JP4054017B2 - Gas discharge tube - Google Patents
Gas discharge tube Download PDFInfo
- Publication number
- JP4054017B2 JP4054017B2 JP2004360376A JP2004360376A JP4054017B2 JP 4054017 B2 JP4054017 B2 JP 4054017B2 JP 2004360376 A JP2004360376 A JP 2004360376A JP 2004360376 A JP2004360376 A JP 2004360376A JP 4054017 B2 JP4054017 B2 JP 4054017B2
- Authority
- JP
- Japan
- Prior art keywords
- coil
- gas discharge
- discharge tube
- indirectly heated
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Discharge Lamp (AREA)
Description
本発明は、傍熱型電極を有するガス放電管に関する。 The present invention relates to a gas discharge tube having an indirectly heated electrode.
この種のガス放電管に用いられる傍熱型電極として、たとえば特公昭62−56628号公報(米国特許4441048号公報)に開示されたようなものが知られている。特公昭62−56628号公報に開示されたガス放電管用傍熱型電極(ガス放電管用傍熱型陰極)は、熱良導性の円筒の外壁に2重コイルを複数ターン巻回して密に固定し、ペースト状の陰極物質材を2重コイルの1次螺旋内部及び2次螺旋間に塗布して円筒表面に一様な陰極面を形成し、円筒の内部にヒータを設けて構成されている。
本発明は、電極の長寿命化及び安定した放電を得ることが可能なガス放電管を提供することを課題としている。 An object of the present invention is to provide a gas discharge tube capable of extending the life of an electrode and obtaining a stable discharge.
本発明者らは、調査研究の結果、以下のような事実を新たに見出した。電極(陰極)表面の電位分布が不均一である場合に、発熱量もそれに伴い不均一となるため、熱電子の生成密度も不均一となり、局所的な放電(放電位置の偏在)が生じることになる。そして、局所的な放電は、陰極物質材(金属酸化物)の削り取り(スパッタ)、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を招き、放電位置が次なる熱電子放出特性のよい位置へと移動する。このように、局所的な熱電子放出劣化を繰り返しながら、電極表面を劣化させることになる。また、上述した放電位置の移動により、放電自体が不安定になってしまう。 As a result of research, the present inventors have newly found the following facts. When the potential distribution on the electrode (cathode) surface is non-uniform, the amount of heat generated is also non-uniform, so the generation density of thermoelectrons is also non-uniform and local discharge (distribution of the discharge position) occurs. become. Then, the local discharge causes the cathode material (metal oxide) to be scraped off (sputtering), stabilized by oxidation with a reduced metal (mineralization), that is, the thermoelectron emission ability is lowered, and the discharge position is next. Move to a position with good thermionic emission characteristics. Thus, the electrode surface is deteriorated while repeating local thermionic emission deterioration. Further, the discharge itself becomes unstable due to the movement of the discharge position described above.
かかる調査研究結果を踏まえ、本発明に係るガス放電管は、密閉容器と、当該密閉容器の内部に設けられた一対の傍熱型電極とを備えるガス放電管であって、一対の傍熱型電極は、コイル状に巻き回されたコイル部材と、コイル部材の内側に配設され、その表面に電気絶縁層が形成された加熱用ヒータと、コイル部材に保持される易電子放射物質としての金属酸化物と、コイル部材の内側に当該コイル部材と接触して設けられ、所定長さを有する電気導体と、をそれぞれ有することを特徴とする。 Based on such research results, the gas discharge tube according to the present invention is a gas discharge tube comprising a sealed container and a pair of indirectly heated electrodes provided inside the sealed container, and a pair of indirectly heated types The electrode includes a coil member wound in a coil shape, a heating heater disposed on the inside of the coil member, and an electric insulating layer formed on the surface thereof, and an easy-electron emitting material held on the coil member It has a metal oxide and an electric conductor provided in contact with the coil member inside the coil member and having a predetermined length.
本発明に係るガス放電管では、一対の傍熱型電極のそれぞれにおいて、電気導体によりコイル部材の裏面(放電面とは反対側の面)に等電位面が実効的に形成されるので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなり、放電位置における負荷が軽減されることになる。これにより、局所的な放電の発生を抑制でき、電極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくでき、従来のものとほぼ同一形状で、大放電電流の傍熱型電極を提供でき、パルス動作、大電流動作を実現することができる。 In the gas discharge tube according to the present invention, the equipotential surface is effectively formed on the back surface (surface opposite to the discharge surface) of the coil member by the electric conductor in each of the pair of indirectly heated electrodes. Thermionic emission occurs in a wide region of the equipotential surface, the discharge area increases, the amount of electron emission per unit area (electron emission density) increases, and the load at the discharge position is reduced. Thereby, generation | occurrence | production of local discharge can be suppressed and the lifetime improvement of an electrode can be achieved. Further, since the movement of the discharge position is also suppressed, a stable discharge can be obtained for a long time. In addition, in relation to the increase in the discharge area, the current density is slightly increased to slightly increase the load, that is, even if the discharge current is increased, the damage can be reduced compared to the conventional one, and is almost the same as the conventional one. With the shape, an indirectly heated electrode with a large discharge current can be provided, and a pulse operation and a large current operation can be realized.
また、電気導体は、金属酸化物に接触するとともに、コイル部材の複数のコイル部分に接触して設けられていることが好ましい。このように構成した場合、電気導体により、複数の放電点あるいは放電線からなる放電面の電位がほぼ等しくなり、劣化要因である金属酸化物のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができ、放電位置の移動も抑制することができる。この結果、電気導体を金属酸化物に接触して設けるという簡易な構成により、電極の長寿命化及び安定した放電を得ることができる。 In addition, the electrical conductor is preferably provided in contact with the metal oxide and in contact with a plurality of coil portions of the coil member. When configured in this way, the electrical conductors make the discharge surface potential consisting of a plurality of discharge points or discharge lines approximately equal, and stabilization due to spattering of metal oxides, which are degradation factors, and oxidation with reduced metals (mineralization) ), That is, the decrease in thermionic emission ability can be suppressed, and the movement of the discharge position can also be suppressed. As a result, the life of the electrode and stable discharge can be obtained with a simple configuration in which the electric conductor is provided in contact with the metal oxide.
また、電気導体は、メッシュ状、線状あるいは板状に形成された高融点金属であることが好ましい。このように、電気導体がメッシュ状、線状あるいは板状に形成された高融点金属であることにより、熱電子放出能の低下及び放電位置の移動を抑制し得る構成の電気導体を低コスト且つより一層簡易に実現することができる。また、電気導体が剛体となるために、加工が容易であると共に、金属酸化物に密接して設けることができる。なお、本願において用いる「板状」とは、リボン状、箔状等の形状が含まれるものとする。 The electric conductor is preferably a refractory metal formed in a mesh shape, a linear shape or a plate shape. Thus, since the electrical conductor is a refractory metal formed in a mesh shape, a linear shape, or a plate shape, an electrical conductor having a configuration capable of suppressing a decrease in thermionic emission ability and a movement of the discharge position can be obtained at low cost and. This can be realized even more easily. Further, since the electric conductor is a rigid body, it is easy to process and can be provided in close contact with the metal oxide. The “plate shape” used in the present application includes shapes such as a ribbon shape and a foil shape.
また、コイル部材は、マンドレルを有するコイルをコイル状に巻き回して構成した多重コイルであることが好ましい。このように構成した場合、多重コイルを用いることにより、易電子放射物質である金属酸化物がコイルを形成する線材間の間隔である、ピッチ(心距)間に挟み込まれて保持されることになる。これにより、各ピッチ間の距離は隙間程度に小さいため振動による金属酸化物の脱落を抑制することができる。また、隙間構造のピッチが多数存在するため、多量の金属酸化物を保持でき、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。更に、マンドレルを有しているので、加工時の多重コイルの変形を抑制することができる。 Moreover, it is preferable that a coil member is a multiple coil comprised by winding the coil which has a mandrel in the shape of a coil. When configured in this way, by using multiple coils, the metal oxide, which is an electron-emitting substance, is sandwiched and held between the pitches (center distances), which is the distance between the wires forming the coil. Become. Thereby, since the distance between each pitch is as small as a gap, it is possible to suppress the metal oxide from falling off due to vibration. In addition, since there are a large number of gap structure pitches, a large amount of metal oxide can be retained, and there is an effect of replenishing the lost metal oxide content accompanying deterioration with time during discharge. Further, since the mandrel is provided, deformation of the multiple coil during processing can be suppressed.
また、金属酸化物は、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の内のいずれか単体の酸化物、又はこれらの酸化物の混合物あるいは希土類金属の酸化物を含んでいることが好ましい。このように、金属酸化物がバリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物あるいは希土類金属の酸化物を含んでいることにより、電子放射部における仕事関数を効果的に小さくすることが可能となり、熱電子の放出が容易となる。 Further, the metal oxide may contain any single oxide of barium (Ba), strontium (Sr), and calcium (Ca), a mixture of these oxides, or an oxide of rare earth metal. preferable. As described above, since the metal oxide includes any one of barium, strontium, and calcium, or a mixture of these oxides or an oxide of a rare earth metal, the work function in the electron emission portion is reduced. It becomes possible to reduce the size effectively, and thermionic emission becomes easy.
本発明に係るガス放電管は、密閉容器と、当該密閉容器の内部に設けられた一対の傍熱型電極とを備えるガス放電管であって、一対の傍熱型電極は、マンドレルを有し、コイル状に巻き回されたコイル部材と、コイル部材の内側に配設され、その表面に電気絶縁層が形成された加熱用ヒータと、コイル部材と加熱用ヒータとの間にコイル部材の長手方向にわたって配設され、メッシュ状、線状あるいは板状に形成された高融点金属と、コイル部材と接触するように設けられた易電子放射物質としての金属酸化物と、をそれぞれ有すると共に、高融点金属は複数箇所においてコイル部材と電気的に接触していることを特徴とする。 A gas discharge tube according to the present invention is a gas discharge tube comprising a sealed container and a pair of indirectly heated electrodes provided inside the sealed container, and the pair of indirectly heated electrodes have a mandrel. A coil member wound in a coil shape, a heating heater disposed on the inside of the coil member and having an electric insulating layer formed on the surface thereof, and the length of the coil member between the coil member and the heating heater Each having a high melting point metal disposed in a direction and formed in a mesh shape, a linear shape or a plate shape, and a metal oxide as an easy electron emitting material provided in contact with the coil member. The melting point metal is in electrical contact with the coil member at a plurality of locations.
本発明に係るガス放電管では、一対の傍熱型電極のそれぞれにおいて、コイル部材の裏面(放電面とは反対側の面)において、高融点金属及びコイル部材の内側部分により電極表面に等電位面が実効的に形成されるので、形成された等電位面の広い領域で熱電子放出が起きるために放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなり、放電位置における負荷が軽減されることになる。これにより、劣化要因である金属酸化物のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができ、電極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。マンドレルを有しているので、加工時のコイル部材の変形を抑制することができる。また、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくでき、従来のものとほぼ同一形状で、大放電電流の傍熱型電極を提供でき、パルス動作、大電流動作を実現することができる。 In the gas discharge tube according to the present invention, in each of the pair of indirectly heated electrodes, the back surface of the coil member (the surface opposite to the discharge surface) is equipotential on the electrode surface by the refractory metal and the inner portion of the coil member. Since the surface is effectively formed, thermionic emission occurs in a wide area of the formed equipotential surface, so the discharge area increases, the amount of electron emission per unit area (electron emission density) increases, and the discharge The load at the position will be reduced. As a result, it is possible to suppress metal oxide sputtering, which is a deterioration factor, and stabilization (mineralization) due to oxidation with a reduced metal, that is, a decrease in thermionic emission ability, thereby extending the life of the electrode. . Further, since the movement of the discharge position is also suppressed, a stable discharge can be obtained for a long time. Since the mandrel is provided, deformation of the coil member during processing can be suppressed. In addition, in relation to the increase in the discharge area, the current density is slightly increased to slightly increase the load, that is, even if the discharge current is increased, the damage can be reduced compared to the conventional one, and is almost the same as the conventional one. With the shape, an indirectly heated electrode with a large discharge current can be provided, and a pulse operation and a large current operation can be realized.
また、コイル部材は、コイルをコイル状に巻き回して構成した多重コイルであることが好ましい。このように構成した場合、易電子放射物質である金属酸化物がコイルを形成する線材間の間隔である、ピッチ(心距)間に挟み込まれて保持されることになる。これにより、各ピッチ間の距離は隙間程度に小さいため振動による金属酸化物の脱落を抑制することができる。また、隙間構造のピッチが多数存在するため、多量の金属酸化物を保持でき、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。 Moreover, it is preferable that a coil member is the multiple coil comprised by winding a coil in coil shape. When comprised in this way, the metal oxide which is an electron emission substance will be pinched | interposed and hold | maintained between the pitches (center distance) which is the space | interval between the wire materials which form a coil. Thereby, since the distance between each pitch is as small as a gap, it is possible to suppress the metal oxide from falling off due to vibration. In addition, since there are a large number of gap structure pitches, a large amount of metal oxide can be retained, and there is an effect of replenishing the lost metal oxide content accompanying deterioration with time during discharge.
また、密閉容器に、希ガス、あるいは、希ガス及び水銀が封入されていることが好ましく、更には、密閉容器の内面には、蛍光体膜が形成されていることが好ましい。また、交流駆動することが好ましい。 Moreover, it is preferable that a rare gas or a rare gas and mercury are enclosed in a sealed container, and it is preferable that a phosphor film is formed on the inner surface of the sealed container. In addition, AC driving is preferable.
本発明によれば、電極の長寿命化及び安定した放電を得ることが可能なガス放電管を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the gas discharge tube which can prolong the lifetime of an electrode and can obtain the stable discharge can be provided.
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
(第1実施形態)
図1は、第1実施形態に係るガス放電管用傍熱型陰極の概略正面図であり、図2は、同じく第1実施形態に係るガス放電管用傍熱型陰極の概略側面図であり、図3は、同じく第1実施形態に係るガス放電管用傍熱型陰極の概略上面図であり、図4は、同じく第1実施形態に係るガス放電管用傍熱型陰極の概略断面図である。なお、図1〜図3は、電気絶縁層4及び金属酸化物10の図示を説明のため省略している。また、本実施形態においては、ガス放電管用傍熱型電極を陰極(ガス放電管用傍熱型陰極)に適用した例を示す。
(First embodiment)
FIG. 1 is a schematic front view of an indirectly heated cathode for a gas discharge tube according to the first embodiment, and FIG. 2 is a schematic side view of the indirectly heated cathode for a gas discharge tube according to the first embodiment. 3 is a schematic top view of the indirectly heated cathode for the gas discharge tube according to the first embodiment, and FIG. 4 is a schematic sectional view of the indirectly heated cathode for the gas discharge tube according to the first embodiment. 1 to 3 omit illustration of the
ガス放電管用傍熱型陰極C1は、図1〜図4に示されるように、加熱用ヒータ1と、コイル部材としての二重コイル2と、電気導体としての板状部材3と、易電子放射物質(陰極物質)としての金属酸化物10とを有している。加熱用ヒータ1は、直径0.03〜0.1mm、たとえば0.07mmのタングステン素線を二重に巻回したフィラメントコイルからなり、このタングステンフィラメントコイルの表面には、電着法等により電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)が被覆されて電気絶縁層4が形成されている。なお、電気絶縁層4の代わりに電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)の円筒パイプを用い、当該円筒パイプ内に加熱用ヒータ1を挿入して加熱用ヒータ1を絶縁する構成を採用してもよい。
As shown in FIGS. 1 to 4, the indirectly heated cathode C1 for a gas discharge tube includes a
二重コイル2は、コイル状に巻き回されたコイルより構成される多重コイルであって、直径0.091mmのタングステン素線を径0.25mm、ピッチ0.146mmの一次コイルに形成し、さらにその一次コイルで径1.7mm、ピッチ0.6mmの二重コイルに形成したものである。二重コイル2の内側には、加熱用ヒータ1が挿入されて配設されている。なお、コイル部材としては、二重コイル2を用いる代わりに、三重コイル等を用いるようにしもよい。
The
板状に形成された板状部材3は、導電性を有する剛体(金属導体)で、周期律表のIIIa〜VIIa、VIII、Ib族に属し、具体的にはタングステン、タンタル、モリブデン、レニウム、ニオブ、オスミウム、イリジウム、鉄、ニッケル、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ロジウム、希土類金属等の高融点金属(融点1000℃以上)の単体金属もしくはこれらの合金からなる。本実施形態においては、幅1.5mm、厚さ25.4μmのタングステン製の板状部材を用いている。
The plate-
板状部材3は、二重コイル2の内側(加熱用ヒータ1と二重コイル2との間)に二重コイル2の長手方向にわたって、放電方向に略直交して設けられている。板状部材3は、二重コイル2と電気的に接続された状態にある。また、板状部材3は、二重コイル2の内側において複数のコイル部分に接触しており、二重コイル2と複数個の接点を形成している。板状部材3は、加熱用ヒータ1の接地側の端子に接続されることにより、接地(GND)されている。板状部材3が接地されることにより、二重コイル2も接地されることになる。なお、板状部材3を用いる代わりに、線状に形成された線状部材(たとえば、直径0.1mm程度のタングステン素線)を用いるようにしてもよい。また、板状部材3と二重コイル2との各接触点を溶接してもよい。
The plate-
金属酸化物10は、二重コイル2及び加熱用ヒータ1に保持され、板状部材3に接触して設けられている。金属酸化物10の表面及び二重コイル2の表面がガス放電管用傍熱型陰極C1の外側に露出しており、金属酸化物10の表面部分に二重コイル2の表面部分が接触するようになっている。
The
金属酸化物10としては、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の内のいずれか単体の酸化物、又はこれらの酸化物の混合物、あるいは、主構成要件がバリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物であり副構成要件がランタン系を含む希土類金属(周期律表のIIIa)である酸化物が用いられる。バリウム、ストロンチウム、カルシウムは、仕事関数が小さく、熱電子を容易に放出することができ、熱電子供給量を増加させることができる。また、副構成要件として希土類金属(周期律表のIIIa)を添加した場合、熱電子供給量を更に増加させることができると共に、耐スパッタ性能を向上することもできる。
As the
金属酸化物10は、陰極物質材として金属炭酸塩(たとえば、炭酸バリウム、炭酸ストロンチウム、炭酸カルシウム等)の形で塗布され、塗布された金属炭酸塩を真空加熱分解することにより得られる。なお、加熱用ヒータ1への通電により真空加熱分解を行う場合、直流加熱分解に比べ交流加熱分解の方が好ましい。このようにして得られた金属酸化物10が最終的に易電子放射物質となる。陰極物質材としての金属炭酸塩は、図1〜図3(b)に示されたように、二重コイル2の内側に加熱用ヒータ1が配設され、放電面側となる二重コイル2の内側に板状部材3が配設されている状態において、二重コイル2の表面側から塗布される。なお、金属炭酸塩は、ガス放電管用傍熱型陰極C1(二重コイル2)の全周を覆うように塗布する必要はなく、放電面側となる板状部材3が設けられている側の部分のみに塗布するようにしてもよい。
The
加熱用ヒータ1は、図3(b)及び図4に示されるように、電気絶縁層4を介して、金属酸化物10と二重コイル2とに接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物10及び二重コイル2に伝えることができる。また、特公昭62−56628号公報に開示されたガス放電管用傍熱型陰極のように熱良導性の円筒を有するものに比して、熱陰極動作に必要となる熱量の損失を抑制することができる。このため、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。ここで、自己加熱とは、ガス放電管において電極から電子が出る際、放電空間中のイオン化したガス分子が衝突して電気的に中和されるが、ガス分子が電極に衝突する衝撃により、熱が発生することをいう。
As shown in FIGS. 3B and 4, the
なお、上記した金属酸化物以外には、熱電子供給源としてほう化ランタン等の金属ほう化物、金属炭化物、金属窒化物等を用いることも考えられるが、これらの金属ほう化物、金属炭化物、金属窒化物等はガス放電管用の熱陰極としての熱電子供給源としての実績が乏しく、主副構成要件として加える意味はない。ただし、熱電子供給源以外の効果、たとえば放電部以外での熱放散量を抑制するための絶縁効果向上等のために陰極周辺部に使用することがある。 In addition to the above metal oxides, it is conceivable to use metal borides such as lanthanum boride, metal carbides, metal nitrides, etc. as the source of thermionic electrons, but these metal borides, metal carbides, metal Nitride and the like have a poor track record as a thermoelectron supply source as a hot cathode for a gas discharge tube, and there is no meaning to add as a main sub-component. However, it may be used in the peripheral part of the cathode for the effect other than the thermoelectron supply source, for example, the improvement of the insulating effect for suppressing the heat dissipation amount other than the discharge part.
ここで、二重コイル2の表面の所定の3つの放電部(電子供給源としてのグランド(GND)に近いほうから1A、1B、1Cとする)における放電を考察してみる。各放電部1A、1B、1Cは、板状部材3からの二重コイル2の巻線抵抗分R1A、R1B、R1Cを有している。放電電流量は、その部位の仕事関数によって異なるが、
I1A>I1B>I1C ……… (1)
と仮定して、巻線抵抗分R1Aを有する放電部1Aに主たる放電が発生した場合、下記の(2)式で表されるジュール熱による発熱(W)が増大し、
W=I1A2×R1A ……… (2)
温度上昇による仕事関数の低下が起こる。これにより、放電の多くがこの放電部1Aに集まって放電の集中度が増え、放電分布は、緩やかな凹凸を有する山脈状の連続分布となる。巻線抵抗分R1Aの値が大きいほど、放電分布の傾斜は大きくなるが、逆に巻線抵抗分R1Aの値が小さくなっていくと、その放電分布は、幅の広い緩やかな一山型の連続分布に収束していくこととなる。
Here, let us consider the discharge in predetermined three discharge parts (referred to as 1A, 1B, 1C from the side closer to the ground (GND) as the electron supply source) on the surface of the
I1A>I1B> I1C (1)
Assuming that the main discharge is generated in the discharge part 1A having the winding resistance R1A, heat generation (W) due to Joule heat expressed by the following equation (2) increases.
W = I1A 2 × R1A (2)
The work function is lowered due to the temperature rise. As a result, most of the discharge gathers in the discharge portion 1A, increasing the concentration of the discharge, and the discharge distribution becomes a continuous mountainous distribution having gentle unevenness. The slope of the discharge distribution increases as the value of the winding resistance R1A increases. Conversely, when the value of the winding resistance R1A decreases, the discharge distribution increases in a wide and gentle mountain shape. It will converge to a continuous distribution.
以上のことから、本実施形態のガス放電管用傍熱型陰極C1においては、金属酸化物10に接触するとともに二重コイル2に接触して板状部材3が設けられているので、板状部材3は、二重コイル2の裏面(放電面とは反対側の面)において当該二重コイル2の内側部分とともに等電位面を実効的に形成することになる。すなわち、板状部材3と二重コイル2の内側部分とは、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、板状部材3の表面の端々間の電気抵抗は著しく小さく、板状部材3の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、板状部材3により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
From the above, in the indirectly heated cathode C1 for gas discharge tube of the present embodiment, the
したがって、ガス放電管用傍熱型陰極C1では、板状部材3と二重コイル2とにより、二重コイル2の裏面(放電面とは反対側の面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C1の動作電圧及び発生熱量を低くすることもできる。
Therefore, in the indirectly heated cathode C1 for the gas discharge tube, an equipotential surface is effectively formed on the back surface (the surface opposite to the discharge surface) of the
また、ガス放電管用傍熱型陰極C1にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。 In the indirectly heated cathode C1 for a gas discharge tube, the current density is slightly increased and the load is slightly increased in relation to the increase in the discharge area. Damage can be reduced compared to. As a result, an indirectly heated cathode for a gas discharge tube with a large discharge current having almost the same shape as the conventional one can be provided, and a pulse operation and a large current operation can be realized.
また、電気導体として板状部材3を用いているので、熱電子放出能の低下及び放電位置の移動を抑制し得る構成の電気導体を低コスト且つより一層簡易に実現することができる。また、板状部材3(電気導体)が剛体となるために、加工が容易であると共に、金属酸化物10に密接して設けることができる。更に、板状部材3と金属酸化物10とが接触する箇所を容易に多く設けることができる。
In addition, since the plate-
また、本実施形態のガス放電管用傍熱型陰極C1においては、加熱用ヒータ1を核として、その外側に金属酸化物10を保持する二重コイル2を取り巻くように配置し、二重コイル2の内側において金属酸化物10に接触するように板状部材3を配設することにより、二重コイル2の振動抑制効果が働き、金属酸化物10の落下を防ぐことができる。また、二重コイル2のピッチ間に多量の金属酸化物10が保持されることになり、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
Moreover, in the indirectly heated cathode C1 for gas discharge tubes of this embodiment, it arrange | positions so that the
(第2実施形態)
図5は、第2実施形態に係るガス放電管用傍熱型陰極の概略断面図である。第2実施形態は、二重コイルがマンドレルを有している点、及び、電気導体がメッシュ状部材である点等で第1実施形態と相違する。
(Second Embodiment)
FIG. 5 is a schematic cross-sectional view of an indirectly heated cathode for a gas discharge tube according to the second embodiment. The second embodiment is different from the first embodiment in that the double coil has a mandrel and the electrical conductor is a mesh member.
ガス放電管用傍熱型陰極C2は、図5に示されるように、加熱用ヒータ1と、コイル部材としての二重コイル41と、電気導体としてのメッシュ状部材21と、易電子放射物質としての金属酸化物10とを有している。
As shown in FIG. 5, the indirectly heated cathode C2 for a gas discharge tube includes a
二重コイル41は、第1実施形態における二重コイル2と同様に、コイル状に巻き回されたコイルより構成される多重コイルであって、マンドレル42を有している。加熱用ヒータ1は、二重コイル41の内側に設けられている。ここで、マンドレルとは、フィラメントコイル作成時に巻径を決める型の役割を果たす芯線のことである。なお、マンドレルの材料としては、たとえばモリブデンを用いる。
Similar to the
メッシュ状に形成されたメッシュ状部材21は、導電性を有する剛体(金属導体)で、周期律表のIIIa〜VIIa、VIII、Ib族に属し、具体的にはタングステン、タンタル、モリブデン、レニウム、ニオブ、オスミウム、イリジウム、鉄、ニッケル、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ロジウム、希土類金属等の高融点金属(融点1000℃以上)の単体金属もしくはこれらの合金からなる。本実施形態においては、直径0.03mmのタングステン素線をメッシュ状に編んだメッシュ状部材を用いている。メッシュ状部材21におけるメッシュの大きさは、80メッシュとされている。メッシュ状部材21は、所定長さを有している。
The
メッシュ状部材21は、二重コイル41の内側(加熱用ヒータ1と二重コイル41との間)に二重コイル41の長手方向にわたって、放電方向に略直交して設けられている。メッシュ状部材21は、二重コイル41と電気的に接続された状態にある。また、メッシュ状部材21は、二重コイル41の内側において複数のコイル部分に接触しており、二重コイル41と複数個の接点を形成している。メッシュ状部材21は、加熱用ヒータ1の接地側の端子に接続されることにより、接地(GND)されている。メッシュ状部材21が接地されることにより、二重コイル41も接地されることになる。
The
金属酸化物10は、二重コイル41及び加熱用ヒータ1に保持される。二重コイル41の表面部分及び金属酸化物10は、金属酸化物10の表面及び二重コイル41の表面部分が放電面となるように、ガス放電管用傍熱型陰極C2の外側に露出しており、金属酸化物10の表面部分に二重コイル41の表面部分が接触するようになっている。金属酸化物10は、第1実施形態と同様にして、設けられる。
The
加熱用ヒータ1は、図5に示されるように、電気絶縁層4を介して、金属酸化物10と二重コイル42とに接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物10及び二重コイル42に伝えることができる。また、第1実施形態と同じく、熱陰極動作に必要となる熱量の損失を抑制することができ、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。
As shown in FIG. 5, the
以上のことから、本実施形態のガス放電管用傍熱型陰極C2においては、金属酸化物10に接触するとともに二重コイル41に接触してメッシュ状部材21が設けられているので、メッシュ状部材21は、二重コイル41の裏面(放電面とは反対側の面)において等電位面を実効的に形成することになる。すなわち、メッシュ状部材21は、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、メッシュ状部材21の表面の端々間の電気抵抗は著しく小さく、メッシュ状部材21の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、メッシュ状部材21により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
From the above, in the indirectly heated cathode C2 for gas discharge tube according to the present embodiment, the
したがって、ガス放電管用傍熱型陰極C2では、メッシュ状部材21により、二重コイル41の裏面(放電面とは反対側の面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C2の動作電圧及び発生熱量を低くすることもできる。
Therefore, in the indirectly heated cathode C2 for the gas discharge tube, the equipotential surface is effectively formed on the back surface (the surface opposite to the discharge surface) of the
また、ガス放電管用傍熱型陰極C2にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。 Further, in the indirectly heated cathode C2 for gas discharge tubes, the current density is slightly increased and the load is slightly increased in relation to the increase in the discharge area. Damage can be reduced compared to. As a result, an indirectly heated cathode for a gas discharge tube with a large discharge current having almost the same shape as the conventional one can be provided, and a pulse operation and a large current operation can be realized.
また、電気導体としてメッシュ状部材21を用いているので、熱電子放出能の低下及び放電位置の移動を抑制し得る構成の電気導体を低コスト且つより一層簡易に実現することができる。また、メッシュ状部材21(電気導体)が剛体となるために、加工が容易であると共に、金属酸化物10に密接して設けることができる。更に、メッシュ状部材21と金属酸化物10とが接触する箇所を容易に多く設けることができる。
Moreover, since the mesh-
また、本実施形態のガス放電管用傍熱型陰極C2においては、加熱用ヒータ1を核として、その外側に金属酸化物10を保持する二重コイル41を取り巻くように配置し、二重コイル41の内側において金属酸化物10に接触するようにメッシュ状部材21を配設することにより、二重コイル41の振動抑制効果が働き、金属酸化物10の落下を防ぐことができる。また、二重コイル41のピッチ間に多量の金属酸化物10が保持されることになり、放電中の経時劣化に伴う消失金属酸化物分を補充する効果がある。
また、二重コイル41がマンドレルを有しているので、加工時及び使用時に二重コイル41が変形するのを抑制することができる。
Moreover, in the indirectly heated cathode C2 for gas discharge tube of this embodiment, it arrange | positions so that the
Moreover, since the
(第3実施形態)
図6は、第3実施形態に係るガス放電管用傍熱型陰極の概略断面図である。第3実施形態は、コイル部材が一重コイルである点、及び、電気導体が線状部材である点等で第1及び第2実施形態と相違する。
(Third embodiment)
FIG. 6 is a schematic cross-sectional view of an indirectly heated cathode for a gas discharge tube according to the third embodiment. The third embodiment is different from the first and second embodiments in that the coil member is a single coil and the electric conductor is a linear member.
ガス放電管用傍熱型陰極C3は、図6に示されるように、加熱用ヒータ1と、コイル部材としての一重コイル45と、電気導体としての線状部材23、易電子放射物質としての金属酸化物10とを有している。
As shown in FIG. 6, the indirectly heated cathode C3 for a gas discharge tube includes a
一重コイル45は、一重コイル状に巻き回されたコイルより構成されるコイル部材であって、直径0.15mmのタングステン素線を径1.7mm、ピッチ0.18mmで巻き回されている。加熱用ヒータ1は、一重コイル45の内側に設けられている。
The
線状に形成され、所定長さを有する線状部材23は、メッシュ状部材21と同様に、導電性を有する剛体(金属導体)で、周期律表のIIIa〜VIIa、VIII、Ib族に属し、具体的にはタングステン、タンタル、モリブデン、レニウム、ニオブ、オスミウム、イリジウム、鉄、ニッケル、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ロジウム、希土類金属等の高融点金属(融点1000℃以上)の単体金属もしくはこれらの合金からなる。本実施形態においては、タングステン製の線状部材を用いている。線状部材21の直径は、0.1mm程度に設定されている。
Like the
線状部材23は、一重コイル45の内側(加熱用ヒータ1と一重コイル45との間)に一重コイル45の長手方向にわたって、放電方向に略直交して設けられている。線状部材23は、一重コイル45と電気的に接続された状態にある。また、線状部材23は、一重コイル45の内側において複数のコイル部分に接触しており、一重コイル45と複数個の接点を形成している。線状部材23は、加熱用ヒータ1の接地側の端子とともにリードロッドに接続されることにより、接地(GND)されている。板状部材3が接地されることにより、一重コイル45も接地されることになる。
The
金属酸化物10は、一重コイル45及び加熱用ヒータ1に保持される。一重コイル45の表面部分及び金属酸化物10は、金属酸化物10の表面及び一重コイル45の表面部分が放電面となるように、ガス放電管用傍熱型陰極C5の外側に露出しており、金属酸化物10の表面部分に一重コイル45の表面部分が接触するようになっている。金属酸化物10は、第1実施形態と同様にして、設けられる。
The
加熱用ヒータ1は、図5に示されるように、電気絶縁層4を介して、金属酸化物10と一重コイル45とに接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物10及び一重コイル45に伝えることができる。また、第1実施形態と同じく、熱陰極動作に必要となる熱量の損失を抑制することができ、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。
As shown in FIG. 5, the
以上のことから、本実施形態のガス放電管用傍熱型陰極C3においては、金属酸化物10に接触するとともに一重コイル45に接触して線状部材23が設けられているので、線状部材23は、一重コイル45の裏面(放電面とは反対側の面)において当該一重コイル45の内側部分とともに等電位面を実効的に形成することになる。すなわち、線状部材23と一重コイル45の内側部分とは、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、線状部材23の表面の端々間の電気抵抗は著しく小さく、線状部材23の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、線状部材23により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
From the above, in the indirectly heated cathode C3 for gas discharge tube of the present embodiment, the
したがって、ガス放電管用傍熱型陰極C3では、線状部材23と一重コイル45の内側部分とにより、一重コイル45の裏面(放電面とは反対側の面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C3の動作電圧及び発生熱量を低くすることもできる。
Therefore, in the indirectly heated cathode C3 for a gas discharge tube, an equipotential surface is effectively formed on the back surface (the surface opposite to the discharge surface) of the
また、ガス放電管用傍熱型陰極C3にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。 Further, in the indirectly heated cathode C3 for gas discharge tubes, the current density is slightly increased to slightly increase the load in relation to the increase in the discharge area. Damage can be reduced compared to. As a result, an indirectly heated cathode for a gas discharge tube with a large discharge current having almost the same shape as the conventional one can be provided, and a pulse operation and a large current operation can be realized.
また、電気導体として線状部材23を用いているので、熱電子放出能の低下及び放電位置の移動を抑制し得る構成の電気導体を低コスト且つより一層簡易に実現することができる。また、線状部材23(電気導体)が剛体となるために、加工が容易であると共に、金属酸化物10に密接して設けることができる。更に線状部材23と金属酸化物10とが接触する箇所を容易に多く設けることができる。
Moreover, since the
また、本実施形態のガス放電管用傍熱型陰極C3においては、加熱用ヒータ1を核として、その外側に金属酸化物10を保持する一重コイル45を取り巻くように配置し、一重コイル45の内側において金属酸化物10に接触するように線状部材23を配設することにより、一重コイル45の振動抑制効果が働き、金属酸化物10の落下を防ぐことができる。
Further, in the indirectly heated cathode C3 for the gas discharge tube according to the present embodiment, the
(第4実施形態)
図7は、第4実施形態に係るガス放電管用傍熱型陰極の概略断面図である。第4実施形態は、基体金属を有している点で第1〜第3実施形態と相違する。
(Fourth embodiment)
FIG. 7 is a schematic sectional view of an indirectly heated cathode for a gas discharge tube according to the fourth embodiment. The fourth embodiment is different from the first to third embodiments in having a base metal.
ガス放電管用傍熱型陰極C4は、図7に示されるように、加熱用ヒータ1と、二重コイル41と、易電子放射物質としての金属酸化物10と、基体金属31とを有している。
As shown in FIG. 7, the indirectly heated cathode C4 for a gas discharge tube has a
基体金属31は、筒状に形成され、導電性を有している。基体金属31は、たとえば、モリブデン等からなる。この基体金属31の内側に、加熱用ヒータ1が挿入されて配設される。二重コイル41は、基体金属31の外側表面に複数回巻き付けられて固定される。また、基体金属31は、易電子放射物質としての金属酸化物10と加熱用ヒータ1に形成された電気絶縁層4とを隔絶する機能を有している。なお、基体金属31として、動作中の陰極温度よりも高い融点を有する中高融点金属を用いることができる。また、基体金属31としては、円筒形状の筒状部材が一般的であるが、切り欠き部を有する円弧形状(開放された形状)の筒状部材を用いるようにしてもよい。
The
基体金属31は、二重コイル41の内側(加熱用ヒータ1と二重コイル41との間)に二重コイル41の長手方向にわたって、放電方向に略直交して設けられている。基体金属31は、二重コイル41と電気的に接続された状態にある。また、基体金属31は、二重コイル41の内側において複数のコイル部分に接触しており、二重コイル41と複数個の接点を形成している。基体金属31は、加熱用ヒータ1の接地側の端子とともにリードロッドに接続されることにより、接地(GND)されている。基体金属31が接地されることにより、二重コイル41も接地されることになる。
The
金属酸化物10は、二重コイル41に保持される。二重コイル41の表面部分及び金属酸化物10は、金属酸化物10の表面及び二重コイル41の表面部分が放電面となるように、ガス放電管用傍熱型陰極C4の外側に露出しており、金属酸化物10の表面部分に二重コイル41の表面部分が接触するようになっている。
The
以上のことから、本実施形態のガス放電管用傍熱型陰極C4においては、金属酸化物10に接触するとともに二重コイル41に接触して基体金属31が設けられているので、基体金属31は、二重コイル41の裏面(放電面とは反対側の面)において当該二重コイル41の内側部分とともに等電位面を実効的に形成することになる。すなわち、基体金属31と二重コイル41とは、複数の電気配線(導電路)で構成され、かつ単一の方向へ電流が流れるよう規制されることはない。したがって、基体金属31の表面の端々間の電気抵抗は著しく小さく、基体金属31の表面においてはほぼ等電位状態となっており、複数の放電点あるいは放電線からなる放電面の電位はほぼ等しくなる。言い換えると、基体金属31により、放電面に平行な方向に放電電流が流れ得る複数の電気回路が形成、つまり、放電電子(エミッション)の通り路(等電位回路)が複数形成されることとなる。
From the above, in the indirectly heated cathode for gas discharge tube C4 of the present embodiment, the
したがって、ガス放電管用傍熱型陰極C4では、基体金属31と二重コイル41とにより、二重コイル41の裏面(放電面とは反対側の面)において等電位面が実効的に形成されているので、形成された等電位面の広い領域で熱電子放出が起きて放電面積が増加し、単位面積当りの電子放出量(電子放出密度)が大きくなって放電位置における負荷が軽減されることになり、劣化要因である金属酸化物10のスパッタ、還元金属との酸化による安定化(鉱物化)、つまり熱電子放出能の低下を抑制することができる。この結果、局所的な放電の発生を抑制でき、陰極の長寿命化を図ることができる。また、放電位置の移動も抑制されることになるため、長時間にわたって安定した放電を得ることができる。また、放電面積が増加することから、ガス放電管用傍熱型陰極C4の動作電圧及び発生熱量を低くすることもできる。
Therefore, in the indirectly heated cathode C4 for a gas discharge tube, an equipotential surface is effectively formed on the back surface (the surface opposite to the discharge surface) of the
また、ガス放電管用傍熱型陰極C4にあっては、放電面積が増加したことに関連して、電流密度を若干上げて、負荷をやや増す、つまり、放電電流を増しても、従来のものに比べ損傷を小さくできる。これにより、従来のものとほぼ同一形状で、大放電電流のガス放電管用傍熱型陰極を提供でき、パルス動作、大電流動作の実現が可能となる。 Further, in the indirectly heated cathode C4 for gas discharge tubes, the current density is slightly increased and the load is slightly increased in relation to the increase in the discharge area. Damage can be reduced compared to. As a result, an indirectly heated cathode for a gas discharge tube with a large discharge current having almost the same shape as the conventional one can be provided, and a pulse operation and a large current operation can be realized.
また、二重コイル41がマンドレルを有しているので、加工時及び使用時に二重コイル41が変形するのを抑制することができる。
Moreover, since the
次に、図8〜図10に基づいて、上述した構成のガス放電管用傍熱型陰極C1を用いたガス放電管について説明する。図8は、ガス放電管用傍熱型陰極C1を用いたガス放電管の全体斜視図、図9はその発光部の分解斜視図、図10は発光部の横断面図である。本実施形態においては、ガス放電管用傍熱型陰極をC1サイドオン型の重水素ガス放電管に適用している。なお、ガス放電管用傍熱型陰極として、ガス放電管用傍熱型陰極C1の代わりにガス放電管用傍熱型陰極C2〜C4のいずれかを用いるようにしてもよい。 Next, based on FIGS. 8-10, the gas discharge tube using the indirectly heated cathode C1 for gas discharge tubes of the structure mentioned above is demonstrated. 8 is an overall perspective view of a gas discharge tube using the indirectly heated cathode C1 for the gas discharge tube, FIG. 9 is an exploded perspective view of the light emitting portion, and FIG. 10 is a cross-sectional view of the light emitting portion. In this embodiment, the indirectly heated cathode for a gas discharge tube is applied to a C1 side-on type deuterium gas discharge tube. As the indirectly heated cathode for the gas discharge tube, any of the indirectly heated cathodes C2 to C4 for the gas discharge tube may be used instead of the indirectly heated cathode C1 for the gas discharge tube.
重水素ガス放電管DT1は、ガラス製の外周器61を有している。外周器61の内部には、図8に示されるように、発光部組立体62が収容され、外周器61の底部はガラス製のステム63により気密に封止されている。発光部組立体62の下部からは4本のリードピン64a〜64dが延び、ステム63を貫通して外部に露出している。発光部組立体62は、共にアルミナ製の放電遮蔽板(放電遮蔽部)71及び支持板72を貼り合わせた遮蔽箱構造と、放電遮蔽板71の前面に取り付けられた金属製の前面カバー73とを有している。
The deuterium gas discharge tube DT1 has a glass peripheral 61. As shown in FIG. 8, a light emitting
図9に示されるように、断面形状が凸型の支持板72の後部には縦方向に貫通穴が形成され、ここにリードピン64aが挿入されてステム63に保持されている。支持板72の前面には下方に向かって縦に伸びる凹型溝が形成され、ここにステム63から伸びるリードピン64bが没入され、これらによって支持板72はステム63に固定される。リードピン64bには四角形平板の陽極74が前方に向かって固定され、支持板72の前面に形成された2個の凸部と接することで保持される。
As shown in FIG. 9, a through hole is formed in the longitudinal direction in the rear portion of the
また、図9に示されるように、放電遮蔽板71は支持板72に比べて薄型かつ幅広の凸型断面構造をなし、中央部の陽極74と対応する位置には貫通穴71aが形成される。放電遮蔽板71の凸部の側方には縦方向に貫通穴が形成されここにL字型に折り曲げた電極棒81が挿通されている。そして、放電遮蔽板71を支持板72に貼り合わせた状態で、電極棒81の下端とL字型に折り曲げられたリードピン64cの先端とが溶接される。電極棒81の側方に伸びた先端部には、ガス放電管用傍熱型陰極C1の上側電極棒82が溶接され、下側電極棒83は、放電遮蔽板71と支持板72を貼り合わせた状態において、L字型に折り曲げられたリードピン64dの先端に溶接される。
As shown in FIG. 9, the
金属製の収束電極76は、図9に示されるように、中間部に放電遮蔽板71の貫通穴71aと同軸上に収束開口76aを形成したL字型の金属板を、上部で後方に、ガス放電管用傍熱型陰極C1方向の側部で前方に、それぞれ折り曲げて構成され、側部にガス放電管用傍熱型陰極C1を臨むための長方形状縦長の開口76bが形成されている。そして、放電遮蔽板71、支持板72及び収束電極76にはそれぞれ対応する位置に4個づつの貫通穴が形成されている。従って、放電遮蔽板71、支持板72及び収束電極76を貼り合わせた状態において、U字状に折り曲げた2本の金属製のピン84、85を差込むことでこれらをステム63に固定できる。
As shown in FIG. 9, the
図8及び図9に示すように、金属製の前面カバー73は4段に折り曲げた断面U字型をなし、中央部に投光用の開口窓73aが形成されている。そして両端部には2個づつの凸部73bが形成されており、これが放電遮蔽板71の前面端部に形成された4個の貫通開口71bと対応している。従って、この凸部73bを貫通開口71bに差込むことで前面カバー73は放電遮蔽板71に固定され、この状態で収束電極76の前方端部は前面カバー73の内面に接触し、ガス放電管用傍熱型陰極C1が配置される空間と発光空間とが分離される。
As shown in FIGS. 8 and 9, the
図9及び図10によれば、収束電極76は中央部に放電遮蔽板71の貫通穴71aと同軸上に収束開口76aを有しているが、ここには開口径を制限するための開口制限板78が溶接で固定されている。尚、開口制限板78は、収束開口76aの周囲で陽極74の方向に屈曲され、従って放電遮蔽板71の厚さよりも陽極74と開口制限板78の開口の距離の方が小さくなっている。
According to FIGS. 9 and 10, the converging
このように組み立てられた発光部62内における各電極の配置は、図10に示す通りである。陽極74は放電遮蔽板71及び支持板72に挟まれて固定され、収束電極76に溶接された開口制限板78は、放電遮蔽板71の貫通穴71aを介して陽極74と向い合う配置で、放電遮蔽板71に固定される。ガス放電管用傍熱型陰極C1は、放電遮蔽板71、前面カバー73並びに収束電極76の長方形開口76bを有する面により包囲された空間内であって、長方形開口76bを通して開口制限板78を臨む位置に配置される。
The arrangement of the electrodes in the
次に、図10を参照して重水素ガス放電管DT1の動作について説明する。ガス放電管用傍熱型陰極C1が十分に加熱された後、陽極74とガス放電管用傍熱型陰極C1との間にトリガ電圧が印加され放電が開始する。このときの熱電子の流路は、収束電極76の開口制限板78による収斂並びに放電遮蔽板71及び支持板72による遮蔽効果によって、経路91(破線に挟まれた部分で図示される)ただ一つに限定される。即ち、ガス放電管用傍熱型陰極C1から放出された熱電子(図示せず)は収束電極76の長方形開口76bから開口制限板78を通過し、放電遮蔽板71の貫通穴71aを通り陽極74へと至る。アーク放電によるアークボール92は開口制限板78の前部空間であって陽極74とは反対側の空間に発生する。そしてアークボール92から取り出される光は、前面カバー73の開口窓73aを通っておよそ矢印93の方向に発せられる。
Next, the operation of the deuterium gas discharge tube DT1 will be described with reference to FIG. After the gas discharge tube indirectly heated cathode C1 is sufficiently heated, a trigger voltage is applied between the
このように、本実施形態の重水素ガス放電管DT1では、ガス放電管用傍熱型陰極C1を用いることで、寿命が長く且つ動作の安定した重水素ガス放電管を実現することができる。 Thus, in the deuterium gas discharge tube DT1 of the present embodiment, a deuterium gas discharge tube having a long life and stable operation can be realized by using the indirectly heated cathode C1 for gas discharge tubes.
なお、ガス放電管用傍熱型陰極C1〜C4は、上述した重水素ガス放電管DT1以外のガス放電管、たとえば管頂部より光を取り出すヘッドオン型重水素ガス放電管、希ガス蛍光ランプ、あるいは、水銀蛍光ランプ等の電極(ガス放電管用傍熱型陰極)として用いることもできる。詳しくは、本発明のガス放電管用傍熱型電極を用いたガス放電管には、本発明のガス放電管用傍熱型電極を含む対をなす放電用電極を有し、内面に蛍光体膜が形成された密閉容器を有し、密閉容器に対して希ガスを封入した希ガス蛍光ランプある。本発明のガス放電管用傍熱型電極を用いたガス放電管には、本発明のガス放電管用傍熱型電極を含む対をなす放電用電極を有し、密閉容器を有し、密閉容器に対して希ガスと水銀とを封入した水銀ランプがある。本発明のガス放電管用傍熱型電極を用いたガス放電管には、本発明のガス放電管用傍熱型電極を含む対をなす放電用電極を有し、内面に蛍光体膜が形成された密閉容器を有し、密閉容器に対して希ガスと水銀とを封入した蛍光ランプがある。 The indirectly heated cathodes C1 to C4 for the gas discharge tube are gas discharge tubes other than the deuterium gas discharge tube DT1, for example, a head-on type deuterium gas discharge tube that extracts light from the top of the tube, a rare gas fluorescent lamp, or It can also be used as an electrode (an indirectly heated cathode for a gas discharge tube) such as a mercury fluorescent lamp. Specifically, the gas discharge tube using the indirectly heated electrode for gas discharge tube of the present invention has a discharge electrode that forms a pair including the indirectly heated electrode for gas discharge tube of the present invention, and the phosphor film is formed on the inner surface. A rare gas fluorescent lamp having a sealed container formed and having a rare gas sealed in the sealed container. The gas discharge tube using the indirectly heated electrode for gas discharge tube of the present invention has a pair of discharge electrodes including the indirectly heated electrode for gas discharge tube of the present invention, has a sealed container, On the other hand, there is a mercury lamp in which rare gas and mercury are enclosed. The gas discharge tube using the indirectly heated electrode for gas discharge tube of the present invention has a pair of discharge electrodes including the indirectly heated electrode for gas discharge tube of the present invention, and a phosphor film is formed on the inner surface. There is a fluorescent lamp which has a sealed container and in which a rare gas and mercury are sealed in the sealed container.
また、本発明のガス放電管用傍熱型電極は、放電が分散する特徴を生かして、図11に示されるように、容器41外部に電極42を有し、容器41内部にガス放電管用傍熱型陰極C1〜C4を有し、容器41内部に希ガスを封入し、高周波電源43を使い駆動する片側外部電極型ランプに用いることができる。このように、本発明のガス放電管用傍熱型電極は、上述した低圧ガスランプ等に用いることができる。
なお、上述した希ガス蛍光ランプ、水銀ランプ、蛍光ランプ等のガス放電管DT2の点灯回路としては、図12に示されるように、グロー管53、安定器54、交流電源55を有した既知のスタータ(予熱始動)形の点灯回路を用いることができる。点灯回路として、スタータ形に代え、ラピッドスタート形にも対応できる。駆動方式とてして、高周波点灯専用形(Hf)への対応もできる。
Further, the indirectly heated electrode for gas discharge tube of the present invention has an
As the lighting circuit of the gas discharge tube DT2 such as the rare gas fluorescent lamp, the mercury lamp, or the fluorescent lamp described above, as shown in FIG. 12, a known tube having a
なお、本発明のガス放電管用傍熱型電極を用いたガス放電管においては、交流動作の場合、1対の電極(ガス放電管用傍熱型陰極C1〜C4)が主たる機能として電子放出を行う陰極と、電子が流れ込む陽極としての役割を交互に果たす。陽極として機能するとき、電子が流れ込む際の電圧降下により多量の熱が電極に生じる。電極が陽極として機能するときに生じた熱量を当該電極が陰極として機能するときに熱電子放出に必要な熱量として使うことで、ガス放電管の持続放電中の加熱用ヒータ1からの熱供給なし、あるいは直流動作に比べて少ない熱供給にて、安定した持続放電を実現することができる。
In the gas discharge tube using the indirectly heated electrode for gas discharge tube of the present invention, in the case of alternating current operation, a pair of electrodes (side heated cathodes C1 to C4 for gas discharge tube) emit electrons as a main function. It alternately serves as a cathode and an anode through which electrons flow. When functioning as an anode, a large amount of heat is generated in the electrode due to a voltage drop when electrons flow. By using the amount of heat generated when the electrode functions as an anode as the amount of heat necessary for thermionic emission when the electrode functions as a cathode, no heat is supplied from the
次に、図13に基づいて、ガス放電管用傍熱型陰極C1を用いた重水素ガス放電管DT1に適した点灯装置について説明する。図13は、ガス放電管用傍熱型陰極C1を用いた重水素ガス放電管DT1の点灯装置を示す回路図である。 Next, a lighting device suitable for the deuterium gas discharge tube DT1 using the indirectly heated cathode C1 for gas discharge tube will be described with reference to FIG. FIG. 13 is a circuit diagram showing a lighting device for the deuterium gas discharge tube DT1 using the indirectly heated cathode C1 for the gas discharge tube.
点灯装置101は、重水素ガス放電管DT1のガス放電管用傍熱型陰極C1と陽極74との間に接続される電源としての定電流電源103と、陽極74と収束電極76との間に接続され、ガス放電管用傍熱型陰極C1と収束電極76との間にトリガ放電を発生させるための補助点灯回路部111と、ガス放電管用傍熱型陰極C1と陽極74との間に接続され、加熱用ヒータ1に所定の期間通電し所定の期間が経過した後は加熱用ヒータ1への通電を遮断するための通電遮断切替回路部121と、陽極74と定電流電源103との間に直列接続して設置した電流検知用の固定抵抗器131とを有している。
定電流電源103は、直流開放電圧約160Vを供給すると共に、定常電流約300mAを供給する。この定電流電源103には、放電安定用の負性抵抗105、ダイオード107とが直列に接続されている。負性抵抗105は、50〜150Ω程度に設定されている。
The
The constant
補助点灯回路部111は、陽極74と収束電極76との間に直列接続して設置した固定抵抗器113と、この固定抵抗器113に並列接続したコンデンサ115と、を含んでいる。通電遮断切替回路部121は、グロー管123を含んでいる。なお、補助点灯回路部111と収束電極76との間に、重水素ガス放電管DT1の動作(点灯)後に開かれるスイッチを設けるようにしてもよい。また、グロー管123を使ったグロースタータ式に替えて、タイマ機能を有する半導体素子を用いた電子スタート式、タイマ機能の有無を問わず機械式(有接点)スイッチを用いるようにしてもよい。
The auxiliary
次に、点灯装置101の動作について、図14(a)〜(f)及び図15(a)〜(e)に基づいて説明する。
Next, operation | movement of the
図13には示されていないが、重水素ガス放電管DT1の点灯装置101の主電源スイッチをオン(始動)にすると、定電流電源103からグロー管123に電力が供給されてグロー管123においてグロー放電が発生し、グロー管123の電極が互いに接触することにより、ガス放電管用傍熱型陰極C1の加熱用ヒータ1に電力が供給されて、ガス放電管用傍熱型陰極C1が予熱される(図14(a)〜(f)及び図15(a)〜(e)における期間A1)。このとき、定電流電源103からガス放電管用傍熱型陰極C1と陽極74との間に電圧約130Vが印加されており、陽極74からガス放電管用傍熱型陰極C1に向う電界が発生している。
Although not shown in FIG. 13, when the main power switch of the
このようにトリガ放電の準備が整ったときに、グロー管123においてグロー放電が止まり、グロー管123の電極が離れることにより、定電流電源103から並列接続したコンデンサ115及び固定抵抗器113を介して収束電極76に電位約130Vを発生させ、トリガ放電がガス放電管用傍熱型陰極C1と収束電極76との間に発生する(図14(a)〜(f)及び図15(a)〜(e)における期間A2)。
When the trigger discharge is ready in this way, the glow discharge stops in the
そして、このようにトリガ放電を発生させることにより、アーク放電をガス放電管用傍熱型陰極C1と陽極74との間に発生させ、定電流電源103からガス放電管用傍熱型陰極C1と陽極74との間に供給する電流約300mAに基づいて、主電源スイッチをオフするまでアーク放電が安定して持続する(図14(a)〜(f)及び図15(a)〜(e)における期間A3)。なお、重水素ガス放電管DT1が動作(点灯)している間、固定抵抗器131により、定電流電源103から重水素ガス放電管DT1に印加される電圧は、始動時の約160Vから約120Vに低下することになる。
Then, by generating the trigger discharge in this way, an arc discharge is generated between the indirectly heated cathode C1 for the gas discharge tube and the
ところで、ガス放電管用傍熱型陰極C1を用いた重水素ガス放電管DT1においては、下記の(3)式及び(4)式の関係で駆動可能であることから、
If0=Ip ……… (3)
Vf1=0 ……… (4)
ここで、If0:始動時の加熱用ヒータへの初期供給電流
Ip:放電電流
Vf1:動作中の加熱用ヒータへの印加電圧
この点灯装置101では、ガス放電管用傍熱型陰極C1を用いた重水素ガス放電管DT1を点灯させるための点灯装置を実現することができる。また、ガス放電管用傍熱型陰極C1の予熱用、トリガ放電(初期ガス電離による放電)開始用、及び、主放電用の電源を1つの定電流電源103で賄うことができ、特にガス放電管用傍熱型陰極C1の予熱(加熱用ヒータ)用の電源が不要となり、大幅な部品点数の削減及び構成の簡略化を図ることができる。
By the way, in the deuterium gas discharge tube DT1 using the indirectly heated cathode C1 for gas discharge tube, it can be driven by the relationship of the following formulas (3) and (4).
I f0 = Ip (3)
V f1 = 0 (4)
Where I f0 : initial supply current to the heater for starting
Ip: discharge current
V f1 : Applied voltage to heating heater in operation With this
また、点灯装置101では、通電遮断切替回路部121がグロー管123を含んでいるので、通電遮断切替回路部121を簡易且つ低コストで実現できる。更に、補助点灯回路部111は、固定抵抗器113とコンデンサ115とを含んでいるので、補助点灯回路部111を簡易且つ低コストで実現できる。
Further, in the
また、点灯装置101では、電流検知用の固定抵抗器131を有しているので、重水素ガス放電管DT1の動作時の電圧を下げることができ、重水素ガス放電管DT1の消費電力を低減することができる。
In addition, since the
なお、本実施形態においては、電気導体として高融点金属を用いるようにしているが、高融点金属の代わりに厚さの薄い多孔質金属、炭素繊維等を用いるようにしてもよい。また、金属酸化物10の耐スパッタ性向上、放電性能向上のために、タンタル、チタン、ニオブ等の窒化物あるいは炭化物を金属酸化物10の表面、あるいは二重コイル2,41、一重コイル45、あるいは板状部材3、メッシュ状部材21、線状部材23に付着させるようにしてもよい。
In the present embodiment, a refractory metal is used as the electric conductor, but a thin porous metal, carbon fiber, or the like may be used instead of the refractory metal. Further, in order to improve the sputtering resistance and discharge performance of the
また、本実施形態においては、二重コイル2,41及び一重コイル45の表面部分が露出するようにしているが、必ずしもこれを露出させる必要はなく、金属酸化物10に二重コイル2,41及び一重コイル45の表面部分が接触しているのであれば、二重コイル2,41及び一重コイル45の表面部分が金属酸化物10に覆われていてもよい。なお、二重コイル2,41及び一重コイル45の表面部分を露出させることにより、放電性をより向上させることができる。
In the present embodiment, the surface portions of the
1…加熱用ヒータ、2…二重コイル、3…板状部材、4…電気絶縁層、10…金属酸化物、101…点灯装置、C1〜C4…ガス放電管用傍熱型陰極、DT1…重水素ガス放電管、DT2…ガス放電管。
DESCRIPTION OF
Claims (8)
前記一対の傍熱型電極は、
コイル状に巻き回されたコイル部材と、
前記コイル部材の内側に配設され、その表面に電気絶縁層が形成された加熱用ヒータと、
前記コイル部材に保持される易電子放射物質としての金属酸化物と、
前記コイル部材の内側に当該コイル部材と接触して設けられ、所定長さを有する電気導体と、をそれぞれ有し、
前記コイル部材は、マンドレルを有するコイルをコイル状に巻き回して構成した多重コイルであり、
前記電気導体は、メッシュ状あるいは板状に形成された高融点金属であり、前記金属酸化物に接触するとともに、前記コイル部材の複数のコイル部分に接触して設けられていることを特徴とするガス放電管。 A gas discharge tube comprising a sealed container and a pair of indirectly heated electrodes provided inside the sealed container,
The pair of indirectly heated electrodes are:
A coil member wound in a coil shape;
A heater for heating disposed on the inside of the coil member and having an electrically insulating layer formed on the surface thereof;
A metal oxide as an electron emission material held by the coil member;
An electrical conductor provided in contact with the coil member on the inner side of the coil member and having a predetermined length,
The coil member, Ri Oh in multiple coil configured by winding a coil having a mandrel in a coil shape,
The electrical conductor is a refractory metal formed in a mesh shape or a plate shape, and is provided in contact with the metal oxide and in contact with a plurality of coil portions of the coil member. Gas discharge tube.
前記一対の傍熱型電極は、
マンドレルを有し、コイル状に巻き回されたコイル部材と、
前記コイル部材の内側に配設され、その表面に電気絶縁層が形成された加熱用ヒータと、
前記コイル部材と前記加熱用ヒータとの間に前記コイル部材の長手方向にわたって配設され、メッシュ状あるいは板状に形成された高融点金属と、
前記コイル部材と接触するように設けられた易電子放射物質としての金属酸化物と、
をそれぞれ有すると共に、前記高融点金属は複数箇所において前記コイル部材と電気的に接触しており、
前記コイル部材は、コイルをコイル状に巻き回して構成した多重コイルであることを特徴とするガス放電管。 A gas discharge tube comprising a sealed container and a pair of indirectly heated electrodes provided inside the sealed container,
The pair of indirectly heated electrodes are:
A coil member having a mandrel and wound in a coil shape;
A heater for heating disposed on the inside of the coil member and having an electrically insulating layer formed on the surface thereof;
A refractory metal disposed between the coil member and the heater for heating in the longitudinal direction of the coil member, and formed in a mesh shape or a plate shape;
A metal oxide as an easy-electron emitting material provided in contact with the coil member;
And the refractory metal is in electrical contact with the coil member at a plurality of locations,
The gas discharge tube according to claim 1, wherein the coil member is a multiple coil formed by winding a coil in a coil shape.
The gas discharge tube according to any one of claims 1 to 7 , wherein the gas discharge tube is AC driven.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004360376A JP4054017B2 (en) | 2000-12-13 | 2004-12-13 | Gas discharge tube |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000379369 | 2000-12-13 | ||
JP2000379360 | 2000-12-13 | ||
JP2004360376A JP4054017B2 (en) | 2000-12-13 | 2004-12-13 | Gas discharge tube |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002550287A Division JP3987436B2 (en) | 2000-12-13 | 2001-12-13 | Side-heated electrode for gas discharge tube |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005116536A JP2005116536A (en) | 2005-04-28 |
JP4054017B2 true JP4054017B2 (en) | 2008-02-27 |
Family
ID=34556893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004360376A Expired - Fee Related JP4054017B2 (en) | 2000-12-13 | 2004-12-13 | Gas discharge tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4054017B2 (en) |
-
2004
- 2004-12-13 JP JP2004360376A patent/JP4054017B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005116536A (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3968016B2 (en) | Indirectly heated electrode for gas discharge tube, gas discharge tube using the same, and its lighting device | |
US4105908A (en) | Metal halide lamp having open tungsten coil electrodes | |
EP0434162A2 (en) | Low-pressure mercury vapour discharge lamp | |
JP3987436B2 (en) | Side-heated electrode for gas discharge tube | |
JP2005183172A (en) | Discharge lamp | |
JP4054017B2 (en) | Gas discharge tube | |
US5675214A (en) | Low-pressure discharge lamp having hollow electrodes | |
JP3999663B2 (en) | Direct heating type electrode for gas discharge tube and gas discharge tube | |
JP4012904B2 (en) | Gas discharge tube | |
JP4227364B2 (en) | Gas discharge tube and gas discharge tube device | |
JP2004014467A (en) | Gas discharge tube | |
JP2005071816A (en) | Light source device | |
EP0784864B1 (en) | Low-pressure discharge lamp | |
JP2004014464A (en) | Driving method of gas discharge tube | |
JPH04315761A (en) | deuterium discharge lamp | |
JP2004014468A (en) | Drive method for gas discharge tube | |
WO2002049073A1 (en) | Gas discharge tube | |
JP2003123621A (en) | Indirectly heated cathode | |
JPH11339713A (en) | Electrode for discharge tube | |
JP2005183046A (en) | Gas discharge tube | |
JPH04306550A (en) | Deuterium discharge tube | |
EP0439603A4 (en) | Tri-model thermal switch and preheat lamp containing same | |
JPH1092362A (en) | Liquid metal ion source | |
JP2005078922A (en) | Indirectly heated electrode for gas discharge tube | |
JP2000057993A (en) | Electron emission electrode assembly, discharge lamp and discharge lamp device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071206 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101214 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |