[go: up one dir, main page]

JP4061751B2 - MOS semiconductor device and manufacturing method thereof - Google Patents

MOS semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP4061751B2
JP4061751B2 JP33598698A JP33598698A JP4061751B2 JP 4061751 B2 JP4061751 B2 JP 4061751B2 JP 33598698 A JP33598698 A JP 33598698A JP 33598698 A JP33598698 A JP 33598698A JP 4061751 B2 JP4061751 B2 JP 4061751B2
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
semiconductor device
electrode
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33598698A
Other languages
Japanese (ja)
Other versions
JP2000164862A (en
Inventor
武義 西村
貴行 島藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP33598698A priority Critical patent/JP4061751B2/en
Publication of JP2000164862A publication Critical patent/JP2000164862A/en
Application granted granted Critical
Publication of JP4061751B2 publication Critical patent/JP4061751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属−酸化膜−半導体(MOS)構造のゲートをもつMOS半導体装置において例えば多結晶シリコン膜のようなゲート電極を有する半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
図4は、MOS半導体装置の最も基本的な例であるMOS電界効果トランジスタ(以下MOSFETと記す)の部分断面図である。高比抵抗のnドリフト層1bの表面層にpウェル領域2が形成され、そのpウェル領域2内にn+ ソース領域3が形成されている。nドリフト層1bの表面露出部とn+ ソース領域3とに挟まれたpウェル領域2の表面上にゲート酸化膜5を介して多結晶シリコン膜のゲート電極6aが設けられている。nドリフト層1bの表面露出部上は厚いフィールド酸化膜4で覆われており、ゲート電極6はそのフィールド酸化膜4上に延びている。7はn+ ソース領域3とpウェル領域2とにともに接触するソース電極である。ソース電極とゲート電極6とは、ほう素燐シリカガラス(BPSG)からなる層間絶縁膜9で絶縁されている。層間絶縁膜9に設けられた窓を通じてゲート電極6aと接触するゲート金属電極6bが設けられている。nドリフト層1bの裏面側には高不純物濃度のn+ ドレイン層1aを介してドレイン電極8が設けられている。チップの周縁部分にはドレイン電極8と同電位の周縁金属電極10が設けられている。周縁金属電極10と接触している多結晶シリコン膜の周縁電極6cとゲート金属電極6bとの間も層間絶縁膜9で絶縁されている。
【0003】
【発明が解決しようとする課題】
半導体素子の微細化に伴い、層間絶縁膜9の厚さも薄くなり、ゲート高温印加試験などの信頼性試験で、ソース電極7とゲート電極6a間やゲート金属電極6bと周縁電極6c間で、絶縁劣化や破壊が発生するものが見られた。
不良品の断面を観察したところ、ゲート電極6aおよび周縁電極6cのエッジ部(B、C部)においてゲート電極6aおよび周縁電極6cの上面の端が尖り、層間絶縁膜9の厚さが約1/3或いはそれ以下に薄くなっているものが見られた。
【0004】
特に、図3(a)に斜視図を示したような、ゲート電極6aや周縁電極6cのパターンに90度或いはそれ以下の角部があるものでは、その角部に鋭い尖りが見られ、層間絶縁膜9が薄くなることがわかった。絶縁劣化や破壊は、そのような層間絶縁膜9の薄くなった部分で電界の集中や電荷の注入等が起きたためと考えられる。
以上の問題に鑑み本発明の目的は、ゲート電極上の層間絶縁膜の薄層化を防止し、高信頼性の半導体装置およびその製造方法を提供することにある。
【0005】
【課題を解決するための手段】
の課題解決のため本発明は、半導体基板上にゲート絶縁膜を介して設けられた例えば多結晶シリコン膜からなるゲート電極と、そのゲート電極の少なくとも一部を覆う層間絶縁膜と、その層間絶縁膜上に設けられた金属電極とを有するMOS半導体装置において、ゲート電極上面の端を鈍角に傾斜させるものとする。
【0006】
そのようにすれば、層間絶縁のゲート電極の端部上を覆う被覆性が改善され、層間絶縁膜の薄層化が防止される。
特に、ゲート電極の平面的な角部を削除し、もしくは円弧状とすれば、ゲート電極上面の端の三次元的な尖端を生じない。
ゲート電極上面の端を鈍角に傾斜させたMOS半導体装置の製造方法としては、多結晶シリコン膜を被着し、その表面層にイオンを照射した後、エッチングをおこなうとよい。
【0007】
そのようにすれば、イオン照射によって表面層にダメージ層が形成され、エッチング速度が速くなるため、ゲート電極上面の端を鈍角に傾斜させることができる。
イオンのドーズ量としては、1×1014×1015cm-2とする。
ドーズ量が増す程、ゲート電極上面の端の角度が緩くなるが、後記の実験結果が示すように、1×1014×1015cm-2の範囲が最も適当である。
【0008】
【発明の実施の形態】
[実施例1]
図1は本発明第一の実施例の縦型MOSFETの部分断面図である。
基本的な構造は、図3と変わらない。高比抵抗のnドリフト層11bの表面層にpウェル領域12が形成され、そのpウェル領域12内にn+ ソース領域13が形成されている。nドリフト層11bの表面露出部とn+ ソース領域13とに挟まれたpウェル領域12の表面上にゲート酸化膜15を介して多結晶シリコン膜のゲート電極16aが設けられている。nドリフト層11bの表面露出部上は厚いフィールド酸化膜14で覆われており、ゲート電極16aはそのフィールド酸化膜14上に延びている。17はn+ ソース領域13とpウェル領域12とにともに接触するソース電極である。ソース電極17とゲート電極16aとは、ほう素燐シリカガラス(BPSG)からなる層間絶縁膜19で絶縁されている。層間絶縁膜19に設けられた窓を通じてゲート電極16aと接触するゲート金属電極16bが設けられている。nドリフト層11bの裏面側には高不純物濃度のn+ ドレイン層11aを介してドレイン電極18が設けられている。チップの周縁部分にはドレイン電極18と同電位の周縁金属電極20が設けられている。周縁金属電極20と接触している多結晶シリコン膜の周縁電極16cとゲート金属電極16bとの間も層間絶縁膜19で絶縁されている。
【0009】
例えばゲート酸化膜15の厚さは100nm、フイールド酸化膜14は450nm、ゲート電極16aの厚さは0.8μm、層間絶縁膜19は0.5μm、ソース電極13の厚さは5μmである。
との違いは、ゲート電極16aおよび周縁電極16cの上面の端部B、C部(図4)が鈍角になるように傾斜加工されており、その上の層間絶縁膜19が薄くなっていないことである。
【0010】
ゲート電極16aおよび多結晶シリコン層16cの端部の傾斜加工は、次のような工程でおこなった。
減圧CVD法により多結晶シリコン膜を堆積、アニール後、全面に加速電圧50keV、ドーズ量1×1015cm-2の条件でひ素イオン注入をおこなう。次に、表面の酸化膜を除去し、フォトレジストを塗布し、フォトリソグラフィにより、マスクを形成する。続いて四ふっ化炭素ガスを用いたドライエッチングにより、多結晶シリコン膜をエッチングし、パターニングしてゲート電極16aおよび多結晶シリコン層16cを形成する。
【0011】
このような方法によって、ゲート電極16aおよび多結晶シリコン層16cの上面端部は鈍角となり、従来のように尖ることは無い。上面端部の角度を直接測定するのは困難なため、下部の角度(以後テーパー角と呼ぶ)Aを測定したところ、約30度であった。
このようにしてゲート電極16aおよび多結晶シリコン層16cの上端を鈍角にすることにより、その上に被着した絶縁膜19はリフロー後も薄くならず、信頼性試験における不良も激減した。
【0012】
図2は、加速電圧50keVで、ドーズ量を変えてひ素イオン注入をおこなった際の、端部のテーパー角Aのドーズ量依存性を示す特性図である。ひ素使用の場合は、1×1014〜3×1015cm-2のドーズ量でエッチング形状を適当な角度のテーパー化ができている。
1×1014cm-2より少ないドーズ量では、端部のテーパー角Aが十分小さくならない。特にテーパー角Aは一様ではなく、上面に近づくほど傾斜がきつくなる。全体としては60度であっても上端は90度に近く、かなり尖っている。逆に3×1015cm-2より多いドーズ量とすると、テーパー角Aが十分小さくなるが、工程に要する時間が長くなるばかりで無駄である。従って、1×1014〜3×1015cm-2の範囲が適当である。
【0013】
[実施例2]上の方法は、平面的な角部の尖りを緩和する効果もある。図3(b)は、上の方法を適用した平面的な角部の斜視図である。図3(a)より、角部の尖りが緩和されているのがわかる。
【0014】
しかし、層間絶縁膜9が薄いときなど、稀に信頼性試験で劣化するものが見られた。その対策として、角部に加工をしたパターンを試みた。
図3(c)は二等辺三角形状角部を削ったもの、同図(d)は角部を円弧状のパターンとしたものであり、実施例1の方法エッチングした後の斜視図である。どちらも、多結晶シリコン層の上端の尖りがなくなり、信頼性試験においても不良は見られなくなった。
【0015】
なお、実施例はいずれも半導体基板の両面に主電極が設けられた縦型半導体装置の例を挙げたが、本発明は縦型半導体装置に限らず、半導体基板の一方の主面に主電極が設けられた横型半導体装置にも適用できるものである。更に、半導体基板表面にトレンチを設け、そのトレンチ内にゲート電極を埋め込んだ形のいわゆるトレンチゲート型の半導体装置においても有効である。
【0016】
【発明の効果】
以上説明したように本発明によれば、ゲート電極上面の端を鈍角に傾斜させることにより、層間絶縁膜の被覆性を向上させることができた。
更に、ゲート電極の平面的な角部においては、角を削除し、もしくは曲率をつけた形状とすることにより、三次元的な尖端の形状を平滑化し、層間絶縁膜の被覆性を向上させることができた。
【0017】
これらにより、電界集中や電荷の注入が緩和され、ゲート高温印加試験に対する耐性が大幅に向上した半導体装置とすることができる。
【図面の簡単な説明】
【図1】 本発明実施例のMOSFETの部分断面図
【図2】 テーパー角Aのひ素ドーズ量依存性を示す特性図
【図3】 (a)は従来技術による角部の斜視図、(b)は実施例1の方法による角部の斜視図、(c)は角部を削除したものの斜視図、(d)は角部を円弧状としたものの斜視図
【図4】 従来技術によるMOSFETの部分断面図
【符号の説明】
1a、11a n+ ドレイン層
1b、11b nドリフト層
2、 12 pウェル領域
3、 13 n+ ソース領域
4、 14 フィールド酸化膜
5、 15 ゲート酸化膜
6a、16a ゲート電極
6b、16b ゲート金属電極
6c、16c 周縁電極
7、 17 ソース電極
8、 18 ドレイン電極
9、 19 層間絶縁膜(BPSG膜)
10、 20 周縁金属電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device having a gate electrode such as a polycrystalline silicon film in a MOS semiconductor device having a gate having a metal-oxide-semiconductor (MOS) structure and a method for manufacturing the same.
[0002]
[Prior art]
FIG. 4 is a partial cross-sectional view of a MOS field effect transistor (hereinafter referred to as MOSFET) which is the most basic example of a MOS semiconductor device. A p-well region 2 is formed on the surface layer of the high resistivity n drift layer 1 b, and an n + source region 3 is formed in the p-well region 2. A gate electrode 6a of a polycrystalline silicon film is provided on the surface of p well region 2 sandwiched between the exposed surface portion of n drift layer 1b and n + source region 3 with gate oxide film 5 interposed. The surface exposed portion of n drift layer 1 b is covered with thick field oxide film 4, and gate electrode 6 extends on field oxide film 4. Reference numeral 7 denotes a source electrode that contacts both the n + source region 3 and the p well region 2. The source electrode 7 and the gate electrode 6 a, are insulated by an interlayer insulating film 9 made of boric Motrin silica glass (BPSG). A gate metal electrode 6b is provided in contact with the gate electrode 6a through a window provided in the interlayer insulating film 9. On the back side of the n drift layer 1b, a drain electrode 8 is provided via a high impurity concentration n + drain layer 1a. A peripheral metal electrode 10 having the same potential as the drain electrode 8 is provided at the peripheral portion of the chip. The interlayer insulating film 9 also insulates between the peripheral electrode 6 c of the polycrystalline silicon film in contact with the peripheral metal electrode 10 and the gate metal electrode 6 b.
[0003]
[Problems to be solved by the invention]
With the miniaturization of semiconductor elements, the thickness of the interlayer insulating film 9 is also reduced, and insulation is performed between the source electrode 7 and the gate electrode 6a and between the gate metal electrode 6b and the peripheral electrode 6c in a reliability test such as a gate high temperature application test. Some were subject to deterioration or destruction.
When the cross section of the defective product was observed, the edges of the upper surfaces of the gate electrode 6a and the peripheral electrode 6c were sharp at the edge portions (B and C portions) of the gate electrode 6a and the peripheral electrode 6c, and the thickness of the interlayer insulating film 9 was about 1 / 3 or thinner was observed.
[0004]
In particular, when the pattern of the gate electrode 6a and the peripheral electrode 6c has a corner portion of 90 degrees or less as shown in the perspective view of FIG. It was found that the insulating film 9 becomes thin. It is conceivable that the deterioration or breakdown of the insulation is caused by the concentration of the electric field or the injection of electric charge in the thinned portion of the interlayer insulating film 9.
In view of the above problems, an object of the present invention is to provide a highly reliable semiconductor device and a method for manufacturing the same, which can prevent an interlayer insulating film on a gate electrode from being thinned.
[0005]
[Means for Solving the Problems]
The present invention for the above SL solving the problem includes a gate electrode made of which, for example, polycrystalline silicon film formed over the gate insulating film on a semiconductor substrate, an interlayer insulating film covering at least a portion of the gate electrode, the In a MOS semiconductor device having a metal electrode provided on an interlayer insulating film, the end of the upper surface of the gate electrode is inclined at an obtuse angle.
[0006]
By doing so, it improves the coverage covering the end portion of the gate electrode of the interlayer insulating film, a thin layer of the interlayer insulating film can be prevented.
In particular, if the planar corners of the gate electrode are deleted or arcuate, a three-dimensional apex at the end of the upper surface of the gate electrode does not occur.
As a manufacturing method of a MOS semiconductor device in which the end of the upper surface of the gate electrode is inclined at an obtuse angle, it is preferable to perform etching after depositing a polycrystalline silicon film and irradiating the surface layer with ions.
[0007]
By doing so, a damage layer is formed on the surface layer by ion irradiation and the etching rate is increased, so that the edge of the upper surface of the gate electrode can be inclined at an obtuse angle.
The ion dose is 1 × 10 14 to 3 × 10 15 cm −2 .
As the dose increases, the edge angle of the upper surface of the gate electrode becomes gentler, but the range of 1 × 10 14 to 3 × 10 15 cm −2 is most suitable as shown in the experimental results described later.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
FIG. 1 is a partial sectional view of a vertical MOSFET according to a first embodiment of the present invention.
The basic structure is the same as in FIG. A p well region 12 is formed in the surface layer of the high resistivity n drift layer 11 b, and an n + source region 13 is formed in the p well region 12. A gate electrode 16a of a polycrystalline silicon film is provided on the surface of the p well region 12 sandwiched between the exposed surface portion of the n drift layer 11b and the n + source region 13 with a gate oxide film 15 interposed therebetween. The surface exposed portion of n drift layer 11b is covered with thick field oxide film 14, and gate electrode 16a extends on field oxide film 14. Reference numeral 17 denotes a source electrode that contacts both the n + source region 13 and the p well region 12. The source electrode 17 and the gate electrode 16a are insulated by an interlayer insulating film 19 made of boron phosphorous silica glass (BPSG). A gate metal electrode 16b is provided in contact with the gate electrode 16a through a window provided in the interlayer insulating film 19 . A drain electrode 18 is provided on the back surface side of the n drift layer 11b via a high impurity concentration n + drain layer 11a. A peripheral metal electrode 20 having the same potential as the drain electrode 18 is provided at the peripheral portion of the chip. The interlayer insulating film 19 also insulates between the peripheral electrode 16 c of the polycrystalline silicon film in contact with the peripheral metal electrode 20 and the gate metal electrode 16 b.
[0009]
For example, the thickness of the gate oxide film 15 is 100 nm, the field oxide film 14 is 450 nm, the thickness of the gate electrode 16a is 0.8 μm, the interlayer insulating film 19 is 0.5 μm, and the thickness of the source electrode 13 is 5 μm.
The difference from FIG. 4 is that the end portions B and C (FIG. 4) on the upper surface of the gate electrode 16a and the peripheral electrode 16c are inclined so that the obtuse angle is obtained, and the interlayer insulating film 19 thereon becomes thin. That is not.
[0010]
Inclination processing of the ends of the gate electrode 16a and the polycrystalline silicon layer 16c was performed in the following steps.
After depositing and annealing a polycrystalline silicon film by low pressure CVD, arsenic ions are implanted on the entire surface under conditions of an acceleration voltage of 50 keV and a dose of 1 × 10 15 cm −2 . Next, the oxide film on the surface is removed, a photoresist is applied, and a mask is formed by photolithography. Subsequently, the polycrystalline silicon film is etched by dry etching using carbon tetrafluoride gas and patterned to form the gate electrode 16a and the polycrystalline silicon layer 16c.
[0011]
By such a method, the upper end portions of the gate electrode 16a and the polycrystalline silicon layer 16c become obtuse and are not sharpened as in the prior art. Since it is difficult to directly measure the angle of the upper surface end, the lower angle (hereinafter referred to as the taper angle) A was measured and found to be about 30 degrees.
In this way, by making the upper ends of the gate electrode 16a and the polycrystalline silicon layer 16c obtuse, the insulating film 19 deposited thereon is not thinned after reflow, and defects in the reliability test are drastically reduced.
[0012]
FIG. 2 is a characteristic diagram showing the dose dependency of the taper angle A at the end when arsenic ions are implanted with an acceleration voltage of 50 keV and a different dose. In the case of using arsenic, the etching shape can be tapered at an appropriate angle with a dose of 1 × 10 14 to 3 × 10 15 cm −2 .
When the dose is less than 1 × 10 14 cm −2 , the taper angle A at the end is not sufficiently small. In particular, the taper angle A is not uniform, and the inclination becomes tighter as it approaches the upper surface. Even if it is 60 degrees as a whole, the upper end is close to 90 degrees and is quite sharp. On the other hand, when the dose amount is larger than 3 × 10 15 cm −2 , the taper angle A is sufficiently small, but the time required for the process becomes long and is useless. Accordingly, a range of 1 × 10 14 to 3 × 10 15 cm −2 is appropriate.
[0013]
[Embodiment 2] The above method also has an effect of reducing the sharpness of planar corners. FIG. 3B is a perspective view of a planar corner portion to which the above method is applied. FIG. 3A shows that the sharpness of the corners is relaxed.
[0014]
However, when the interlayer insulating film 9 is thin, there are rare cases where it deteriorates in the reliability test. As a countermeasure, we tried a pattern with a processed corner.
FIG. 3 (c) that cut the isosceles triangle corners, the (d) of FIG is that where the corners and arc-like pattern, a perspective view after etching by the method of Example 1 is there. In both cases, the sharpness of the upper end of the polycrystalline silicon layer disappeared, and no defect was found in the reliability test.
[0015]
In each of the examples, the example of the vertical semiconductor device in which the main electrode is provided on both surfaces of the semiconductor substrate is given. However, the present invention is not limited to the vertical semiconductor device, and the main electrode is provided on one main surface of the semiconductor substrate. The present invention can also be applied to a horizontal semiconductor device provided with Further, it is also effective in a so-called trench gate type semiconductor device in which a trench is provided on the surface of a semiconductor substrate and a gate electrode is embedded in the trench.
[0016]
【The invention's effect】
As described above, according to the present invention, the coverage of the interlayer insulating film can be improved by inclining the end of the upper surface of the gate electrode at an obtuse angle.
Furthermore , in the planar corners of the gate electrode, the corners are eliminated or the shape is given a curvature, thereby smoothing the three-dimensional pointed shape and improving the coverage of the interlayer insulating film. I was able to.
[0017]
As a result, electric field concentration and charge injection are alleviated, and a semiconductor device with greatly improved resistance to a gate high temperature application test can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a MOSFET according to an embodiment of the present invention. FIG. 2 is a characteristic diagram showing dependency of a taper angle A on arsenic dose. FIG. ) Is a perspective view of a corner portion according to the method of Example 1, FIG. 4C is a perspective view of the corner portion removed, and FIG. 4D is a perspective view of a corner portion having an arc shape. Partial cross section [Explanation of symbols]
1a, 11a n + drain layer
1b, 11b n drift layer
2, 12 p-well region
3, 13 n + source region
4, 14 Field oxide film
5, 15 Gate oxide film
6a, 16a Gate electrode
6b, 16b Gate metal electrode
6c, 16c Perimeter electrode
7, 17 Source electrode
8, 18 Drain electrode
9, 19 Interlayer insulation film (BPSG film)
10, 20 Perimeter metal electrode

Claims (3)

半導体基板上にゲート絶縁膜を介して設けられたゲート電極と、そのゲート電極の少なくとも一部を覆う層間絶縁膜と、その層間絶縁膜上に設けられた金属電極とを有するMOS半導体装置において、ゲート電極が多結晶シリコン膜からなり、ゲート電極の平面的な角部を削除し、もしくは円弧状としてゲート電極上面の端を鈍角に傾斜させたことを特徴とするMOS半導体装置。In a MOS semiconductor device having a gate electrode provided on a semiconductor substrate via a gate insulating film, an interlayer insulating film covering at least a part of the gate electrode, and a metal electrode provided on the interlayer insulating film, A MOS semiconductor device, characterized in that the gate electrode is made of a polycrystalline silicon film, and a planar corner portion of the gate electrode is deleted or an end of the upper surface of the gate electrode is inclined to an obtuse angle as an arc shape . 半導体基板上にゲート絶縁膜を介して設けられた多結晶シリコン膜からなるゲート電極と、そのゲート電極の少なくとも一部を覆う層間絶縁膜と、その層間絶縁膜上に設けられた金属電極とを有するMOS半導体装置の製造方法において、多結晶シリコン膜を被着し、その表面層にイオンを照射した後、エッチングで多結晶シリコン膜の平面的な角部を削除し、もしくは円弧状とすることを特徴とするMOS半導体装置の製造方法。A gate electrode made of a polycrystalline silicon film provided on a semiconductor substrate via a gate insulating film, an interlayer insulating film covering at least a part of the gate electrode, and a metal electrode provided on the interlayer insulating film In a method for manufacturing a MOS semiconductor device, a polycrystalline silicon film is deposited, and the surface layer is irradiated with ions, and then the planar corners of the polycrystalline silicon film are removed by etching or are formed into an arc shape. A method of manufacturing a MOS semiconductor device characterized by 多結晶シリコン膜へ照射するイオンのドーズ量を1×1014×1015cm-2とすることを特徴とする請求項記載のMOS半導体装置の製造方法。 3. The method of manufacturing a MOS semiconductor device according to claim 2 , wherein a dose amount of ions irradiated to the polycrystalline silicon film is set to 1 * 10 < 14 > to 3 * 10 < 15 > cm <-2> .
JP33598698A 1998-11-26 1998-11-26 MOS semiconductor device and manufacturing method thereof Expired - Lifetime JP4061751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33598698A JP4061751B2 (en) 1998-11-26 1998-11-26 MOS semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33598698A JP4061751B2 (en) 1998-11-26 1998-11-26 MOS semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000164862A JP2000164862A (en) 2000-06-16
JP4061751B2 true JP4061751B2 (en) 2008-03-19

Family

ID=18294524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33598698A Expired - Lifetime JP4061751B2 (en) 1998-11-26 1998-11-26 MOS semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4061751B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929427B1 (en) 2003-02-05 2009-12-03 매그나칩 반도체 유한회사 Manufacturing Method of DMOS Transistor
JP4770143B2 (en) * 2004-09-10 2011-09-14 富士電機株式会社 Semiconductor device
JP5817823B2 (en) * 2013-12-27 2015-11-18 富士電機株式会社 Semiconductor device and manufacturing method thereof
JP6284840B2 (en) * 2014-06-26 2018-02-28 ルネサスエレクトロニクス株式会社 Semiconductor device manufacturing method and semiconductor device
CN106133915B (en) 2014-09-09 2020-04-07 富士电机株式会社 Semiconductor device and method for manufacturing semiconductor device
CN111883581A (en) * 2020-07-16 2020-11-03 安徽瑞迪微电子有限公司 A novel planar gate MOS type semiconductor power device and its manufacturing method
CN118800807B (en) * 2024-09-12 2024-12-31 深圳平湖实验室 Transistor, method for manufacturing the same and electronic device

Also Published As

Publication number Publication date
JP2000164862A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
US6211018B1 (en) Method for fabricating high density trench gate type power device
US7629644B2 (en) Insulated gate-type semiconductor device and manufacturing method of the same
EP2267787B1 (en) Method of making a trench gate DMOS field-effect transistor
JPH10294463A (en) Trench DMOS and manufacturing method thereof
JP4061751B2 (en) MOS semiconductor device and manufacturing method thereof
JPH02110973A (en) MOS type semiconductor device and its manufacturing method
JP7620721B2 (en) MOSFET DEVICE AND METHOD OF MANUFACTURING THE SAME - Patent application
JPH02177470A (en) Semiconductor device
JPH0555262A (en) Vertical mos filed-effect transistor and manufacture thereof
US6100140A (en) Manufacturing method of semiconductor device
JP3921764B2 (en) Manufacturing method of semiconductor device
JP2870472B2 (en) Vertical field-effect transistor
JPS63227060A (en) Manufacturing method of semiconductor device
JP3530357B2 (en) Semiconductor device and manufacturing method thereof
JPH04291768A (en) MOS type semiconductor device and its manufacturing method
JP2004235247A (en) Method for manufacturing semiconductor device
JP2950557B2 (en) Semiconductor device and manufacturing method thereof
JP2000049352A (en) Semiconductor device and its manufacture
JP3480500B2 (en) Semiconductor element forming method
JP4467162B2 (en) Manufacturing method of semiconductor device
JP2656054B2 (en) Method for manufacturing semiconductor device
JPH0555232A (en) Manufacture of semiconductor device
JPH08204189A (en) Manufacture of semiconductor device
JPH02143461A (en) Semiconductor device and its manufacture
JPH06338614A (en) Thin film transistor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term