[go: up one dir, main page]

JP4059733B2 - Ultrasonic meter device - Google Patents

Ultrasonic meter device Download PDF

Info

Publication number
JP4059733B2
JP4059733B2 JP2002242178A JP2002242178A JP4059733B2 JP 4059733 B2 JP4059733 B2 JP 4059733B2 JP 2002242178 A JP2002242178 A JP 2002242178A JP 2002242178 A JP2002242178 A JP 2002242178A JP 4059733 B2 JP4059733 B2 JP 4059733B2
Authority
JP
Japan
Prior art keywords
flow velocity
determination target
velocity value
measurement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242178A
Other languages
Japanese (ja)
Other versions
JP2004077446A (en
Inventor
泰宏 藤井
修一 岡田
滋 田川
秀樹 山口
幸雄 木村
龍雄 藤本
守 鈴木
克人 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002242178A priority Critical patent/JP4059733B2/en
Publication of JP2004077446A publication Critical patent/JP2004077446A/en
Application granted granted Critical
Publication of JP4059733B2 publication Critical patent/JP4059733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体が流れる測定流路の上流側と下流側に一対の送受波器を設置し、前記測定流路を流れる流体の流れ方向に沿った順方向で超音波が前記送受波器間を伝播する順方向伝播時間と、前記順方向とは逆の逆方向で超音波が前記送受波器間を伝播する逆方向伝播時間とを計測する伝播時間計測手段と、前記伝播時間計測手段を働かせて計測した前記順方向伝播時間と前記逆方向伝播時間とから前記測定流路を流れる流体の流速に関する流速値を導出する測定手段を備えた超音波式メータ装置に関する。
【0002】
【従来の技術】
従来、ガスメーターに使用されるメータ装置としては、膜式のものが主流であるが、その利便性等との関係から、今日、超音波を利用して流体の瞬時流速又は瞬時流量を測定する超音波式メータ装置の利用が提案されている。
【0003】
かかる超音波式メータ装置は、流体が流通する測定流路の上流側と下流側に一対の送受波器を設置し、前記伝播時間計測手段により、流体の流れ方向に沿った順方向で超音波が前記送受波器間を伝播する順方向伝播時間t1と、前記順方向とは逆の逆方向で超音波が前記送受波器間を伝播する逆方向伝播時間t2とを計測する。このように計測した前記順方向伝播時間t1と前記逆方向伝播時間t2とは、測定流路の上記順方向に沿った流体の流速をvとし、測定流路における流体中の音速をcとし、送受波器間の距離をdとしたときに、下記の数1に表すようになる。
【0004】
【数1】
t1=d/(c+v)
t2=d/(c−v)
【0005】
従って、測定流路を流れる流体の流速vは、音速cに関係なく、下記の数2の式で求めることができる。
【0006】
【数2】
v=(d/2)・{(1/t1)−(1/t2)}
【0007】
即ち、前記測定手段は、2秒間隔等の所定の測定時間間隔で、上記の数2の式により求められる流速、又は、その流速に測定流路の流路断面積を乗じて求められる流量を、流速に関する流速値として導出し、例えば、このように導出した測定時間間隔の流速値から、所定の使用期間内の使用流量等を求めることができる。
【0008】
上記超音波式メータ装置において、前記伝播時間計測手段は、一方の送受波器に電気信号である入力信号を入力したときから、他方の送受波器で電気信号である出力信号を出力したときまでの到達時間から、一方の送受波器における入力信号を入力してから実際に音響信号である超音波を送信するまでの送信遅延時間と、他方の送受波器における音響信号である超音波を受信してから出力信号を出力するまでの受信遅延時間との和である遅延時間を差し引いた時間を、超音波が前記送受波器間を伝播する伝播時間として計測する。
【0009】
そして、上記遅延時間は温度依存性を有し、その温度依存性が送受波器の製造上の微妙な差異に起因するものであることが知られている。
このため、上記の超音波式メータ装置には、上記遅延時間の温度依存性が近似している一対の送受波器が選択され設置され、前記測定手段において温度に関係なく正確な測定を実施することができる。
【0010】
【発明が解決しようとする課題】
しかし、上記超音波式メータ装置の使用過程において、上記送受波器の劣化等により、遅延時間の温度依存性が経年的に変化することが懸念され、このような前記遅延時間の温度依存性の経年的変化により、正確な測定が行えなくなる場合がある。
【0011】
従って、本発明は、上記の事情に鑑みて、遅延時間の温度依存性の経年変化により測定誤差が生じるという異常状態を簡単且つ正確に判定する異常状態判定技術を実現することを目的とする。
【0012】
【課題を解決するための手段】
この目的を達成するための本発明に係る超音波式メータ装置の第一特徴構成は、特許請求の範囲の欄の請求項1に記載した如く、前記測定手段で導出された前記流速値から、所定の範囲内に維持されている判定対象流速値を抽出する判定対象流速値抽出手段と、前記判定対象流速値抽出手段で抽出した前記判定対象流速値に対応する前記測定流路の温度である判定対象温度を導出する判定対象温度導出手段と、前記送受波器の遅延時間が経年的 に変化する特定温度域での前記判定対象温度に対応する前記判定対象流速値に基づいて、異常状態を判定する異常状態判定手段とを備えた点にある。
【0013】
前述の従来の技術の欄で説明したように、各送受波器における送信遅延時間と受信遅延時間との温度依存性が互いに近似している場合には、測定流路の温度に関係なく、測定手段により測定した流速又は流量等を示す流速値は、測定流路を流れる流体の流速値を正確に示すものとなる。
しかし、各送受波器における前記遅延時間の温度依存性が互いに近似したものでなくなると、例えば、測定流路の温度が特定の温度域となったときに前記測定手段で測定した流速値は、測定流路を流れる流体の流速又は流量を正確に示すものでなくなることがある。
【0014】
また、本願発明者らは、このような超音波式メータ装置を用いて所定期間の耐久テストを実施し、測定流路の流体が無流通状態(即ち、測定流路に流体が流通していない状態)で、その耐久テストの実施前後の夫々において、順方向及び逆方向において、一方の送受波器に入力信号を入力したときから、他方の送受波器で電気信号である出力信号を出力したときまでの夫々の到達時間の差として求められる順方向及び逆方向における夫々の遅延時間の差(以下、オフセットと呼ぶ。)を、測定流路の温度を互いに異なる複数の温度域に設定して夫々計測し、各温度域においてその耐久テスト前後の夫々のオフセットを比較することにより、各送受波器における送信遅延時間と受信遅延時間との温度依存性が変化していることを確認した。
【0015】
即ち、測定流路の温度が−20℃〜20℃程度の低温域においては、耐久テスト前後の前記オフセットはほぼ変化していなかったのに対して、測定流路の温度が60℃程度の高温域においては、耐久テスト前後の前記オフセットが流量換算で約50L/hに相当する分変化していることを確認した。このことから、遅延時間の温度依存性が経年的に変化し、特に、測定流路の温度が高温域であるときの遅延時間が変化したといえる。
【0016】
そして、本願発明者らは、遅延時間の温度依存性が経年的に変化し、特に、特定温度域における遅延時間が経年的に変化し、他の温度域における上記遅延時間が経年的にほとんど変化しないことを着目して、遅延時間の温度依存性の経年変化により測定誤差が生じるという異常状態を簡単且つ正確に判定する異常状態判定技術に関する本願発明を完成した。
【0017】
即ち、上記第一特徴構成の超音波式メータ装置によれば、前記判定対象流速値抽出手段により、前記測定流路の流体の流速値が例えば0近傍等の所定の範囲内に安定状態に維持されていると認識したときに、前記測定手段で導出された流速値を、判定対象流速値として抽出する。一方、前記判定対象温度導出手段により、前記判定対象流速値抽出手段により抽出した判定対象流速値に対応する測定流路の温度、即ち、測定流路の流速値が所定範囲内に維持されているときの温度を、前記判定対象温度として導出することができる。
【0018】
このようにして得た前記判定対象流速値は、前記測定流路の流速値が所定の範囲内に安定状態に維持されているときに、前記伝播時間計測手段を働かせて計測した送受波器間における超音波の前記順方向伝播時間と前記逆方向伝播時間とに基づいて導出したものである。よって、前記両遅延時間の温度依存性が初期状態の比較的近似したものである場合には、上記判定対象流速値は判定対象温度に殆ど依存しない値となるはずであるが、前記両遅延時間の温度依存性が変化している場合には、上記判定対象流速値は判定対象温度に依存した値となる。
【0019】
そこで、前記異常判定手段により、上記のように得た安定状態における前記判定対象流速値と前記判定対象温度との相関を分析し、例えば、判定対象温度が異なる少なくとも2つの判定対象流速値の差が許容差以上であるなどのように、前記判定対象流速値と前記判定対象温度との間に許容程度以上の相関がある場合に、前述の如く、前記両遅延時間の温度依存性が変化し、前記測定手段で測定した流速値が測定流路を流れる流体の流速又は流量を正確に表すものでない可能性がある前記異常状態を判定することができる。
【0020】
従って、両送受波器の超音波の送信及び受信における遅延時間の温度依存性の経年変化により測定誤差が生じるという異常状態を簡単且つ正確に判定することができる超音波式流量計を実現することができる。
【0021】
本発明に係る超音波式メータ装置の第二特徴構成は、特許請求の範囲の欄の請求項2に記載した如く、上記第一特徴構成に加えて、前記測定手段が、所定の設定時間内に所定の測定時間間隔で前記伝播時間計測手段を働かせて導出した瞬時流速値の平均値を前記流速値として導出するように構成されている点にある。
【0022】
測定流路の流速値は、流体の圧力変動等により、比較的高周波のノイズが付加された不安定な状態となることがあり、このような流速値から、上記異常状態判定のために用いる判定対象流速値を抽出すると、上記のノイズによる瞬時値の変動により、前記異常状態を誤判定することが懸念される。
【0023】
そこで、上記第二特徴構成の超音波式メータ装置によれば、前記測定手段により、例えば2秒間隔等の前記測定時間間隔で前伝播時間計測手段を働かせて測定流路を流れる流体の瞬時流速又は瞬時流量を示す瞬時流速値を導出すると共に、30秒等の前記設定時間毎に、その設定時間内に導出した瞬時流速値の平均値を流速値として導出することで、このように導出した流速値は、上記高周波のノイズを相殺した比較的安定したものとなる。よって、前記異常判定手段において、このように安定した流速値である判定対象流速値を用いて、上記誤判定を回避して精度良く前記異常状態を判定することができる。
【0024】
本発明に係る超音波式メータ装置の第三特徴構成は、特許請求の範囲の欄の請求項3に記載した如く、上記第二特徴構成に加えて、前記測定流路の下流側に接続された消費機器の運転時に消費される流体の最小流量が所定の下限界流量以上である場合において、前記測定手段が、前記流速値と共に、前記複数の瞬時流速値の最大値及び最小値を導出するように構成され、前記判定対象流速値抽出手段が、前記測定手段で導出した前記流速値が前記下限界流量に相当する設定流速値未満であり、且つ、前記測定手段で導出した前記最大値と前記最小値との差である変化量が所定の設定変化量未満である場合に、前記流速値を前記判定対象流速値として抽出するように構成されている点にある。
【0025】
かかる超音波式メータ装置、特に、各家庭等に設けられたガスメータに用いる超音波メータ装置において、測定流路の下流側に接続されたガス機器等の消費機器が運転時に消費するガスの最小流量、例えば、口火等で消費されるガスの最小流量が、10L/h等の所定の下限界流量以上であることがある。
【0026】
そして、上記最小流量以下の下限界設定流量に相当する設定流速値未満である場合には、下流側の消費機器が運転している可能性が低いため、測定流路には流体が流通していない、即ち、実際の測定流路の流速値が0である可能性が高い。
【0027】
また、測定手段において、所定の設定時間毎に複数の瞬時流速値の平均値を流速値として導出する場合には、その流速値が上記のように設定流速値未満であっても、その設定時間内の一部の時間帯において、機器が運転状態であり、測定流路に流体が流れていた可能性がある。
【0028】
そこで、上記第三特徴構成の超音波式メータ装置によれば、前記判定対象流速値抽出手段により、前記測定手段で導出した前記流速値が、前記測定流路の下流側に接続された消費機器の運転時に消費される流体の最小流量以下の下限界設定流量に相当する設定流速値未満であり、且つ、その流速値に対応して前記測定手段で導出した各設定時間内の瞬時流速値の最大値と最小値との差、即ち、設定時間内における瞬時流速値の変化量が、非常に小さい設定変化量未満である場合に、その設定時間内において常に機器の運転が停止されており、流速値が常に0近傍に維持されているとして、その流速値を前記判定対象流速値として抽出することができる。
【0029】
従って、両送受波器の超音波の送信及び受信における遅延時間の温度依存性の経年変化により測定手段の測定誤差が生じ、測定流路の流速値がほとんど0に安定状態に維持されているときに測定手段で測定した流速値が0から若干乖離した値である場合でも、前記判定対象流速値抽出手段により、その流速値と、前記最大値及び前記最小値を用いて、比較的正確に上記判定対象流速値を抽出することができる。
【0030】
本発明に係る超音波式メータ装置の第四特徴構成は、特許請求の範囲の欄の請求項4に記載した如く、上記第三特徴構成に加えて、前記判定対象温度導出手段が、前記判定対象流速値を導出するのに用いた前記順方向伝播時間と前記逆方向伝播時間との一方又は両方を用いて前記判定対象温度を導出するように構成されている点にある。
【0031】
測定流路の流体の実際の流速又は流量が0近傍に維持されているときには、そのときに伝播時間計測手段で計測される順方向伝播時間又は逆方向伝播時間は、前述の従来の技術の欄に記載した数1に示す式のように、送受波器間の距離を測定流路における音速で割った値となり、更に、この音速は測定流路の温度の関数であるので、流体が流通していないときの上記測定流路の判定対象温度は、上記順方向伝播時間又は逆方向伝播時間と送受波間の距離とから導出することができる。
そこで、上記第四特徴構成の超音波式メータ装置によれば、前記判定対象温度導出手段により、前記判定対象流速値抽出手段で流速値が常に0近傍に維持されている所謂安定状態であると判断したときに、測定流路において流速値が安定状態流速値であったときの温度である判定対象温度を、その判定対象流速値を導出するのに用いた順方向伝播時間及び逆方向伝播時間の一方又は両方を用いて、上記のように容易に算出することができる。
【0032】
本発明に係る超音波式メータ装置の第五特徴構成は、特許請求の範囲の欄の請求項5に記載した如く、上記第一乃至第四特徴構成に加えて、前記異常判定手段が、複数の前記判定対象流速値を、前記判定対象温度を用いて複数の温度域別に分類し、前記温度域別に分類された前記判定対象流速値の前記各温度域間の差に基づいて、前記異常状態を判定するように構成されている点にある。
【0033】
即ち、上記第五特徴構成の超音波式メータ装置によれば、前記異常判定手段により、複数の前記判定対象流速値を前記判定対象温度を用いて例えば低温域と高温域等の複数の温度域別に分類し、両送受波器の超音波の送信及び受信における遅延時間が経年的に変化すると想定される高温域等の温度域における判定対象流速値と、前記遅延時間が経年的にあまり変化しないと想定される低温域等の温度域における判定対象流速値との差を分析することで、その差が許容差以上となったときに、前記両遅延時間の温度依存性が変化し、前記測定手段で測定した流速値が測定流路の実際の流速又は流量を正確に表すものでない可能性があるとして、異常状態を判定することができる。
【0034】
また、上記第三特徴構成の如く、前記判定対象流速値抽出手段で常に0近傍に維持されている判定対象流速値を抽出する場合には、前記異常判定手段は、両送受波器の超音波の送信及び受信における遅延時間が経年的に変化すると想定される高温域等の温度域における判定対象流速値が、前記遅延時間が経年的に変化しておらず測定流路に流体が流通していない安定状態のときの前記判定対象流速値、即ち0近傍であるか否かを判定し、高温域等の温度域における判定対象流速値が0とは乖離した値であるときに前記異常状態であると判定することもできる。
【0035】
【発明の実施の形態】
本発明に係る超音波式メータ装置の実施の形態について、図面に基づいて説明する。
図1には、本実施形態の超音波式メータ装置1(以下、本発明装置1と略称する。)により測定流路2を流れるガスfの流量測定を実施している状況が示されている。
流量測定対象流体であるガスfは、導入部3から測定流路2に流入し、導出部4より排出される。即ち、同図において、測定流路2でのガスfの流れ方向は、左から右に向かう方向である。
【0036】
本発明装置1は、測定流路2の上流側と下流側とに設置される一対の送受波器5と、この送受波器5に接続される制御装置10とから構成されている。
【0037】
測定流路2の上流側に設置された送受波器5aと、測定流路2の下流側に設置された送受波器5bとは、距離dを隔てた位置に互いに対向して設置され、その対向方向と測定流路2を流通するガスfの流れ方向とが角度θをなす。
【0038】
また、この送受波器5は、制御装置10から電気信号である入力信号が入力されると音響信号である超音波を他方の送受波器5側に向けて送信し、更に、他方の送受波器5側から送信された超音波を受信すると、電気信号である出力信号を制御装置10に出力するように構成されている。
【0039】
制御装置10は、タイマ17、メモリ又はハードディスク等からなる記憶部18、液晶表示部等からなる出力部19等を備えたコンピュータで構成されており、そのコンピュータが所定のプログラムを実行することにより、後述の伝播時間計測手段11、測定手段12、判定対象流速値抽出手段13、判定対象温度導出手段14、異常判定手段15等の様々な手段として機能する。
【0040】
制御装置10が機能する伝播時間計測手段11は、上流側の送受波器5aに入力信号を入力してから下流側の送受波器5bで出力信号が出力されるまでの時間から順方向の遅延時間を差し引いた時間を、測定流路2を流れるガスfの流れ方向に沿った順方向で超音波が送受波器5間を伝播する順方向伝播時間t1として計測すると共に、下流側の送受波器5bに入力信号を入力してから上流側の送受波器5aで出力信号が出力されるまでの時間からから逆方向の遅延時間を差し引いた時間を、前記順方向とは逆の逆方向で超音波が送受波器5間を伝播する逆方向伝播時間t2として計測するように構成されている。
尚、上記順方向及び逆方向の遅延時間とは、順方向及び逆方向の夫々において、一方の送受波器における入力信号を入力してから実際に音響信号である超音波を送信するまでの送信遅延時間と、他方の送受波器における音響信号である超音波を受信してから出力信号を出力するまでの受信遅延時間との和であり、これら遅延時間は、本発明装置1の製造時に計測されたものである。
【0041】
また、伝播時間計測手段11は、図2の処理フロー図に示すように、タイマ17を用いて、このような順方向伝播時間t1と逆方向伝播時間t2との計測を、2秒間隔(測定時間間隔の一例)で実行する(#101)。
また、制御装置10が機能する測定手段12は、伝播時間計測手段11により計測され記憶部18に格納された順方向伝播時間t1と逆方向伝播時間t2とから、下記の数3の式を用いて、測定流路2を流れるガスfの瞬時流速vを求め、その瞬時流速v自身又はその瞬時流速vに測定流路2の断面積を乗じて求めた瞬時流量を瞬時流速値qとして導出する(#102)。
そして、上記伝播時間計測手段11で計測された順方向伝播時間t1及び方向伝播時間t2、上記測定手段12で導出された瞬時流速値qは、2秒間隔で記憶部18に格納される。
【0042】
【数3】
v=v’/cosθ=(d/2cosθ)・{(1/t1)−(1/t2)}
【0043】
また、測定手段12は、図3の処理フロー図に示すように、30秒(設定時間の一例)毎に、その30秒間内で2秒間隔で導出した15個の上記瞬時流速値qの平均値を流速値qaveとして導出すると共に、その30秒間内の複数の瞬時流速値qの中から、最大値qmaxと最小値qminとを抽出する(#201)。
【0044】
次に、制御装置10が機能する判定対象流速値抽出手段13は、測定手段12で導出した流速値qaveが所定の範囲内に安定状態に維持されているか否かを判定し、安定状態であると判定したときに、その流速値qaveを判定対象流速値Qとして抽出する。
即ち、判定対象流速値抽出手段13は、先ず、測定手段12で30秒毎に導出される流速値qaveが測定流路2の下流側に接続されたガス機器が運転時に例えば口火等で消費されるガスの最小流量以下である10L/h程度の下限界設定流量に相当する設定流速値A未満の範囲内である安定状態であるかを判定する(#202)。
【0045】
更に、判定対象流速値抽出手段13は、上記流速値qaveが設定流速値A未満であると判定したときには、測定手段12で導出した最大値qmaxと最小値qminとの差である変化量が、非常に小さい3L/h等に相当する所定の設定変化量B未満であるかを判定する(#203)。
【0046】
そして、判定対象流速値抽出手段13は、上記流速値qaveが上記設定流速値A未満であり、且つ、上記変化量が所定の設定変化量B未満である状態を、その30秒内において常にガス機器の運転が停止されており測定流路2のガスfの瞬時流速値qが常に0近傍に安定状態に維持されていると判定し、そのときの流速値qaveを判定対象流速値Qとして抽出する(#204)。
【0047】
制御装置10が機能する判定対象温度導出手段14は、上記のように判定対象流速値抽出手段13で流速値qaveを判定対象流速値Qとして抽出したときに、測定流路2の温度である判定対象温度Tを導出する(#205)。
【0048】
詳しくは、判定対象温度導出手段14は、判定対象流速値抽出手段13で判定対象流速値を抽出したときに、その判定対象流速値Qの導出に用いた順方向伝播時間t1と逆方向伝播時間t2とを記憶部18から抽出し、その順方向伝播時間t1と逆方向伝播時間t2とを用いて、上記判定対象温度Tを導出する。
【0049】
即ち、測定流路2のガスfの瞬時流速値qが常に0近傍に安定状態に維持されているときに計測した順方向伝播時間t1と逆方向伝播時間t2とは、夫々、下記の数4に示す式のように、送受波器間の距離dを測定流路における音速cで割った値となる。
【0050】
【数4】
t1=d/c
t2=d/c
【0051】
一方、この音速cは、下記の数5に示す式のように、測定流路2の温度Tの関数である。
【0052】
【数5】
c=392.2+0.64・T
【0053】
従って、判定対象温度導出手段14は、下記の数6に示す式のように、順方向伝播時間t1と逆方向伝播時間t2との一方又は両方を用いて判定対象温度Tを導出することができる。
【0054】
【数6】
T={d/t1−392.2}/0.64
={d/t2−392.2}/0.64
=[(d/2)・{(1/t1)+(1/t2)}]/0.64
【0055】
尚、判定対象温度導出手段14を、測定流路2に設けた温度センサにより判定対象温度Tを検出するように構成しても構わない。
【0056】
更に、制御装置10は、詳細については後述するが、異常判定手段15により、上記判定対象流速値Qと上記判定対象温度Tとの判定対象データ(Q,T)を、記憶部18に格納すると共に、判定対象温度Tを用いて複数の温度域に分類する分類処理を実行して(#206)、本処理フローを終了する。
【0057】
次に、制御装置10が機能する異常判定手段15は、記憶部18に格納されている判定対象流速値Qと判定対象温度Tとが許容程度以上の相関がある場合に、両送受波器5の送信遅延時間と受信遅延時間の温度依存性が変化し、測定手段12で測定した瞬時流速値qが測定流路2を流れるガスfの実際の瞬時流速値を正確に表すものでない可能性があるとして、異常状態を判定するように構成されており、その詳細な処理フローを、図4及び図5に基づいて説明する。
【0058】
先ず、異常判定手段15は、前述のように、30秒(設定時間の一例)毎に上記判定対象データ(Q,T)を導出したときに、図4に示す分類処理を実行する。
【0059】
即ち、異常判定手段15は、先ず、判定対象データ(Q,T)の判定対象温度Tを参照して、この判定対象データ(Q,T)を、第1温度域(T≦T1),第2温度域(T1<T≦T2),・・・,第n−1温度域(Tn−2<T≦Tn−1),第n温度域(Tn−1<T)のn個の温度域に分類する(#301〜#304)。
【0060】
そして、上記温度域別に分類された上記判定対象流速値Qの平均値Q1,Q2,Qn-1、Qnと、温度域別に分類された判定対象データの個数N1,N2,Nn-1、Nnとを計算し(#305〜#308)、各温度域における上記判定対象流速値Qの平均値Q1,Q2,Qn-1、Qnと上記個数N1,N2,Nn-1、Nnとを、記憶部18に構築された温度域別平均値及びデータ個数のデータテーブルに登録及び更新する(#309)。
【0061】
尚、上記判定対象データを分類する複数の温度域は、例えば、判定対象温度Tが40℃未満等の所定温度未満の第一温度域と当該所定温度以上の第二温度域との2つの温度域であっても、例えば、−10℃〜60℃等の所定温度範囲を10℃等の所定温度間隔で区切った複数の温度域であっても構わない。
【0062】
更に、異常判定手段15は、所定の判定期間毎に、上記のように計算され、記憶部18に格納された各温度域における上記平均値Q1,Q2,Qn-1、Qnと上記個数N1,N2,Nn-1、Nnとを用いて、図5に示す異常状態判定処理を実行する。
【0063】
即ち、異常判定手段15は、先ず、1ヶ月等の所定の判定期間終了時に、記憶部18に構築されたデータテーブルから、各温度域における上記平均値と上記個数とのデータ(Q1,N1),(Q2,N2),(Qn-1,Nn-1),(Qn,Nn)を抽出する(#401)。
【0064】
そして、各温度域のデータから、十分な個数のデータが存在する低温域の平均値QXと、高温域の平均値QYデータとを抽出する。
即ち、十分な個数のデータが存在する低温域の平均値QXを抽出するために、Xを1から順に1つずつ増加させながら(#402,#406)、NXが100等の所定の設定個数C以上であるかを判定し(#403)、個数NXが上記設定個数C以上であった平均値QXを低温域の平均値とする。
一方、十分な個数のデータが存在する高温域の平均値QYを抽出するために、Yをnから順に1つずつ減少させながら(#407,#410)、NYが100等の所定の設定個数C以上であるかを判定し(#408)、個数NYが上記設定個数C以上であった平均値QYを高温域の平均値とする。
【0065】
また、上記低温域の低温域の平均値QX及び高温域の平均値QYを抽出するに、Xがnとなったとき、又は、Yが1となったときには、各温度域のデータに、十分な個数のデータが存在せず、精度良く異常判定を行うことができないとして、本異常判定処理を終了する(#405,#409)。
【0066】
また、上記低温域の低温域の平均値QX及び高温域の平均値QYを抽出しても、X=Yである場合には、低温域の平均値QXと高温域の平均値QYとは同じデータであり、比較することができないものとして、本異常判定処理を終了する(#411)。
【0067】
次に、異常判定手段15は、異なる温度域における判定対象流速値Qの平均値QX,QYを抽出したときに、上記のように導出した高温域の平均値QYと、低温域の平均値QXとの差の絶対値Qdを求め(#412)、その絶対値Qdが3L/h等に相当する所定の許容差D以上であるかを判定し(#413)、その差の絶対値Qdが許容差D以上である場合には、低温域の判定対象流速値Qの平均値QXと、高温域の判定対象流速値Qの平均値QYとが、温度に依存して3L/h等に相当する所定の許容差D以上の差を有するので、前記両送受波器5の上記遅延時間の温度依存性が変化し、高温域において、測定流路2においてガスfが流通していないときの測定手段12で計測される瞬時流速値q、所謂ゼロ点がずれており、測定手段12で測定される瞬時流速値q等が正確な値でない可能性があるとして、異常状態と判定し、例えば、出力部19に異常状態である旨を出力するなどして、異常通報処理を行う(#415)。
【0068】
一方、上記絶対値Qdが許容差D未満であり、低温域の判定対象流速値Qの平均値QXと、高温域の判定対象流速値Qの平均値QYとがほぼ同じ値である場合には、各両送受波器5の上記遅延時間の温度依存性が近似しており、測定手段12で測定される瞬時流速値q等が正確な値であると判断できるので、上記異常通報処理を実行せずに、これまで利用したデータを全て0にリセットし(#414)、本異常判定処理を終了する。
【図面の簡単な説明】
【図1】 超音波式メータ装置により流速値測定を実施している状況を示す図
【図2】 伝播時間計測及び瞬時流速値導出処理を示す処理フロー図
【図3】 判定対象流速値及び判定対象温度導出処理を示す処理フロー図
【図4】 分類処理を示す処理フロー図
【図5】 異常状態判定処理を示す処理フロー図
【符号の説明】
1:超音波式メータ装置(本発明装置)
2:測定流路
5:送受波器
104:制御装置
11:伝播時間計測手段
12:測定手段
13:判定対象流速値抽出手段
14:判定対象温度導出手段
15:異常判定手段
18:記憶部
f:ガス(流体)
[0001]
BACKGROUND OF THE INVENTION
  In the present invention, a pair of transducers are installed on the upstream side and the downstream side of a measurement channel through which fluid flows, and ultrasonic waves are transmitted between the transducers in the forward direction along the flow direction of the fluid flowing through the measurement channel. Propagation time measuring means for measuring a forward propagation time for propagating in the reverse direction and a backward propagation time for ultrasonic waves to propagate between the transducers in a direction opposite to the forward direction, and the propagation time measuring means The present invention relates to an ultrasonic meter device provided with a measuring means for deriving a flow velocity value related to the flow velocity of the fluid flowing through the measurement flow path from the forward propagation time and the backward propagation time measured by working.
[0002]
[Prior art]
  Conventionally, as a meter device used for a gas meter, a membrane type is mainly used. However, due to its convenience and the like, today, an ultrasonic flow rate or instantaneous flow rate of a fluid is measured using ultrasonic waves. The use of a sonic meter device has been proposed.
[0003]
  Such an ultrasonic meter device is provided with a pair of transducers on the upstream side and the downstream side of a measurement channel through which a fluid flows, and ultrasonic waves are transmitted in the forward direction along the fluid flow direction by the propagation time measuring means. Measures the forward propagation time t1 for propagation between the transducers and the backward propagation time t2 for the ultrasonic wave to propagate between the transducers in the opposite direction to the forward direction. The forward propagation time t1 and the backward propagation time t2 measured in this way are v, the flow velocity of the fluid along the forward direction of the measurement channel, and c the velocity of sound in the fluid in the measurement channel, When the distance between the transmitter and the receiver is d, the following equation 1 is obtained.
[0004]
[Expression 1]
  t1 = d / (c + v)
  t2 = d / (cv)
[0005]
  Therefore, the flow velocity v of the fluid flowing through the measurement channel can be obtained by the following equation 2 regardless of the sound velocity c.
[0006]
[Expression 2]
  v = (d / 2) · {(1 / t1) − (1 / t2)}
[0007]
  In other words, the measuring means has a flow rate obtained by the above equation (2) or a flow rate obtained by multiplying the flow rate by the cross-sectional area of the measurement flow channel at a predetermined measurement time interval such as a 2-second interval. For example, the flow rate value within a predetermined use period can be obtained from the flow rate value of the measurement time interval derived as described above.
[0008]
  In the ultrasonic meter device, the propagation time measuring means is from when an input signal that is an electrical signal is input to one transducer, to when an output signal that is an electrical signal is output from the other transducer. From the arrival time of, the transmission delay time from the input of the input signal in one transducer to the actual transmission of the ultrasonic wave as the acoustic signal and the ultrasonic wave as the acoustic signal in the other transducer Then, the time obtained by subtracting the delay time that is the sum of the reception delay time until the output signal is output is measured as the propagation time for the ultrasonic wave to propagate between the transducers.
[0009]
  And it is known that the delay time has temperature dependency, and the temperature dependency is caused by a subtle difference in manufacturing of the transducer.
  For this reason, in the ultrasonic meter device, a pair of transducers whose temperature dependence of the delay time is approximated is selected and installed, and the measurement means performs accurate measurement regardless of temperature. be able to.
[0010]
[Problems to be solved by the invention]
  However, in the process of using the ultrasonic meter device, there is a concern that the temperature dependency of the delay time may change over time due to deterioration of the transmitter / receiver, and the like. Due to changes over time, accurate measurement may not be possible.
[0011]
  Therefore, in view of the above-described circumstances, an object of the present invention is to realize an abnormal state determination technique for easily and accurately determining an abnormal state in which a measurement error occurs due to a temperature-dependent change in delay time.
[0012]
[Means for Solving the Problems]
  In order to achieve this object, the first characteristic configuration of the ultrasonic meter device according to the present invention is, as described in claim 1 of the claims, from the flow velocity value derived by the measuring means, A determination target flow velocity value extracting means for extracting a determination target flow velocity value maintained within a predetermined range, and a temperature of the measurement channel corresponding to the determination target flow velocity value extracted by the determination target flow velocity value extraction means A determination target temperature deriving means for deriving a determination target temperature;The delay time of the transducer is aged Based on the determination target flow velocity value corresponding to the determination target temperature in the specific temperature range that changes toIt is in the point provided with the abnormal condition determination means which determines an abnormal condition.
[0013]
  As described above in the section of the prior art, when the temperature dependence of the transmission delay time and the reception delay time in each transducer is close to each other, the measurement is performed regardless of the temperature of the measurement channel. The flow velocity value indicating the flow velocity or the flow rate measured by the means accurately indicates the flow velocity value of the fluid flowing through the measurement channel.
  However, when the temperature dependence of the delay time in each transducer is no longer approximate to each other, for example, the flow velocity value measured by the measurement means when the temperature of the measurement channel becomes a specific temperature range, The flow velocity or flow rate of the fluid flowing through the measurement channel may not be accurately indicated.
[0014]
  In addition, the inventors of the present application conducted an endurance test for a predetermined period using such an ultrasonic meter device, and the fluid in the measurement channel is in a non-flowing state (that is, no fluid is flowing through the measurement channel). In the state), before and after the endurance test, in the forward and reverse directions, when an input signal was input to one transducer, an output signal that was an electrical signal was output from the other transducer. The difference between the respective delay times in the forward direction and the reverse direction (hereinafter referred to as offsets) obtained as the difference between the respective arrival times until the time is set in a plurality of temperature ranges in which the temperature of the measurement channel is different from each other By measuring each and comparing each offset before and after the endurance test in each temperature range, it was confirmed that the temperature dependence of the transmission delay time and the reception delay time in each transducer changed.
[0015]
  That is, in the low temperature range where the temperature of the measurement channel is about −20 ° C. to 20 ° C., the offset before and after the endurance test was not substantially changed, whereas the temperature of the measurement channel is a high temperature of about 60 ° C. In the region, it was confirmed that the offset before and after the durability test was changed by an amount corresponding to about 50 L / h in terms of flow rate. From this, it can be said that the temperature dependence of the delay time has changed over time, and in particular, the delay time has changed when the temperature of the measurement channel is in the high temperature range.
[0016]
  And, the inventors of the present invention change the temperature dependence of the delay time over time, in particular, the delay time in a specific temperature range changes over time, and the delay time in other temperature ranges almost changes over time. In view of the above, the present invention relating to an abnormal state determination technique for simply and accurately determining an abnormal state in which a measurement error occurs due to a temperature-dependent change in delay time is completed.
[0017]
  That is, according to the ultrasonic meter device having the above first characteristic configuration, the flow velocity value of the fluid in the measurement flow path is maintained in a stable state within a predetermined range such as near 0 by the determination target flow velocity value extracting means. When it is recognized that the flow rate has been determined, the flow velocity value derived by the measurement means is extracted as the determination target flow velocity value. On the other hand, the temperature of the measurement channel corresponding to the determination target flow velocity value extracted by the determination target flow velocity value extraction unit, that is, the flow velocity value of the measurement channel is maintained within a predetermined range by the determination target temperature deriving unit. The temperature at the time can be derived as the determination target temperature.
[0018]
  The determination target flow velocity value obtained in this manner is between the transmitter and the receiver measured by using the propagation time measurement means when the flow velocity value of the measurement channel is maintained in a stable state within a predetermined range. Is derived on the basis of the forward propagation time and the backward propagation time of the ultrasonic wave. Therefore, when the temperature dependency of both delay times is relatively approximate to the initial state, the determination target flow velocity value should be a value that hardly depends on the determination target temperature. When the temperature dependency of the is changed, the determination target flow velocity value is a value dependent on the determination target temperature.
[0019]
  Therefore, the abnormality determination means analyzes the correlation between the determination target flow velocity value and the determination target temperature in the stable state obtained as described above, for example, a difference between at least two determination target flow velocity values having different determination target temperatures. When the determination target flow velocity value and the determination target temperature have a correlation more than an allowable level, such as when the difference is more than a tolerance, as described above, the temperature dependency of both delay times changes. The abnormal state in which the flow velocity value measured by the measurement means may not accurately represent the flow velocity or flow rate of the fluid flowing through the measurement flow path can be determined.
[0020]
  Therefore, to realize an ultrasonic flow meter that can easily and accurately determine an abnormal state in which a measurement error occurs due to a temperature-dependent change in delay time in transmission and reception of ultrasonic waves of both transducers. Can do.
[0021]
  The second characteristic configuration of the ultrasonic meter device according to the present invention is that, in addition to the first characteristic configuration, the measuring means is within a predetermined set time as described in claim 2 in the claims. The average value of the instantaneous flow velocity values derived by operating the propagation time measuring means at predetermined measurement time intervals is derived as the flow velocity value.
[0022]
  The flow velocity value of the measurement channel may be in an unstable state to which relatively high-frequency noise is added due to fluid pressure fluctuation, etc., and the determination used for the abnormal state determination from such a flow velocity value. When the target flow velocity value is extracted, there is a concern that the abnormal state is erroneously determined due to the fluctuation of the instantaneous value due to the noise.
[0023]
  Therefore, according to the ultrasonic meter device having the second characteristic configuration, the instantaneous flow velocity of the fluid flowing through the measurement flow path by using the measurement means by using the pre-propagation time measurement means at the measurement time interval such as an interval of 2 seconds. Alternatively, an instantaneous flow velocity value indicating an instantaneous flow rate is derived, and at each set time such as 30 seconds, an average value of instantaneous flow velocity values derived within the set time is derived as a flow velocity value. The flow velocity value is relatively stable with the high frequency noise cancelled. Therefore, the abnormality determination means can accurately determine the abnormal state by avoiding the erroneous determination using the determination target flow velocity value which is a stable flow velocity value.
[0024]
  The third characteristic configuration of the ultrasonic meter device according to the present invention is connected to the downstream side of the measurement flow channel in addition to the second characteristic configuration, as described in claim 3 in the claims. When the minimum flow rate of the fluid consumed during operation of the consumer device is equal to or higher than a predetermined lower limit flow rate, the measurement means derives the maximum value and the minimum value of the plurality of instantaneous flow velocity values together with the flow velocity value. The determination target flow velocity value extracting means is configured such that the flow velocity value derived by the measuring device is less than a set flow velocity value corresponding to the lower limit flow rate, and the maximum value derived by the measuring device is When the amount of change, which is the difference from the minimum value, is less than a predetermined set amount of change, the flow rate value is extracted as the determination target flow rate value.
[0025]
  In such an ultrasonic meter device, particularly an ultrasonic meter device used in a gas meter provided in each home, etc., the minimum flow rate of gas consumed by a consumer device such as a gas device connected to the downstream side of the measurement channel during operation For example, the minimum flow rate of the gas consumed by the ignition or the like may be equal to or higher than a predetermined lower limit flow rate such as 10 L / h.
[0026]
  If the flow rate is lower than the set flow rate value corresponding to the lower limit set flow rate below the minimum flow rate, there is a low possibility that the downstream consumer device is operating, and therefore the fluid is circulating in the measurement channel. There is a high possibility that the flow velocity value of the actual measurement channel is zero.
[0027]
  Further, when the measuring means derives an average value of a plurality of instantaneous flow velocity values at a predetermined set time as a flow velocity value, even if the flow velocity value is less than the set flow velocity value as described above, the set time In some of the time zones, the device may be in an operating state and fluid may have flowed through the measurement channel.
[0028]
  Therefore, according to the ultrasonic meter device of the third characteristic configuration, the consumption device in which the flow velocity value derived by the measurement means is connected to the downstream side of the measurement flow path by the determination target flow velocity value extraction means. Of the instantaneous flow velocity value within each set time that is less than the set flow velocity value corresponding to the lower limit set flow rate that is equal to or lower than the minimum flow rate of the fluid consumed during the operation and is derived by the measurement means corresponding to the flow velocity value. When the difference between the maximum and minimum values, that is, the amount of change in the instantaneous flow velocity value within the set time is less than the very small set change amount, the operation of the device is always stopped within the set time, Assuming that the flow velocity value is always maintained near 0, the flow velocity value can be extracted as the determination target flow velocity value.
[0029]
  Therefore, the measurement error of the measuring means occurs due to the temperature dependence of the delay time in the transmission and reception of the ultrasonic waves of both transducers, and the flow velocity value of the measurement channel is maintained in a stable state almost zero. Even if the flow velocity value measured by the measurement means is a value slightly deviating from 0, the determination target flow velocity value extraction means uses the flow velocity value, the maximum value, and the minimum value, and relatively accurately The determination target flow velocity value can be extracted.
[0030]
  According to a fourth characteristic configuration of the ultrasonic meter device according to the present invention, in addition to the third characteristic configuration, the determination target temperature deriving means includes the determination The determination target temperature is derived using one or both of the forward propagation time and the backward propagation time used to derive the target flow velocity value.
[0031]
  When the actual flow velocity or flow rate of the fluid in the measurement channel is maintained in the vicinity of 0, the forward propagation time or the backward propagation time measured by the propagation time measuring means at that time is the column of the prior art described above. As shown in the equation shown in Equation 1, the distance between the transmitter and the receiver is divided by the speed of sound in the measurement channel. Further, since this speed of sound is a function of the temperature of the measurement channel, the fluid flows. The determination target temperature of the measurement flow channel when not measured can be derived from the forward propagation time or reverse propagation time and the distance between the transmission and reception waves.
  Therefore, according to the ultrasonic meter device having the fourth characteristic configuration, the determination target temperature deriving unit is in a so-called stable state in which the flow velocity value is always maintained in the vicinity of 0 by the determination target flow velocity value extraction unit. When judged, the forward propagation time and backward propagation time used to derive the judgment target flow velocity value, which is the temperature when the flow velocity value in the measurement channel was the steady state flow velocity value, Using one or both of the above, it can be easily calculated as described above.
[0032]
  The fifth feature configuration of the ultrasonic meter device according to the present invention is that, in addition to the first to fourth feature configurations, the abnormality determining means includes a plurality of abnormality determining means as described in claim 5 of the claims. The determination target flow velocity value is classified into a plurality of temperature ranges using the determination target temperature, and the abnormal state is based on a difference between the temperature ranges of the determination target flow velocity values classified according to the temperature ranges. It is in the point comprised so that it may determine.
[0033]
  That is, according to the ultrasonic meter device of the fifth characteristic configuration, the abnormality determination unit converts a plurality of determination target flow velocity values into a plurality of temperature ranges such as a low temperature range and a high temperature range using the determination target temperature. Separately categorized, the delay time in the transmission and reception of ultrasonic waves of both transducers is assumed to change over time, and the target flow velocity value in a temperature range such as a high temperature range, and the delay time does not change much over time. By analyzing the difference from the flow velocity value to be judged in the temperature range such as the low temperature range, the temperature dependence of both delay times changes when the difference exceeds the tolerance, and the measurement The abnormal state can be determined on the assumption that the flow velocity value measured by the means may not accurately represent the actual flow velocity or flow rate of the measurement channel.
[0034]
  Further, as in the third feature configuration, when the determination target flow velocity value extraction unit extracts the determination target flow velocity value that is always maintained near 0, the abnormality determination unit includes the ultrasonic waves of both transducers. The flow velocity value to be judged in a temperature range such as a high temperature range in which the delay time in transmission and reception of the sensor is assumed to change over time is not changed over time, and the fluid is circulating in the measurement channel. It is determined whether or not the determination target flow velocity value in a stable state, that is, near zero, and the determination target flow velocity value in a temperature region such as a high temperature region is a value deviating from zero in the abnormal state. It can also be determined that there is.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
  An embodiment of an ultrasonic meter device according to the present invention will be described with reference to the drawings.
  FIG. 1 shows a situation in which the flow rate measurement of the gas f flowing through the measurement flow path 2 is performed by the ultrasonic meter device 1 of the present embodiment (hereinafter simply referred to as the device 1 of the present invention). .
  A gas f that is a flow rate measurement target fluid flows into the measurement channel 2 from the introduction unit 3 and is discharged from the derivation unit 4. That is, in the same figure, the flow direction of the gas f in the measurement flow path 2 is a direction from left to right.
[0036]
  The device 1 of the present invention includes a pair of transducers 5 installed on the upstream side and the downstream side of the measurement channel 2 and a control device 10 connected to the transducers 5.
[0037]
  The transducer 5a installed upstream of the measurement channel 2 and the transducer 5b installed downstream of the measurement channel 2 are installed opposite to each other at a distance d. The facing direction and the flow direction of the gas f flowing through the measurement channel 2 form an angle θ.
[0038]
  In addition, when an input signal, which is an electrical signal, is input from the control device 10, the transducer 5 transmits an ultrasonic wave, which is an acoustic signal, toward the other transducer 5 side, and further, the other transducer is received. When an ultrasonic wave transmitted from the device 5 side is received, an output signal that is an electric signal is output to the control device 10.
[0039]
  The control device 10 is configured by a computer including a timer 17, a storage unit 18 including a memory or a hard disk, an output unit 19 including a liquid crystal display unit, and the like, and when the computer executes a predetermined program, It functions as various means such as a propagation time measurement means 11, a measurement means 12, a determination target flow velocity value extraction means 13, a determination target temperature derivation means 14, an abnormality determination means 15 and the like which will be described later.
[0040]
  The propagation time measuring means 11 in which the control device 10 functions is a forward delay from the time from when the input signal is input to the upstream transducer 5a to when the output signal is output from the downstream transducer 5b. The time obtained by subtracting the time is measured as a forward propagation time t1 in which the ultrasonic wave propagates between the transducers 5 in the forward direction along the flow direction of the gas f flowing through the measurement flow path 2, and the downstream transmission / reception wave The time obtained by subtracting the reverse delay time from the time from when the input signal is input to the transmitter 5b until the output signal is output at the upstream transducer 5a is the reverse direction opposite to the forward direction. The ultrasonic wave is configured to be measured as a backward propagation time t <b> 2 for propagating between the transducers 5.
  Note that the forward and reverse delay times are the transmissions from the input of the input signal in one transducer in the forward and reverse directions to the actual transmission of the ultrasonic wave as an acoustic signal. It is the sum of the delay time and the reception delay time from the reception of the ultrasonic wave, which is an acoustic signal in the other transducer, to the output of the output signal. These delay times are measured when the device 1 of the present invention is manufactured. It has been done.
[0041]
  Further, as shown in the process flow diagram of FIG. 2, the propagation time measuring means 11 uses the timer 17 to measure such forward propagation time t1 and backward propagation time t2 at intervals of 2 seconds (measurement). (Example of time interval) is executed (# 101).
  Further, the measuring unit 12 in which the control device 10 functions uses the following formula 3 from the forward propagation time t1 and the backward propagation time t2 measured by the propagation time measuring unit 11 and stored in the storage unit 18. Thus, the instantaneous flow velocity v of the gas f flowing through the measurement flow path 2 is obtained, and the instantaneous flow speed v itself or the instantaneous flow speed v multiplied by the cross-sectional area of the measurement flow path 2 is derived as the instantaneous flow velocity value q. (# 102).
  Then, the forward propagation time t1 and the direction propagation time t2 measured by the propagation time measuring means 11 and the instantaneous flow velocity value q derived by the measuring means 12 are stored in the storage unit 18 at intervals of 2 seconds.
[0042]
[Equation 3]
  v = v ′ / cos θ = (d / 2 cos θ) · {(1 / t1) − (1 / t2)}
[0043]
  In addition, as shown in the process flow diagram of FIG. 3, the measuring means 12 calculates the average of the 15 instantaneous flow velocity values q derived at intervals of 2 seconds within 30 seconds every 30 seconds (an example of the set time). Value is the flow velocity value qaveAnd a maximum value q from a plurality of instantaneous flow velocity values q within 30 seconds.maxAnd the minimum value qminAre extracted (# 201).
[0044]
  Next, the determination target flow velocity value extraction means 13 on which the control device 10 functions is the flow velocity value q derived by the measurement means 12.aveIs maintained in a stable state within a predetermined range, and when it is determined that the state is stable, the flow velocity value qaveIs extracted as the determination target flow velocity value Q.
  That is, the determination target flow velocity value extraction unit 13 firstly calculates a flow velocity value q derived by the measurement unit 12 every 30 seconds.aveIs a range less than the set flow velocity value A corresponding to the lower limit set flow rate of about 10 L / h, which is less than the minimum flow rate of gas consumed by, for example, a spark during operation of the gas equipment connected to the downstream side of the measurement channel 2 It is determined whether the current state is a stable state (# 202).
[0045]
  Further, the determination target flow velocity value extracting means 13 is configured to output the flow velocity value qaveIs determined to be less than the set flow velocity value A, the maximum value q derived by the measuring means 12maxAnd the minimum value qminIt is determined whether the amount of change, which is the difference between the two, is less than a predetermined set change amount B corresponding to a very small 3 L / h or the like (# 203).
[0046]
  Then, the determination target flow velocity value extracting means 13 is configured to output the flow velocity value qaveIs less than the set flow velocity value A and the change amount is less than a predetermined set change amount B, the operation of the gas device is always stopped within 30 seconds, and the gas f in the measurement channel 2 It is determined that the instantaneous flow velocity value q is always kept stable in the vicinity of 0, and the flow velocity value q at that timeaveIs extracted as the determination target flow velocity value Q (# 204).
[0047]
  The determination target temperature deriving unit 14 that the control device 10 functions is the flow velocity value q by the determination target flow rate value extracting unit 13 as described above.aveIs extracted as the determination target flow velocity value Q, the determination target temperature T that is the temperature of the measurement flow path 2 is derived (# 205).
[0048]
  Specifically, when the determination target flow velocity value extraction unit 13 extracts the determination target flow velocity value, the determination target temperature derivation unit 14 uses the forward propagation time t1 and the reverse propagation time used to derive the determination target flow velocity value Q. t2 is extracted from the storage unit 18, and the determination target temperature T is derived using the forward propagation time t1 and the backward propagation time t2.
[0049]
  That is, the forward propagation time t1 and the backward propagation time t2 measured when the instantaneous flow velocity value q of the gas f in the measurement channel 2 is always maintained in a stable state in the vicinity of 0, respectively, As shown in the equation, the distance d between the transducers is divided by the speed of sound c in the measurement channel.
[0050]
[Expression 4]
  t1 = d / c
  t2 = d / c
[0051]
  On the other hand, the sound velocity c is a function of the temperature T of the measurement channel 2 as shown in the following equation (5).
[0052]
[Equation 5]
  c = 392.2 + 0.64 · T
[0053]
  Therefore, the determination target temperature deriving unit 14 can derive the determination target temperature T using one or both of the forward propagation time t1 and the reverse propagation time t2 as shown in the following equation (6). .
[0054]
[Formula 6]
  T = {d / t1-392.2} /0.64
        = {D / t2-392.2} /0.64
        = [(D / 2) · {(1 / t1) + (1 / t2)}] / 0.64
[0055]
  Note that the determination target temperature deriving unit 14 may be configured to detect the determination target temperature T using a temperature sensor provided in the measurement flow path 2.
[0056]
  Furthermore, although the details will be described later, the control device 10 stores the determination target data (Q, T) of the determination target flow velocity value Q and the determination target temperature T in the storage unit 18 by the abnormality determination unit 15. At the same time, a classification process for classifying into a plurality of temperature ranges using the determination target temperature T is executed (# 206), and this processing flow ends.
[0057]
  Next, the abnormality determination means 15 in which the control device 10 functions is used when the determination target flow velocity value Q stored in the storage unit 18 and the determination target temperature T have a correlation more than an acceptable level. There is a possibility that the temperature dependence of the transmission delay time and the reception delay time changes, and the instantaneous flow velocity value q measured by the measuring means 12 does not accurately represent the actual instantaneous flow velocity value of the gas f flowing through the measurement flow path 2. It is assumed that there is an abnormal state, and the detailed processing flow will be described with reference to FIGS. 4 and 5.
[0058]
  First, as described above, the abnormality determination unit 15 executes the classification process shown in FIG. 4 when the determination target data (Q, T) is derived every 30 seconds (an example of a set time).
[0059]
  That is, the abnormality determination means 15 first refers to the determination target temperature T of the determination target data (Q, T), and uses this determination target data (Q, T) as the first temperature range (T ≦ T1), the first 2 temperature ranges (T1 <T ≦ T2),..., Nth temperature range (Tn-2 <T ≦ Tn-1), nth temperature range (Tn-1 <T) (# 301 to # 304).
[0060]
  And the average value Q of the determination target flow velocity values Q classified according to the temperature range1, Q2, Qn-1, QnAnd the number N of judgment target data classified by temperature range1, N2, Nn-1, Nn(# 305 to # 308), and the average value Q of the determination target flow velocity values Q in each temperature range1, Q2, Qn-1, QnAnd the above number N1, N2, Nn-1, NnAre registered and updated in the data table of the average value and the number of data for each temperature range constructed in the storage unit 18 (# 309).
[0061]
  The plurality of temperature ranges for classifying the determination target data are, for example, two temperatures: a first temperature range where the determination target temperature T is less than a predetermined temperature such as less than 40 ° C. and a second temperature range which is equal to or higher than the predetermined temperature. Even if it is a range, for example, it may be a plurality of temperature ranges obtained by dividing a predetermined temperature range such as −10 ° C. to 60 ° C. at predetermined temperature intervals such as 10 ° C.
[0062]
  Further, the abnormality determination unit 15 calculates the average value Q in each temperature range calculated as described above and stored in the storage unit 18 for each predetermined determination period.1, Q2, Qn-1, QnAnd the above number N1, N2, Nn-1, NnAre used to execute the abnormal state determination process shown in FIG.
[0063]
  That is, the abnormality determination unit 15 firstly, at the end of a predetermined determination period such as one month, from the data table constructed in the storage unit 18, the data (Q1, N1), (Q2, N2), (Qn-1, Nn-1), (Qn, Nn) Is extracted (# 401).
[0064]
  Then, from the data in each temperature range, the average value Q in the low temperature range where a sufficient number of data exists.XAnd the average value Q in the high temperature rangeYExtract the data.
  That is, the average value Q in the low temperature range where a sufficient number of data exists.XIn order to extract X, incrementing X one by one from 1 (# 402, # 406), NXIs equal to or greater than a predetermined set number C such as 100 (# 403), and the number NXIs an average value Q that is more than the set number CXIs the average value in the low temperature range.
  On the other hand, the average value Q in the high temperature region where a sufficient number of data existsY, While decreasing Y one by one in order from n (# 407, # 410), NYIs equal to or greater than a predetermined set number C such as 100 (# 408), and the number NYIs an average value Q that is more than the set number CYIs the average value in the high temperature range.
[0065]
  In addition, the average value Q of the low temperature range of the low temperature rangeXAnd average value Q in high temperature rangeYWhen X becomes n or when Y becomes 1, it is assumed that there is not a sufficient number of data in the data in each temperature range, and the abnormality determination cannot be performed with high accuracy. Then, the abnormality determination process ends (# 405, # 409).
[0066]
  In addition, the average value Q of the low temperature range of the low temperature rangeXAnd average value Q in high temperature rangeYIf X = Y, the average value Q in the low temperature range is extracted.XAnd average value Q in high temperature rangeYAre the same data and cannot be compared, and this abnormality determination process is terminated (# 411).
[0067]
  Next, the abnormality determination unit 15 determines the average value Q of the determination target flow velocity values Q in different temperature ranges.X, QYThe average value Q of the high temperature range derived as above whenYAnd average value Q in the low temperature rangeXThe absolute value Qd of the difference is obtained (# 412), and it is determined whether the absolute value Qd is equal to or larger than a predetermined tolerance D corresponding to 3 L / h (# 413). If the tolerance is greater than or equal to D, the average value Q of the determination target flow velocity values Q in the low temperature rangeXAnd average value Q of judgment target flow velocity value Q in high temperature rangeYHas a difference greater than or equal to a predetermined tolerance D corresponding to 3 L / h or the like depending on the temperature, so that the temperature dependence of the delay time of the transducers 5 changes, and the measurement is performed in a high temperature range. The instantaneous flow velocity value q measured by the measurement means 12 when the gas f is not flowing in the flow path 2 is shifted from the so-called zero point, and the instantaneous flow velocity value q measured by the measurement means 12 is not an accurate value. It is determined that there is a possibility that it is an abnormal state, and for example, an abnormality notification process is performed by outputting a message indicating that the state is abnormal to the output unit 19 (# 415).
[0068]
  On the other hand, the absolute value Qd is less than the tolerance D, and the average value Q of the determination target flow velocity values Q in the low temperature range.XAnd average value Q of judgment target flow velocity value Q in high temperature rangeYAre substantially the same value, the temperature dependence of the delay time of each transducer 5 is approximate, and the instantaneous flow velocity value q measured by the measuring means 12 is an accurate value. Since the determination can be made, all the data used so far is reset to 0 without executing the abnormality notification process (# 414), and the abnormality determination process is terminated.
[Brief description of the drawings]
FIG. 1 is a diagram showing a situation where a flow velocity value is measured by an ultrasonic meter device.
FIG. 2 is a processing flow diagram showing propagation time measurement and instantaneous flow velocity value derivation processing.
FIG. 3 is a process flow diagram showing a determination target flow velocity value and a determination target temperature derivation process.
FIG. 4 is a processing flowchart showing classification processing.
FIG. 5 is a process flow diagram showing an abnormal state determination process.
[Explanation of symbols]
1: Ultrasonic meter device (device of the present invention)
2: Measurement channel
5: Transceiver
104: Control device
11: Propagation time measurement means
12: Measuring means
13: Determination target flow velocity value extraction means
14: Determination target temperature deriving means
15: Abnormality determination means
18: Storage unit
f: Gas (fluid)

Claims (5)

流体が流れる測定流路の上流側と下流側に一対の送受波器を設置し、前記測定流路を流れる流体の流れ方向に沿った順方向で超音波が前記送受波器間を伝播する順方向伝播時間と、前記順方向とは逆の逆方向で超音波が前記送受波器間を伝播する逆方向伝播時間とを計測する伝播時間計測手段と、前記伝播時間計測手段を働かせて計測した前記順方向伝播時間と前記逆方向伝播時間とから前記測定流路を流れる流体の流速に関する流速値を導出する測定手段を備えた超音波式メータ装置であって、
前記測定手段で導出された前記流速値から、所定の範囲内に維持されている判定対象流速値を抽出する判定対象流速値抽出手段と、
前記判定対象流速値抽出手段で抽出した前記判定対象流速値に対応する前記測定流路の温度である判定対象温度を導出する判定対象温度導出手段と、
前記送受波器の遅延時間が経年的に変化する特定温度域での前記判定対象温度に対応する前記判定対象流速値に基づいて、異常状態を判定する異常状態判定手段とを備えた超音波式メータ装置。
A pair of transducers are installed on the upstream side and downstream side of the measurement channel through which the fluid flows, and the order in which the ultrasonic waves propagate between the transducers in the forward direction along the flow direction of the fluid flowing through the measurement channel. Propagation time measurement means for measuring the direction propagation time and the reverse propagation time in which the ultrasonic wave propagates between the transducers in the reverse direction opposite to the forward direction, and the measurement was performed by using the propagation time measurement means An ultrasonic meter device comprising measurement means for deriving a flow velocity value related to the flow velocity of the fluid flowing through the measurement flow path from the forward propagation time and the backward propagation time,
A determination target flow velocity value extraction means for extracting a determination target flow velocity value maintained within a predetermined range from the flow velocity value derived by the measurement means;
Determination target temperature deriving means for deriving a determination target temperature that is the temperature of the measurement channel corresponding to the determination target flow velocity value extracted by the determination target flow velocity value extraction means;
An ultrasonic type comprising an abnormal state determination means for determining an abnormal state based on the determination target flow velocity value corresponding to the determination target temperature in a specific temperature range in which the delay time of the transducer changes with time. Meter device.
前記測定手段が、所定の設定時間内に所定の測定時間間隔で前記伝播時間計測手段を働かせて導出した瞬時流速値の平均値を前記流速値として導出するように構成されている請求項1に記載の超音波式メータ装置。  2. The apparatus according to claim 1, wherein the measurement unit is configured to derive an average value of instantaneous flow velocity values derived by operating the propagation time measurement unit at predetermined measurement time intervals within a predetermined set time as the flow velocity value. The ultrasonic meter device according to the description. 前記測定流路の下流側に接続された消費機器の運転時に消費される流体の最小流量が所定の下限界流量以上である場合において、
前記測定手段が、前記流速値と共に、前記複数の瞬時流速値の最大値及び最小値を導出するように構成され、
前記判定対象流速値抽出手段が、前記測定手段で導出した前記流速値が前記下限界流量に相当する設定流速値未満であり、且つ、前記測定手段で導出した前記最大値と前記最小値との差である変化量が所定の設定変化量未満である場合に、前記流速値を前記判定対象流速値として抽出するように構成されている請求項2に記載の超音波式メータ装置。
In the case where the minimum flow rate of the fluid consumed during operation of the consumer device connected to the downstream side of the measurement channel is equal to or higher than a predetermined lower limit flow rate,
The measuring means is configured to derive a maximum value and a minimum value of the plurality of instantaneous flow velocity values together with the flow velocity value;
The determination target flow velocity value extraction means is such that the flow velocity value derived by the measurement means is less than a set flow velocity value corresponding to the lower limit flow rate, and the maximum value and the minimum value derived by the measurement means The ultrasonic meter device according to claim 2, wherein the flow rate value is extracted as the determination target flow rate value when a change amount as a difference is less than a predetermined set change amount.
前記判定対象温度導出手段が、前記判定対象流速値を導出するのに用いた前記順方向伝播時間と前記逆方向伝播時間との一方又は両方を用いて前記判定対象温度を導出するように構成されている請求項3に記載の超音波式メータ装置。  The determination target temperature deriving means is configured to derive the determination target temperature using one or both of the forward propagation time and the backward propagation time used to derive the determination target flow velocity value. The ultrasonic meter device according to claim 3. 前記異常判定手段が、複数の前記判定対象流速値を、前記判定対象温度を用いて複数の温度域別に分類し、前記温度域別に分類された前記判定対象流速値の前記各温度域間の差に基づいて、前記異常状態を判定するように構成されている請求項1から4の何れか1項に記載の超音波式メータ装置。  The abnormality determining means classifies the plurality of determination target flow velocity values into a plurality of temperature ranges using the determination target temperatures, and the difference between the temperature ranges in the determination target flow velocity values classified according to the temperature ranges. The ultrasonic meter device according to any one of claims 1 to 4, wherein the ultrasonic meter device is configured to determine the abnormal state based on the condition.
JP2002242178A 2002-08-22 2002-08-22 Ultrasonic meter device Expired - Fee Related JP4059733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242178A JP4059733B2 (en) 2002-08-22 2002-08-22 Ultrasonic meter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242178A JP4059733B2 (en) 2002-08-22 2002-08-22 Ultrasonic meter device

Publications (2)

Publication Number Publication Date
JP2004077446A JP2004077446A (en) 2004-03-11
JP4059733B2 true JP4059733B2 (en) 2008-03-12

Family

ID=32024448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242178A Expired - Fee Related JP4059733B2 (en) 2002-08-22 2002-08-22 Ultrasonic meter device

Country Status (1)

Country Link
JP (1) JP4059733B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646107B2 (en) * 2004-06-09 2011-03-09 リコーエレメックス株式会社 Ultrasonic flow meter
JP2014092467A (en) * 2012-11-05 2014-05-19 Panasonic Corp Flow rate measurement device

Also Published As

Publication number Publication date
JP2004077446A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
WO2000016090A1 (en) Gas identification system
JP2007187506A (en) Ultrasonic flowmeter
JP5141613B2 (en) Ultrasonic flow meter
CN113532557B (en) Ultrasonic measuring method considering bubble quantity
JP4059733B2 (en) Ultrasonic meter device
JP6405520B2 (en) Ultrasonic flow meter
CN117405187A (en) Sound channel abnormality screening method of four-channel gas ultrasonic flowmeter
JP2017116458A (en) Ultrasonic flow meter
JP4592268B2 (en) Meter device
JPH11304559A (en) Flow rate measuring apparatus
JP3624743B2 (en) Ultrasonic flow meter
JP2001249039A (en) Ultrasonic gas flow-velocity measuring method
JP7605595B2 (en) Ultrasonic flowmeter and method for determining reliability of reception strength
JP3888946B2 (en) Ultrasonic meter device
JP4285056B2 (en) Fluid flow measuring device
JP4561071B2 (en) Flow measuring device
JP7320776B2 (en) ultrasonic flow meter
JP6767628B2 (en) Flow measuring device
JP2007064988A (en) Flowmeter
JP4926660B2 (en) Ultrasonic meter device
JP2018128264A (en) Ultrasonic flowmeter and flow measurement method
JP3443660B2 (en) Flow measurement device and flow measurement program
JP2007064988A5 (en)
JP4623488B2 (en) Fluid flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4059733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees