling is continued for a predetermined time, and then the spraying is stopped, and the casting is covered with the sand mold and the heat retaining means. And an aging treatment step of keeping the entire casting at the aging treatment temperature for a predetermined time by the heat retained by the hot water feeder.

上述の鋳物の表面に吹付ける焼入れ用の冷却媒体と調整冷却用の冷却媒体とは共に水に設定し、焼入れ工程では冷却水を吹付け、継続工程では霧状の水(いわゆる霧水)を吹付けるように構成してもよい。また冷却水の吹付けから霧水の吹付けへの切換えにより、製品温度が効果的に時効現象を引き出せる温度範囲にコントロールすることが望ましい。   Both the quenching cooling medium and the adjustment cooling cooling medium sprayed on the surface of the casting described above are set to water, spraying the cooling water in the quenching process, and spraying mist water (so-called fog water) in the continuing process. You may comprise so that it may spray. In addition, it is desirable to control the product temperature within a temperature range that can effectively bring out an aging phenomenon by switching from spraying cooling water to spraying fog water.

上記構成によれば、準備工程で、砂型と金型との両者によりキャビティを備えた鋳型が構成され、鋳込み工程で、キャビティに軽合金溶湯が鋳込まれ、次の分離工程で、鋳込み後において砂型を残した状態で金型のみが分離(離型)され、次の焼入れ工程で、金型が分離された鋳物の表面に焼入れ用の冷却媒体を吹付けて、鋳物を焼入れし、次の継続工程で、焼入れ後に上記鋳物の表面に調整冷却用の冷却媒体を吹付けて冷却を所定時間継続した後に、吹付けが停止され、次の時効処理工程で、鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to the above configuration, in the preparation process, a mold having a cavity is configured by both the sand mold and the mold, in the casting process, the light alloy molten metal is cast into the cavity, and in the next separation process, after casting. Only the mold is separated (released) while leaving the sand mold, and in the next quenching process, a quenching cooling medium is sprayed onto the surface of the cast from which the mold has been separated, and the casting is quenched. In the continuation process, after quenching, the cooling medium for adjusting cooling is sprayed on the surface of the casting and the cooling is continued for a predetermined time. Then, the spraying is stopped, and in the next aging treatment process, the casting is washed with the sand mold and the heat retaining means. Covering and keeping the entire casting at the aging treatment temperature for a predetermined time by the heat retained by the hot water feeder.

このように、金型分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に達成することができ、さらに時効処理は鋳物を砂型と保温手段とで覆って、押し湯部の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   In this way, quenching (solution treatment) and aging treatment can be easily achieved by quenching the necessary part by local cooling with a cooling medium after mold separation and effectively utilizing the retained heat of the hot-water supply part. In addition, the aging treatment is performed by covering the casting with a sand mold and heat retaining means and effectively using the heat stored in the feeder, so there is no need for any heat treatment furnace (aging furnace) and energy consumption. In addition, the T6 treatment can be applied to sufficiently improve the mechanical properties such as the strength of the product.

しかも、継続工程においては調整冷却用の冷却媒体を吹付けるものであるから、
この冷却媒体を霧水または冷却風に設定することができ、鋳物の表面に吹付けられた霧水は気化する。この結果、固定的な冷却ステーションが不要となり、製品の搬送中に製品としての鋳物を調整冷却することができ、生産効率の向上を図ることができる。
Moreover, since the cooling medium for adjusting cooling is sprayed in the continuous process,
This cooling medium can be set to fog water or cooling air, and the fog water sprayed on the surface of the casting is vaporized. As a result, a fixed cooling station is not required, and the casting as the product can be adjusted and cooled during the conveyance of the product, so that the production efficiency can be improved.

この発明による軽合金製鋳物の製造方法はさらに、水溶性バインダを含有し、押し湯部が形成された砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、鋳込み後、金型を分離する分離工程と、金型が分離された鋳物の表面に冷却媒体を吹付けて、鋳物を焼入れする焼入れ工程と、上記砂型および鋳物を水中に浸漬して鋳物を冷却すると共に、砂型を崩壊させる水没工程と、水中から鋳物を取出した後、鋳物を保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えたものである。   The method for producing a light alloy casting according to the present invention further includes a sand mold containing a water-soluble binder and having a feeder part formed therein, and a mold that is arranged away from the feeder part and forms a part of the cavity. A preparation step for preparing a mold constituting the cavity, a casting step for casting a light alloy molten metal into the cavity, a separation step for separating the mold after casting, and a cooling medium on the surface of the casting from which the mold has been separated. Spraying and quenching the casting, immersing the sand mold and casting in water to cool the casting, submerging the sand mold to submerge, and removing the casting from the water, and then covering the casting with heat retaining means And an aging treatment step of keeping the entire casting at the aging treatment temperature for a predetermined time by the heat retained by the hot water feeder.

上述の水溶性バインダは、硫酸マグネシウム水和物、硫酸アルミニウム水和物、硫酸ナトリウム水和物、硫酸ニッケル水和物、硫酸マンガン水和物のうちの少なくとも1種の無機硫酸化合物に設定してもよく、特に硫酸マグネシウム水和物が安定した鋳型強度を確保する上で好ましい。一方、保温手段は断熱材に設定してもよい。
上記構成によれば、準備工程で、砂型と金型との両者によりキャビティを備えた鋳型が構成され、鋳込み工程で、キャビティに軽合金溶湯が鋳込まれ、次の分離工程で、鋳込み後において砂型を残した状態で金型のみが分離(離型)され、次の焼入れ工程で、金型が分離された鋳物の表面に冷却媒体を吹付けて、鋳物を焼入れし、次の水没工程で、砂型および鋳物を水中に浸漬して鋳物を冷却すると共に、水溶性バインダで造型された砂型を崩壊させ、次の時効処理工程で、水中から鋳物を取出した後に、鋳物を保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ。
The water-soluble binder described above is set to at least one inorganic sulfate compound of magnesium sulfate hydrate, aluminum sulfate hydrate, sodium sulfate hydrate, nickel sulfate hydrate, and manganese sulfate hydrate. In particular, magnesium sulfate hydrate is preferable for ensuring stable mold strength. On the other hand, the heat retaining means may be set to a heat insulating material.
According to the above configuration, in the preparation process, a mold having a cavity is configured by both the sand mold and the mold, in the casting process, the light alloy molten metal is cast into the cavity, and in the next separation process, after casting. Only the mold is separated (released) while leaving the sand mold, and in the next quenching process, the cooling medium is sprayed onto the surface of the casting from which the mold has been separated, the casting is quenched, and the next submerged process. In addition, the sand mold and casting are immersed in water to cool the casting, and the sand mold formed with the water-soluble binder is collapsed. The entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot water feeder.

このように、金型分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に達成することができ、さらに時効処理は鋳物を保温手段で覆って、押し湯部の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   In this way, quenching (solution treatment) and aging treatment can be easily achieved by quenching the necessary part by local cooling with a cooling medium after mold separation and effectively utilizing the retained heat of the hot-water supply part. In addition, the aging treatment is performed by covering the casting with the heat retaining means and effectively using the heat retained in the hot metal part, so that no heat treatment furnace (aging furnace) is required and no energy is consumed. By performing the treatment, the mechanical properties such as the strength of the product can be sufficiently improved.

しかも、水没工程で、砂型および鋳物を水中に浸漬するので、水溶性バインダで造型された砂型の崩壊分離が達成できると共に、押し湯部の余分な温度を水没により下げることができるので、焼入れ工程後から時効処理工程までの鋳物の冷却時間を効率的に短縮することができる。   Moreover, since the sand mold and the casting are immersed in the water in the submerging process, the sand mold formed with the water-soluble binder can be separated and separated, and the excess temperature of the hot water can be lowered by submerging, so that the quenching process The cooling time of the casting from the subsequent aging treatment step can be efficiently shortened.

この発明による軽合金製鋳物の製造方法はさらに、非水溶性の硬化性バインダを含有し、押し湯部が形成された砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、鋳込み後、金型を分離する分離工程と、上記砂型および鋳物を水中に浸漬して金型が分離された鋳物の表面を冷却する焼入れ工程と、水中から砂型および鋳物を取出した後、鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えたものである。   The method for producing a light alloy casting according to the present invention further includes a sand mold containing a water-insoluble curable binder and formed with a feeder part, and is disposed apart from the feeder part to form a part of the cavity. A preparation process for preparing a mold that forms a cavity with a mold, a casting process for casting a molten light alloy into the cavity, a separation process for separating the mold after casting, and the sand mold and casting are immersed in water. A quenching process that cools the surface of the casting from which the mold has been separated, and after taking out the sand mold and casting from the water, the casting is covered with the sand mold and heat retaining means, and the entire casting is aged with the heat retained by the hot water feeder And an aging treatment step for maintaining the temperature for a predetermined time.

上述の非水溶性の硬化性バインダは、主材料のフェノール樹脂と硬化剤のポリイソシアネートを含み、アミンガスで硬化するもの、あるいは、主材料のフェノール樹脂と硬化剤のヘキサメチレンテトラミンを含み、熱によって硬化するものに設定してもよい。
上記構成によれば、準備工程で、砂型と金型との両者によりキャビティを備えた鋳型が構成され、鋳込み工程で、キャビティに軽合金溶湯が鋳込まれ、次の分離工程で、鋳込み後において砂型を残した状態で金型のみが分離(離型)され、次の焼入れ工程で、砂型および鋳物を水中に浸漬して金型が分離された鋳物の表面を冷却して鋳物を焼入れし、次の時効処理工程で、水中から砂型および鋳物を取出した後に、鋳物を砂型と保温手段とで覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ。
The water-insoluble curable binder described above contains a phenolic resin as a main material and a polyisocyanate as a curing agent, and is cured with an amine gas, or contains a phenolic resin as a main material and a hexamethylenetetramine as a curing agent. It may be set to be cured.
According to the above configuration, in the preparation process, a mold having a cavity is configured by both the sand mold and the mold, in the casting process, the light alloy molten metal is cast into the cavity, and in the next separation process, after casting. Only the mold is separated (released) while leaving the sand mold, and in the next quenching process, the sand mold and the casting are immersed in water to cool the surface of the casting from which the mold has been separated, and the casting is quenched. In the next aging treatment step, after the sand mold and the casting are taken out from the water, the casting is covered with the sand mold and the heat retaining means, and the entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot water feeder.

このように、金型分離後に砂型および鋳物を水中に浸漬して金型が分離された鋳物の表面を冷却して、必要部を焼入れし、その後、砂型と保温手段とで鋳物を覆った状態下にて押し湯部の保有熱を有効利用して、時効処理を達成することができ、さらに上述の時効処理は鋳物を保温手段で覆って、押し湯部の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   As described above, after separating the mold, the sand mold and the casting are immersed in water to cool the surface of the casting from which the mold has been separated, and necessary parts are quenched, and then the casting is covered with the sand mold and the heat retaining means. The aging treatment can be achieved by effectively using the heat retained in the hot water underneath, and the above-mentioned aging treatment is performed by covering the casting with heat retaining means and effectively utilizing the heat retained in the hot water portion. Therefore, the T6 treatment can be performed without requiring any heat treatment furnace (aging furnace) and without energy consumption, and the mechanical properties such as the strength of the product can be sufficiently improved.

しかも、砂型および鋳物を水中に浸漬して焼入れを実行するので、押し湯部の余分な温度を水により下げることができ、この結果、焼入れ工程から時効処理工程までの鋳物の冷却時間を効率的に短縮することができる。   Moreover, since the sand mold and casting are immersed in water and quenching is performed, the excess temperature of the feeder can be lowered with water, resulting in efficient cooling of the casting from the quenching process to the aging treatment process. Can be shortened.

この発明の一実施態様においては、上記保温手段は断熱材に設定されたものである。
上記構成によれば、保温手段としてガラスウール成形体、石膏ボードなどの断熱材を用いるものである。つまり、保温手段としては低温ヒータを用いてもよいが、低温ヒータを用いることなく、断熱材を用いると、消費電力が不要となり省エネルギ化を図ることができる。
In one embodiment of the invention, the heat retaining means is set as a heat insulating material.
According to the said structure, heat insulating materials, such as a glass wool molded object and a gypsum board, are used as a heat retention means. That is, a low-temperature heater may be used as the heat retaining means, but if a heat insulating material is used without using a low-temperature heater, power consumption becomes unnecessary and energy saving can be achieved.

この発明の一実施態様においては、上記軽合金製鋳物はアルミニウム合金製鋳物に設定され、上記焼入れの温度を480〜530℃に設定し、時効処理は160〜240℃の温度範囲内に1〜2時間保つように設定したものである。
これは、焼入れ温度が480℃以下では、溶体化処理が不十分となり、530℃以上では鋳物が軟化し形状保持が困難となる。また、時効処理の温度が160℃以下では時効処理に時間を要し、240℃を超えると過時効となり強度が低下する。さらに時効処理時間は少なくとも1時間は必要であり、2時間保つことで十分な時効処理効果を得ることができる。
In one embodiment of the present invention, the light alloy casting is set to an aluminum alloy casting, the quenching temperature is set to 480 to 530 ° C, and the aging treatment is performed within a temperature range of 160 to 240 ° C. It was set to keep for 2 hours.
If the quenching temperature is 480 ° C. or lower, the solution treatment is insufficient, and if it is 530 ° C. or higher, the casting is softened and it is difficult to maintain the shape. Moreover, if the temperature of an aging treatment is 160 degrees C or less, it will take time for an aging treatment, and if it exceeds 240 degreeC, it will become overaging and intensity | strength will fall. Furthermore, the aging treatment time is required to be at least 1 hour, and a sufficient aging treatment effect can be obtained by keeping it for 2 hours.

上記構成によれば、熱処理条件を上述の如く設定したので、製造された鋳物の充分な引張り強度および耐力を確保することができる。
この発明の一実施態様においては、上記軽合金製鋳物はアルミニウム合金製またはマグネシウム合金製のシリンダヘッドに設定され、金型で形成される鋳物の表面はシリンダヘッドの燃焼室側に設定されたものである。
According to the said structure, since heat processing conditions were set as mentioned above, sufficient tensile strength and proof stress of the manufactured casting can be ensured.
In one embodiment of the present invention, the light alloy casting is set to an aluminum alloy or magnesium alloy cylinder head, and the surface of the casting formed by the mold is set to the combustion chamber side of the cylinder head. It is.

上記構成によれば、次の如き効果がある。すなわち、金型に接するシリンダヘッドの燃焼室側の溶湯は砂型の部分よりも早く凝固して、金属組織が緻密になると共に、鋳物の寸法精度が高くなり、しかも、シリンダヘッドの燃焼室側はエンジンの作動時に加熱、冷却が繰り返されるが、金属組織が緻密なうえにT6処理が施されて、その機械的特性が向上しているので、熱疲労クラックに対しても強くなる。   The above configuration has the following effects. That is, the molten metal on the combustion chamber side of the cylinder head in contact with the mold solidifies faster than the sand mold portion, the metal structure becomes dense, the dimensional accuracy of the casting is increased, and the combustion chamber side of the cylinder head is Heating and cooling are repeated during the operation of the engine. However, since the metal structure is fine and the T6 treatment is performed to improve the mechanical characteristics, it is also resistant to thermal fatigue cracks.

この発明によれば、押し湯部をもった砂型と、金型とでキャビティを構成し、鋳込み後に金型のみを分離して、金型が分離された鋳物の表面を冷却媒体により局部冷却して鋳物を焼入れ(溶体化処理)し、その後、押し湯部の保有熱を有効利用して時効処理を行なうので、熱処理炉(時効炉)を何等必要とすることなく、T6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる効果がある。   According to the present invention, a cavity is constituted by a sand mold having a feeder part and a mold, only the mold is separated after casting, and the surface of the casting from which the mold is separated is locally cooled by the cooling medium. Then, the casting is quenched (solution treatment), and then the aging treatment is performed by effectively utilizing the heat retained in the hot metal part, so that the T6 treatment is performed without requiring any heat treatment furnace (aging furnace), There is an effect that the mechanical properties such as the strength of the product can be sufficiently improved.

熱処理炉(時効炉)を何等必要とすることなく、T6処理を施して、製品の強度などの機械的特性の充分な向上を図るという目的を、押し湯部をもった砂型と、金型とでキャビティを構成し、鋳込み後に金型のみを分離して、金型が分離された鋳物の表面を冷却媒体により局部冷却して鋳物を焼入れ(溶体化処理)し、その後、鋳物を断熱材または/および砂型で覆って、押し湯部の保有熱を有効利用して時効処理を行なうという方法により実現した。   Without requiring any heat treatment furnace (aging furnace), the purpose of T6 treatment to sufficiently improve the mechanical properties such as strength of the product, sand mold with hot water part and mold After the casting, only the mold is separated, the surface of the casting from which the mold is separated is locally cooled with a cooling medium, and the casting is quenched (solution treatment). This was realized by a method of covering with a sand mold and performing an aging treatment by effectively using the heat retained in the hot water feeder.

この発明の一実施例を以下図面に基づいて詳述する。
図面は軽合金製鋳物の製造方法を示すが、まず図1を参照してこの製造方法に用いる鋳型の構成について説明する。
An embodiment of the present invention will be described below in detail with reference to the drawings.
The drawing shows a light alloy casting manufacturing method. First, the structure of a mold used in this manufacturing method will be described with reference to FIG.

この鋳型は、複数の砂型1〜5と、中子6と、金型7とで構成されている。複数の砂型1〜5のうちの砂型1,2,3により押し湯部8(riser)を形成し、この押し湯部8のシリンダヘッド気筒列方向(長手方向)の端部には軽合金溶湯としてのアルミニウム合金溶湯またはマグネシウム合金溶湯を注入する湯口9(gate)が形成されている。   This mold is composed of a plurality of sand molds 1 to 5, a core 6, and a mold 7. A hot metal part 8 (riser) is formed by sand molds 1, 2 and 3 among the plurality of sand molds 1 to 5, and a light alloy molten metal is formed at the end of the hot water part 8 in the cylinder head cylinder row direction (longitudinal direction). A pouring gate 9 (gate) for injecting molten aluminum alloy or molten magnesium alloy is formed.

また複数の砂型1〜5のうちの砂型3,4,5と、押し湯部8から離れて配置されてキャビティの一部を形成する金型7とで、キャビティ10を構成している。このキャビティ10内には砂型にて造型された上述の中子6を配置すると共に、砂型3に形成した複数の湯道11(runner、但し図面では図示の便宜上、1つの湯道のみを示す)により、上側の押し湯部8と、下側のキャビティ10とを連通接続している。   The sand molds 3, 4, 5 among the plurality of sand molds 1 to 5 and the metal mold 7 that is arranged apart from the hot water supply portion 8 and forms a part of the cavity constitute a cavity 10. In the cavity 10, the above-described core 6 made of a sand mold is disposed, and a plurality of runners 11 formed in the sand mold 3 (runner, but in the drawing, only one runner is shown for convenience of illustration). Thus, the upper feeder 8 and the lower cavity 10 are connected in communication.

この実施例で鋳造する鋳物はアルミニウム合金製またはマグネシウム合金製のエンジンのシリンダヘッドであるため、金型7で形成される鋳物の表面はシリンダヘッドの燃焼室側に設定している。   Since the casting cast in this embodiment is a cylinder head of an engine made of aluminum alloy or magnesium alloy, the surface of the casting formed by the mold 7 is set on the combustion chamber side of the cylinder head.

またシリンダヘッドをアルミニウム合金製とする場合には、JIS規格AC4Bで示されるアルミニウム合金を用いる。このアルミニウム合金は、Cuが2.0〜4.0%、Siが7.0〜10.0%、Mgが0.6%以下、Znが1.0%以下、Feが1.2%以下、Mnが0.8%以下、Niが0.5%以下、Tiが0.2%以下、残部がアルミニウムの合金である。   When the cylinder head is made of an aluminum alloy, an aluminum alloy represented by JIS standard AC4B is used. In this aluminum alloy, Cu is 2.0 to 4.0%, Si is 7.0 to 10.0%, Mg is 0.6% or less, Zn is 1.0% or less, and Fe is 1.2% or less. , Mn is 0.8% or less, Ni is 0.5% or less, Ti is 0.2% or less, and the balance is aluminum.

一方、シリンダヘッドをマグネシウム合金製とする場合には、JIS規格MC1で示されるマグネシウム合金を用いる。このマグネシウム合金は、Alが5.3〜6.7%、Znが2.5%〜3.5%。Mnが0.15%〜0.6%、Siが0.30以下、Cuが0.10%以下、Niが0.01%以下、残部がマグネシウムのマグネシウム合金鋳物1種に相当する合金である。
さらに、上述の砂型1〜5および中子6は、水溶性バインダとしての硫酸マグネシウム水和物と鋳物砂とを用いて予め造型されたものである。
On the other hand, when the cylinder head is made of a magnesium alloy, a magnesium alloy represented by JIS standard MC1 is used. This magnesium alloy has 5.3 to 6.7% Al and 2.5 to 3.5% Zn. It is an alloy corresponding to one type of magnesium alloy casting in which Mn is 0.15% to 0.6%, Si is 0.30 or less, Cu is 0.10% or less, Ni is 0.01% or less, and the balance is magnesium. .
Furthermore, the above-mentioned sand molds 1 to 5 and the core 6 are formed in advance using magnesium sulfate hydrate as a water-soluble binder and foundry sand.

(実施例1)
次に、図2〜図7を参照して上述の鋳型(図1参照)を用いて軽合金製鋳物を製造する方法について詳述する。
なお、以下の実施例においてはアルミニウム合金製のシリンダヘッドを鋳造する方法を例示する。
図2に示す工程図の準備工程S1で、押し湯部8を形成する砂型と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキュビティ10を構成する鋳型(図1参照)を準備する。
Example 1
Next, a method for producing a light alloy casting using the above-described mold (see FIG. 1) will be described in detail with reference to FIGS.
In the following examples, a method of casting a cylinder head made of an aluminum alloy will be exemplified.
In the preparation step S1 of the process chart shown in FIG. 2, the cubity 10 is configured by the sand mold that forms the feeder section 8 and the mold 7 that is disposed apart from the feeder section 8 and forms part of the cavity 10. A mold (see FIG. 1) is prepared.

次に図2に示す工程図の鋳込み工程S2で、図3に示すように、アルミニウム合金(JIS規格AC4B)の溶湯12を、湯口9から押し湯部8および湯道11を介してキャビティ10に注湯すると、アルミニウム合金溶湯12の凝固後には、図4に示すように鋳物としてのシリンダヘッド部13と押し湯部14とが形成される。   Next, in the casting step S2 of the process diagram shown in FIG. 2, as shown in FIG. 3, the molten metal 12 of the aluminum alloy (JIS standard AC4B) is transferred from the gate 9 to the cavity 10 through the feeder 8 and the runner 11. When pouring, after the molten aluminum alloy 12 is solidified, as shown in FIG. 4, a cylinder head part 13 and a feeder part 14 are formed as castings.

次に、図2に示す工程図の分離工程S3で、図5に示すように鋳込み後において砂型1〜5および中子6を残した状態で、金型7のみを分離する。
次に、図2に示す工程図の焼入れ工程S4で、図6に示すように金型7が分離された鋳物としてのシリンダヘッド部13の表面つまりシリンダヘッドの燃焼室側の面に冷却媒体としての水15を吹付けて、鋳物の必要部分を局部冷却して、焼入れする。
Next, in the separation step S3 of the process chart shown in FIG. 2, only the mold 7 is separated with the sand molds 1 to 5 and the core 6 left after casting as shown in FIG.
Next, in the quenching step S4 of the process chart shown in FIG. 2, as a cooling medium on the surface of the cylinder head portion 13 as a casting from which the mold 7 is separated as shown in FIG. The required part of the casting is locally cooled and quenched.

ここで、焼入れ温度は480〜530℃に設定し、複数のノズル16からの水15を、金型7が分離されて鋳型表面に露呈したシリンダヘッド部13の燃焼室と対応する面に吹付けて、約1分間で300℃以下まで急冷して、シリンダヘッド部13を溶体化処理するものである。   Here, the quenching temperature is set to 480 to 530 ° C., and water 15 from a plurality of nozzles 16 is sprayed onto the surface corresponding to the combustion chamber of the cylinder head portion 13 that is exposed to the mold surface after the mold 7 is separated. Then, the cylinder head portion 13 is subjected to solution treatment by rapid cooling to 300 ° C. or less in about 1 minute.

なお、ノズル16からシリンダヘッド部13に吹付けられた水15が流下するので、冷却ステーションST1には、この水15を受けるタンク17が設けられている。   In addition, since the water 15 sprayed from the nozzle 16 to the cylinder head part 13 flows down, the tank 17 which receives this water 15 is provided in cooling station ST1.

次に、図2に示す工程図の継続工程S5で、図6と同一の冷却ステーションST1において冷却媒体としての水15の吹付け状態を所定時間継続した後に、吹付けを停止する。   Next, in the continuation step S5 of the process diagram shown in FIG. 2, the spraying state of the water 15 as the cooling medium is continued for a predetermined time in the same cooling station ST1 as in FIG. 6, and then the spraying is stopped.

この水15の吹付けを停止するタイミングは、次の時効処理においてシリンダヘッド部13の燃焼室側A(以下単に製品部Aと略記する)と、押し湯部14に近い側B(以下単に製品部Bと略記する)との温度が押し湯部14からの熱の伝達を見込して時効条件としての160〜240℃に復熱が可能なタイミングに設定する。   The timing of stopping the spraying of the water 15 is determined in the next aging treatment by the combustion chamber side A (hereinafter simply referred to as product part A) of the cylinder head 13 and the side B (hereinafter simply referred to as product) of the hot water supply part 14. The temperature is abbreviated as “Part B”) and is set to a timing at which reheating can be performed at 160 to 240 ° C. as an aging condition in consideration of heat transfer from the hot-water supply portion 14.

この実施例では、図8に鋳物の温度推移を示すように、焼入れ工程S4および継続工程S5における水15の吹付け(シャワーリング)時間をトータルで約20分間に設定し、製品部Aの温度aを100℃以下に低下させ、製品部Bの温度bを150℃以下に低下させ、また押し湯部14の温度cを300℃付近まで低下させている。   In this embodiment, as shown in FIG. 8 showing the temperature transition of the casting, the water 15 spraying (showering) time in the quenching step S4 and the continuation step S5 is set to about 20 minutes in total, and the temperature of the product part A is set. a is lowered to 100 ° C. or lower, the temperature b of the product part B is lowered to 150 ° C. or lower, and the temperature c of the feeder 14 is lowered to around 300 ° C.

次に図2に示す工程図の時効処理工程S6で、図7に示すように鋳物としてのシリンダヘッド部13および押し湯部14を上述の砂型1〜5および保温手段としての断熱材(ガラスウール成形体)18で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保って、時効処理を施す。   Next, in the aging treatment step S6 of the process diagram shown in FIG. 2, the cylinder head part 13 and the hot water feeder part 14 as castings as shown in FIG. The formed body is covered with 18, and the entire casting is kept at the aging treatment temperature for a predetermined time by the heat retained by the hot water feeder section 14, and the aging treatment is performed.

この時効処理は160〜240℃の温度範囲内において1〜2時間保つように設定されている。
図7に示すように、鋳物外周に砂型1〜5を残した状態で、シリンダヘッド部13、押し湯部14および砂型1〜5を断熱材18上に載置すると、鋳物の温度を外界から遮断することができ、製品部A,Bは押し湯部14からの熱伝導を受けて、時効に効果的な温度範囲まで復熱させることができ、均熱状態下において所定時間保つことにより、時効処理が施され、特に製品部Aは焼入れ工程S4での焼入れと、時効処理工程S6での時効処理との両処理により、結果的にT6処理が施されることになる。
This aging treatment is set so as to be maintained within a temperature range of 160 to 240 ° C. for 1 to 2 hours.
As shown in FIG. 7, when the cylinder head part 13, the hot water supply part 14, and the sand molds 1 to 5 are placed on the heat insulating material 18 with the sand molds 1 to 5 left on the outer periphery of the casting, the temperature of the casting is externally changed. The product parts A and B can receive heat conduction from the hot-water supply part 14 and can be reheated to a temperature range effective for aging. An aging treatment is performed. In particular, the product part A is subjected to the T6 treatment by both the quenching in the quenching step S4 and the aging treatment in the aging treatment step S6.

図9、図10、図11は本実施例の製造方法による製品部A,Bの引張り強度、0.2%耐力、破断伸びのそれぞれの測定結果を特性Zで示し、比較例として鋳込みまでを実行した後に放置(いわゆる鋳放し)したものについて同様に製品部A,Bに相当する部分の引張り強度、0.2%耐力、破断伸びのそれぞれを測定した結果を特性Xで示し、比較例として鋳込み、および離型後にシャワーリングによる冷却を実施し、時効処理を行なわないものについて同様に製品部A,Bに相当する部分の引張り強度、0.2%耐力、破断伸びのそれぞれを測定した結果を特性yで示す。   9, 10, and 11 show measurement results of tensile strength, 0.2% proof stress, and elongation at break of product parts A and B according to the manufacturing method of the present embodiment as characteristic Z, and up to casting as a comparative example. The results of measuring the tensile strength, 0.2% proof stress, and elongation at break of the parts corresponding to the product parts A and B are shown as characteristics X for the samples left after being run (so-called as-cast). Results of measuring the tensile strength, 0.2% proof stress, and elongation at break of the parts corresponding to the product parts A and B in the case of performing cooling by showering after casting and releasing and performing no aging treatment. Is represented by characteristic y.

図9,図10から明らかなように本実施例の製造方法による特性zは引張り強度および0.2%耐力の双方とも比較例の特性x,yに対して優れたものとなった。   As is apparent from FIGS. 9 and 10, the characteristic z by the manufacturing method of this example was superior to the characteristics x and y of the comparative example in both tensile strength and 0.2% proof stress.

また図11から明らかなように本実施例の製造方法による特性zは破断伸びが比較例の特性x,yに対して低下するものの、製品つまりシリンダヘッドとしての要求は充分に満足することができる。   Further, as apparent from FIG. 11, the characteristic z by the manufacturing method of the present embodiment is sufficiently reduced in the elongation at break with respect to the characteristics x and y of the comparative example, but can satisfy the requirements as a product, that is, a cylinder head. .

このように、図1〜図11で示した実施例の軽合金製鋳物の製造方法は、押し湯部8を形成する砂型1〜5と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキャビティ10を構成する鋳型を準備する準備工程S1と、上記キャビティ10に軽合金溶湯12を鋳込む鋳込み工程S2と、鋳込み後、金型7を分離する分離工程S3と、金型7が分離された鋳物の表面に冷却媒体(水15参照)を接触させて、鋳物を焼入れする焼入れ工程S4と、鋳物を上記砂型1〜5および断熱材18で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程S6とを備えたものである。   As described above, the light alloy casting manufacturing method according to the embodiment shown in FIGS. 1 to 11 is disposed apart from the sand molds 1 to 5 forming the feeder part 8 and the feeder part 8. A preparation step S1 for preparing a mold constituting the cavity 10 with a mold 7 that forms a part, a casting step S2 for casting a light alloy molten metal 12 into the cavity 10, and a separation for separating the die 7 after casting Step S3, a quenching step S4 for quenching the casting by bringing a cooling medium (see water 15) into contact with the surface of the casting from which the mold 7 has been separated, and covering the casting with the sand molds 1 to 5 and the heat insulating material 18 And an aging treatment step S6 for keeping the entire casting at the aging treatment temperature for a predetermined time by the heat retained by the hot-water supply portion 14.

この構成によれば、準備工程S1で、砂型1〜5と金型7との両者によりキャビティ10を備えた鋳型が構成され、鋳込み工程S2で、キャビティ10に軽合金溶湯12が鋳込まれ、次の分離工程S3で、鋳込み後において砂型1〜5を残した状態で金型7のみが分離(離型)され、次の焼入れ工程S4で、金型7が分離された鋳物の表面に冷却媒体を接触させて、鋳物を焼き入れし、次の時効処理工程S6で、鋳物を上述の砂型1〜5および断熱材18で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to this configuration, in the preparation step S1, a mold including the cavity 10 is configured by both the sand molds 1 to 5 and the mold 7, and in the casting step S2, the light alloy molten metal 12 is cast into the cavity 10, In the next separation step S3, only the mold 7 is separated (mold release) while leaving the sand molds 1 to 5 after casting, and in the next quenching step S4, the surface of the casting from which the mold 7 has been separated is cooled. The medium is brought into contact, the casting is quenched, and in the next aging treatment step S6, the casting is covered with the above-described sand molds 1 to 5 and the heat insulating material 18, and the entire casting is subjected to the aging treatment temperature with the retained heat of the hot water feeder section 14. Keep for a predetermined time.

このように、金型7の分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部14の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に行なうことができ、しかも時効処理は鋳物を砂型1〜5と保温手段としての断熱材18とで覆って、押し湯部14の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   As described above, after the mold 7 is separated, the necessary part is quenched by the local cooling with the cooling medium, and the retained heat of the hot-water supply part 14 is effectively used to easily perform quenching (solution treatment) and aging treatment. In addition, the aging treatment can be performed by covering the casting with the sand molds 1 to 5 and the heat insulating material 18 as a heat retaining means, and effectively using the retained heat of the feeder 14, so a heat treatment furnace (aging furnace) The T6 treatment can be performed without any energy consumption and without energy consumption, and the mechanical properties such as the strength of the product can be sufficiently improved.

図1〜図11で示した実施例の軽合金製鋳物の製造方法は、また、押し湯部8を形成する砂型1〜5と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキャビティ10を構成する鋳型を準備する準備工程S1と、上記キャビティ10に軽合金溶湯12を鋳込む鋳込み工程S2と、鋳込み後、金型7を分離する分離工程S3と、金型7が分離された鋳物の表面に冷却媒体(水15参照)を吹付けて、鋳物を焼入れする焼入れ工程S4と、上記冷却媒体(水15参照)の吹付け状態を所定時間継続した後に、吹付けを停止する継続工程S5と、鋳物を上記砂型1〜5および保温手段(断熱材18参照)で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程S6とを備えたものである。   The light alloy casting manufacturing method of the embodiment shown in FIG. 1 to FIG. 11 is also arranged such that the sand molds 1 to 5 forming the feeder part 8 and the feeder part 8 are arranged apart from each other, and a part of the cavity 10. A preparation step S1 for preparing a mold constituting the cavity 10 with the mold 7 for forming a mold, a casting step S2 for casting the molten light alloy 12 into the cavity 10, and a separation step S3 for separating the die 7 after casting Then, a cooling medium (see water 15) is sprayed on the surface of the casting from which the mold 7 is separated, and the quenching step S4 for quenching the casting and the spraying state of the cooling medium (see water 15) are continued for a predetermined time. After that, the continuation step S5 for stopping the spraying, the casting is covered with the sand molds 1 to 5 and the heat retaining means (see the heat insulating material 18), and the entire casting is kept at the aging treatment temperature for a predetermined time with the retained heat of the hot-water supply part 14. Aging treatment step S6 to keep .

この構成によれば、準備工程S1で、砂型1〜5と金型7との両者によりキャビティ10を備えた鋳型が構成され、鋳込み工程S2で、キャビティ10に軽合金溶湯12が鋳込まれ、次の分離工程S3で、鋳込み後において砂型1〜5を残した状態で金型7のみが分離(離型)され、次の焼入れ工程S4で、金型7が分離された鋳物の表面に冷却媒体(水15参照)を吹付けて、鋳物を焼入れし、次の継続工程S5で、冷却媒体の吹付け状態を所定時間継続した後に、吹付けを停止し、次の時効処理工程S6で、鋳物を上述の砂型1〜5および保温手段(断熱材18参照)で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to this configuration, in the preparation step S1, a mold including the cavity 10 is configured by both the sand molds 1 to 5 and the mold 7, and in the casting step S2, the light alloy molten metal 12 is cast into the cavity 10, In the next separation step S3, only the mold 7 is separated (mold release) while leaving the sand molds 1 to 5 after casting, and in the next quenching step S4, the surface of the casting from which the mold 7 has been separated is cooled. Spraying the medium (see water 15), quenching the casting, in the next continuation step S5, after continuing the spraying state of the cooling medium for a predetermined time, stop the spraying, in the next aging treatment step S6, The casting is covered with the above-described sand molds 1 to 5 and the heat retaining means (see the heat insulating material 18), and the entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot-water supply part 14.

このように、金型7の分離後に冷却媒体(水15参照)による局部冷却により、必要部を焼入れし、かつ押し湯部14の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に行なうことができ、しかも、時効処理は鋳物を砂型1〜5と保温手段(断熱材18参照)とで覆って、押し湯部14の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。なお、押し湯部8,14を設けたので、製品内部に空洞(引け巣または巣)が形成されることがないうえ、砂型1〜5および中子6はその崩壊後に再利用することができるのは勿論である。   Thus, after the mold 7 is separated, the necessary part is quenched by the local cooling with the cooling medium (see water 15), and the retained heat of the hot-water supply part 14 is effectively used for quenching (solution treatment) and aging. In addition, the aging treatment is performed by covering the casting with the sand molds 1 to 5 and the heat retaining means (see the heat insulating material 18) and effectively using the retained heat of the hot water supply section 14. The T6 treatment can be performed without requiring any heat treatment furnace (aging furnace) and without energy consumption, so that mechanical properties such as product strength can be sufficiently improved. In addition, since the hot water supply portions 8 and 14 are provided, a cavity (shrinkage or nest) is not formed inside the product, and the sand molds 1 to 5 and the core 6 can be reused after the collapse. Of course.

また、上記保温手段は断熱材18に設定されたものである。
この構成によれば、保温手段としてガラスウール成形体などの断熱材18を用いるものである。つまり、保温手段としては低温ヒータを用いてもよいが、低温ヒータを用いることなく、断熱材18を用いると、消費電力が不要となり省エネルギ化を図ることができる。
しかも、上記焼入れの温度を480〜530℃に設定し、時効処理は160〜240℃の温度範囲内に1〜2時間保つように設定したものである。
The heat retaining means is set in the heat insulating material 18.
According to this configuration, the heat insulating material 18 such as a glass wool molded body is used as the heat retaining means. That is, a low-temperature heater may be used as the heat retaining means, but if the heat insulating material 18 is used without using a low-temperature heater, power consumption becomes unnecessary and energy saving can be achieved.
Moreover, the quenching temperature is set to 480 to 530 ° C., and the aging treatment is set to be kept within a temperature range of 160 to 240 ° C. for 1 to 2 hours.

この構成によれば、熱処理条件を上述の如く設定したので、製造された鋳物(シリンダヘッド部13参照)の充分な引張り強度および耐力を確保することができる。   According to this configuration, since the heat treatment conditions are set as described above, sufficient tensile strength and yield strength of the manufactured casting (see the cylinder head portion 13) can be ensured.

さらに、上記軽合金製鋳物はアルミニウム合金製またはマグネシウム合金製のシリンダヘッド(シリンダヘッド部13参照)に設定され、金型7で形成される鋳物の表面はシリンダヘッドの燃焼室側に設定されたものである。   Further, the light alloy casting was set to an aluminum alloy or magnesium alloy cylinder head (see cylinder head portion 13), and the casting surface formed by the mold 7 was set to the combustion chamber side of the cylinder head. Is.

この構成によれば、次の如き効果がある。すなわち、金型7に接するシリンダヘッドの燃焼室側の溶湯は砂型1〜5の部分よりも早く凝固して、金属組織が緻密になると共に、鋳物の寸法精度が高くなり、しかも、シリンダヘッドの燃焼室側はエンジンの作動時に加熱、冷却が繰返されるが、金属組織が緻密なうえにT6処理が施こされて、その機械的特性が向上しているので、熱疲労クラックに対しても強くなる。   This configuration has the following effects. That is, the molten metal on the combustion chamber side of the cylinder head in contact with the mold 7 solidifies faster than the sand molds 1 to 5, the metal structure becomes dense, the dimensional accuracy of the casting is increased, and the cylinder head The combustion chamber side is repeatedly heated and cooled during engine operation, but the metal structure is fine and the T6 treatment is applied to improve its mechanical properties, so it is resistant to thermal fatigue cracks. Become.

(実施例2)
次に、図12〜図16を参照して上述の鋳型(図1参照)を用いて軽合金製鋳物を製造する方法の他の実施例について詳述する。
図12に示す工程図の準備工程S11で、押し湯部8を形成する砂型と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキャビティ10を構成する鋳型(図1参照)を準備する。次に図12に示す工程図の鋳込み工程S12で、図3に示すように、アルミニウム合金(JIS規格AC4B)の溶湯12を、湯口9から押し湯部8および湯道11を介してキャビティ10に注湯すると、アルミニウム合金溶湯12の凝固後には、図4に示すように鋳物としてのシリンダヘッド部13と押し湯部14とが形成される。
(Example 2)
Next, another embodiment of a method for producing a light alloy casting using the above-described mold (see FIG. 1) will be described in detail with reference to FIGS.
In the preparation step S11 of the process diagram shown in FIG. 12, the cavity 10 is constituted by the sand mold that forms the feeder part 8 and the mold 7 that is arranged apart from the feeder part 8 and forms part of the cavity 10. A mold (see FIG. 1) is prepared. Next, in the casting step S12 of the process diagram shown in FIG. 12, as shown in FIG. 3, the molten metal 12 of the aluminum alloy (JIS standard AC4B) is transferred from the gate 9 to the cavity 10 through the feeder 8 and the runner 11. When pouring, after the molten aluminum alloy 12 is solidified, as shown in FIG. 4, a cylinder head part 13 and a feeder part 14 are formed as castings.

次に、図12に示す工程図の分離工程S13で、図5に示すように鋳込み後において砂型1〜5および中子6を残した状態で、金型7のみを分離する。
次に、図12に示す工程図の焼入れ工程S14で、図13に示すように金型7が分離された鋳物としてのシリンダヘッド部13の表面つまりシリンダヘッドの燃焼室側の面に焼入れ用の冷却媒体としての水15を吹付けて、鋳物の必要部分を局部冷却して、焼入れする。
Next, in the separation step S13 of the process chart shown in FIG. 12, only the mold 7 is separated with the sand molds 1 to 5 and the core 6 left after casting as shown in FIG.
Next, in the quenching step S14 of the process chart shown in FIG. 12, the surface of the cylinder head portion 13 as a casting from which the mold 7 is separated as shown in FIG. Water 15 as a cooling medium is sprayed to locally cool a necessary portion of the casting and quench.

ここで、焼入れ温度は480〜530℃に設定し、複数のノズル16からの水15を、金型7が分離されて鋳型表面に露呈したシリンダヘッド部13の燃焼室と対応する面に吹付けて、300℃以下まで急冷して、シリンダヘッド部13を溶体化処理するものである。   Here, the quenching temperature is set to 480 to 530 ° C., and water 15 from a plurality of nozzles 16 is sprayed onto the surface corresponding to the combustion chamber of the cylinder head portion 13 that is exposed to the mold surface after the mold 7 is separated. Then, the cylinder head portion 13 is subjected to solution treatment by rapid cooling to 300 ° C. or lower.

なお、ノズル16からシリンダヘッド部13に吹付けられた水15が流下するので、焼入れステーションST2には、この水15を受けるタンク17が設けられている。   In addition, since the water 15 sprayed from the nozzle 16 to the cylinder head part 13 flows down, the tank 17 which receives this water 15 is provided in quenching station ST2.

次に、図12に示す工程図の継続工程S15で、図14に示す調整冷却ステーションST3(但し、この調整冷却ステーションST3は固定的なものではなく、製品の搬送ラインを当該ステーションST3に設定することができる)において調整冷却用の冷却媒体としての霧状の水つまり霧水19を鋳物表面に吹付け、この吹付け状態を所定時間継続した後に、吹付けを停止する。   Next, in the continuation step S15 of the process diagram shown in FIG. 12, the adjusted cooling station ST3 shown in FIG. 14 (however, this adjusted cooling station ST3 is not fixed, and the product transport line is set to the station ST3. In this case, mist-like water as the cooling medium for adjusting cooling, that is, mist water 19 is sprayed on the casting surface, and this spraying state is continued for a predetermined time, and then spraying is stopped.

この霧水19の吹付けを停止するタイミングは、次の時効処理においてシリンダヘッド部13の燃焼室側A(製品部A)と、押し湯部14に近い側B(製品部B)との温度が押し湯部14からの熱の伝達を見込して時効条件としての160〜240℃に復熱が可能なタイミングに設定する。   The timing of stopping the spraying of the fog water 19 is the temperature of the combustion chamber side A (product part A) of the cylinder head 13 and the side B (product part B) close to the hot water supply part 14 in the next aging treatment. Is set to a timing at which recuperation is possible at 160 to 240 ° C. as an aging condition in anticipation of heat transfer from the hot water supply section 14.

この実施例では、図16に鋳物の温度推移を示すように、焼入れ工程S14における水15の吹付け時間を約5分間に設定し、継続工程S15における霧水19の吹付け時間を約30分間に設定し、製品部Aの温度aを100℃付近に低下させ、製品部Bの温度bを150℃付近に低下させ、また押し湯部14の温度cを300℃以下まで低下させている。   In this example, as shown in FIG. 16 showing the temperature transition of the casting, the spraying time of the water 15 in the quenching step S14 is set to about 5 minutes, and the spraying time of the fog water 19 in the continuation step S15 is about 30 minutes. The temperature a of the product part A is lowered to around 100 ° C., the temperature b of the product part B is lowered to around 150 ° C., and the temperature c of the feeder part 14 is lowered to 300 ° C. or lower.

次に図12に示す工程図の時効処理工程S16で、図15に示すように鋳物としてのシリンダヘッド部13および押し湯部14を上述の砂型1〜5および保温手段としての断熱材18で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保って、時効処理を施す。   Next, in the aging treatment step S16 of the process chart shown in FIG. 12, the cylinder head part 13 and the hot-water supply part 14 as castings are covered with the above-described sand molds 1 to 5 and the heat insulating material 18 as heat retaining means as shown in FIG. Then, the entire casting is kept at the aging treatment temperature for a predetermined time by the heat retained by the hot-water supply unit 14, and the aging treatment is performed.

この時効処理は160〜240℃の温度範囲内において1〜2時間保つように設定されている。
図15に示すように、鋳物外周に砂型1〜5を残した状態で、シリンダヘッド部13、押し湯部14および砂型1〜5を断熱材18上に載置すると、鋳物の温度を外界から遮断することができ、製品部A,Bは押し湯部14からの熱伝導を受けて、時効に効果的な温度範囲まで復熱させることができ、均熱状態下において所定時間保つことにより、時効処理が施され、特に製品部Aは焼入れ工程S14での焼入れと、時効処理工程S16での時効処理との両処理により、結果的にT6処理が施されることになる。
This aging treatment is set so as to be maintained within a temperature range of 160 to 240 ° C. for 1 to 2 hours.
As shown in FIG. 15, when the cylinder head part 13, the hot water supply part 14, and the sand molds 1 to 5 are placed on the heat insulating material 18 with the sand molds 1 to 5 left on the outer periphery of the casting, the temperature of the casting is externally changed. The product parts A and B can receive heat conduction from the hot-water supply part 14 and can be reheated to a temperature range effective for aging. An aging treatment is performed. In particular, the product part A is subjected to the T6 treatment by both the quenching in the quenching step S14 and the aging treatment in the aging treatment step S16.

このように図12〜図16で示した実施例の軽合金製鋳物の製造方法は、押し湯部8(図1参照)を形成する砂型1〜5と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキャビティ10を構成する鋳型を準備する準備工程S11と、上記キャビティ10に軽合金溶湯12を鋳込む鋳込み工程S12と、鋳込み後、金型7を分離する分離工程S13と、金型7が分離された鋳物の表面に焼入れ用の冷却媒体(水15参照)を吹付けて、鋳物を焼入れする焼入れ工程S14と、焼入れ後に上記鋳物の表面に調整冷却用の冷却媒体(霧水19参照)を吹付けて冷却を所定時間継続した後に、吹付けを停止する継続工程S15と、鋳物を上記砂型1〜5および保温手段(断熱材18参照)で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程S16とを備えたものである。   As described above, the light alloy casting manufacturing method of the embodiment shown in FIGS. 12 to 16 is disposed apart from the sand molds 1 to 5 forming the feeder part 8 (see FIG. 1) and the feeder part 8. A preparation step S11 for preparing a mold constituting the cavity 10 with a mold 7 forming a part of the cavity 10, a casting step S12 for casting the molten light alloy 12 into the cavity 10, and a mold 7 after casting Separating step S13, quenching step S14 for quenching the casting by spraying a cooling medium for quenching (see water 15) onto the surface of the casting from which the mold 7 has been separated, and the surface of the casting after quenching. After the cooling medium for adjustment cooling (refer to fog water 19) is sprayed and cooling is continued for a predetermined time, the continuation step S15 for stopping the spraying, and the casting with the sand molds 1 to 5 and the heat retaining means (see the heat insulating material 18). Covering with hot water 14 The entire casting to aging temperature heat is obtained and a aging treatment step S16 to maintain a predetermined time.

上述の鋳物の表面に吹付ける焼入れ用の冷却媒体と調整冷却用の冷却媒体とは共に水に設定し、焼入れ工程S14では冷却水15を吹付け、継続工程S15では霧状の水(いわゆる霧水)19を吹付けるように構成している。また冷却水15の吹付けから霧水19の吹付けへの切換えにより、製品温度が効果的に時効現象を引き出せる温度範囲(図16のα参照)にコントロールする。   The quenching cooling medium and the adjustment cooling cooling medium sprayed on the surface of the casting are both set to water. In the quenching step S14, the cooling water 15 is sprayed, and in the continuation step S15, mist water (so-called fog) Water) 19 is sprayed. Further, by switching from spraying the cooling water 15 to spraying the fog water 19, the product temperature is controlled to a temperature range (see α in FIG. 16) in which the aging phenomenon can be effectively extracted.

この構成によれば、準備工程S11で鋳型が準備された後に、鋳込み工程S12で、キャビティ10に軽合金溶湯12が鋳込まれ、次の分離工程S13で、鋳込み後において砂型1〜5を残した状態で金型7のみが分離(離型)され、次の焼入れ工程S14で、金型7が分離された鋳物の表面に焼入れ用の冷却媒体(水15参照)を吹付けて、鋳物を焼入れし、次の継続工程S15で、焼入れ後に上記鋳物の表面に調整冷却用の冷却媒体(霧水19参照)を吹付けて冷却を所定時間継続した後に、吹付けが停止され、次の時効処理工程S16で、鋳物(シリンダヘッド部13参照)を上記砂型1〜5および保温手段(断熱材18参照)で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to this configuration, after the mold is prepared in the preparation step S11, the light alloy molten metal 12 is cast into the cavity 10 in the casting step S12, and the sand molds 1 to 5 are left after casting in the next separation step S13. In this state, only the mold 7 is separated (released), and in the next quenching step S14, a quenching cooling medium (see water 15) is sprayed on the surface of the casting from which the mold 7 has been separated, and the casting is removed. In the next continuation step S15, after quenching, the cooling medium for adjustment cooling (see fog water 19) is sprayed on the surface of the casting after quenching and cooling is continued for a predetermined time. Then, the spraying is stopped and the next aging is performed. In the processing step S16, the casting (see the cylinder head portion 13) is covered with the sand molds 1 to 5 and the heat retaining means (see the heat insulating material 18), and the entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot-water supply portion 14. .

このように、金型7の分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部14の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に達成することができ、さらに、時効処理は鋳物(シリンダヘッド部13参照)を砂型1〜5と保温手段(断熱材18参照)とで覆って、押し湯部14の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   As described above, after the mold 7 is separated, the necessary part is quenched by the local cooling with the cooling medium, and the retained heat of the hot-water supply part 14 is effectively used to easily perform quenching (solution treatment) and aging treatment. Further, the aging treatment is performed by covering the casting (refer to the cylinder head portion 13) with the sand molds 1 to 5 and the heat retaining means (refer to the heat insulating material 18), and effectively utilizing the retained heat of the hot water supply portion 14. Therefore, the T6 treatment can be performed without requiring any heat treatment furnace (aging furnace) and without energy consumption, and the mechanical properties such as the strength of the product can be sufficiently improved.

しかも、継続工程S15においては調整冷却用の冷却媒体(霧水19参照)を吹付けるものであるから、この冷却媒体を霧水19または冷却風に設定することができ、鋳物の表面に吹付けられた霧水19は気化する。この結果、固定的な冷却ステーションが不要となり、製品の搬送中に製品としての鋳物を調整冷却することができ、生産効率の向上を図ることができる。   Moreover, since the cooling medium for adjusting cooling (see fog water 19) is sprayed in the continuation step S15, this cooling medium can be set to the fog water 19 or the cooling air, and sprayed to the surface of the casting. The fog water 19 is vaporized. As a result, a fixed cooling station is not required, and the casting as the product can be adjusted and cooled during the conveyance of the product, so that the production efficiency can be improved.

この実施例2においても、その他の点については先の実施例1とほぼ同様の作用、効果を奏するので、図12〜図16において前図と同一の部分には同一符号を付して、その詳しい説明を省略する。   Also in the second embodiment, since the other operations and effects are substantially the same as those of the first embodiment, the same reference numerals are given to the same parts in FIGS. Detailed description is omitted.

(実施例3)
次に、図17〜図22を参照して上述の鋳型(図1参照)を用いて軽合金製鋳物を製造する方法のさらに他の実施例について詳述する。
図17に示す工程図の準備工程S21で、押し湯部8を形成する砂型と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキュビティ10を構成する鋳型(図1参照)を準備する。
(Example 3)
Next, still another embodiment of a method for producing a light alloy casting using the above-described mold (see FIG. 1) will be described in detail with reference to FIGS.
In the preparation step S21 of the process diagram shown in FIG. 17, the cubity 10 is configured by the sand mold that forms the feeder part 8 and the mold 7 that is arranged away from the feeder part 8 and forms a part of the cavity 10. A mold (see FIG. 1) is prepared.

次に図17に示す工程図の鋳込み工程S22で、図3に示すように、アルミニウム合金(JIS規格AC4B)の溶湯12を、湯口9から押し湯部8および湯道11を介してキャビティ10に注湯すると、アルミニウム合金溶湯12の凝固後には、図4に示すように鋳物としてのシリンダヘッド部13と押し湯部14とが形成される。   Next, in the casting step S22 of the process diagram shown in FIG. 17, as shown in FIG. 3, the molten alloy 12 of the aluminum alloy (JIS standard AC4B) is transferred from the gate 9 to the cavity 10 through the feeder 8 and the runner 11. When pouring, after the molten aluminum alloy 12 is solidified, as shown in FIG. 4, a cylinder head part 13 and a feeder part 14 are formed as castings.

次に、図17に示す工程図の分離工程S23で、図5に示すように鋳込み後において砂型1〜5および中子6を残した状態で、金型7のみを分離する。
次に、図17に示す工程図の焼入れ工程S24で、図18に示すように金型7が分離された鋳物としてのシリンダヘッド部13の表面つまりシリンダヘッドの燃焼室側の面に冷却媒体としての水15を吹付けて、鋳物の必要部分を局部冷却して、焼入れする。
Next, in the separation step S23 of the process chart shown in FIG. 17, only the mold 7 is separated with the sand molds 1 to 5 and the core 6 left after casting as shown in FIG.
Next, in the quenching step S24 of the process chart shown in FIG. 17, as a cooling medium on the surface of the cylinder head part 13 as a casting from which the mold 7 is separated as shown in FIG. The required part of the casting is locally cooled and quenched.

ここで、焼入れ温度は480〜530℃(但し、アルミニウム合金製鋳物を鋳造する場合の焼入れ温度)に設定し、複数のノズル16からの水15を、金型7が分離されて鋳型表面に露呈したシリンダヘッド部13の燃焼室と対応する面に吹付けて、300℃以下まで急冷して、シリンダヘッド部13を溶体化処理するものである。   Here, the quenching temperature is set to 480 to 530 ° C. (however, the quenching temperature in the case of casting an aluminum alloy casting), and water 15 from a plurality of nozzles 16 is separated from the mold 7 and exposed to the mold surface. The cylinder head portion 13 is sprayed onto the surface corresponding to the combustion chamber, and rapidly cooled to 300 ° C. or lower to subject the cylinder head portion 13 to a solution treatment.

なお、ノズル16からシリンダヘッド部13に吹付けられた水15が流下するので、焼入れステーションST2には、この水15を受けるタンク17が設けられている。   In addition, since the water 15 sprayed from the nozzle 16 to the cylinder head part 13 flows down, the tank 17 which receives this water 15 is provided in quenching station ST2.

また、図19に示すように上述のノズル16と砂型1〜5及びシリンダヘッド部13との間には、水15をシリンダヘッド部13の燃焼室側の面のみに案内し、水15が砂型5に直接吹付けられるのを防止するガイド板20を介設してもよい。   Further, as shown in FIG. 19, between the nozzle 16 and the sand molds 1 to 5 and the cylinder head part 13, the water 15 is guided only to the surface of the cylinder head part 13 on the combustion chamber side. A guide plate 20 that prevents direct spraying on 5 may be provided.

次に図17に示す工程図の水没工程S25で、図20に示すように砂型1〜5、中子6および鋳物の全体を、タンク21に予め貯溜された水22内に浸漬して、鋳物としてのシリンダヘッド部13および押し湯部14を冷却すると共に、砂型1〜5、中子6を崩壊させる。   Next, in the submerging step S25 of the process chart shown in FIG. 17, the entire sand molds 1 to 5, the core 6 and the casting are immersed in the water 22 stored in the tank 21 in advance as shown in FIG. As the cylinder head part 13 and the hot water supply part 14 are cooled, the sand molds 1 to 5 and the core 6 are collapsed.

この場合、水蒸気爆発を回避する目的で押し湯部14が凝固した時点以降に水没を開始し、水没時間は数秒間に設定する。
この実施例では焼入れ工程S24の時間と、水没工程S25の時間とのトータル時間を約5分間に設定している。
しかも、押し湯部14と製品部A,B(シリンダヘッド部13の燃焼室側を製品部Aとし、シリンダヘッド部13の押し湯部14に近い側を製品部Bとする)との間に所定の温度差を保った状態で水没する。
In this case, submergence is started after the time when the hot-water supply unit 14 is solidified for the purpose of avoiding a steam explosion, and the submergence time is set to several seconds.
In this embodiment, the total time of the quenching step S24 and the submerging step S25 is set to about 5 minutes.
Moreover, between the feeder 14 and the product parts A and B (the combustion chamber side of the cylinder head part 13 is the product part A, and the side close to the feeder part 14 of the cylinder head part 13 is the product part B). Submerged in a state where a predetermined temperature difference is maintained.

水没時間数秒間の経過後、鋳物としてのシリンダヘッド部13および押し湯部14をタンク21の水22中から引上げると、押し湯部14の熱が製品部A,Bに徐々に伝達される。   After the submerged time of several seconds has elapsed, when the cylinder head part 13 and the hot water supply part 14 as castings are pulled up from the water 22 of the tank 21, the heat of the hot water supply part 14 is gradually transferred to the product parts A and B. .

次に図17に示す工程図のエアブロー工程S26で、水中から引上げたシリンダヘッド部13および押し湯部14に空気を吹付けて、これらに付着した水22を除去する。   Next, in the air blowing step S26 of the process chart shown in FIG. 17, air is blown onto the cylinder head portion 13 and the hot water feeder portion 14 pulled up from the water, and the water 22 adhering thereto is removed.

次に図17に示す工程図の時効処理工程S27で、水中から取出し、かつエアブローが施されたシリンダヘッド部13および押し湯部14の全体を図21に示すように、保温手段としての断熱材(ガラスウール成形体)18,23で完全に覆って、押し湯部14の保有熱で鋳物全体(シリンダヘッド部13,押し湯部14参照)を時効処理温度に所定時間保って、人工時効処理を施す。   Next, in the aging treatment step S27 of the process diagram shown in FIG. 17, the whole of the cylinder head part 13 and the hot-water supply part 14 taken out from the water and subjected to air blowing is shown in FIG. (Glass wool moldings) 18 and 23 are completely covered, and the entire casting (refer to the cylinder head part 13 and the feeder part 14) is kept at the aging treatment temperature for a predetermined time by the retained heat of the feeder part 14, and the artificial aging treatment Apply.

この時効処理は160℃〜240℃の温度範囲内において1〜2時間保つように設定されている。
図21に示すように、鋳物の全体を断熱材18,23で囲繞すると、鋳物の温度を外界から遮断することができ、製品部A,Bは押し湯部14からの熱伝導を受けて、時効に効果的な温度範囲まで復熱させることができ、均熱状態下において所定時間保つことにより、時効処理が施され、特に製品部Aは焼入れ工程S24での焼入れと、時効処理工程S27での時効処理との両処理により、結果的にT6処理が施されることになる。
This aging treatment is set so as to be maintained within a temperature range of 160 ° C. to 240 ° C. for 1 to 2 hours.
As shown in FIG. 21, when the entire casting is surrounded by the heat insulating materials 18 and 23, the temperature of the casting can be cut off from the outside world, and the product parts A and B receive heat conduction from the feeder part 14, It can be reheated to a temperature range effective for aging, and is kept for a predetermined time in a soaking state, and aging treatment is performed. In particular, the product part A is subjected to quenching in the quenching step S24 and aging treatment step S27. As a result, the T6 process is performed by both the aging process.

このように図17〜図22で示した実施例の軽合金製鋳物の製造方法は、水溶性バインダを含有し、押し湯部8(図1参照)が形成された砂型1〜5と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキャビティ10を構成する鋳型を準備する準備工程S21と、上記キャビティ10に軽合金溶湯12(図3参照)を鋳込む鋳込み工程S22と、鋳込み後、金型7を分離する分離工程S23と、金型7が分離された鋳物の表面に冷却媒体(水15参照)を吹付けて、鋳物を焼入れする焼入れ工程S24と、上記砂型1〜5および鋳物(シリンダヘッド部,押し湯部14参照)を水22中に浸漬して鋳物を冷却すると共に、砂型1〜5および中子6を崩壊させる水没工程S25と、水22中から鋳物を取出した後、鋳物を保温手段(断熱材18,23参照)で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程S27とを備えたものである。   Thus, the manufacturing method of the light alloy casting of the embodiment shown in FIGS. 17 to 22 includes sand molds 1 to 5 containing a water-soluble binder and formed with a feeder part 8 (see FIG. 1), A preparation step S21 for preparing a mold constituting the cavity 10 with a mold 7 which is arranged apart from the hot water part 8 and forms a part of the cavity 10, and a light alloy molten metal 12 (see FIG. 3) in the cavity 10 is prepared. Casting step S22 for casting, separation step S23 for separating the mold 7 after casting, and quenching step for quenching the casting by spraying a cooling medium (see water 15) onto the surface of the casting from which the mold 7 has been separated. S24, and submerging step S25 for cooling the casting by immersing the sand molds 1 to 5 and the casting (see the cylinder head part and the hot water feeding part 14) in the water 22, and collapsing the sand molds 1 to 5 and the core 6. After removing the casting from the water 22 Castings covered with a heat insulating means (see a heat insulating material 18, 23), in which a aging treatment step S27 to maintain a predetermined time the whole casting to aging temperature in potential heat of risers 14.

この実施例では上述の水溶性バインダとして硫酸マグネシウム水和物を用いている。
この構成によれば、準備工程S21で、鋳型(図1参照)が準備された後に、鋳込み工程S22で、キャビティ10に軽合金溶湯12が鋳込まれ、次の分離工程S23で、鋳込み後において砂型1〜5を残した状態で金型7のみが分離(離型)され、次の焼入れ工程S24で、金型7が分離された鋳物の表面に冷却媒体(水15参照)を吹付けて、鋳物を焼入れし、次の水没工程S25で、砂型1〜5および鋳物を水22中に浸漬して鋳物を冷却すると共に、水溶性バインダで造型された砂型1〜5および中子6を崩壊させ、次の時効処理工程S27で、水22中から鋳物を取出した後に、鋳物を保温手段(断熱材18,23参照)で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ。
In this embodiment, magnesium sulfate hydrate is used as the above-mentioned water-soluble binder.
According to this configuration, after the mold (see FIG. 1) is prepared in the preparation step S21, the light alloy molten metal 12 is cast into the cavity 10 in the casting step S22, and after casting in the next separation step S23. Only the mold 7 is separated (released) with the sand molds 1 to 5 left, and in the next quenching step S24, a cooling medium (see water 15) is sprayed on the surface of the casting from which the mold 7 has been separated. The casting is quenched, and in the next submerging step S25, the sand molds 1 to 5 and the casting are immersed in the water 22 to cool the casting, and the sand molds 1 to 5 and the core 6 that are molded with the water-soluble binder are collapsed. In the next aging treatment step S27, after the casting is taken out from the water 22, the casting is covered with heat retaining means (see heat insulating materials 18 and 23), and the entire casting is subjected to the aging treatment temperature by the retained heat of the hot water feeder section 14. Keep for a predetermined time.

このように、金型7の分離後に冷却媒体による局部冷却により、必要部を焼入れし、かつ押し湯部14の保有熱を有効利用して、焼入れ(溶体化処理)と時効処理とを容易に達成することができ、さらに時効処理は鋳物を保温手段(断熱材18,23参照)で覆って、押し湯部14の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   As described above, after the mold 7 is separated, the necessary part is quenched by the local cooling with the cooling medium, and the retained heat of the hot-water supply part 14 is effectively used to easily perform quenching (solution treatment) and aging treatment. Further, the aging treatment is performed by covering the casting with the heat retaining means (see the heat insulating materials 18 and 23) and effectively using the retained heat of the hot-water supply unit 14, so that a heat treatment furnace (aging furnace) is used. The T6 treatment can be performed without necessity and without energy consumption, and the mechanical properties such as strength of the product can be sufficiently improved.

しかも、水没工程S25で、砂型1〜5、中子6および鋳物(シリンダヘッド部13,押し湯部14参照)を水中に浸漬するので、水溶性バインダで造型された砂型1〜5および中子6の崩壊分離が達成できると共に、押し湯部14の余分な温度を水没により下げることができるので、焼入れ工程S24後から時効処理工程S27までの鋳物の冷却時間を効率的かつ大幅に短縮するこことができる。   Moreover, since the sand molds 1 to 5, the core 6 and the casting (see the cylinder head part 13 and the hot water feeder part 14) are immersed in water in the submergence step S25, the sand molds 1 to 5 and the core formed with a water-soluble binder are used. 6 can be achieved, and the excess temperature of the hot-water feeder 14 can be lowered by submerging, so that the cooling time of the casting from the quenching step S24 to the aging treatment step S27 can be efficiently and greatly shortened. You can.

この実施例3においても、その他の点については先の実施例とほぼ同様の作用、効果を奏するので、図17〜図22において前図と同一の部分には同一符号を付して、その詳しい説明を省略する。   Also in the third embodiment, since the other operations and effects are substantially the same as those of the previous embodiment, the same reference numerals are given to the same portions in FIGS. Description is omitted.

(実施例4)
次に、図23〜図26を参照して上述の鋳型(図1参照)を用いて軽合金製鋳物を製造する方法のさらに他の実施例について詳述する。
Example 4
Next, still another embodiment of a method for producing a light alloy casting using the above-described mold (see FIG. 1) will be described in detail with reference to FIGS.

図23に示す工程図の準備工程S31で、押し湯部8を形成する砂型と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキュビティ10を構成する鋳型(図1参照)を準備する。   In the preparation step S31 of the process chart shown in FIG. 23, the cubity 10 is configured by the sand mold that forms the feeder part 8 and the mold 7 that is arranged away from the feeder part 8 and forms part of the cavity 10. A mold (see FIG. 1) is prepared.

但し、この実施例では砂型1〜5、中子6の造型に水溶性バインダを用いることなく、この水溶性バインダに代えて非水溶性のガス硬化性バインダを用いる。
すなわち、砂型1〜5および中子6はコールドボックス造型法により造型されたもので、アミンガスで硬化するガス硬化性バインダ(主材料のフェノール樹脂と硬化剤のポリイソシアネート)を含有する。
However, in this embodiment, a water-insoluble gas-curable binder is used in place of the water-soluble binder without using a water-soluble binder for forming the sand molds 1 to 5 and the core 6.
That is, the sand molds 1 to 5 and the core 6 are formed by a cold box molding method, and contain a gas curable binder (a main material phenol resin and a curing agent polyisocyanate) that is cured with an amine gas.

このバインダは非水溶性であるため、砂型1〜5および中子6が水で崩壊することはない。
なお、非水溶性の硬化性バインダとしては、主材料のフェノール樹脂と硬化剤のヘキサメチレンテトラミンを含有する熱硬化性バインダを用いることも可能であるが、上記ガス硬化性バインダが常温でアミンガスを用いて硬化させるため、鋳型の寸法精度が高く造形時間も短いため好ましい。
Since this binder is insoluble in water, the sand molds 1 to 5 and the core 6 do not collapse with water.
As the water-insoluble curable binder, a thermosetting binder containing a phenolic resin as a main material and hexamethylenetetramine as a curing agent can be used. Since it is used and cured, it is preferable because the dimensional accuracy of the mold is high and the molding time is short.

次に図23に示す工程図の鋳込み工程S32で、図3に示すように、アルミニウム合金(JIS規格AC4B)の溶湯12を、湯口9から押し湯部8および湯道11を介してキャビティ10に注湯すると、アルミニウム合金溶湯12の凝固後には、図4に示すように鋳物としてのシリンダヘッド部13と押し湯部14とが形成される。   Next, in the casting step S32 of the process diagram shown in FIG. 23, as shown in FIG. 3, the molten metal 12 of the aluminum alloy (JIS standard AC4B) is transferred from the gate 9 to the cavity 10 through the feeder 8 and the runner 11. When pouring, after the molten aluminum alloy 12 is solidified, as shown in FIG. 4, a cylinder head part 13 and a feeder part 14 are formed as castings.

次に、図23に示す工程図の分離工程S33で、図5に示すように鋳込み後において砂型1〜5および中子6を残した状態で、金型7のみを分離する。
次に、図23に示す工程図の焼入れ工程S34で、上述の砂型1〜5、中子6、鋳物としてのシリンダヘッド部13を、押し湯部14と共に、図24、図25に示すタンク24内の100℃以下(好ましくは90〜99℃)の高温水25中に浸漬して、金型7が分離された鋳物の表面を冷却する焼入れを行なう。
Next, in the separation step S33 of the process chart shown in FIG. 23, only the mold 7 is separated with the sand molds 1 to 5 and the core 6 left after casting as shown in FIG.
Next, in the quenching step S34 of the process chart shown in FIG. 23, the above-described sand molds 1 to 5, the core 6, and the cylinder head part 13 as a casting are brought together with the hot water part 14 into the tank 24 shown in FIGS. It is immersed in high temperature water 25 at 100 ° C. or less (preferably 90 to 99 ° C.), and quenching is performed to cool the surface of the casting from which the mold 7 is separated.

この場合、図24、図25に示す昇降装置26を用いるので、この昇降装置26の構造について説明する。
この昇降装置26はタンク24の一側壁に固定して、上下方向に延びる複数のガイドロッド27と、このガイドロッド27に沿設するように設けられた油圧シリンダなどから成る駆動シリンダ28と、この駆動シリンダ28のピストンロッド29の上端部に設けられて上記複数のガイドロッド27で案内されながら上下動する支持フレーム30と、この支持フレーム30のタンク24と対応する側に設けられた支持部材31と、この支持部材31の下部に水平に取付けられた受台32と、受台32の上部に固定された一対のストッパ33,33とを備え、受台32上部の一対のストッパ33,33間に図24に示す如く、砂型1〜5および鋳物をロボットで把持して位置ずれしないように上載セットし、駆動シリンダ28のピストンロッド29を下動させて、ガイドロッド27にて案内される受台32を介して、図25に示すように砂型1〜5、中子6および鋳物を高温水25中に浸漬させるように構成している。
In this case, since the lifting device 26 shown in FIGS. 24 and 25 is used, the structure of the lifting device 26 will be described.
The elevating device 26 is fixed to one side wall of the tank 24, and a plurality of guide rods 27 extending in the vertical direction, a drive cylinder 28 including a hydraulic cylinder provided along the guide rod 27, and the like. A support frame 30 provided at the upper end of the piston rod 29 of the drive cylinder 28 and moving up and down while being guided by the plurality of guide rods 27, and a support member 31 provided on the side of the support frame 30 corresponding to the tank 24. And a pedestal 32 attached horizontally to the lower portion of the support member 31 and a pair of stoppers 33, 33 fixed to the upper portion of the pedestal 32, and between the pair of stoppers 33, 33 above the pedestal 32 As shown in FIG. 24, the sand molds 1 to 5 and the casting are gripped by a robot and set up so as not to be displaced, and the piston rod 2 of the drive cylinder 28 is set. The sand molds 1 to 5, the core 6 and the casting are immersed in the high-temperature water 25 as shown in FIG. 25 through the cradle 32 guided by the guide rod 27. Yes.

この焼入れ工程S34で、金型7が分離された鋳物としてのシリンダヘッド部13の表面つまりシリンダヘッドの燃焼室側の面に冷却媒体として高温水25を接触させて、鋳物の必要部分を局部冷却して、焼入れする。この高温水による焼入れによってシリンダヘッド部13に大きな温度差が生じて高い残留応力が生じないようにしている。
ここで、焼入れ温度は480〜530℃(但し、アルミニウム合金製鋳物を鋳造する場合の焼入れ温度)に設定し、図25に示すタンク24内の高温水25を、金型7が分離されて鋳型表面に露呈したシリンダヘッド部13の燃焼室と対応する面に接触させて、300℃以下まで急冷して、シリンダヘッド部13を溶体化処理するものである。
In this quenching step S34, hot water 25 as a cooling medium is brought into contact with the surface of the cylinder head portion 13 as a casting from which the mold 7 is separated, that is, the surface on the combustion chamber side of the cylinder head, thereby locally cooling the necessary portion of the casting. And quench. This quenching with high-temperature water prevents a large temperature difference from occurring in the cylinder head portion 13 and a high residual stress.
Here, the quenching temperature is set to 480 to 530 ° C. (however, the quenching temperature in the case of casting an aluminum alloy casting), and the mold 7 is separated from the hot water 25 in the tank 24 shown in FIG. The cylinder head part 13 is brought into contact with the surface corresponding to the combustion chamber of the cylinder head part 13 exposed on the surface, and rapidly cooled to 300 ° C. or lower to subject the cylinder head part 13 to a solution treatment.

図26に示す水没開始時点から所定時間(約15分間)が経過した時、駆動シリンダ28を作動させて受台32を上昇させ、タンク24から砂型1〜5、中子6および鋳物を引上げ、ロボットにて砂型1〜5、中子6および鋳物を次の時効処理工程に投入する。なお、図25にする砂型1〜5、中子6および鋳物の水中浸漬時において、砂型1〜5からの水の浸入による冷却はほとんどない。鋳物としてのシリンダヘッド部13および押し湯部14をタンク24の高温水25中から引上げると、押し湯部14の熱が製品部A,Bに徐々に伝達される。   When a predetermined time (about 15 minutes) has elapsed since the start of submersion shown in FIG. 26, the drive cylinder 28 is operated to raise the cradle 32, and the sand molds 1 to 5, the core 6 and the casting are pulled up from the tank 24. The sand molds 1 to 5, the core 6 and the casting are put into the next aging treatment step by a robot. Note that there is almost no cooling due to water intrusion from the sand molds 1 to 5 when the sand molds 1 to 5, the core 6 and the casting are immersed in water as shown in FIG. When the cylinder head part 13 and the hot metal part 14 as castings are pulled up from the high temperature water 25 of the tank 24, the heat of the hot water part 14 is gradually transmitted to the product parts A and B.

次に図23に示す工程図の時効処理工程S35で、水中から引上げたシリンダヘッド部13および押し湯部14を図7に示すように上述の砂型1〜5および断熱材18で覆って、押し湯部14の保有熱で鋳物全体(シリンダヘッド部13,押し湯部14参照)を時効処理温度に所定時間保って、人工時効処理を施す。
この時効処理は160℃〜240℃の温度範囲内において1〜2時間保つように設定されている。
Next, in the aging treatment step S35 of the process chart shown in FIG. 23, the cylinder head part 13 and the hot water supply part 14 pulled up from the water are covered with the sand molds 1 to 5 and the heat insulating material 18 as shown in FIG. The entire casting (refer to the cylinder head part 13 and the hot water supply part 14) is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot water part 14, and the artificial aging treatment is performed.
This aging treatment is set so as to be maintained within a temperature range of 160 ° C. to 240 ° C. for 1 to 2 hours.

図26に各部a,b,cの温度推移を特性図にて示すように、鋳物の全体を砂型1〜5および断熱材18で囲繞(図7参照)すると、鋳物の温度を外界から遮断することができ、製品部A,Bは押し湯部14からの熱伝導を受けて、時効に効果的な温度範囲まで復熱させることができ、均熱状態下において所定時間保つことにより、時効処理が施され、特に製品部Aは焼入れ工程S34での焼入れと、時効処理工程S35での時効処理との両処理により、結果的にT6処理が施されることになる。   As shown in the characteristic diagram of the temperature transition of each part a, b, c in FIG. 26, when the entire casting is surrounded by the sand molds 1 to 5 and the heat insulating material 18 (see FIG. 7), the temperature of the casting is cut off from the outside. The product parts A and B can be reheated to a temperature range effective for aging by receiving heat conduction from the hot water supply part 14, and are maintained for a predetermined time under a soaking condition, In particular, the product part A is subjected to the T6 treatment by both the quenching in the quenching step S34 and the aging treatment in the aging treatment step S35.

このように、図23〜図26で示した実施例の軽合金製鋳物の製造方法は、非水溶性のガス硬化性バインダを含有し、押し湯部8が形成された砂型1〜5と、押し湯部8から離れて配置され、キャビティ10の一部を形成する金型7とでキャビティ10を構成する鋳型を準備する準備工程S31と、上記キャビティ10に軽合金溶湯12を鋳込む鋳込み工程S32と、鋳込み後、金型7を分離する分離工程S33と、上記砂型1〜5および鋳物を高温水25中に浸漬して金型7が分離された鋳物の表面を冷却する焼入れ工程S34と、高温水25中から砂型1〜5および鋳物を取出した後、鋳物を砂型1〜5と断熱材18で覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程S35とを備えたものである。   As described above, the light alloy casting manufacturing method according to the embodiment shown in FIGS. 23 to 26 includes a sand mold 1 to 5 containing a water-insoluble gas curable binder and formed with a feeder part 8; A preparation step S31 for preparing a mold constituting the cavity 10 with a mold 7 which is arranged away from the feeder 8 and forms part of the cavity 10, and a casting step for casting the molten light alloy 12 into the cavity 10 S32, a separation step S33 for separating the mold 7 after casting, a quenching step S34 for cooling the surface of the casting from which the mold 7 has been separated by immersing the sand molds 1 to 5 and the casting in the high-temperature water 25, and After the sand molds 1 to 5 and the casting are taken out from the high-temperature water 25, the casting is covered with the sand molds 1 to 5 and the heat insulating material 18, and the entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot water feeder section 14. And processing step S35.

この構成によれば、準備工程S31で、砂型1〜5と金型7との両者によりキャビティ10を備えた鋳型が構成され、鋳込み工程S32で、キャビティ10に軽合金溶湯12が鋳込まれ、次の分離工程S33で、鋳込み後において砂型1〜5を残した状態で金型7のみが分離(離型)され、次の焼入れ工程S34で、砂型1〜5、鋳物を高温水25中に浸漬して金型7が分離された鋳物の表面を冷却して鋳物を焼入れし、次の時効処理工程S35で、高温水25中から砂型1〜5および鋳物を取出した後に、鋳物を保温手段としての断熱材18と砂型1〜5とで覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保つ。   According to this configuration, in the preparation step S31, a mold including the cavity 10 is configured by both the sand molds 1 to 5 and the mold 7, and in the casting step S32, the light alloy molten metal 12 is cast into the cavity 10, In the next separation step S33, only the mold 7 is separated (released) with the sand molds 1 to 5 remaining after casting, and in the next quenching step S34, the sand molds 1 to 5 and the casting are put into the high-temperature water 25. The casting surface from which the mold 7 has been separated is cooled to quench the casting, and after the sand molds 1 to 5 and the casting are taken out from the high temperature water 25 in the next aging treatment step S35, the casting is kept warm. Are covered with the heat insulating material 18 and the sand molds 1 to 5, and the entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the hot-water supply portion 14.

このように、金型7の分離後に砂型1〜5および鋳物を水中に浸漬して金型7が分離された鋳物の表面を冷却して、必要部を焼入れし、その後、砂型1〜5と断熱材18とで鋳物を覆った状態下にて押し湯部14の保有熱を有効利用して、時効処理を達成することができ、さらに上述の時効処理は鋳物を砂型1〜5と断熱材18で覆って、押し湯部14の保有熱を有効利用して実行するので、熱処理炉(時効炉)を何等必要とすることなく、またエネルギ消費もなくT6処理を施して、製品の強度などの機械的特性の充分な向上を図ることができる。   Thus, after the mold 7 is separated, the sand molds 1 to 5 and the casting are immersed in water to cool the surface of the casting from which the mold 7 is separated, and necessary parts are quenched, and then the sand molds 1 to 5 and An aging treatment can be achieved by effectively using the heat retained in the hot-water supply part 14 under the condition that the casting is covered with the heat insulating material 18, and the aging treatment described above further comprises casting the sand molds 1 to 5 and the heat insulating material. 18 so that the heat stored in the hot-water supply unit 14 is effectively used, so that the heat treatment furnace (aging furnace) is not required and energy is not consumed, and the T6 treatment is performed to obtain the strength of the product. It is possible to sufficiently improve the mechanical properties.

しかも、砂型1〜5および鋳物を100℃以下の高温水25中に浸漬するので、押し湯部14の余分な温度を水により下げることができるので、焼入れ工程S34から時効処理工程S35までの鋳物の冷却時間を効率的に短縮することができる。   Moreover, since the sand molds 1 to 5 and the casting are immersed in the high-temperature water 25 of 100 ° C. or less, the excess temperature of the hot-water supply part 14 can be lowered with water, so the casting from the quenching step S34 to the aging treatment step S35. The cooling time can be shortened efficiently.

要するに、図23〜図26で示した実施例においては、砂型1〜5および鋳物をタンク24の高温水25中に浸漬しても、金型7が分離された鋳物の表面から冷却されて焼入れが行われ、その後、砂型1〜5と断熱材18とで鋳物を覆って、押し湯部14の保有熱で鋳物全体を時効処理温度に所定時間保って、時効処理を行なうことができるものである。なお、実施例4においても、その他の点については先の各実施例とほぼ同様の作用、効果を奏するので、図23〜図26において前図と同一の部分には同一符号を付して、その詳しい説明を省略する。   In short, in the embodiment shown in FIGS. 23 to 26, even if the sand molds 1 to 5 and the casting are immersed in the high temperature water 25 of the tank 24, the mold 7 is cooled from the separated casting surface and quenched. After that, the casting is covered with the sand molds 1 to 5 and the heat insulating material 18, and the entire casting is kept at the aging treatment temperature for a predetermined time by the retained heat of the feeder 14, so that the aging treatment can be performed. is there. In addition, in Example 4, since there are substantially the same operations and effects as the previous examples in the other points, the same reference numerals are given to the same parts in FIGS. Detailed description thereof is omitted.

なお、上記実施例においては軽合金としてのアルミニウム合金を例示したが、アルミニウム合金に代えて、マグネシウム合金(JIS規格MC1)を用いてもよい。この場合、焼入れ温度は380〜390℃に設定し、人工時効温度は220〜260℃に設定することが望ましい。   In addition, although the aluminum alloy as a light alloy was illustrated in the said Example, it may replace with an aluminum alloy and may use a magnesium alloy (JIS specification MC1). In this case, it is desirable to set the quenching temperature to 380 to 390 ° C and the artificial aging temperature to 220 to 260 ° C.

この発明の構成と、上述の実施例との対応において、
この発明の鋳物は、シリンダヘッド部13、押し湯部14に対応し、
以下同様に、
冷却媒体は、水15、高温水25に対応し、
焼入れ用の冷却媒体は、水15に対応し、
調整冷却用の冷却媒体は、霧水19に対応し、
保温手段は、断熱材18,23に対応し、
水溶性バインダは、硫酸マグネシウム水和物に対応するも、
この発明は、上述の実施例の構成のみに限定されるものではない。
In the correspondence between the configuration of the present invention and the above-described embodiment,
The casting of the present invention corresponds to the cylinder head portion 13 and the hot water feeder portion 14,
Similarly,
The cooling medium corresponds to water 15 and hot water 25,
The cooling medium for quenching corresponds to water 15,
The cooling medium for adjusting cooling corresponds to the fog water 19,
The heat retaining means corresponds to the heat insulating materials 18 and 23,
Water-soluble binder corresponds to magnesium sulfate hydrate,
The present invention is not limited to the configuration of the above-described embodiment.

本発明の軽合金製鋳物の製造方法に用いる鋳型の断面図Sectional drawing of the casting_mold | template used for the manufacturing method of the light alloy casting of this invention 軽合金製鋳物の製造方法を示す工程図Process diagram showing the light alloy casting manufacturing method 注湯時の説明図Explanatory drawing during pouring 鋳込み工程の説明図Explanatory drawing of casting process 分離工程の説明図Illustration of separation process 焼入れ工程および継続工程の説明図Explanatory drawing of quenching process and continuation process 時効処理工程の説明図Explanatory drawing of aging treatment process 鋳物の温度推移を示す特性図Characteristic diagram showing temperature transition of castings 引張り強度の測定結果を示す特性図Characteristic diagram showing measurement results of tensile strength 0.2%耐力の測定結果を示す特性図Characteristic chart showing measurement results of 0.2% proof stress 破断伸びの測定結果を示す特性図Characteristic diagram showing measurement results of elongation at break 軽合金製鋳物の製造方法の他の実施例を示す工程図Process drawing showing another embodiment of a method for producing a light alloy casting 焼入れ工程の説明図Explanatory drawing of quenching process 継続工程の説明図Illustration of continuation process 時効処理工程の説明図Explanatory drawing of aging treatment process 鋳物の温度推移を示す特性図Characteristic diagram showing temperature transition of castings 軽合金製鋳物の製造方法のさらに他の実施例を示す工程図Process drawing showing still another embodiment of a method for producing a light alloy casting 焼入れ工程の説明図Explanatory drawing of quenching process 焼入れ工程の他の実施例を示す説明図Explanatory drawing showing another embodiment of the quenching process 水没工程の説明図Explanatory drawing of submerged process 時効処理工程の説明図Explanatory drawing of aging treatment process 鋳物の温度推移を示す特性図Characteristic diagram showing temperature transition of castings 軽合金製鋳物の製造方法のさらに他の実施例を示す工程図Process drawing showing still another embodiment of a method for producing a light alloy casting 昇降装置の説明図Explanatory drawing of lifting device 水中浸漬による焼入れ工程を示す説明図Explanatory drawing showing the quenching process by immersion in water 鋳物の温度推移を示す特性図Characteristic diagram showing temperature transition of castings

符号の説明Explanation of symbols

1〜5…砂型
7…金型
8…押し湯部
10…キャビティ
13…シリンダヘッド部(鋳物)
14…押し湯部(鋳物)
18,23…断熱材(保温手段)
S1,S11,S21,S31…準備工程
S2,S12,S22,S32…鋳込み工程
S3,S13,S23,S33…分離工程
S4,S14,S24,S34…焼入れ工程
S5,S15…継続工程
S6,S16,S27,S35…時効処理工程
S25…水没工程
DESCRIPTION OF SYMBOLS 1-5 ... Sand mold 7 ... Mold 8 ... Hot water supply part 10 ... Cavity 13 ... Cylinder head part (casting)
14 ... Hot water (casting)
18, 23 ... Insulating material (heat insulation means)
S1, S11, S21, S31 ... Preparation steps S2, S12, S22, S32 ... Casting steps S3, S13, S23, S33 ... Separation steps S4, S14, S24, S34 ... Quenching steps S5, S15 ... Continue steps S6, S16, S27, S35 ... Aging treatment step S25 ... Submerged step

Claims (8)

押し湯部を形成する砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備行程と、
上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、
鋳込み後、金型を分離する分離工程と、
金型が分離された鋳物の表面に冷却媒体を接触させて、鋳物を焼入れする焼入れ工程と、
鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えた
軽合金製鋳物の製造方法。
A preparation step of preparing a mold constituting the cavity with a sand mold that forms the feeder part and a mold that is arranged apart from the feeder part and forms a part of the cavity;
A casting process for casting a light alloy molten metal into the cavity;
A separation step of separating the mold after casting;
A quenching process in which the cooling medium is brought into contact with the surface of the casting from which the mold is separated, and the casting is quenched;
A light alloy casting manufacturing method comprising: an aging treatment step of covering a casting with the sand mold and the heat retaining means, and maintaining the entire casting at an aging treatment temperature for a predetermined time with heat retained in the hot water feeder.
押し湯部を形成する砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備行程と、
上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、
鋳込み後、金型を分離する分離工程と、
金型が分離された鋳物の表面に冷却媒体を吹付けて、鋳物を焼入れする焼入れ工程と、
上記冷却媒体の吹付け状態を所定時間継続した後に、吹付けを停止する継続工程と、
鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えた
軽合金製鋳物の製造方法。
A preparation step of preparing a mold constituting the cavity with a sand mold that forms the feeder part and a mold that is arranged apart from the feeder part and forms a part of the cavity;
A casting process for casting a light alloy molten metal into the cavity;
A separation step of separating the mold after casting;
A quenching process in which a cooling medium is sprayed onto the surface of the casting from which the mold has been separated to quench the casting;
A continuation step of stopping the spraying after continuing the spraying state of the cooling medium for a predetermined time;
A light alloy casting manufacturing method comprising: an aging treatment step of covering a casting with the sand mold and the heat retaining means, and maintaining the entire casting at an aging treatment temperature for a predetermined time with heat retained in the hot water feeder.
押し湯部を形成する砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、
上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、
鋳込み後、金型を分離する分離工程と、
金型が分離された鋳物の表面に焼入れ用の冷却媒体を吹付けて鋳物を焼入れする焼入れ工程と、
焼入れ後に上記鋳物の表面に調整冷却用の冷却媒体を吹付けて冷却を所定時間継続した後に、吹付けを停止する継続工程と、
鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えた
軽合金製鋳物の製造方法。
A preparation step of preparing a mold that constitutes a cavity with a sand mold that forms a feeder part and a mold that is arranged apart from the feeder part and forms a part of the cavity;
A casting process for casting a light alloy molten metal into the cavity;
A separation step of separating the mold after casting;
A quenching step of quenching the casting by spraying a quenching cooling medium on the surface of the casting from which the mold has been separated;
A continuous process of stopping the spraying after spraying a cooling medium for adjusting cooling to the surface of the casting after quenching and continuing cooling for a predetermined time;
A light alloy casting manufacturing method comprising: an aging treatment step of covering a casting with the sand mold and the heat retaining means, and maintaining the entire casting at an aging treatment temperature for a predetermined time with heat retained in the hot water feeder.
水溶性バインダを含有し、押し湯部が形成された砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、
上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、
鋳込み後、金型を分離する分離工程と、
金型が分離された鋳物の表面に冷却媒体を吹付けて、鋳物を焼入れする焼入れ工程と、
上記砂型および鋳物を水中に浸漬して鋳物を冷却すると共に、砂型を崩壊させる水没工程と、
水中から鋳物を取出した後、鋳物を保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えた
軽合金製鋳物の製造方法。
A preparation step for preparing a mold that forms a cavity with a sand mold that contains a water-soluble binder and a hot water portion is formed, and a mold that is arranged apart from the hot water portion and forms a part of the cavity;
A casting process for casting a light alloy molten metal into the cavity;
A separation step of separating the mold after casting;
A quenching process in which a cooling medium is sprayed onto the surface of the casting from which the mold has been separated to quench the casting;
Submerging the sand mold and casting in water to cool the casting and submerge the sand mold,
A light alloy casting manufacturing method comprising: an aging treatment step of covering a casting with heat-retaining means after removing the casting from the water, and maintaining the entire casting at an aging treatment temperature for a predetermined time by heat retained in a feeder part.
非水溶性の硬化性バインダを含有し、押し湯部が形成された砂型と、押し湯部から離れて配置され、キャビティの一部を形成する金型とでキャビティを構成する鋳型を準備する準備工程と、
上記キャビティに軽合金溶湯を鋳込む鋳込み工程と、
鋳込み後、金型を分離する分離工程と、
上記砂型および鋳物を水中に浸漬して金型が分離された鋳物の表面を冷却する焼入れ工程と、
水中から砂型および鋳物を取出した後、鋳物を上記砂型および保温手段で覆って、押し湯部の保有熱で鋳物全体を時効処理温度に所定時間保つ時効処理工程とを備えた
軽合金製鋳物の製造方法。
Preparation for preparing a mold that forms a cavity with a sand mold that contains a water-insoluble curable binder and has a feeder part formed, and a mold that is arranged away from the feeder part and forms a part of the cavity Process,
A casting process for casting a light alloy molten metal into the cavity;
A separation step of separating the mold after casting;
A quenching step of cooling the surface of the casting from which the mold is separated by immersing the sand mold and the casting in water;
After taking out the sand mold and the casting from the water, the casting is covered with the sand mold and the heat retaining means, and an aging treatment step is performed for keeping the entire casting at the aging treatment temperature for a predetermined time by the retained heat of the feeder part. Production method.
上記保温手段は断熱材に設定された
請求項1〜5の何れか1に記載の軽合金製鋳物の製造方法。
The method for manufacturing a light alloy casting according to any one of claims 1 to 5, wherein the heat retaining means is set as a heat insulating material.
上記軽合金製鋳物はアルミニウム合金製鋳物に設定され、
上記焼入れの温度を480〜530℃に設定し、
時効処理は160〜240℃の温度範囲内に1〜2時間保つように設定した
請求項1〜5の何れか1に記載の軽合金製鋳物の製造方法。
The light alloy casting is set to an aluminum alloy casting,
Set the quenching temperature to 480-530 ° C,
The method for producing a light alloy casting according to any one of claims 1 to 5, wherein the aging treatment is set to be maintained within a temperature range of 160 to 240 ° C for 1 to 2 hours.
上記軽合金製鋳物はアルミニウム合金製またはマグネシウム合金製のシリンダヘッドに設定され、
金型で形成される鋳物の表面はシリンダヘッドの燃焼室側に設定された
請求項1〜5の何れか1に記載の軽合金製鋳物の製造方法。
The light alloy casting is set to a cylinder head made of aluminum alloy or magnesium alloy,
The method for producing a light alloy casting according to any one of claims 1 to 5, wherein a surface of the casting formed by the mold is set on a combustion chamber side of the cylinder head.
JP2004267768A 2003-11-19 2004-09-15 Light alloy casting manufacturing method Expired - Fee Related JP4062292B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004267768A JP4062292B2 (en) 2003-11-19 2004-09-15 Light alloy casting manufacturing method
CNB2004100957438A CN100381230C (en) 2003-11-19 2004-11-17 Method for producing light-alloy casting
US10/991,603 US20050103407A1 (en) 2003-11-19 2004-11-18 Method for producing light-alloy casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003388889 2003-11-19
JP2004267768A JP4062292B2 (en) 2003-11-19 2004-09-15 Light alloy casting manufacturing method

Publications (2)

Publication Number Publication Date
JP2005169498A JP2005169498A (en) 2005-06-30
JP4062292B2 true JP4062292B2 (en) 2008-03-19

Family

ID=34575991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267768A Expired - Fee Related JP4062292B2 (en) 2003-11-19 2004-09-15 Light alloy casting manufacturing method

Country Status (3)

Country Link
US (1) US20050103407A1 (en)
JP (1) JP4062292B2 (en)
CN (1) CN100381230C (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478670A (en) * 2015-12-10 2016-04-13 宋和明 Automatic crank switch manufacturing method
CN105834374A (en) * 2016-02-02 2016-08-10 宁夏共享模具有限公司 3D printing containerless casting method of internal combustion engine frame
CN106077514A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of front axle housing body Technology for Heating Processing
CN106077475A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of rear axle housing body Technology for Heating Processing
CN106077513A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of front axle housing body heat processing method
CN106077510A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of front axle housing body Technology for Heating Processing
CN106077511A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of rear axle housing body heat treatment method

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1911563B (en) * 2005-08-09 2010-08-11 江南机器(集团)有限公司 Method for casting large thin wall rotating body high strength aluminium alloy casting
DE102005039049A1 (en) * 2005-08-18 2007-02-22 Ks Aluminium-Technologie Ag Method for producing a casting and cylinder crankcase
DE102008043605B4 (en) * 2007-11-16 2015-05-07 Alstom Technology Ltd. Method for producing a turbine housing
DE102008000056A1 (en) * 2008-01-14 2009-07-23 Loi Thermprocess Gmbh Apparatus and method for loading and unloading a heat treatment furnace
DE102010035440B4 (en) * 2010-08-26 2012-04-12 Huppert Engineering Gmbh & Co. Kg Apparatus for casting cast iron in a mold
JP5175905B2 (en) 2010-08-31 2013-04-03 トヨタ自動車株式会社 Light alloy casting method
TWI447299B (en) * 2012-06-08 2014-08-01 Colis Ind Co Ltd Process for manufacture of water-cooled motorcycle cylinder
WO2014027599A1 (en) * 2012-08-14 2014-02-20 日産自動車株式会社 Method for quenching cylinder head, and flow contact prevention member
WO2014027598A1 (en) * 2012-08-16 2014-02-20 日産自動車株式会社 Method for quenching cylinder head, and thermal insulation member using same
JP5907272B2 (en) * 2012-09-06 2016-04-27 日産自動車株式会社 Method for producing aluminum alloy castings
JP5935619B2 (en) * 2012-09-18 2016-06-15 マツダ株式会社 Cooling method and cooling device for cast product made of Al alloy
CN104646630A (en) * 2015-01-29 2015-05-27 夏平桂 Smokeless casting process
CN106141089A (en) * 2016-07-12 2016-11-23 湖州鼎盛机械制造有限公司 The Iron Mould Coated Sand technique of the support of elevator traction machine
US20180016666A1 (en) * 2016-07-18 2018-01-18 GM Global Technology Operations LLC Method of manufacturing metal castings
CN107523768A (en) * 2017-08-04 2017-12-29 大连热处理有限公司 A kind of two-stage time effect processing method for aluminium alloy
CN107523767A (en) * 2017-08-04 2017-12-29 大连热处理有限公司 A kind of aging treatment method for aluminium alloy
JP2019056340A (en) * 2017-09-22 2019-04-11 日立オートモティブシステムズ株式会社 Piston of internal combustion engine and manufacturing method of piston
EP3539687A1 (en) 2017-12-27 2019-09-18 Casa Maristas Azterlan Device and method for improved cooling of a metallic alloy in a sand mold
CN108637225A (en) * 2018-07-06 2018-10-12 湖州吉弘机械有限公司 A kind of mating castings production cooling device of fork truck
CN110202120A (en) * 2019-07-15 2019-09-06 上海交通大学 A kind of overturning orientation cooling casting formation system and its application method
JP7279607B2 (en) * 2019-10-02 2023-05-23 マツダ株式会社 ELASTO-PLASTIC STRESS ANALYSIS METHOD OF CASTING, ANALYSIS SYSTEM, ANALYSIS PROGRAM, AND RECORDING MEDIUM

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4163000A (en) * 1976-12-03 1979-07-31 Sekisui Kagaku Kogyo Kabushiki Kaisha Foundry mold composition and process for producing foundry mold
JPH03230860A (en) * 1990-02-06 1991-10-14 Mazda Motor Corp Pressurized casting method
WO1992007674A1 (en) * 1990-11-05 1992-05-14 Comalco Aluminium Limited Casting of metal objects
JPH08225903A (en) * 1995-02-21 1996-09-03 Ube Ind Ltd Method for producing high pressure cast aluminum alloy casting
JP3126704B2 (en) * 1999-06-30 2001-01-22 マツダ株式会社 Casting method for castings with composite materials cast
US6910522B2 (en) * 1999-07-29 2005-06-28 Consolidated Engineering Company, Inc. Methods and apparatus for heat treatment and sand removal for castings
US6224693B1 (en) * 1999-12-10 2001-05-01 Tenedora Nemak, S.A. De C.V. Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging
JP2004136324A (en) * 2002-10-17 2004-05-13 Mazda Motor Corp Preformed body for composition and method for making sand mold provided with the body
JP2005081437A (en) * 2003-09-11 2005-03-31 Asama Giken Co Ltd Method for casting aluminum or aluminum alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105478670A (en) * 2015-12-10 2016-04-13 宋和明 Automatic crank switch manufacturing method
CN105834374A (en) * 2016-02-02 2016-08-10 宁夏共享模具有限公司 3D printing containerless casting method of internal combustion engine frame
CN106077514A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of front axle housing body Technology for Heating Processing
CN106077475A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of rear axle housing body Technology for Heating Processing
CN106077513A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of front axle housing body heat processing method
CN106077510A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of front axle housing body Technology for Heating Processing
CN106077511A (en) * 2016-07-26 2016-11-09 柳州金特新型耐磨材料股份有限公司 A kind of rear axle housing body heat treatment method

Also Published As

Publication number Publication date
JP2005169498A (en) 2005-06-30
US20050103407A1 (en) 2005-05-19
CN1618550A (en) 2005-05-25
CN100381230C (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4062292B2 (en) Light alloy casting manufacturing method
CN100467166C (en) Method for founding main regulation valve body of steam turbine
US6224693B1 (en) Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging
US4875518A (en) Method of and apparatus for low-pressure casting of light metal alloy
US20100101689A1 (en) Method and unit for production of a cast component
JP2009279654A (en) Method and system for producing cast component
CN102626779A (en) Method for preparing magnesium alloy ingot and solidification system
MXPA05001393A (en) Methods and apparatus for heat treatment and sand removal for castings.
EP1530651B1 (en) Method and apparatus for simplified production of heat treatable aluminum alloy castings with artificial self-aging
WO2012083671A1 (en) Method for enhancing self-feeding ability of heavy section casting blank
US11235379B2 (en) Foundry process with hot mold casting
CN110976770A (en) Method for eliminating shrinkage cavity in precision casting based on chilling block
CN106623810A (en) Casting method for motorcycle aluminum alloy wheel with hollow hub
JPH07155897A (en) Mold structure and casting method
CN104923735A (en) Rapid investment casting technology
CA2071902A1 (en) Method of controlling the rate of heat extraction in mould casting
CN213671743U (en) Semi-continuous casting device
CN107052304A (en) A kind of method for producing aluminum alloy control arm
CN109513887A (en) A kind of processing method made suitable for the soft core forging of superhigh temperature with conventional ingot shape steel ingot
CN108465777B (en) Technology for casting AB column by tilting gravity sand core for new-energy all-aluminum vehicle body
US7870884B2 (en) Method for casting molded parts
JPH0517815A (en) Heat treatment of casting
KR20200008193A (en) Manufacturing apparatus for an allumium alloy flange and manufacturing method thereof
JP2005144461A (en) Method for cooling cast product
KR101789658B1 (en) Manufacturing method of lower crank case for engine by hybrid die casting

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees