[go: up one dir, main page]

JP4049856B2 - Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device - Google Patents

Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device Download PDF

Info

Publication number
JP4049856B2
JP4049856B2 JP26684997A JP26684997A JP4049856B2 JP 4049856 B2 JP4049856 B2 JP 4049856B2 JP 26684997 A JP26684997 A JP 26684997A JP 26684997 A JP26684997 A JP 26684997A JP 4049856 B2 JP4049856 B2 JP 4049856B2
Authority
JP
Japan
Prior art keywords
discharge lamp
electrodeless discharge
excitation coil
lighting device
lamp lighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26684997A
Other languages
Japanese (ja)
Other versions
JPH11111480A (en
Inventor
一郎 横関
博 大西
恵一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP26684997A priority Critical patent/JP4049856B2/en
Publication of JPH11111480A publication Critical patent/JPH11111480A/en
Application granted granted Critical
Publication of JP4049856B2 publication Critical patent/JP4049856B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Physical Water Treatments (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は無電極放電灯を点灯させる無電極放電灯点灯装置、無電極放電灯装置、照明装置及び光化学処理装置に関する。
【0002】
【従来の技術】
近年、トンネル照明や架橋照明、汚水殺菌処理用の光化学処理装置等の寿命を必要とする用途に用いられる放電灯として、無電極放電灯が開発されている。
【0003】
無電極放電灯点灯装置は、高周波電源を用いて励起コイルに例えば13.56MHz程度で交番する磁界を発生させ、この磁界による電界を利用して、ガラスバルブ内に放電性の希ガスと水銀などの金属蒸気が封入された球状或いは楕円形などの無電極放電灯を点灯させている。
【0004】
このような従来の無電極放電灯点灯装置を用いた装置としては、特開平6−203809号公報に記載の整合回路と励起コイルを給電線で分離した照明装置が提案されている。
【0005】
このように無電極放電灯点灯装置を汚水殺菌処理用の光化学処理装置に用いる場合は、無電極放電灯及び励起コイルを処理媒体中に挿入するが、整合回路は漏電した場合に多量のエネルギーを放出する可能性があり、この場合も整合回路と励起コイルとを別置し、整合回路を水上に配置することが考えられている。
【0006】
しかしなかがら、従来の光化学処理装置では、整合回路と励起コイルを1本の給電線(例えば8D2Vケーブル)で接続しており、ケーブルの溶融を防止するために高い出力を得るのが困難であった。
【0007】
また、従来の光化学処理装置では、金属筐体に処理媒体を注入し、無電極放電灯と励起コイルとを処理媒体中に配置するが、この処理媒体は誘電体(例えば、水やアルコール)である。このため、励起コイルへの高周波電力伝達動作に関して、処理媒体が大きな影響を与える。このことに対応して処理対象とする媒体中に無電極放電灯と励起コイルを配置して、高周波動作の調整及び確認を行うことも考えられるが、処理媒体の溶質や溶媒の濃度や処理量が変化すると、高周波動作の調整点がずれ、高周波感電やノイズの発生を起こしていた。
【0008】
【発明が解決しようとする課題】
上記した従来の無電極放電灯点灯装置では、整合回路と励起コイルを1本の給電線で接続しており、ケーブルの溶融を防止するために高い出力を得るのが困難であった。また、光化学処理装置では、金属筐体に処理媒体を注入し、無電極放電灯と励起コイルを処理媒体中に配置するが、この処理媒体は誘電体であり、励起コイルへの高周波電力伝達動作に関して、処理媒体が大きな影響を与えるため、処理媒体の溶質や溶媒の濃度や処理量が変化すると、高周波動作の調整点がずれ、高周波感電やノイズの発生を起こしていた。
【0009】
そこで本発明は、高い出力を得る場合にも整合回路と励起コイルを接続する配線対の溶融を防止できる無電極放電灯点灯装置、照明装置及び光化学処理装置の提供を目的とする。また励起コイルへの高周波電力伝達動作に関して、処理媒体が大きな影響を与えるのを防止できる無電極放電灯装置の提供を目的とする。
【0010】
【課題を解決するための手段】
本発明の無電極放電灯点灯装置は、互いに並列に設けた複数の配線対と、無電極放電灯に巻付けられる励起コイルと、高周波電源から供給される高周波電圧の整合を行い前記複数の配線対を介して前記励起コイルに供給する整合回路と、を具備したことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する
図1は本発明に係る無電極放電灯点灯装置の第1の実施の形態を示す回路図である。
【0012】
図1において、無電極放電灯点灯装置は、互いに並列に設けた複数の配線対となる同軸ケーブル21,22,23と、無電極放電灯25に巻付けられる励起コイル24と、高周波電源10から供給される高周波電圧の整合を行い前記複数の配線対を介して前記励起コイル24に供給する整合回路13と、から構成される。
【0013】
符号10は高周波電源であり、この高周波電源10の出力は一対の伝送線11,12による同軸ケーブル20を介して整合回路13に供給される。
【0014】
整合回路13は、高周波電源10から伝送線11,12を介して供給される高周波電圧に対する整合を行い3本の同軸ケーブル21,22,23による伝送線14,15,16,17,18,19を介して励起コイル24に供給する。
【0015】
このような発明の実施の形態によれば、整合回路13と励起コイル24とを接続する配線対として、互いに並列に設けた複数の配線対となる同軸ケーブル21,22,23を設けたので、高い出力を得る場合にも整合回路と励起コイルを接続する配線対の溶融を防止できる。
【0016】
本発明の実施の形態の効果を具体的な実験結果で説明する。
【0017】
まず、比較のため、整合回路13と励起コイル24とを1本の同軸ケーブル (8D2V)で接続した場合について説明する。同軸ケーブル(8D2V)は、長さが1mのものを用いる。この場合、同軸ケーブル(8D2V)は、充填物がポリエチレンで特性インピーダンスが50Ω、出力端インピーダンス(点灯時のケーブル出力端から放電灯を見たインビーダンス)が500Ωである。ケーブル入力端からの入力電力を500Wとする。このような状態で無電極放電灯点灯装置の通電を行うと、電力損失が100Wとなり、5分で75℃に到達し、同軸ケーブルのポリエチレンが溶解し、短絡不良を起こす。
【0018】
次に、図1のように、整合回路13と励起コイル24とを3本の同軸ケーブル(RG142G/U)で接続した場合について説明する。3本の同軸ケーブル (RG142G/U)は、長さが1mのものを用いる。この場合、(RG142G/U)は、充填物がテフロンで1本の特性インピーダンスが50Ω、3本合わせた場合の特性インピーダンスが50/3Ωであり、出力端インピーダンスが500Ωである。ケーブル入力端からの入力電力を500Wとする。このような状態で無電極放電灯点灯装置の通電を行うと、電力損失が25Wとなり、同軸ケーブルの一方辺りのストレスが約8Wとなり、1時間でケーブルの温度上昇が20degとなった。ここで、1時間あれば、十分の光化学処理が行えるため、十分な信頼性を確保できる。
【0019】
また、RG142G/Uは太さが8D2Vの1/3程度なので、3本束ねた場合にも1本の8D2Vよりも細く、配線を配置するスペースを縮小でき、施工性を向上し、構造上有利にすることができる。
【0020】
図2は図1の発明の実施の形態の変形例を示す回路図である。
【0021】
図2において、無電極放電灯点灯装置31は、図1の高周波電源10と整合回路13を一つの回路として構成したものである。
【0022】
高周波電源10は、第1及び第2のスイッチング手段となるMOSFET27,28によって構成されている。整合回路13は、コンデンサC1,C2,C3,C4と、抵抗R1と、リレーのスイッチSW1,SW2とから構成されている。
【0023】
直流電源26の正極側の出力端子は、高周波電源10のMOSFET27,28のドレイン・ソース路の直列接続を介して直流電源26の負極側の出力端子に接続される。MOSFET27,28は、端子29,30からのスイッチング電圧a1,b1によって、高い周波数(例えば13.56MHz)で交互にオン・オフされる。これにより、MOSFET27,28の接続点と基準電位点との間には、高周波電圧に直流電圧を重畳した電圧が得られる。
【0024】
MOSFET27,28の接続点は、整合回路13のコンデンサC1,C2,C3,C4の直列接続を介してMOSFET2のソースに接続される。コンデンサC2,C3の接続点は、同軸ケーブル21,22,23の一方の伝送線14,16,18の一端に接続される。コンデンサC2には、リレーのスイッチSW1が並列に接続される。コンデンサC4には、リレーのスイッチSW2が並列に接続されるとともに、抵抗Rが並列に接続される。リレーのスイッチSW1,SW2は、始動中にオン、始動後にオフすることにより、共振回路定数を無電極放電灯25のランプの始動中と始動後で切り換えて、高周波電源10の保護を図るようになっている。コンデンサC4とMOSFET2のソースとの接続点は、同軸ケーブル21,22,23の他方の伝送線15,17,19の一端に接続される。
【0025】
同軸ケーブル21,22,23の一方の伝送線14,16,17の他端は、励起コイル24を介して同軸ケーブル21,22,23の他方の伝送線15,17,19の他端に接続される。
【0026】
このような変形例においても、図1と同様の効果が得られる。
【0027】
図3は本発明に係る無電極放電灯点灯装置の第2の実施の形態を示す回路図である。
【0028】
符号41,42,43は、3相交流200Vの交流電源であり、この交流電源41,42,43からの交流電圧は、それぞれ高周波電源44,45,46に供給される。高周波電源44,45,46は、供給される交流電圧から高周波電圧を作成し、それぞれ同軸ケーブル47,48,49を介してコネクタボックス50に導く。コネクタボックス50は、同軸ケーブル47,48,49からの高周波電圧をそれぞれ同軸ケーブル51,52,53を介して整合回路54,55,56に導く。整合回路54は、同軸ケーブル51からの高周波電圧の整合を行い2並列の同軸ケーブル57,58を介してランプユニット63の励起コイルに供給する。整合回路55は、同軸ケーブル52からの高周波電圧の整合を行い2並列の同軸ケーブル59,60を介してランプユニット64の励起コイルに供給する。整合回路56は、同軸ケーブル53からの高周波電圧の整合を行い2並列の同軸ケーブル61,62を介してランプユニット65の励起コイルに供給する。
【0029】
図4及び図5は図3の無電極放電灯点灯装置を用いた光化学処理装置を示し、図4は側面から見た断面図、図5は正面から見た断面図である。
【0030】
図4において、光化学処理装置71は、光化学処理用の液体72が注入される処理槽73と、図3に示した無電極放電灯点灯装置と、この無電極放電灯点灯装置の励起コイル74の磁界による電界を利用して点灯する無電極放電灯75と、防水性を有し、少なくとも一部が紫外線を透過する部材で形成され、前記無電極放電灯75、前記無電極放電灯点灯装置の伝送線の他端側及びこの他端側に接続された回路を収納した状態で処理槽に挿入される放電灯容器76と、から構成される。
【0031】
図5において、図3に示したランプユニット63,64,65は、励起コイル74,無電極放電灯75,放電灯容器76によって構成される。
【0032】
ランプユニット63,64,65は、ホルダ77によって取付けられている。ホルダ77は、リール78により上から吊り下げられており、液体72からの引き上げが可能になっている。
【0033】
高周波電源44,45,46、同軸ケーブル47,48,49、コネクタボックス50、同軸ケーブル51,52,53、整合回路54,55,56は、処理槽73の外側に配置され、ランプユニット63,64,65は、処理槽73の内側に配置され、同軸ケーブル57,58,59,60,61,62は、処理槽73の壁面を介して、整合回路54,55,56とランプユニット63,64,65とを接続するようになっている。
【0034】
このような発明の実施の形態によれば、図1の発明の実施の形態と同様の効果が得られる。
【0035】
図6は本発明に係る無電極放電灯装置の第3の実施の形態を示すブロック図であり、光化学処理装置に適用したものを示している。
【0036】
図6において、光化学処理装置80は、無電極放電灯85及びこの無電極放電灯85に巻付けられる励起コイル84を外管86によって収納したランプユニット83と、伝送線91,92による配線対90と、高周波電源81から供給される高周波電圧の整合を行い前記配線対90を介して前記励起コイル84に供給する整合回路82と、前記ランプユニット83及び配線対90の少なくとも一部を収納する金属筐体87と、前記配線対90の片側線(伝送線92)と金属筐体87とを金属筐体87の内側から電気的に接続する電気的接続手段(配線93)と、を具備し、前記配線対90の配線長D1が前記高周波電圧の波長による影響を無視できる長さとしている。
【0037】
金属筐体87は、光化学処理用の液体88が注入される処理槽となっている。
【0038】
次に、配線対90の配線長D1について詳細に説明する。
【0039】
まず、高周波電圧の周波数を13.56MHzとすると、真空中と仮定した場合の高周波電圧の波長は、22.1m、ここで、配線対90が充填物がポリエチレンの同軸ケーブルとすると、波長は14.8mとなる。この場合、配線対90の配線長D1が波長の1/10以下ならば十分高周波電圧の波長による影響を無視できる。また、配線対90の配線長D1が波長の1/4の整数倍の位置以外及び波長の1/4の整数倍付近以外ならば、共振現象を起こさない。
【0040】
このような発明の実施の形態によれば、前記配線対90の片側線(伝送線92)と金属筐体87とを電気的に接続する電気的接続手段(配線93)を設けたことにより、金属筐体87と配線対90の片側線の間に電位差を確定でき、励起コイルへの高周波電力伝達動作に関して、処理媒体が大きな影響を与えのを防止でき、高周波感電やノイズの発生を防止できる。
【0041】
また、前記配線対90の配線長D1が前記高周波電圧の波長による影響を無視できる長さとしたことにより、配線対90の共振による効率低下を防止できる。
【0042】
図7は図6の発明の実施の形態の第1の変形例を示す回路図である。
【0043】
符号101は高周波電源であり、この高周波電源101は、トランス102の一次巻線L1に高周波電流を流している。これにより、トランス102の二次巻線L2に高周波電圧が発生する。二次巻線L2の中間点は、基準電位点となる処理槽の金属筐体120に接続される。二次巻線L2の一端は、コンデンサC11を介して二次巻線のL2の他端に接続されるとともに、コイルL3、コンデンサC12、コイルL4を介して二次巻線L2の他端に接続される。トランス102、コイルL3,L4、コンデンサC11,C12は整合回路を構成している。
【0044】
コイルL3とコンデンサC12の接続点は同軸ケーブル110の一方の伝送線103、励起コイル107、同軸ケーブル111の一方の伝送線105の直列接続を介してコイルL4とコンデンサC12の接続点に接続される。励起コイル107は、この無電極放電灯108に巻付けられる。同軸ケーブル110,111の他方の配線104,106の両端は、金属筐体120に接続される。
【0045】
このような金属筐体120への接続により、破線に示す分布容量C01,C02,C03,C04の影響を防止でき、金属筐体120と同軸ケーブル110,111の両端との間に発生する高周波の電位差の発生を防止できる。
【0046】
図8は図6の発明の実施の形態の第2の変形例を示す回路図である。
【0047】
符号121は高周波電源であり、この高周波電源121の一方の出力端子は、コンデンサC13,C14の直列接続を介して高周波電源121の他方の出力端子に接続される。コンデンサC14と高周波電源121の他方の出力端子の接続点は、基準電位点となる処理槽の金属筐体140に接続される。
【0048】
コンデンサC13,C14の接続点は、同軸ケーブル130の一方の伝送線12、励起コイル127、同軸ケーブル130の他方の伝送線12の直列接続を介してコンデンサC14と高周波電源121の他方の出力端子の接続点に接続される。コンデンサC13,C14は整合回路を構成している。励起コイル127は、この無電極放電灯128に巻付けられる。同軸ケーブル130の配線126の出力側の端部は、金属筐体140に接続される。
【0049】
このような金属筐体140への接続により、破線に示す分布容量C05,C06,C07,C08の影響を防止でき、図7の変形例と同様の効果が得られる。
図9は本発明に係る無電極放電灯装置の第4の実施の形態を示すブロック図であり、照明装置に適用したものである。
【0050】
図9において、光化学処理装置符号150は、無電極放電灯155と、この無電極放電灯155に巻付けられる励起コイル154と、伝送線161,162による配線対160と、高周波電源151から供給される高周波電圧の整合を行い前記配線対160を介して前記励起コイル154に供給する整合回路152と、前記無電極放電灯155、励起コイル154及び配線対(伝送線161,162)の少なくとも一部を収納する金属筐体156と、前記配線対の片側線162と金属筐体156とを金属筐体156の内側から電気的に接続する電気的接続手段(配線157)と、を具備したことを特徴とする。
【0051】
このような発明の実施の形態によれば、前記配線対160の片側線(伝送線162)と金属筐体156とを電気的に接続する電気的接続手段(配線157)を設けたことにより、金属筐体156と配線対160の片側線の間に電位差を確定でき、励起コイルへの高周波電力伝達動作に関して、処理媒体が大きな影響を与えのを防止でき、高周波感電やノイズの発生を防止できる。
【0052】
図10は本発明に係る無電極放電灯装置の第5の実施の形態を示すブロック図であり、図6の発明の実施の形態と同様の構成要素には同じ符号を付して説明を省略している。
【0053】
図10において、光化学処理装置170は、外管176をガラス等の絶縁性を有する部材177と、金属等の導体で形成された部材178で構成し、前記配線対90の片側線(伝送線92)を配線179で部材178接続し、部材178を金属筐体87と配線180で電気的に接続している。
【0054】
このような発明の実施の形態でも図6の発明の実施の形態と同様の効果が得られる。
【0055】
図11は本発明に係る無電極放電灯装置の第6の実施の形態を示すブロック図であり、図6の発明の実施の形態と同様の構成要素には同じ符号を付して説明を省略している。
【0056】
図11において、光化学処理装置190は、外管196をガラス等の絶縁性を有する部材197と、金属等の導体で形成された部材198で構成し、前記配線対90の片側線(伝送線92)を配線199で部材198接続してる。部材198は、延設部200により金属筐体87と電気的に接続している。
【0057】
このような発明の実施の形態でも図6の発明の実施の形態と同様の効果が得られる。
【0058】
尚、図1に示した発明の実施の形態は、光化学処理装置以外の装置、例えば照明装置に適用でできる。この場合、照明装置は、図1に記載の無電極放電灯点灯装置と、この無電極放電灯点灯装置の励起コイルの磁界による電界を利用して点灯する無電極放電灯と、少なくとも一部が光を透過する部材で形成され、前記無電極放電灯、及びこの無電極放電灯に巻付けられる励起コイルを収納する外管で構成すればよい。また、図1無いし図6に示した発明の実施の形態では、並列に接続する配線対を2本または3本設けたが、並列に接続する配線対を4本以上設けても良い。
【0059】
【発明の効果】
本発明によれば、高い出力を得る場合にも整合回路と励起コイルを接続する配線対の溶融を防止でき、十分な信頼性を確保できる。また、励起コイルへの高周波電力伝達動作に関して、処理媒体が大きな影響を与えるのを防止できるので、高周波感電やノイズの発生を防止できる。
【図面の簡単な説明】
【図1】本発明に係る無電極放電灯点灯装置の第1の実施の形態を示す回路図。
【図2】図1の発明の実施の形態の変形例を示す回路図。
【図3】本発明に係る無電極放電灯点灯装置の第2の実施の形態を示す回路図。
【図4】 図3の無電極放電灯点灯装置を用いた光化学処理装置を示す側面から見た断面図。
【図5】 図3の無電極放電灯点灯装置を用いた光化学処理装置を示す正面から見た断面図。
【図6】本発明に係る無電極放電灯装置の第3の実施の形態を示すブロック図。
【図7】図6の発明の実施の形態の第1の変形例を示す回路図。
【図8】図6の発明の実施の形態の第2の変形例を示す回路図。
【図9】本発明に係る無電極放電灯装置の第4の実施の形態を示すブロック図。
【図10】本発明に係る無電極放電灯装置の第5の実施の形態を示すブロック図。
【図11】本発明に係る無電極放電灯装置の第6の実施の形態を示すブロック図。
【符号の説明】
10 高周波電源
13 整合回路
21,22,23 同軸ケーブル
24 励起コイル
25 無電極放電灯
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrodeless discharge lamp lighting device, an electrodeless discharge lamp device, an illumination device, and a photochemical treatment device for lighting an electrodeless discharge lamp.
[0002]
[Prior art]
2. Description of the Related Art In recent years, electrodeless discharge lamps have been developed as discharge lamps used for applications that require a long life, such as tunnel lighting, bridge lighting, and photochemical treatment equipment for sewage sterilization.
[0003]
The electrodeless discharge lamp lighting device generates a magnetic field alternating at, for example, about 13.56 MHz in an excitation coil using a high-frequency power source, and uses an electric field generated by this magnetic field to generate a discharge rare gas and mercury in a glass bulb. An electrodeless discharge lamp having a spherical shape or an elliptical shape in which a metal vapor is enclosed is lit.
[0004]
As a device using such a conventional electrodeless discharge lamp lighting device, there has been proposed an illumination device in which a matching circuit and an excitation coil described in JP-A-6-203809 are separated by a feeder line.
[0005]
In this way, when the electrodeless discharge lamp lighting device is used in a photochemical processing apparatus for sewage sterilization treatment, an electrodeless discharge lamp and an excitation coil are inserted into the processing medium. In this case as well, it is considered that the matching circuit and the excitation coil are separately provided and the matching circuit is disposed on the water.
[0006]
However, in the conventional photochemical processing apparatus, the matching circuit and the excitation coil are connected by a single power supply line (for example, 8D2V cable), and it is difficult to obtain a high output in order to prevent the cable from melting. It was.
[0007]
Further, in a conventional photochemical processing apparatus, a processing medium is injected into a metal casing, and an electrodeless discharge lamp and an excitation coil are arranged in the processing medium. This processing medium is made of a dielectric (for example, water or alcohol). is there. For this reason, a processing medium has big influence regarding the high frequency electric power transmission operation | movement to an excitation coil. Corresponding to this, an electrodeless discharge lamp and an excitation coil may be arranged in the medium to be treated to adjust and confirm the high-frequency operation. However, the solute and solvent concentration of the treatment medium and the treatment amount When the change occurs, the adjustment point of the high frequency operation is shifted, and high frequency electric shock and noise are generated.
[0008]
[Problems to be solved by the invention]
In the above conventional electrodeless discharge lamp lighting device, the matching circuit and the excitation coil are connected by a single power supply line, and it is difficult to obtain a high output in order to prevent melting of the cable. In a photochemical processing apparatus, a processing medium is injected into a metal casing, and an electrodeless discharge lamp and an excitation coil are arranged in the processing medium. This processing medium is a dielectric, and a high-frequency power transmission operation to the excitation coil. regard, since the processing medium may grant a large effect, the concentration and amount of processing of the solute and solvent of the treatment medium is changed, adjustment point of the high-frequency operation is shifted, had caused the occurrence of high-frequency electric shock and noise.
[0009]
Accordingly, an object of the present invention is to provide an electrodeless discharge lamp lighting device, an illumination device, and a photochemical treatment device that can prevent melting of a wire pair connecting a matching circuit and an excitation coil even when a high output is obtained. It is another object of the present invention to provide an electrodeless discharge lamp apparatus that can prevent the processing medium from having a great influence on the high-frequency power transmission operation to the excitation coil.
[0010]
[Means for Solving the Problems]
The electrodeless discharge lamp lighting device according to the present invention includes a plurality of wiring pairs arranged in parallel with each other, an excitation coil wound around the electrodeless discharge lamp, and a high-frequency voltage supplied from a high-frequency power source. And a matching circuit for supplying the excitation coil via a pair.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a circuit diagram showing a first embodiment of an electrodeless discharge lamp lighting device according to the present invention.
[0012]
In FIG. 1, the electrodeless discharge lamp lighting device includes coaxial cables 21, 22 and 23 that are a plurality of wiring pairs provided in parallel to each other, an excitation coil 24 wound around the electrodeless discharge lamp 25, and a high-frequency power source 10. The matching circuit 13 is configured to match the supplied high-frequency voltage and supply the excitation coil 24 via the plurality of wiring pairs.
[0013]
Reference numeral 10 denotes a high-frequency power source, and the output of the high-frequency power source 10 is supplied to the matching circuit 13 via the coaxial cable 20 by the pair of transmission lines 11 and 12.
[0014]
The matching circuit 13 performs matching with the high-frequency voltage supplied from the high-frequency power supply 10 via the transmission lines 11 and 12, and the transmission lines 14, 15, 16, 17, 18, 19 using the three coaxial cables 21, 22, 23 To the excitation coil 24.
[0015]
According to such an embodiment of the present invention, the coaxial cables 21, 22, 23 serving as a plurality of wiring pairs provided in parallel with each other are provided as the wiring pairs connecting the matching circuit 13 and the excitation coil 24. Even when high output is obtained, melting of the wiring pair connecting the matching circuit and the excitation coil can be prevented.
[0016]
The effects of the embodiment of the present invention will be described with specific experimental results.
[0017]
First, for comparison, a case where the matching circuit 13 and the excitation coil 24 are connected by a single coaxial cable (8D2V) will be described. A coaxial cable (8D2V) having a length of 1 m is used. In this case, the coaxial cable (8D2V) has a filler of polyethylene, a characteristic impedance of 50Ω, and an output terminal impedance (impedance when the discharge lamp is viewed from the cable output terminal during lighting) is 500Ω. The input power from the cable input end is set to 500W. When the electrodeless discharge lamp lighting device is energized in such a state, the power loss becomes 100 W, reaches 75 ° C. in 5 minutes, the polyethylene of the coaxial cable is melted, and a short circuit failure occurs.
[0018]
Next, the case where the matching circuit 13 and the excitation coil 24 are connected by three coaxial cables (RG142G / U) as shown in FIG. 1 will be described. Three coaxial cables (RG142G / U) having a length of 1 m are used. In this case, (RG142G / U) has Teflon as the packing, one characteristic impedance is 50Ω, and when three are combined, the characteristic impedance is 50 / 3Ω, and the output terminal impedance is 500Ω. The input power from the cable input end is set to 500W. When the electrodeless discharge lamp lighting device was energized in such a state, the power loss was 25 W, the stress on one side of the coaxial cable was about 8 W, and the temperature rise of the cable was 20 deg in 1 hour. Here, since sufficient photochemical treatment can be performed within one hour, sufficient reliability can be ensured.
[0019]
In addition, since RG142G / U is about 1/3 of 8D2V in thickness, it is thinner than one 8D2V even when three are bundled, and the wiring space can be reduced, the workability is improved, and the structure is advantageous. Can be.
[0020]
FIG. 2 is a circuit diagram showing a modification of the embodiment of the invention of FIG.
[0021]
In FIG. 2, an electrodeless discharge lamp lighting device 31 is configured by configuring the high-frequency power source 10 and the matching circuit 13 of FIG. 1 as one circuit.
[0022]
The high frequency power supply 10 is constituted by MOSFETs 27 and 28 serving as first and second switching means. The matching circuit 13 includes capacitors C1, C2, C3, and C4, a resistor R1, and relay switches SW1 and SW2.
[0023]
The output terminal on the positive electrode side of the DC power supply 26 is connected to the output terminal on the negative electrode side of the DC power supply 26 through a series connection of the drain and source paths of the MOSFETs 27 and 28 of the high frequency power supply 10. The MOSFETs 27 and 28 are alternately turned on and off at a high frequency (for example, 13.56 MHz) by the switching voltages a1 and b1 from the terminals 29 and 30. Thereby, a voltage obtained by superimposing a DC voltage on a high-frequency voltage is obtained between the connection point of the MOSFETs 27 and 28 and the reference potential point.
[0024]
The connection point of MOSFET27,28 is connected to the MOSFET 2 8 source via the series connection of the capacitors C1, C2, C3, C4 of the matching circuit 13. The connection point of the capacitors C2 and C3 is connected to one end of one transmission line 14, 16, 18 of the coaxial cables 21, 22, 23. A relay switch SW1 is connected in parallel to the capacitor C2. The capacitor C4, the switch SW2 of the relay is connected in parallel, the resistance R 1 is connected in parallel. The relay switches SW1 and SW2 are turned on during start-up and turned off after start-up, thereby switching the resonance circuit constant during start-up and after start-up of the electrodeless discharge lamp 25 to protect the high-frequency power supply 10. It has become. Connection point between the source of the capacitor C4 and the MOSFET 2 8 is connected to one end of the other transmission lines 15, 17, 19 of the coaxial cable 21, 22, 23.
[0025]
The other ends of the transmission lines 14, 16, 17 of the coaxial cables 21, 22, 23 are connected to the other ends of the other transmission lines 15, 17, 19 of the coaxial cables 21, 22, 23 via the excitation coil 24. Is done.
[0026]
Also in such a modification, the same effect as FIG. 1 is acquired.
[0027]
FIG. 3 is a circuit diagram showing a second embodiment of the electrodeless discharge lamp lighting device according to the present invention.
[0028]
Reference numerals 41, 42, and 43 denote AC power supplies of three-phase AC 200 V, and the AC voltages from the AC power supplies 41, 42, and 43 are supplied to high-frequency power supplies 44, 45, and 46, respectively. The high frequency power supplies 44, 45, and 46 create a high frequency voltage from the supplied AC voltage, and guide it to the connector box 50 via coaxial cables 47, 48, and 49, respectively. The connector box 50 guides the high frequency voltage from the coaxial cables 47, 48, 49 to the matching circuits 54, 55, 56 via the coaxial cables 51, 52, 53, respectively. The matching circuit 54 matches the high-frequency voltage from the coaxial cable 51 and supplies it to the excitation coil of the lamp unit 63 via two parallel coaxial cables 57 and 58. The matching circuit 55 matches the high-frequency voltage from the coaxial cable 52 and supplies it to the excitation coil of the lamp unit 64 via the two parallel coaxial cables 59 and 60. The matching circuit 56 matches the high-frequency voltage from the coaxial cable 53 and supplies it to the excitation coil of the lamp unit 65 via the two parallel coaxial cables 61 and 62.
[0029]
4 and 5 show the photochemical processing equipment using an electrodeless discharge lamp lighting device of FIG. 3, FIG. 4 is a sectional view seen from the side, FIG. 5 is a sectional view as seen from the front.
[0030]
In FIG. 4, a photochemical treatment device 71 includes a treatment tank 73 into which a photochemical treatment liquid 72 is injected, an electrodeless discharge lamp lighting device shown in FIG. 3, and an excitation coil 74 of the electrodeless discharge lamp lighting device. An electrodeless discharge lamp 75 that is lit using an electric field generated by a magnetic field, and a waterproof member that is at least partially transparent to ultraviolet rays. The electrodeless discharge lamp 75 and the electrodeless discharge lamp lighting device The discharge lamp container 76 is inserted into the treatment tank in a state in which the other end side of the transmission line and a circuit connected to the other end side are accommodated.
[0031]
In FIG. 5, the lamp units 63, 64, and 65 shown in FIG. 3 include an excitation coil 74, an electrodeless discharge lamp 75, and a discharge lamp container 76.
[0032]
The lamp units 63, 64 and 65 are attached by a holder 77. The holder 77 is suspended from above by a reel 78 and can be pulled up from the liquid 72.
[0033]
The high frequency power supplies 44, 45, 46, coaxial cables 47, 48, 49, connector box 50, coaxial cables 51, 52, 53, and matching circuits 54, 55, 56 are arranged outside the processing tank 73, and are connected to the lamp unit 63, 64 and 65 are arranged inside the processing tank 73, and the coaxial cables 57, 58, 59, 60, 61 and 62 are connected to the matching circuits 54, 55, 56 and the lamp unit 63 through the wall surface of the processing tank 73. 64 and 65 are connected.
[0034]
According to such an embodiment of the invention, the same effect as that of the embodiment of the invention of FIG. 1 can be obtained.
[0035]
FIG. 6 is a block diagram showing a third embodiment of the electrodeless discharge lamp apparatus according to the present invention, and shows one applied to a photochemical treatment apparatus.
[0036]
In FIG. 6, the photochemical processing apparatus 80 includes a lamp unit 83 in which an electrodeless discharge lamp 85 and an excitation coil 84 wound around the electrodeless discharge lamp 85 are accommodated by an outer tube 86, and a wiring pair 90 including transmission lines 91 and 92. And a matching circuit 82 for matching a high-frequency voltage supplied from a high-frequency power supply 81 and supplying the excitation coil 84 via the wire pair 90, and a metal housing at least a part of the lamp unit 83 and the wire pair 90. A housing 87, and electrical connection means (wiring 93) for electrically connecting one side line (transmission line 92) of the wire pair 90 and the metal housing 87 from the inside of the metal housing 87; The wiring length D1 of the wiring pair 90 is a length that can ignore the influence of the wavelength of the high-frequency voltage.
[0037]
The metal casing 87 is a processing tank into which a liquid 88 for photochemical processing is injected.
[0038]
Next, the wiring length D1 of the wiring pair 90 will be described in detail.
[0039]
First, assuming that the frequency of the high-frequency voltage is 13.56 MHz, the wavelength of the high-frequency voltage when it is assumed to be in a vacuum is 22.1 m. Here, when the wiring pair 90 is a coaxial cable made of polyethylene, the wavelength is 14 .8m. In this case, if the wiring length D1 of the wiring pair 90 is 1/10 or less of the wavelength, the influence of the wavelength of the sufficiently high frequency voltage can be ignored. In addition, if the wiring length D1 of the wiring pair 90 is other than a position that is an integral multiple of ¼ of the wavelength and is not in the vicinity of an integral multiple of ¼ of the wavelength, the resonance phenomenon does not occur.
[0040]
According to such an embodiment of the invention, by providing an electrical connection means (wiring 93) for electrically connecting one side line (transmission line 92) of the wire pair 90 and the metal housing 87, can determine the potential difference between the side lines of the metal casing 87 and the wire pairs 90, preventing respect RF power transfer operation of the excitation coil, it is possible to prevent the process medium Ru significantly affect the occurrence of high-frequency electric shock and noise it can.
[0041]
In addition, since the wiring length D1 of the wiring pair 90 is such that the influence of the wavelength of the high-frequency voltage can be ignored, efficiency reduction due to resonance of the wiring pair 90 can be prevented.
[0042]
FIG. 7 is a circuit diagram showing a first modification of the embodiment of the invention of FIG.
[0043]
Reference numeral 101 denotes a high-frequency power source, and this high-frequency power source 101 supplies a high-frequency current to the primary winding L1 of the transformer 102. As a result, a high-frequency voltage is generated in the secondary winding L2 of the transformer 102. The intermediate point of the secondary winding L2 is connected to the metal casing 120 of the processing tank that becomes the reference potential point. One end of the secondary winding L2 is connected to the other end of the secondary winding L2 via the capacitor C11, and is connected to the other end of the secondary winding L2 via the coil L3, the capacitor C12, and the coil L4. Is done. The transformer 102, coils L3 and L4, and capacitors C11 and C12 constitute a matching circuit.
[0044]
A connection point between the coil L3 and the capacitor C12 is connected to a connection point between the coil L4 and the capacitor C12 through a series connection of one transmission line 103 of the coaxial cable 110, the excitation coil 107, and one transmission line 105 of the coaxial cable 111. . The excitation coil 107 is wound around the electrodeless discharge lamp 108. Both ends of the other wirings 104 and 106 of the coaxial cables 110 and 111 are connected to the metal casing 120.
[0045]
By such connection to the metal casing 120, the influence of the distributed capacitances C01, C02, C03, C04 shown by the broken line can be prevented, and the high frequency generated between the metal casing 120 and both ends of the coaxial cables 110, 111 can be prevented. Generation of a potential difference can be prevented.
[0046]
FIG. 8 is a circuit diagram showing a second modification of the embodiment of the invention of FIG.
[0047]
Reference numeral 121 denotes a high-frequency power source, and one output terminal of the high-frequency power source 121 is connected to the other output terminal of the high-frequency power source 121 through a series connection of capacitors C13 and C14. Connection point of the other output terminal of the capacitor C14 and the high-frequency power source 121 is connected to the metal housing 1 40 of the treatment tank as a reference potential point.
[0048]
Connection point of the capacitors C13, C14, one of the transmission lines 12 5 of the coaxial cable 130, the other output of the excitation coil 127, a capacitor C14 and a high-frequency power source 121 via a series connection of the other transmission line 12 6 of the coaxial cable 130 Connected to terminal connection point. Capacitors C13 and C14 constitute a matching circuit. The excitation coil 127 is wound around the electrodeless discharge lamp 128. The output side end of the wiring 126 of the coaxial cable 130 is connected to the metal casing 140.
[0049]
Such connection to the metal casing 140 can prevent the influence of the distributed capacitances C05, C06, C07, and C08 indicated by the broken line, and the same effect as that of the modification of FIG. 7 can be obtained.
FIG. 9 is a block diagram showing a fourth embodiment of the electrodeless discharge lamp apparatus according to the present invention, which is applied to a lighting apparatus.
[0050]
In FIG. 9, a photochemical processing apparatus code 150 is supplied from an electrodeless discharge lamp 155, an excitation coil 154 wound around the electrodeless discharge lamp 155, a wiring pair 160 formed by transmission lines 161 and 162, and a high-frequency power supply 151. A matching circuit 152 for matching the high-frequency voltage to be supplied to the excitation coil 154 through the wiring pair 160, and at least a part of the electrodeless discharge lamp 155, the excitation coil 154, and the wiring pair (transmission lines 161, 162). A metal casing 156 for storing the wiring, and electrical connection means (wiring 157) for electrically connecting the one-side wire 162 of the wiring pair and the metal casing 156 from the inside of the metal casing 156. Features.
[0051]
According to such an embodiment of the invention, by providing the electrical connection means (wiring 157) for electrically connecting the one side line (transmission line 162) of the wiring pair 160 and the metal housing 156, can determine the potential difference between the side lines of the metal housing 156 with wire pair 160, preventing respect RF power transfer operation of the excitation coil, it is possible to prevent the process medium Ru significantly affect the occurrence of high-frequency electric shock and noise it can.
[0052]
FIG. 10 is a block diagram showing a fifth embodiment of the electrodeless discharge lamp apparatus according to the present invention, and the same components as those of the embodiment of the invention of FIG. is doing.
[0053]
In FIG. 10, the photochemical processing apparatus 170 includes an outer tube 176 made of an insulating member 177 such as glass and a member 178 formed of a conductor such as a metal, and one side line (transmission line 92) of the wire pair 90. ) Is connected to the member 178 by the wiring 179, and the member 178 is electrically connected to the metal casing 87 by the wiring 180.
[0054]
In such an embodiment of the invention, the same effect as that of the embodiment of the invention of FIG. 6 can be obtained.
[0055]
FIG. 11 is a block diagram showing a sixth embodiment of the electrodeless discharge lamp apparatus according to the present invention. The same components as those of the embodiment of the invention of FIG. is doing.
[0056]
In FIG. 11, the photochemical processing apparatus 190 includes an outer tube 196 made of an insulating member 197 such as glass and a member 198 formed of a conductor such as metal, and one side line (transmission line 92) of the wire pair 90. ) that the are connected to the member 198 by a wiring 199. The member 198 is electrically connected to the metal casing 87 by the extending portion 200.
[0057]
In such an embodiment of the invention, the same effect as that of the embodiment of the invention of FIG. 6 can be obtained.
[0058]
The embodiment of the invention shown in FIG. 1 can be applied to an apparatus other than the photochemical processing apparatus, for example, an illumination apparatus. In this case, the illuminating device includes at least a part of the electrodeless discharge lamp lighting device illustrated in FIG. 1 and the electrodeless discharge lamp that is lit using the electric field generated by the magnetic field of the excitation coil of the electrodeless discharge lamp lighting device. is formed of a member transmitting light, said electrodeless discharge lamp, may be composed beauty outer tube for accommodating the excitation coil wound in this electrodeless discharge lamp. Further, in the embodiment of the invention shown in FIG. 1 and FIG. 6, two or three wiring pairs connected in parallel are provided, but four or more wiring pairs connected in parallel may be provided.
[0059]
【The invention's effect】
According to the present invention, even when a high output is obtained, melting of the wiring pair connecting the matching circuit and the excitation coil can be prevented, and sufficient reliability can be ensured. Further, since the processing medium can be prevented from having a great influence on the high-frequency power transmission operation to the excitation coil, high-frequency electric shock and noise can be prevented.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of an electrodeless discharge lamp lighting device according to the present invention.
FIG. 2 is a circuit diagram showing a modification of the embodiment of the invention of FIG. 1;
FIG. 3 is a circuit diagram showing a second embodiment of the electrodeless discharge lamp lighting device according to the present invention.
4 is a cross-sectional view as viewed from the side showing the photochemical processing equipment using an electrodeless discharge lamp lighting device of FIG.
5 is a sectional view seen from the front showing a photochemical processing equipment using an electrodeless discharge lamp lighting device of FIG.
FIG. 6 is a block diagram showing a third embodiment of the electrodeless discharge lamp device according to the present invention.
7 is a circuit diagram showing a first modification of the embodiment of the invention of FIG. 6; FIG.
FIG. 8 is a circuit diagram showing a second modification of the embodiment of the invention of FIG. 6;
FIG. 9 is a block diagram showing a fourth embodiment of an electrodeless discharge lamp device according to the present invention.
FIG. 10 is a block diagram showing a fifth embodiment of the electrodeless discharge lamp apparatus according to the present invention.
FIG. 11 is a block diagram showing a sixth embodiment of the electrodeless discharge lamp apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 High frequency power supply 13 Matching circuit 21, 22, 23 Coaxial cable 24 Excitation coil 25 Electrodeless discharge lamp

Claims (3)

互いに並列に設けた複数の配線対と、
無電極放電灯に巻付けられる励起コイルと、
高周波電源から供給される高周波電圧の整合を行い前記複数の配線対を介して前記励起コイルに供給する整合回路と、
を具備したことを特徴とする無電極放電灯点灯装置。
A plurality of wiring pairs provided in parallel with each other;
An excitation coil wound around an electrodeless discharge lamp;
A matching circuit for matching a high-frequency voltage supplied from a high-frequency power source and supplying the excitation coil via the plurality of wiring pairs;
An electrodeless discharge lamp lighting device comprising:
請求項1に記載の無電極放電灯点灯装置と、An electrodeless discharge lamp lighting device according to claim 1,
この無電極放電灯点灯装置の励起コイルの磁界による電界を利用して点灯する無電極放電灯と、An electrodeless discharge lamp that lights using an electric field generated by a magnetic field of an excitation coil of the electrodeless discharge lamp lighting device;
少なくとも一部が光を透過する部材で形成され、前記無電極放電灯、前記及びこの無電極放電灯に巻付けられる励起コイルを収納する外管と、An outer tube that is formed of a member that transmits light, and that houses the electrodeless discharge lamp, the excitation coil wound around the electrodeless discharge lamp, and
を具備したことを特徴とする照明装置。An illumination device comprising:
光化学処理用の液体が注入される処理槽と、A treatment tank into which a liquid for photochemical treatment is injected;
請求項1に記載の無電極放電灯点灯装置と、An electrodeless discharge lamp lighting device according to claim 1,
この無電極放電灯点灯装置の励起コイルの磁界による電界を利用して点灯する無電極放電灯と、An electrodeless discharge lamp that lights using an electric field generated by a magnetic field of an excitation coil of the electrodeless discharge lamp lighting device;
防水性を有し、少なくとも一部が紫外線を透過する部材で形成され、前記無電極放電灯、前記及びこの無電極放電灯に巻付けられる励起コイルを収納した状態で前記処理槽に挿入される外管と、It is waterproof, and at least a part of the electrodeless discharge lamp is formed of a member that transmits ultraviolet rays. The electrodeless discharge lamp, and the excitation coil wound around the electrodeless discharge lamp are housed in the treatment tank. An outer tube,
を具備したことを光化学処理装置。A photochemical processing apparatus.
JP26684997A 1997-09-30 1997-09-30 Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device Expired - Fee Related JP4049856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26684997A JP4049856B2 (en) 1997-09-30 1997-09-30 Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26684997A JP4049856B2 (en) 1997-09-30 1997-09-30 Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device

Publications (2)

Publication Number Publication Date
JPH11111480A JPH11111480A (en) 1999-04-23
JP4049856B2 true JP4049856B2 (en) 2008-02-20

Family

ID=17436526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26684997A Expired - Fee Related JP4049856B2 (en) 1997-09-30 1997-09-30 Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device

Country Status (1)

Country Link
JP (1) JP4049856B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731005B2 (en) * 2000-11-24 2011-07-20 ハリソン東芝ライティング株式会社 Electrodeless discharge lamp lighting device and fluid treatment device
JP2013120669A (en) * 2011-12-07 2013-06-17 Acorn Logic Technology Co Ltd Electromagnetic induction discharge lamp system

Also Published As

Publication number Publication date
JPH11111480A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
US6049163A (en) Discharge lamp unit with RF shield primary coil
JP3999462B2 (en) Circuit for energy saving operation of fluorescent lamp
JPH08138872A (en) Discharge lamp apparatus
EP0587183B1 (en) Apparatus for remote ballasting of gaseous discharge lamps
JP4049856B2 (en) Electrodeless discharge lamp lighting device, electrodeless discharge lamp device, illumination device, and photochemical treatment device
JP3144910B2 (en) Discharge lamp
JPH11510646A (en) Electrodeless low pressure discharge lamp
ZA200604729B (en) Supply device for ultraviolet lamps used in the treatment of water
CA2051447A1 (en) Fluorescent lamp
JP2004335422A (en) Discharge lamp lighting device
EP0449639B1 (en) Biasing system for reducing ion loss in lamps
KR100243046B1 (en) Power supply apparatus in microwave oven and its high voltage fuse
US1394145A (en) Thermionic discharge apparatus
JP2002102850A (en) Electrodeless discharge lamp device and sterilizer
RU2239961C2 (en) Apparatus for energy-saving operation of fluorescent lamp and contact device for connecting this apparatus to lamp
US6570341B2 (en) Electromagnetic ballast for serially connected gaseous discharge lamps
JP3797076B2 (en) Electrodeless discharge lamp lighting device
JP3093475B2 (en) High pressure discharge lamp device
JP3939388B2 (en) Electrodeless discharge lamp device, electrodeless discharge lamp lighting device, and fluid treatment device
JPH11111481A (en) Electrodeless discharge lamp lighting device, lighting device and photochemical treatment device
JPH078998U (en) Discharge lamp lighting device
WO2011051846A1 (en) Driving an electrodeless discharge lamp
JP2001239255A (en) Electrodeless discharge lamp device for water treatment
RU2001103733A (en) CONNECTION UNIT FOR ENERGY-SAVING OPERATION OF THE LUMINESCENT LAMP AND THE CONTACT DEVICE FOR CONNECTING THIS UNIT TO THE LAMP
JPH1012194A (en) Electrodeless discharge lamp, electrodeless discharge lamp lighting device and fluid treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees