[go: up one dir, main page]

JP4056514B2 - Permanent magnet type three-phase rotating electric machine - Google Patents

Permanent magnet type three-phase rotating electric machine Download PDF

Info

Publication number
JP4056514B2
JP4056514B2 JP2004296573A JP2004296573A JP4056514B2 JP 4056514 B2 JP4056514 B2 JP 4056514B2 JP 2004296573 A JP2004296573 A JP 2004296573A JP 2004296573 A JP2004296573 A JP 2004296573A JP 4056514 B2 JP4056514 B2 JP 4056514B2
Authority
JP
Japan
Prior art keywords
poles
salient
pole
phase
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004296573A
Other languages
Japanese (ja)
Other versions
JP2006109675A (en
Inventor
正文 坂本
Original Assignee
日本サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サーボ株式会社 filed Critical 日本サーボ株式会社
Priority to JP2004296573A priority Critical patent/JP4056514B2/en
Publication of JP2006109675A publication Critical patent/JP2006109675A/en
Application granted granted Critical
Publication of JP4056514B2 publication Critical patent/JP4056514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

本発明は、低振動低騒音なブラシレスDCモータやステッピングモータ等の回転電機に関する。   The present invention relates to a rotary electric machine such as a brushless DC motor or a stepping motor with low vibration and low noise.

1) 3相永久磁石式回転電機のブラシレスモータはOA機器に広く使用されているが、コイルに電流を流さないときに発生する永久磁石のみによるトルクであるコギングトルクが大きいと振動や騒音が大きくなり、また鉄損も大きくなる問題があった。
2) 例えば従来技術として固定子が6スロット(6突極も同じモータ)で回転子が4極の永久磁石式回転電機や12スロット(12突極)で8極または16極で駆動していた。
3) 更に低振動が要求される用途には12スロット(12突極)で10極や14極品が使用されている。
1) Brushless motors for three-phase permanent magnet type rotating electrical machines are widely used in office automation equipment, but if the cogging torque, which is the torque generated only by the permanent magnet when no current is passed through the coil, is large, vibration and noise will increase. In addition, there is a problem that iron loss becomes large.
2) For example, as a conventional technique, the stator is driven with 8 slots or 16 poles with 6 slots (same motor for 6 salient poles) and the rotor with 4 poles or 12 slots (12 salient poles). .
3) For applications that require even lower vibrations, 10 or 14 pole products with 12 slots (12 salient poles) are used.

特公昭49−8568Japanese Patent Publication No.49-8568

1)上述した特公昭49−8568の従来技術では低振動低騒音化の要求は必ずしも満足の行くものではなかった。
2) 高トルクと低振動が要求される用途に対しては、トルクを増加させると、振動騒音も増加する傾向があった。
1) In the above-mentioned prior art disclosed in Japanese Patent Publication No. 49-8568, the demand for low vibration and low noise is not always satisfactory.
2) For applications requiring high torque and low vibration, increasing the torque tended to increase vibration noise.

「手段1」
略環状体から12個の突極を均等に放謝状に設けた磁性体よりなる固定子で任意の突極1から順次12個の突極に番号を付けた場合、突極1,2,7,8で1相巻線を構成し、直流励磁電流で、突極1とその隣接する突極2が同一極性で突極7とその隣接する突極8は突極1、突極2とは異極性に磁化され、2相目巻線が同様に突極3、4、9、10、に、また残りの突極5、6、11,12に3相目の巻線が設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該12個の突極の先端部とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の固定子突極と回転子極が対向したとき、次式を満たす回転電機の中でPが11であるもの
「手段2」
略環状体から6個の突極を均等に放謝状に設けた磁性体よりなり該6個の突極には更に各々2個の誘導子を有し、該6個の固定子で任意の突極1から順次6個の突極に番号を付けた場合、突極1,4で1相巻線を構成し、直流励磁電流で、突極1と突極4が異極性に磁化され、2相目巻線が同様に突極3、5に、また残りの突極3、6に3相目の巻線が同様に設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該6個の突極の先端部の該誘導子とエアギャップを介してN極とS極が交互に合計2p 極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の誘導子と回転子極が対向したとき、次式を満たす回転電機の中でPが11であるもの
「手段3」
略環状体から9個の突極を均等に放謝状に設けた磁性体よりなる固定子で任意の突極1から順次9個の突極に番号を付けた場合、突極1,4,7,で1相巻線を構成し、直流励磁電流で、突極1と、突極4,7はお互いに異極性となるように巻線され、2相目巻線が同様に突極2、と突極5、8がお互いに異極性に、また3相目の巻線が、残りの突極3、と突極6、9がお互いに異極性となるように設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該9個の突極の先端部とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の誘導子と回転子極が対向したとき、次式の2つの式を満たすことを特徴とした回転電機の中でPが11であるもの
「手段4」
略環状体から9個の突極を均等に放謝状に設けた磁性体よりなる固定子で任意の突極1から順次9個の突極に番号を付けた場合、突極1,5,6,で1相巻線を構成し、直流励磁電流で、突極1、5,6とも同極性となるように巻線され、2相目巻線が同様に突極7、2,3で、すべてお互いに同極性に、また3相目の巻線が、残りの突極4、8,9で、すべてお互いに同極性となるように設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該9個の突極の先端部とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の誘導子と回転子極が対向したとき、次の2つの式を満たすことを特徴とした回転電機の中でpが7であるもの
「手段5」
手段1から4にて、該突極の巻線を2コイル巻いたユニポーラ巻線を有した固定子とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機にて該ユニポーラ巻き線には一方向電流で180度位相のことなる電流で駆動する3相式回転電機。

「手段6」
手段1から4において、回転子の円筒状永久磁石の反エアギャップ側に磁性体よりなるバックヨークを有した回転電機。

本発明を実現するには以下の手段による。
1) 高効率モータにするには、回転子に永久磁石を用いることが知られている。しかし永久磁石のN極とS極の合計の数の極数と固定子スロット数(コイルが巻かれる固定子極数あるいは突極数と同じ数となる)で決まる、通電しない状態でのコギングトルクが発生し回転磁界によるトルクにこのコギングトルクが重畳されるので、トルク変動が起こり、精密な定速度回転を要求される用途には色々の問題を起こしていた。このコギングトルクを低減させる有力な手段は回転子1回転中のコギングトルクの脈動数を極力多くするようにする。するとトルク波形はほぼ正弦波なので、従って振幅を小さくすることができることになる。
2)本発明はコギングトルクの6次調波成分を消し、12次調波または18次調波成分とし、コギングトルク脈動数を増加させる構成を提供するものである。
3)その手段は前述した固定子突極数と上述した数式を満たす回転子極数を組み合わせることで実現でき、具体的には上述した1から6の手段による。
"Means 1"
When 12 salient poles are sequentially numbered from an arbitrary salient pole 1 with a stator made of a magnetic body in which 12 salient poles are equally provided from a substantially annular body, the salient poles 1, 2, 7 and 8 form a one-phase winding, and the direct current excitation current causes the salient pole 1 and the adjacent salient pole 2 to have the same polarity, and the salient pole 7 and the adjacent salient pole 8 correspond to the salient pole 1 and the salient pole 2. Are magnetized in different polarities, and the second phase winding is similarly provided on the salient poles 3, 4, 9, 10 and the remaining salient poles 5, 6, 11, 12 are provided with the third phase winding. A three-phase machine with a star connection in which the winding end of each phase is short-circuited, or a delta connection in which the winding end and the winding start of the next phase are sequentially coupled, and the N poles via the tips of the 12 salient poles and the air gap A cylindrical permanent magnet rotor in which S poles are alternately magnetized to a total of 2p poles, and an internal or external rotation type rotating electrical machine that is rotatably opposed to any stator protrusion And when the rotor poles are opposed, that P is 11 in a rotary electric machine which satisfies the following equation.
"Means 2"
Each of the six salient poles is further provided with two inductors, each of which has two inductors, and each of the six stators has an arbitrary shape. When numbering the six salient poles sequentially from the salient pole 1, the salient poles 1 and 4 constitute a one-phase winding, and the salient pole 1 and the salient pole 4 are magnetized to different polarities by the DC excitation current. A star connection in which the second phase winding is similarly connected to salient poles 3 and 5 and the remaining salient poles 3 and 6 are similarly provided with third phase windings, and the winding ends of each phase are short-circuited. Alternatively, it is a delta connection in which the winding end and the winding start of the next phase are sequentially coupled, and the N pole and S pole are alternately magnetized to a total of 2p poles via the inductor and air gap at the tip of the 6 salient poles. An internal or external rotating electrical machine that is rotatably opposed to the cylindrical permanent magnet rotor, and that satisfies the following formula when any inductor and rotor pole face each other An electric machine in which P is 11 .
"Means 3"
In the case where 9 salient poles are numbered sequentially from any salient pole 1 with a stator made of a magnetic material in which 9 salient poles are equally provided in an abundant form from a substantially annular body, salient poles 1, 4, 7 and 1 constitute a one-phase winding, and the direct current excitation current causes the salient pole 1 and the salient poles 4 and 7 to be wound with different polarities, and the second phase winding is similarly salient pole 2. , And salient poles 5 and 8 are different from each other, and the third phase winding is a three-phase machine provided so that the remaining salient poles 3 and salient poles 6 and 9 are different from each other. , A star connection in which the winding end of each phase is short-circuited, or a delta connection in which the winding end and the winding start of the next phase are sequentially coupled, and the N pole and the S pole are connected via the tips of the nine salient poles and the air gap. A cylindrical permanent magnet rotor that is alternately magnetized to a total of 2p poles and an internal or external rotary electric machine that is rotatably opposed to each other. When, what P is 11 in the rotary electric machine characterized by satisfying the following two expressions Equation.
"Means 4"
In the case where 9 salient poles are numbered sequentially from any salient pole 1 with a stator made of a magnetic material in which 9 salient poles are equally provided in an abundant form from a substantially annular body, salient poles 1, 5, 6 constitutes a one-phase winding, and DC exciting current is wound so that salient poles 1, 5 and 6 have the same polarity, and the second phase winding is similarly salient poles 7, 2 and 3 The three-phase machine has all the same polarity, and the third phase winding is the same salient polarity with the remaining salient poles 4, 8, and 9. A shorted star connection or a delta connection in which the end of winding and the beginning of the next phase are sequentially coupled, and the N and S poles are alternately magnetized to a total of 2p poles via the tip of the nine salient poles and the air gap. An inner or outer rotary electric machine that is rotatably opposed to the cylindrical permanent magnet rotor, and an arbitrary inductor and rotor pole face each other. Those p is 7 in a rotary electric machine characterized by satisfying the following two expressions.
"Means 5"
Cylindrical permanent magnet in which N poles and S poles are alternately magnetized to a total of 2p poles by means of means 1 to 4 through a stator having a unipolar winding with two windings of the salient poles and an air gap. A three-phase rotary electric machine that is driven by a unipolar winding with a current that is 180 degrees out of phase with an inner or outer rotary electric machine that is rotatably opposed to a magnet rotor.

"Means 6"
The rotating electric machine according to any one of means 1 to 4, wherein the rotor has a back yoke made of a magnetic material on the side opposite to the air gap of the cylindrical permanent magnet of the rotor.

The present invention is realized by the following means.
1) It is known to use a permanent magnet for the rotor to make a high-efficiency motor. However, the cogging torque in the non-energized state is determined by the total number of poles of the N and S poles of the permanent magnet and the number of stator slots (the same number as the number of stator poles or salient poles around which the coil is wound). Since the cogging torque is superimposed on the torque generated by the rotating magnetic field, torque fluctuation occurs, causing various problems for applications that require precise constant speed rotation. An effective means for reducing the cogging torque is to increase the number of pulsations of the cogging torque during one rotation of the rotor as much as possible. Then, since the torque waveform is almost a sine wave, the amplitude can be reduced accordingly.
2) The present invention provides a configuration in which the sixth-order harmonic component of the cogging torque is eliminated to obtain a twelfth-order harmonic or an eighteenth-order harmonic component, thereby increasing the number of cogging torque pulsations.
3) The means can be realized by combining the number of stator salient poles described above and the number of rotor poles satisfying the above-described formula, and specifically, the means 1 to 6 described above.

上述の如き構成においては、以下の理由で課題が解決できる。
3相永久磁石式モータは低振動低回転ムラであるがその理由はコギングトルクが2相機と比べて一般的に、2相機は4次調波成分で構成されるが、3相機はコギングトルクの4次調波成分は消え、6次調波成分で構成されるためである。しかし、6次成分のコギングトルクでは用途によっては十分ではなく、3相機で更なる低コギングトルクの回転電機の要求が多い。そこで本発明は、コギングトルクの6次成分を消して12次あるいはそれ以上のコギングトルク成分とするものである。3相機のコギングトルクは6次成分とその正数倍成分の和で構成されていることに着目して、この性質を利用するのが本発明のキーポイントである。6次成分とその正数倍成分の和で構成されていることに関しては、「PCIM2001,INTELLIGENT MOTION 38th Proceeding、pp139-141、June 19-21,2001,Nurnberg,Germany, Cogging Torque Comarison between 2
and 3 phase HB type stepping motor. Masafumi Sakamoto.」に記載があるので、その説明は省略する。即ち6次成分をうまく消せば12次成分以上で、また、6次と12次成分を消せれば18次成分以上でコギングトルクは構成される。その場合、存在する低次成分(上記では12次、あるいは18次)が主な支配的な成分となる。なぜなら次数が高いほどその振幅は小さくなり低次に対し無視可能になるからである。
In the configuration as described above, the problem can be solved for the following reason.
Three-phase permanent magnet motors have low vibration and low rotation unevenness because the cogging torque is generally composed of a fourth-order harmonic component compared to a two-phase machine. This is because the fourth harmonic component disappears and is composed of the sixth harmonic component. However, the cogging torque of the 6th-order component is not sufficient depending on the application, and there are many demands for a rotating electrical machine with a further low cogging torque in a three-phase machine. Therefore, the present invention eliminates the 6th-order component of the cogging torque to obtain a 12th-order or higher-order cogging torque component. Focusing on the fact that the cogging torque of a three-phase machine is composed of the sum of a sixth-order component and its positive multiple component, the key point of the present invention is to use this property. Concerning that it is composed of the sum of the 6th order component and its positive multiple, “PCIM2001, INTELLIGENT MOTION 38 th Proceeding, pp139-141, June 19-21,2001, Nurnberg, Germany, Cogging Torque Comarison between 2
and 3 phase HB type stepping motor. Masafumi Sakamoto. ”, description thereof is omitted. That is, the cogging torque is composed of the 12th order component or more if the 6th order component is successfully eliminated, and the 18th order component or more if the 6th and 12th order components are eliminated. In that case, the existing low-order component (12th or 18th order in the above) is the main dominant component. This is because the higher the order, the smaller the amplitude, and the lower the order becomes negligible.

1) 本発明の12スロットや9スロット構成ではコギングトルクが従来品モータの数倍以上の脈動数になるため、極めて小さい低コギングトルクモータを提供できる。
2) 6スロットで誘導子を有するものは低振動で更に高トルクとなる。
3) ユニポーラ式で高速回転対応も可能である。
4) クローズドループの3相ブラシレスDCモータの他にオープンル ープの3相永久磁石式ステッピングモータにも活用できる。
5) 実現できる。
6)外転型にすれば、回転子外径を大きくできるので、イナーシャも大きくできて、一定速度の用途で回転ムラを小さくでき、または低速で大トルクを要する用途に適したものとなる。
1) Since the cogging torque in the 12-slot or 9-slot configuration of the present invention has a pulsation number several times that of conventional motors, an extremely small low cogging torque motor can be provided.
2) 6-slot inductors with lower vibration and higher torque.
3) Unipolar type capable of high-speed rotation.
4) In addition to closed-loop three-phase brushless DC motors, it can also be used for open-loop three-phase permanent magnet stepping motors.
5) It can be realized.
6) Since the outer diameter of the rotor can be increased by using the outer rotation type, the inertia can be increased, the rotation unevenness can be reduced in a constant speed application, or suitable for an application requiring a large torque at a low speed.

図1は第一の本発明の回転電機の例である。1なる環状固定子から放謝状に均等に配設された12個の突極1−1から1−12に図示したようにU,V,W相の3相巻き線がなされている。各相の巻き終わりは短絡されて、スター結線がされている。そのため、図5に示したインバータ等による反転電流でバイポーラ駆動される。1相分巻き線はたとえばU相では突極1−1と1−2がN極とすれば180度反対の1−7,1−8はS極に磁化されるように巻き線されている。N,N,S,Sと巻き線極性を作るこの巻き線方式が本発明の一つの特徴である。このため22極の回転子磁石2は図のように対向して、永久磁石のN極から出た点線及び矢印で示した磁束は1−7、1−8、のS極の固定子に入り1−1,1−2のN極から回転子のS極にもどりバックヨークを経由して磁路を結ぶ。このためバックヨークが必要となる。これに対し従来構造の回転電機は回転子の隣接のN極とS極と固定子突極で磁路を結ぶのでバックヨークは必要ではない。
尚、図4は本発明に関する回転電機の軸を含めた断面図である。1は固定子鉄心、2は回転子の円筒状永久磁石、3はコイル、4は回転子の円筒状永久磁石の反エアギャップ側に設けたバックヨークで磁性体より構成されている。6は回転軸であり、図示してない軸受けで回転自在に固定子鉄心1に固定支持されている。2は回転子の円筒状永久磁石であり、一般にこの種類の構造の回転子は表面磁石式回転子と呼ばれている。
FIG. 1 shows an example of a rotating electrical machine according to the first aspect of the present invention. As shown in the figure, twelve salient poles 1-1 to 1-12, which are equally arranged in a divergent form from a single annular stator, have three-phase windings of U, V, and W phases. The winding ends of each phase are short-circuited and star-connected. Therefore, bipolar driving is performed with an inversion current by an inverter or the like shown in FIG. For example, in the U phase, if the salient poles 1-1 and 1-2 are N poles, 1-7 and 1-8, which are 180 degrees opposite to each other, are wound so that they are magnetized to S poles. . This winding method for creating a winding polarity with N, N, S, S is one of the features of the present invention. For this reason, the 22-pole rotor magnet 2 faces as shown in the figure, and the magnetic flux indicated by the dotted line and the arrow from the N-pole of the permanent magnet enters the S-pole stators 1-7 and 1-8. Returning from the N poles of 1-1 and 1-2 to the S pole of the rotor, a magnetic path is connected via the back yoke. For this reason, a back yoke is required. On the other hand, the rotating electric machine having the conventional structure connects the magnetic path by the N pole, the S pole and the stator salient pole adjacent to the rotor, so that the back yoke is not necessary.
FIG. 4 is a cross-sectional view including the shaft of the rotating electrical machine according to the present invention. 1 is a stator iron core, 2 is a rotor cylindrical permanent magnet, 3 is a coil, 4 is a back yoke provided on the side opposite to the air gap of the rotor cylindrical permanent magnet, and is made of a magnetic material. Reference numeral 6 denotes a rotating shaft, which is fixedly supported on the stator core 1 so as to be rotatable by a bearing (not shown). Reference numeral 2 denotes a cylindrical permanent magnet of the rotor. In general, a rotor of this type of structure is called a surface magnet type rotor.

次に従来技術を説明する。図8は従来技術を示すものである。以後の図面での同じ名称
あるいは類似形の部品は同じ番号を付してある。1は固定子で固定子極を形成するコイルを巻く部分(主極と呼ぶことにする)が12個均等ピッチで配置されている。回転子極(磁極と呼ぶことにする)の数は8極であるので、中央上部の主極と回転子のN極が一致したとき、時計方向に、隣接の主極とそれに最も近い磁極(図ではS極)とのづれ角をδとすれば、同様に、次の主極と次の磁極とのづれ角は2δとなり、以下順次3δ、4δ、5δ、となり、中央下部の主極で磁極と一致し同様な関係を繰り返すので、磁極から見た主極のパーミアンスの6次成分は以下のようになる。パーミアンス成分がコギングトルク成分と一致することは、例えば、日本電気学会の論文誌D,114巻、12号、平成6年、「ハイブリッド形ステッピングモータの高調波トルクの低減法、坂本、戸恒」等に記載されているのでその説明は省略する。

δ=4×2π{(1/8)-(1/12)}=π/3
(電気角) より、次式を計算する。

P6=2{cos0+cos6×1(π/3)+ cos6×2(π/3)+ cos6×3(π/3)+ cos6×4(π/3)+

cos6×(π/3)}

ここでpは極対数であり、磁極極数が8なのでp=4となり、(4)式は0でなく12となる。(4)式の[ ] 内は余弦の角度が6倍次調波による級数なので、常に(1)式と等しい値となるので、この従来技術は(1)式を成立させることはできないことになる。P6はパーミアンスの6次成分なので、コギングトルクの6次成分でもある。従ってこの12主極8極はコギングトルクは6次成分となりその回転子の1回転中の脈動数Ncは電気角2πに6サイクルでコギングトルクが脈動するので、1回転(機械角、2π)ではそのp倍となり、以下となる。
Nc=6p=6×4=24
経験的に100rpm程度の回転時に低回転ムラを得るにはこのNcが60以上が必要であり24という値は小さく、この従来技術ではコギングトルクも大きく不適当となる。
Next, the prior art will be described. FIG. 8 shows the prior art. In the subsequent drawings, parts having the same name or similar shape have the same numbers. Reference numeral 1 denotes a stator in which twelve coil winding portions (referred to as main poles) forming a stator pole are arranged at an equal pitch. Since the number of rotor poles (referred to as magnetic poles) is eight, when the main pole at the upper center and the N pole of the rotor coincide, the adjacent main pole and the closest magnetic pole ( In the figure, if the deflection angle with the S pole is δ, similarly, the deflection angle between the next main pole and the next magnetic pole is 2δ, and then sequentially becomes 3δ, 4δ, 5δ, Since the same relationship is repeated with the magnetic pole, the sixth-order component of permeance of the main pole viewed from the magnetic pole is as follows. The fact that the permeance component coincides with the cogging torque component is, for example, the Journal of the Institute of Electrical Engineers of Japan, Vol. The description is omitted here.

δ = 4 × 2π {(1/8)-(1/12)} = π / 3
From (electrical angle), the following equation is calculated.

P 6 = 2 {cos0 + cos6 × 1 (π / 3) + cos6 × 2 (π / 3) + cos6 × 3 (π / 3) + cos6 × 4 (π / 3) +

cos6 × 5 (π / 3)}

Here, p is the number of pole pairs, and since the number of pole poles is 8, p = 4, and Equation (4) is 12 instead of 0. Since the angle of the cosine in [] in [4] is a series of 6th harmonics, it is always equal to the expression (1), so that this conventional technique cannot establish the expression (1). Become. Since P 6 is a sixth-order component of permeance, it is also a sixth-order component of cogging torque. Accordingly, the cogging torque of the 12 main poles and 8 poles has a 6th order component, and the pulsation number Nc during one rotation of the rotor pulsates in 6 cycles to an electrical angle of 2π. Therefore, in one rotation (mechanical angle, 2π) It becomes p times and becomes the following.
Nc = 6p = 6 × 4 = 24
Empirically, in order to obtain low rotation unevenness at the time of rotation of about 100 rpm, this Nc needs to be 60 or more and the value of 24 is small, and this conventional technology makes the cogging torque too large and inappropriate.

図9も従来技術の例である。固定子主極数は6で、回転子極数は4である。同様にしてパーミアンスの6次成分を計算すると以下のようになる。

δ=2×2π{(1/4)-(1/6)}=π/3 (電気角) より、次式を計算する。

P6=2{cos0+cos6×1(π/3)+ cos6×2(π/3)}
=6
Nc=2×6=12
従って、これもコギングトルクが6次成分で構成され、値が大きくなるので、不適当である。
一般的に、固定子主極数が多いほうが、また回転子極数が多いほうがNcも多きな値となる。
Nc=(極対数)×(存在するコギングトルク調波数)
からも理解できる。主極数は3相機では3の倍数であるから、低コギングトルクモータは主極数6は不適当で、9以上となる。しかし、18以上ではコイルが多すぎるため価格が高くなる。そのため実用的な低コギングトルクモータは主極数は9または12となる
FIG. 9 is also an example of the prior art. The number of stator main poles is 6, and the number of rotor poles is 4. Similarly, the sixth component of permeance is calculated as follows.

From δ = 2 × 2π {(1/4) − (1/6)} = π / 3 (electrical angle), the following equation is calculated.

P 6 = 2 {cos0 + cos6 × 1 (π / 3) + cos6 × 2 (π / 3)}
= 6
Nc = 2 × 6 = 12
Therefore, this is also inappropriate because the cogging torque is composed of the 6th order component and the value becomes large.
In general, the value of Nc is larger when the number of stator main poles is larger and when the number of rotor poles is larger.
Nc = (number of pole pairs) × (existing cogging torque harmonics)
It can be understood from. Since the number of main poles is a multiple of 3 in a three-phase machine, a low cogging torque motor has an unsuitable number of main poles of 6 and is 9 or more. However, if the number is 18 or more, there are too many coils, which increases the price. Therefore, a practical low cogging torque motor has 9 or 12 main poles.

図1は前述したが本発明による12主極で回転子極数が22の例であり、突極1−1と回転子のS極が対向しているとき、突極1−2と次の回転子S極とのなす角度δははδ={(p/6)−2}π なのでp=11を代入すれば図示したように、π/6となり、(4)式によりパーミアンスの6次成分P6を計算すると以下のようになる。
=0
即ち(1)式を成立させることができる。
3相機のコギングトルクの調波数は6の整数倍となるので、パーミアンスの12調波成分P12を確認する。
=12
即ち、コギングトルクは6次成分は零で12次成分以上となるので従来技術例よりコギングトルクは大きく低減されることになる。
従って、Nc=12×11=132
となり、60を大きく超えているので、低コギングトルクモータとして適したものとなる。この技術は請求項1及び手段1に対応し、回転子極数が22極は(1)式を満たす一例である。巻き線はスター結線の例で示したがデルタ結線も可能である。
FIG. 1 is an example of 12 main poles and 22 rotor poles according to the present invention, and when the salient pole 1-1 and the S pole of the rotor face each other, the salient pole 1-2 and the following Since the angle δ formed with the rotor S pole is δ = {(p / 6) −2} π, if p = 11 is substituted, it becomes π / 6 as shown in the figure, and the permeance sixth order is obtained from the equation (4). When the component P 6 is calculated, it is as follows.
= 0
That is, equation (1) can be established.
Since the harmonic number of the cogging torque of the three-phase machine is an integer multiple of 6, the 12-th harmonic component P 12 of the permeance is confirmed.
= 12
That is, since the cogging torque is zero in the 6th order component and more than the 12th order component, the cogging torque is greatly reduced as compared with the prior art example.
Therefore, Nc = 12 × 11 = 132
Thus, since it greatly exceeds 60, it is suitable as a low cogging torque motor. This technique corresponds to claim 1 and means 1, and 22 rotor poles is an example satisfying the expression (1). The winding is shown as an example of star connection, but delta connection is also possible.

図2は別の本発明の例で、請求項2及び手段2に対応するものである。固定子は環状体5から均等の60度で6個の主極が放謝状に設けられ、更に各主極から2個の誘導子を設けた構造である。もしこの各2個の誘導子のピッチを30度にすれば、回転子から見たパーミアンスは図1の12主極と同じとなり、コギングトルク成分も同じく、6次は消えて、12次成分となる。従って(1)式を満たすことができる。回転子極数が22極は(1)式を満たす一例である。巻き線はスター結線の例で示したがデルタ結線も可能である。この場合もバックヨーク4が必要なのは同じである。
図2と図1の構成を比較すると、コギングトルクは上述したように、同じく、小さくなるが、図2の構成の方が図1の構成より、低速で大きなトルクを出せる特徴がある。トルクは電気装荷と磁気装荷の積で決まるが、一般に同一回転子でも、主極数が少ないほど、この積が大きくでき、高トルクが出せる。欠点としては12主極より6主極の方がコイルエンドが大きくなるので、薄形品には適さないことになる。一般に従来技術ではトルクを高くすると、振動も大きくなるが、本構成では振動はコギングトルクが小さいので低く、トルクは高くできるメリットがある。
FIG. 2 shows another example of the present invention, which corresponds to claim 2 and means 2. The stator has a structure in which six main poles are provided at an equal angle of 60 degrees from the annular body 5 in a letter of appreciation, and two inductors are further provided from each main pole. If the pitch of each of these two inductors is 30 degrees, the permeance seen from the rotor will be the same as that of the 12 main poles in FIG. 1, the cogging torque component will be the same, the 6th order will disappear, and the 12th order component and Become. Therefore, the expression (1) can be satisfied. The rotor pole number of 22 is an example that satisfies the formula (1). The winding is shown as an example of star connection, but delta connection is also possible. In this case, the back yoke 4 is also necessary.
Comparing the configurations of FIG. 2 and FIG. 1, the cogging torque is similarly reduced as described above, but the configuration of FIG. 2 has a feature that a larger torque can be output at a lower speed than the configuration of FIG. The torque is determined by the product of electric load and magnetic load. Generally, even with the same rotor, the smaller the number of main poles, the larger the product can be and the higher torque can be produced. As a disadvantage, the coil end is larger in the 6 main poles than in the 12 main poles, which is not suitable for a thin product. In general, when the torque is increased in the prior art, the vibration increases. However, in this configuration, the vibration is low because the cogging torque is small, and there is an advantage that the torque can be increased.

次に主極数が9の場合での本発明の例を示す。図3は請求項3及び手段3を具現したものである。回転子極数は図1と同じ22極の例である。突極1−1と回転子のS極が対向しているとき、突極1−2と次の回転子S極とのなす角度δはδ={(2p/9)−2}π なのでp=11を代入すれば図示したように、4π/9となり、図3を参照して、回転子の極数を22とした場合は次のように上述した(2)式、(3)式を零とすることで、各々、6次、12次調波が消えて、18次調波が存在することになる。
更にパーミアンスの18次成分P18を計算してみる。
即ちP18≠0 なので、18次調波が存在し、Nc=18×11=198
となり、低コギングトルクモータとして適したものとなる。
尚、12次調波以上でも低コギングトルクモータとなるので、(2)式を満足できればよく、(2)と(3)式を同時に満たせばコギングトルクは18次成分となり、極めて小さなコギングレスモータに近づく。巻き線は図示したように、1相分が1−1、1−4、1−7と120度隔てた突極で構成され、2個同極で1個異極性となり、点線で示した磁路となり、4なるバックヨークが必要となる。尚、巻き線は1相分のみで示した。各部品番号は図1と同じである。
Next, an example of the present invention when the number of main poles is 9 will be shown. FIG. 3 embodies claim 3 and means 3. The number of rotor poles is the same 22 pole example as in FIG. When the salient pole 1-1 and the S pole of the rotor face each other, the angle δ formed by the salient pole 1-2 and the next rotor S pole is δ = {(2p / 9) -2} π. If 11 is substituted, 4π / 9 is obtained as shown in the figure, and referring to FIG. 3, when the number of poles of the rotor is set to 22, the above-described equations (2) and (3) are changed as follows. By setting it to zero, the 6th and 12th harmonics disappear, and the 18th harmonic exists.
Further, the permeance 18th-order component P 18 is calculated.
That is, since P 18 ≠ 0, there is an 18th-order harmonic, and Nc = 18 × 11 = 198
Thus, it becomes suitable as a low cogging torque motor.
It should be noted that since the motor is a low cogging torque motor even at the 12th harmonic or higher, it is sufficient if the formula (2) is satisfied. Get closer to. As shown in the figure, the winding is composed of salient poles whose phase is 120 degrees apart from 1-1, 1-4, 1-7, and two poles with one pole and one pole with different polarity. It becomes a road and 4 back yokes are required. The winding is shown for only one phase. Each part number is the same as FIG.

次に主極数が9の場合での本発明の別例を示す。図7を参照して、回転子の極数を14とした場合は次のように上述した(2)式、(3)式を零とすることで、各々、6次、12次調波が消えて、18次調波が存在することになる。
更にパーミアンスの18次成分P18を計算してみる。
即ちP18≠0 なので、18次調波が存在し、Nc=18×7=126
となり、低コギングトルクモータとして適したものとなる。
この場合の巻き線は、図3の場合とは異なり、図示したように、U相分が1−1、1−5、1−6なる突極で構成され、3個とも同極性となる。V相、W相も相内の3個の突極は同極となる。図7はスター結線の例であり、U,V,W相の巻き終わりは短絡されている。ここでUVの2端子間に電圧を印可すると、2相励磁となり、U相が図示したS極となれば、V相は電流が巻き終わり側から来るので異極性のN極となる。この場合は回転子永久磁石の磁束磁路は隣接の回転子磁極間となる割合が大きくなるので、バックヨークの必要度は今までの例と比べれば少ない。
Next, another example of the present invention when the number of main poles is 9 will be shown. Referring to FIG. 7, when the number of poles of the rotor is 14, the above-described equations (2) and (3) are set to zero, so that the 6th and 12th harmonics are respectively obtained. It disappears and there will be an 18th harmonic.
Further, the permeance 18th-order component P 18 is calculated.
That is, since P 18 ≠ 0, there is an 18th-order harmonic, and Nc = 18 × 7 = 126
Thus, it becomes suitable as a low cogging torque motor.
Unlike the case of FIG. 3, the winding in this case is composed of salient poles having U-phase portions of 1-1, 1-5, and 1-6, as shown in the figure, and all three pieces have the same polarity. In the V phase and W phase, the three salient poles in the phase are the same. FIG. 7 is an example of star connection, and the winding ends of the U, V, and W phases are short-circuited. Here, if a voltage is applied between the two UV terminals, two-phase excitation occurs, and if the U-phase becomes the S pole shown in the figure, the V-phase becomes an N-pole with a different polarity because the current comes from the winding end side. In this case, the ratio of the magnetic flux magnetic path of the rotor permanent magnet between the adjacent rotor magnetic poles is large, so that the necessity for the back yoke is less than in the previous examples.

上述したように本発明の3相12主極および誘導子付きの6主極構造の場合は、(1)式を、また9主極の場合は(2)と(3)式を満たす極対数pの永久磁石回転子構造として極めて低回転ムラなスムーズな負荷駆動が実現する。説明図は内転型(インナーロータ型)で示したが、外転型(アウターロータ型)にも、同様に成立する。外転型はロータイナーシャを大きくできるので一定速度駆動の用途には回転ムラを小さくできるメリットがある。反対に内転型は可変速度等に適することになる。
駆動方式としてはホール素子等で回転子磁極を検出して最適タイミング(通常はコイル電流軸と回転子磁極軸が直交)で固定子主極を励磁するクローズドループ駆動のブラシレスDCモータが最適であるが、オープンループ駆動のステッピングモータとしても良い。ホール素子等で回転子磁極を検出するブラシレスDCモータの場合はモータのサイズが直径60mm程度ではpが11即ち22極程度を超えると、量産ベースでバラツキを少なく磁極検出することが困難となるので、実用的な極対数pは自ずと制限が存在することになる。
上記の説明は前述した表面磁石式回転子で説明したが、極対数pが(1)式、あるいは(2)、(3)式を満たすpであれば、図示は省略するが、セグメント式の表面磁石式回転子でも、埋め込み磁石式
でも、同様な効果が得られる。
As described above, in the case of the three-phase 12 main pole and the six-main pole structure with an inductor of the present invention, the number of pole pairs satisfying the expression (1), and in the case of the nine main poles, the number of pole pairs satisfying the expressions (2) and (3) As a permanent magnet rotor structure of p, smooth load driving with extremely low rotation unevenness is realized. Although the explanatory diagram shows the inner rotation type (inner rotor type), the same holds true for the outer rotation type (outer rotor type). The outer rotation type can increase the rotor inertia, so there is a merit that the rotation unevenness can be reduced in the application of constant speed driving. On the other hand, the adduction type is suitable for variable speed and the like.
The most suitable drive system is a closed-loop brushless DC motor that detects the rotor magnetic pole with a hall element and excites the stator main pole at the optimal timing (usually the coil current axis and the rotor magnetic pole axis are orthogonal). However, an open loop drive stepping motor may be used. In the case of a brushless DC motor that detects a rotor magnetic pole with a Hall element or the like, if the motor size is about 60 mm in diameter and p exceeds 11 or about 22 poles, it is difficult to detect the magnetic pole with little variation on a mass production basis. The practical number of pole pairs p is naturally limited.
Although the above description has been given for the surface magnet type rotor described above, if the number of pole pairs p is p satisfying the formula (1), or (2) and (3), the illustration is omitted, but the segment formula The same effect can be obtained by using either a surface magnet type rotor or an embedded magnet type.

以上の本発明の回転電機はスターあるいはデルタ結線による3端子のU,V,W相で、インバータ等による反転電流でバイポーラ駆動し、図5の駆動回路で駆動する。例えばトランジスターT1とT4をホール素子の出力でオンすれば、U相、V相の2相励磁となり、以下、(T4,T5)、(T5,T2)、(T2,T3)、(T3,T6)、(T6,T1)とオンすることで回転をする。   The rotating electric machine of the present invention described above is a three-terminal U, V, W phase by star or delta connection, and is bipolar driven by an inversion current from an inverter or the like, and driven by the drive circuit of FIG. For example, if the transistors T1 and T4 are turned on by the output of the Hall element, two-phase excitation of the U phase and the V phase is performed, and (T4, T5), (T5, T2), (T2, T3), (T3, T6) ), Turn on by turning on (T6, T1).

本発明の請求項1から4の回転電機は、突極の巻線を2コイル巻いたユニポーラ巻線を有して、固定子とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機にすることもできる。ユニポーラ巻き線には一方向電流で180度位相のことなる電流で駆動する3相式回転電機となり、図6の駆動回路で駆動できる。一方向電流で180度位相のことなる電流は、例えばT1とT2のトランジスターにてどちらかがオンの時はたがオフとなる様にして駆動する。高速回転させる場合は図5のバイポーラ駆動よりこのユニポーラ駆動の方が巻き線のインダクタンスが小さくなり適している。   The rotating electrical machine according to claims 1 to 4 of the present invention has a unipolar winding in which two windings of salient poles are wound, and a total of 2p poles with N poles and S poles alternately via a stator and an air gap. It is also possible to make an inner or outer rotary electric machine that is rotatably opposed to a cylindrical permanent magnet rotor magnetized in the same manner. The unipolar winding is a three-phase rotating electric machine that is driven by a current that is 180 degrees in phase with a one-way current, and can be driven by the drive circuit of FIG. A unidirectional current having a phase difference of 180 degrees is driven so that, for example, one of the transistors T1 and T2 is turned off when one is turned on. When rotating at high speed, this unipolar drive is more suitable than the bipolar drive of FIG. 5 because the winding inductance is smaller.

本発明に関する回転電機の図Schematic diagram of rotating electrical machine according to the present invention 本発明に関する別の回転電機の図Illustration of another rotating electrical machine according to the present invention 本発明に関する別の回転電機の図Illustration of another rotating electrical machine according to the present invention 本発明に関する共通の断面図Common sectional view related to the present invention 本発明に関する駆動回路の図Diagram of drive circuit according to the present invention 本発明に関する別の駆動回路の図Diagram of another drive circuit according to the present invention 本発明に関する別の回転電機の図Illustration of another rotating electrical machine according to the present invention 従来技術の図Prior art diagram 別の従来技術の図Another prior art diagram

符号の説明Explanation of symbols

1:固定子、
2:回転子永久磁石、
3:コイル、
4:バックヨーク、
5:誘導子付き固定子、
6:回転軸
1: Stator,
2: Rotor permanent magnet,
3: Coil,
4: Back yoke,
5: Stator with inductor,
6: Rotating shaft

Claims (6)

略環状体から12個の突極を均等に放謝状に設けた磁性体よりなる固定子で任意の突極1から順次12個の突極に番号を付けた場合、突極1,2,7,8で1相巻線を構成し、直流励磁電流で、突極1とその隣接する突極2が同一極性で突極7とその隣接する突極8は突極1、突極2とは異極性に磁化され、2相目巻線が同様に突極3、4、9、10、に、また残りの突極5、6、11,12に3相目の巻線が設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該12個の突極の先端部とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の固定子突極と回転子極が対向したとき、次式を満たす回転電機の中でPが11であるもの
When 12 salient poles are sequentially numbered from an arbitrary salient pole 1 with a stator made of a magnetic body in which 12 salient poles are equally provided from a substantially annular body, the salient poles 1, 2, 7 and 8 form a one-phase winding, and the direct current excitation current causes the salient pole 1 and the adjacent salient pole 2 to have the same polarity, and the salient pole 7 and the adjacent salient pole 8 correspond to the salient pole 1 and the salient pole 2. Are magnetized in different polarities, and the second phase winding is similarly provided on the salient poles 3, 4, 9, 10 and the remaining salient poles 5, 6, 11, 12 are provided with the third phase winding. A three-phase machine with a star connection in which the winding end of each phase is short-circuited, or a delta connection in which the winding end and the winding start of the next phase are sequentially coupled, and the N poles via the tips of the 12 salient poles and the air gap A cylindrical permanent magnet rotor in which S poles are alternately magnetized to a total of 2p poles, and an internal or external rotation type rotating electrical machine that is rotatably opposed to any stator protrusion And when the rotor poles are opposed, that P is 11 in a rotary electric machine which satisfies the following equation.
略環状体から6個の突極を均等に放謝状に設けた磁性体よりなり該6個の突極には更に各々2個の誘導子を有し、該6個の固定子で任意の突極1から順次6個の突極に番号を付けた場合、突極1,4で1相巻線を構成し、直流励磁電流で、突極1と突極4が異極性に磁化され、2相目巻線が同様に突極3、5に、また残りの突極3、6に3相目の巻線が同様に設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該6個の突極の先端部の該誘導子とエアギャップを介してN極とS極が交互に合計2p 極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の誘導子と回転子極が対向したとき、次式を満たす回転電機の中でPが11であるもの
Each of the six salient poles is further provided with two inductors, each of which has two inductors, and each of the six stators has an arbitrary shape. When numbering the six salient poles sequentially from the salient pole 1, the salient poles 1 and 4 constitute a one-phase winding, and the salient pole 1 and the salient pole 4 are magnetized to different polarities by the DC excitation current. A star connection in which the second phase winding is similarly connected to salient poles 3 and 5 and the remaining salient poles 3 and 6 are similarly provided with third phase windings, and the winding ends of each phase are short-circuited. Alternatively, it is a delta connection in which the winding end and the winding start of the next phase are sequentially coupled, and the N pole and S pole are alternately magnetized to a total of 2p poles via the inductor and air gap at the tip of the 6 salient poles. An internal or external rotating electrical machine that is rotatably opposed to the cylindrical permanent magnet rotor, and that satisfies the following formula when any inductor and rotor pole face each other An electric machine in which P is 11 .
略環状体から9個の突極を均等に放謝状に設けた磁性体よりなる固定子で任意の突極1から順次9個の突極に番号を付けた場合、突極1,4,7,で1相巻線を構成し、直流励磁電流で、突極1と、突極4,7はお互いに異極性となるように巻線され、2相目巻線が同様に突極2、と突極5、8がお互いに異極性に、また3相目の巻線が、残りの突極3、と突極6、9がお互いに異極性となるように設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該9個の突極の先端部とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の誘導子と回転子極が対向したとき、次の2つの式を満たすことを特徴とした回転電機の中でPが11であるもの
In the case where 9 salient poles are numbered sequentially from any salient pole 1 with a stator made of a magnetic material in which 9 salient poles are equally provided in an abundant form from a substantially annular body, salient poles 1, 4, 7 and 1 constitute a one-phase winding, and the direct current excitation current causes the salient pole 1 and the salient poles 4 and 7 to be wound with different polarities, and the second phase winding is similarly salient pole 2. , And salient poles 5 and 8 are different from each other, and the third phase winding is a three-phase machine provided so that the remaining salient poles 3 and salient poles 6 and 9 are different from each other. , A star connection in which the winding end of each phase is short-circuited, or a delta connection in which the winding end and the winding start of the next phase are sequentially coupled, and the N pole and the S pole are connected via the tips of the nine salient poles and the air gap. A cylindrical permanent magnet rotor that is alternately magnetized to a total of 2p poles and an internal or external rotary electric machine that is rotatably opposed to each other. When, what P is 11 in the rotary electric machine characterized by satisfying the following two expressions.
略環状体から9個の突極を均等に放謝状に設けた磁性体よりなる固定子で任意の突極1から順次9個の突極に番号を付けた場合、突極1,5,6,で1相巻線を構成し、直流励磁電流で、突極1、5,6とも同極性となるように巻線され、2相目巻線が同様に突極7、2,3で、すべてお互いに同極性に、また3相目の巻線が、残りの突極4、8,9で、すべてお互いに同極性となるように設けられた3相機とし、各相の巻き終わりを短絡したスター結線あるいは巻き終わりと次相の巻き始めを順次結合させたデルタ結線とし、該9個の突極の先端部とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機であって、任意の誘導子と回転子極が対向したとき、次の2つの式を満たすことを特徴とした回転電機の中でPが7であるもの
In the case where 9 salient poles are numbered sequentially from any salient pole 1 with a stator made of a magnetic material in which 9 salient poles are equally provided in an abundant form from a substantially annular body, salient poles 1, 5, 6 constitutes a one-phase winding, and DC exciting current is wound so that salient poles 1, 5 and 6 have the same polarity, and the second phase winding is similarly salient poles 7, 2 and 3 The three-phase machine has all the same polarity, and the third phase winding is the same salient polarity with the remaining salient poles 4, 8, and 9. A shorted star connection or a delta connection in which the end of winding and the beginning of the next phase are sequentially coupled, and the N and S poles are alternately magnetized to a total of 2p poles via the tip of the nine salient poles and the air gap. An inner or outer rotary electric machine that is rotatably opposed to the cylindrical permanent magnet rotor, and an arbitrary inductor and rotor pole face each other. Those P is 7 in a rotary electric machine characterized by satisfying the following two expressions.
請求項1から4において、該突極の巻線を2コイル巻いたユニポーラ巻線を有した固定子とエアギャップを介してN極とS極が交互に合計2p極に磁化された円筒状永久磁石回転子と回転自在に対抗した内転形あるいは外転形回転電機にて該ユニポーラ巻き線には一方向電流で180度位相のことなる電流で駆動する3相式回転電機。 5. The cylindrical permanent magnet according to claim 1, wherein a stator having a unipolar winding in which two windings of the salient pole are wound and an N pole and an S pole are alternately magnetized to a total of 2p poles through an air gap. A three-phase rotating electric machine that is driven by a unipolar winding with a current that is 180 degrees out of phase with an inner or outer rotating electric machine that is rotatably opposed to a magnet rotor. 請求項1から4において、回転子の円筒状永久磁石の反エアギャップ側に磁性体よりなるバックヨークを有した回転電機。 5. The rotating electrical machine according to claim 1, wherein a back yoke made of a magnetic material is provided on the side opposite to the air gap of the cylindrical permanent magnet of the rotor.
JP2004296573A 2004-10-08 2004-10-08 Permanent magnet type three-phase rotating electric machine Expired - Fee Related JP4056514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004296573A JP4056514B2 (en) 2004-10-08 2004-10-08 Permanent magnet type three-phase rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004296573A JP4056514B2 (en) 2004-10-08 2004-10-08 Permanent magnet type three-phase rotating electric machine

Publications (2)

Publication Number Publication Date
JP2006109675A JP2006109675A (en) 2006-04-20
JP4056514B2 true JP4056514B2 (en) 2008-03-05

Family

ID=36378719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004296573A Expired - Fee Related JP4056514B2 (en) 2004-10-08 2004-10-08 Permanent magnet type three-phase rotating electric machine

Country Status (1)

Country Link
JP (1) JP4056514B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515777B2 (en) 2009-03-05 2014-06-11 セイコーエプソン株式会社 Energy conversion device and electromechanical device
JP7367413B2 (en) * 2019-09-10 2023-10-24 株式会社デンソー rotating electric machine
CN112636490B (en) * 2020-11-20 2023-04-28 上海电力大学 Three-phase 24/14-pole distributed electro-magnetic doubly salient wind driven generator
CN113890220A (en) * 2021-08-19 2022-01-04 宁波恒帅股份有限公司 Harmonic magnetic field driving motor

Also Published As

Publication number Publication date
JP2006109675A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
KR100899913B1 (en) Motor
JP3278770B2 (en) Multi-phase hybrid type stepping motor
JP4738759B2 (en) Permanent magnet motor
JPH0614514A (en) Permanent magnet type stepping motor
JPH06508975A (en) Polyphase switching reluctance motor
JP5180297B2 (en) Synchronous motor drive system
US7852037B2 (en) Induction and switched reluctance motor
JP2001037133A (en) Stator and motor
JPH1198791A (en) Brushless dc motor
JP2003037969A (en) Permanent magnet three-phase stepping motor
CN108712045B (en) Synchronous switch reluctance motor
JP4309325B2 (en) Composite three-phase hybrid electric rotating machine and driving method thereof
JP2000139047A (en) Permanent magnet type motor
JP4056514B2 (en) Permanent magnet type three-phase rotating electric machine
CN1068466C (en) Stator for electric machine and lamination thereof
JPH08182280A (en) Generator
JP5668181B1 (en) Magnet generator
JP2002281721A (en) Permanent magnet synchronous motor
JP3797488B2 (en) Multi-pole rotating electric machine
JP7486704B2 (en) Permanent magnet brushless motor
US20240055962A1 (en) Bipolar induction electric machine
JP2004064968A (en) Compound three-phase stepping motor
JP3178616B2 (en) Outer rotor type stepping motor
JP2003158863A (en) Hb permanent magnet ring coil type rotating electric machine
JP3045935B2 (en) Permanent magnet type stepping motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees