[go: up one dir, main page]

JP4044470B2 - High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same - Google Patents

High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same Download PDF

Info

Publication number
JP4044470B2
JP4044470B2 JP2003083265A JP2003083265A JP4044470B2 JP 4044470 B2 JP4044470 B2 JP 4044470B2 JP 2003083265 A JP2003083265 A JP 2003083265A JP 2003083265 A JP2003083265 A JP 2003083265A JP 4044470 B2 JP4044470 B2 JP 4044470B2
Authority
JP
Japan
Prior art keywords
less
toughness
steel plate
temperature
high toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003083265A
Other languages
Japanese (ja)
Other versions
JP2004292844A (en
Inventor
等 畑野
喜臣 岡崎
晴弥 川野
重雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003083265A priority Critical patent/JP4044470B2/en
Publication of JP2004292844A publication Critical patent/JP2004292844A/en
Application granted granted Critical
Publication of JP4044470B2 publication Critical patent/JP4044470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温での母材靭性に優れ、且つ溶接性(大入熱HAZ靭性、耐溶接割れ性)に優れた490MPa以上の引張強度を有する鋼板(以下、490MPa級以上の鋼板」という)に関するものである。本発明の鋼板は、主として船舶、海洋構造物などの溶接構造物に適用される。
【0002】
【従来の技術】
船舶や海洋構造物などに適用される鋼板(厚鋼板)では、高い母材強度と共に、その適用環境から、低温での母材靭性に優れていることが求められる。また、このような分野に適用される鋼板では、溶接性(大入熱HAZ靭性や耐溶接割れ性)も重要な特性として要求されている。
【0003】
こうした鋼板において、母材靭性の確保を考慮しつつHAZ(溶接熱影響部)靭性(特に大入熱HAZ靭性)を高める技術は種々提案されているが、例えば、特許文献1には、HAZにおける酸化物系介在物のピンニングを利用してオーステナイト粒の微細化を図り、HAZ靭性を確保する技術が開示されている。
【0004】
また、特許文献2には、固溶Bによって粒界フェライトの生成を抑制し、鋼組織をアシキュラーフェライト主体として母材靭性を確保すると共に、CaSやMnSのフェライト核生成能を利用して、HAZ靭性向上を図る技術が開示されている。
【0005】
これらの技術は、−20℃レベルや−40℃レベルでの母材靭性およびHAZ靭性を確保しているが、最近では、上記分野に適用される鋼板の母材靭性やHAZ靭性では、例えば、−60℃レベルでの要求も出てきており、特許文献1や特許文献2に開示の鋼板では、こうした要求に十分応え得るものではない。
【0006】
【特許文献1】
特開2001−89825号公報
【特許文献2】
特開2002−235114号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであり、その目的は、低温(例えば−60℃)での靭性(母材靭性および大入熱HAZ靭性)に優れた490MPa以上の強度を有する鋼板を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成し得た本発明の高靭性鋼板は、C:0.010〜0.070%(質量%の意味、以下同じ),Si:0.8%以下,Mn:1.0〜1.9%,Nb:0.032%以下(0%を含む),Ti:0.005〜0.10%,B:0.0006〜0.0050%,N:0.0020〜0.010%,を満たす鋼からなり、KP<2.4を満足すると共に、鋼組織の50体積%以上がベイナイトであり、且つ平均結晶粒径が8μm以下であるところに要旨を有するものであり、低温での靭性(母材靭性および大入熱HAZ靭性)に優れている。
【0009】
ここで、上記KPは、下式(1)で表される。
KP=[Mn]+1.5×[Cr]+2×[Mo] (1)
《式中、[ ]は各元素の含有量(質量%)を意味する。》。
【0010】
本発明の高靭性鋼板では、さらに、Ni:2.0%以下、またはCu:2.0%以下;さらに、Cr:1.0%以下、またはMo:0.30%以下、またはV:0.10%以下;さらに、Al:0.20%以下;P:0.020%以下、S:0.010%以下;さらに、Ca:0.0050%以下;さらに、Mg:0.005%以下、またはREM(希土類元素):0.02%以下、またはZr:0.050%以下を含有したり、P:0.020%以下、S:0.010%以下に抑えられている場合も有効であり、これらの成分の種類に応じて高靭性鋼板の特性が更に改善される。このような本発明の高靭性鋼板は、肉厚が50mm以上のものでも良好な特性を有するものである。
【0011】
なお、本発明に係る上記高靭性鋼板の化学組成は、典型的には上記元素の他は残部Feおよび不可避不純物からなるが、その他の化学成分についても、本発明の効果を阻害しない範囲内で含有されていてもよい。
【0012】
【発明の実施の形態】
本発明者等は、特に低温(例えば−60℃)の母材靭性および大入熱HAZ靭性に優れる490MPa級以上の鋼板(厚鋼板)を開発すべく鋭意検討を重ねた結果、以下の如く本発明を完成するに至った。
【0013】
大入熱HAZ靭性の確保に当たっては、Cを低Cに制限した上で、HAZの組織の微細化に寄与し得るTiや、フェライトの核生成サイトを形成し得るBを適量添加することとし、さらに、HAZ靭性を比較的劣化させない炭化物非生成元素(Mnや、好ましくはCu,Ni,Crなど)の添加、あるいは微量のNbの添加によって母材強度を490MPa以上とした。ところが、上記(1)式で表されるKPが特定値を超えると、低温HAZ靭性が劣化することが判明した。そこで、さらにこのKPを制御することで低温HAZ靭性の確保も達成した。また、低温での母材靭性については、固溶B量の制御および圧延条件の最適化によって結晶粒の微細化を達成し、これにより、優れた低温母材靭性を確保できた。
【0014】
固溶Bは焼入れ性を高ることから、強度確保には有効であるが、同時に、低Cでは結晶粒を粗大化させる作用を有することが判明した。他方、上記の通り、BはHAZの高靭化に大きく寄与する元素でもあるため、Bの添加量を制限することは好ましくない。そこで、圧延条件を最適化することで、固溶B量の制御と共に、加工オーステナイトの制御を行い、焼入れ性(すなわち母材強度)、結晶粒の微細化(すなわち母材靭性、特に低温での母材靭性)、および低温HAZ靭性の全てを高いレベルで確保することに成功した。以下、本発明の鋼板の基本成分および組織について説明する。
【0015】
C:0.010〜0.070%
Cは、溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。Cが0.070%を超えると高冷却速度側で低温変態ベイナイトでなくマルテンサイトが生成するようになり、耐溶接割れ性が改善されない。また、低冷却速度側(大入熱HAZ)ではマルテンサイトとオーステナイトの複合組織(以下、「MA」という)が多量に生成するようになり、大入熱HAZ靭性が改善されない。好ましくは0.060%以下、さらに好ましくは0.055%以下である。なお、0.010%未満では必要最小限の母材強度が得られない。好ましくは0.020%以上、さらに好ましくは0.030%以上である。
【0016】
Si:0.8%以下
Siは脱酸剤として有用な元素であるが、0.8%を超えて添加すると溶接性および母材靭性が低下するので、上限を0.8%と規定した。好ましくは0.6%以下、さらに好ましくは0.3%以下である。
【0017】
Mn:1.0〜1.9%
Mnは焼入れ改善作用を有すると共に、結晶粒を微細化して母材靭性を改善する効果を有する。ただし、1.9%を超えるとHAZ部の耐溶接割れ性が低下する。好ましくは1.8%以下、さらに好ましくは1.60%以下である。他方、Mnが1.0%未満では十分な母材強度が得られない。好ましくは1.20%以上、さらに好ましくは1.3%以上である。
【0018】
Nb:0.032%以下(0%を含む)
NbはBとの複合効果により焼入れ性を大幅に改善する作用を有するが、0.032%を超えると、結晶粒が粗大化し、母材靭性およびHAZ靭性が低下する。好ましくは0.025%以下、さらに好ましくは0.018%以下である。他方、Nbの添加効果を有効に発揮させるためには、0.005%以上とすることが好ましく、0.008%以上とすることがより好ましい。
【0019】
Ti:0.005〜0.10%
TiはNと窒化物を形成してHAZ部のγ粒を微細化すると共に、BNの生成サイトとなり、粒内フェライトの生成を促進し、HAZ靭性を大幅に改善する効果を有するが、0.005%未満では、こうした効果が十分に確保できない。好ましくは0.007%以上、より好ましくは0.009%以上である。他方、Tiが0.10%を超えると、HAZ靭性、母材靭性共に劣化する。好ましくは0.025%以下、より好ましくは0.020%以下である。
【0020】
B:0.0006〜0.0050%
Bは固溶することにより焼入れ性を改善する作用を有するが、固溶量が多過ぎる場合には却って靭性を損なう。また、HAZにおいては、BNとなりフェライトの核生成サイトとして働き、HAZ靭性を向上させる効果を有する。B量が0.0006%未満では、Bの添加効果が十分に確保できない。好ましくは0.0010%以上、さらに好ましくは0.0012%以上である。他方、B量が0.0050%を超えると、却って焼入れ性が低下すると共に、母材靭性、HAZ靭性が劣化する。好ましくは0.0030%以下、さらに好ましくは0.0025%以下である。
【0021】
N:0.0020〜0.010%
Nは、Tiと窒化物を形成してHAZ部のγ粒径を微細化すると共に、Bと窒化物を形成してHAZ部のフェライトの生成を促進し、HAZ靭性を改善する効果を有するが、N量が0.010%を超えると、母材靭性、HAZ靭性共に劣化する。好ましくは0.0060%以下である。他方、N量が0.0020%未満では、Tiとの窒化物形成によるHAZ靭性改善効果が不十分となる。好ましくは0.0030%以上である。
【0022】
KP<2.4
KPは、低炭素ベイナイトでのMAのでき易さを示す指標であり、KPが2.4以上になると、MAの生成量が多くなり過ぎてHAZ靭性(特に低温HAZ靭性)が劣化する。KPは、HAZ靭性改善の観点からは、その値が小さいほど望ましく、例えば2.0以下、より好ましくは1.7以下であることが推奨される。
【0023】
ベイナイト分率:50体積%以上
ベイナイトは母材強度を高める上で有効な組織であり、鋼組織のベイナイト分率が高いほど、母材強度は向上する。すなわち、ベイナイト分率が50体積%未満では、十分な母材強度が確保できない。好ましくは75体積%以上、より好ましくは90体積%以上である。なお、本発明でいうベイナイトには、焼戻しされたベイナイト組織も含まれる。
【0024】
平均結晶粒径:8μm以下
上述した通り、鋼板中の平均結晶粒径が小さいほど、母材靭性が良好なものとなる。すなわち、平均結晶粒径が8μmを超えると、母材靭性が不十分となる。好ましくは6.5μm以下、さらに好ましくは5μm以下である。
【0025】
なお、本発明でいう「平均結晶粒径」は、鋼板の圧延方向に平行な断面において、FE−SEM−EBSP(電解放出型走査電子顕微鏡を用いた電子後方散乱回折像法)によって測定される値である。具体的には、EBSP解析装置(TexSEM Laboratries社製のEBSP解析装置など)をFE−SEMと組み合わせて用い、傾角(結晶方位差)が10度以上の境界を結晶粒界として、結晶粒径を決定する。測定条件としては、測定領域は100μm、測定ステップは0.4μm間隔とし、測定方位の信頼性を示すコンフィテンス・インデックス(Confidence Index)が0.1以下の測定点は解析対象から削除する。このようにして求められる結晶粒径の平均値を算出、本発明の平均結晶粒径とする。なお、結晶粒径が1.2μm以下のものについては、測定ノイズと判断し、結晶粒径の平均値計算の対象から除外することとする。
【0026】
さらに本発明では、種々の特性の向上を目指して、下記の元素を積極的に添加すること、あるいはその含有量を抑制することが推奨される。
【0027】
Ni:2.0%以下
Niは母材靭性向上に有用な元素であるが、2.0%を超えて含有させるとHAZ靭性が却って劣化する傾向にあるため、その上限を2.0%とすることが好ましい。より好ましくは1.5%以下、さらに好ましくは0.9%以下である。
【0028】
Cu:2.0%以下
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用を有する。ただし、2.0%を超えると大入熱HAZ靭性が低下する傾向にあるため、上限を2.0%とすることが好ましい。より好ましくは1.2%以下、さらに好ましくは0.9%以下である。
【0029】
Cr:1.0%以下
Crは焼入れ性改善により母材強度を向上させる作用を有するが、1.0%を超えるとMAの生成量が増えてHAZ靭性が劣化する傾向にあるため、その上限を1.0%とすることが好ましい。より好ましくは0.5%以下、さらに好ましくは0.3%以下である。
【0030】
Mo:0.30%以下
Moは焼入れ性を改善して母材強度を向上させる作用を有するが、他方、HAZ靭性を大幅に劣化させる作用も有するため、その上限を0.30%以下とすることが好ましい。より好ましくは0.15%以下、さらに好ましくは0.10%以下である。
【0031】
V:0.10%以下
Vは少量の添加により、焼入れ性および焼戻し軟化抵抗を高める作用を有するが、0.10%を超えると母材靭性やHAZ靭性が低下する傾向にあるため、その上限を0.10%とすることが好ましい。より好ましくは0.06%以下、さらに好ましくは0.02%以下である。
【0032】
Al:0.20%以下
Alは有効な脱酸元素であるが、0.2%を超えて含有させると母材靭性やHAZ靭性が低下する傾向にあるため、その上限を0.20%とすることが好ましい。より好ましくは0.1%以下、さらに好ましくは0.05%以下である。
【0033】
P:0.020%以下、S:0.010%以下
PおよびSは不純物であり、夫々0.020%以下、0.010%以下に抑えることが好ましい。より好ましくはP:0.010%以下、S:0.005%以下である。
【0034】
Ca:0.0050%以下
CaはMnSを球状化し、介在物の異方性を低減する効果を有する。この効果を十分に発揮させるためには、Caを0.0005%以上添加することが好ましい。より好ましくは0.001%以上である。他方、Ca量が0.0050%を超えると母材靭性が低下する傾向にあるため、その上限を0.0050%とすることが好ましい。より好ましくは0.003%以下である。
【0035】
Mg:0.005%以下、REM:0.02%以下、Zr:0.05%以下
これらの元素はHAZ靭性を向上させる作用を有するが、過剰に含有させると却ってHAZ靭性が劣化する傾向にあるため、Mg:0.005%以下、REM:0.02%以下、Zr:0.05%以下とすることが好ましい。より好ましくは、Mg:0.003%以下、REM:0.01%以下、Zr:0.03%以下である。なお、本発明の鋼板で含有されることのあるREMは、周期律表3属に属するスカンジウム(Sc)、イットリウム(Y)およびランタノイド系列希土類元素(原子番号57〜71)の元素のいずれをも用いることができる。
【0036】
上記の化学組成および組織を有する本発明の鋼板は、上記の通り、所謂490MPa級以上の鋼板であり、具体的な母材強度は、後述の実施例で測定される引張強さで490MPa以上であることが好ましい。また、引張強さがあまり大き過ぎると、伸びが低下傾向にあるため、引張強さの上限は690MPaであることが推奨される。
【0037】
本発明の鋼板を製造するに当たっては、上記の化学組成を有する鋼を用い、上述の組織(ベイナイト分率および平均結晶粒径)を満足するさせるための製造条件を考慮する他は、通常用いられる鋼板(厚鋼板)の製造工程および条件(温度、時間など)を適宜採用すればよい。以下に、上述のベイナイト分率および平均結晶粒径を確保するために好適な製造方法を説明する。
【0038】
まず、熱間圧延工程(本圧延工程)前に均質化圧延工程を設ける。この均質化圧延工程は、熱間圧延工程において固溶B量を制御するための前処理工程として設けるものである。この工程では、TiあるいはNbに固定されているNを、できるだけ分解させて、熱間圧延工程においてBNを形成させ易くすることで固溶B量の制御を可能とする。すなわち、熱間圧延工程では、後述するように、鋼板の靭性確保の観点から加熱温度の上限をある程度抑えることが好ましいが、このような温度では、TiやNbに固定されているNを分解させることが困難であるため、熱間圧延工程に先立って設ける均質化圧延工程で、Nが分解可能な温度まで鋼板を加熱し、該Nを、次の熱間圧延工程の加熱温度域でBNを形成し易くなる形態とするのである。このような観点から、均質化圧延工程での加熱温度は1150℃以上とすることが好ましい。また、加熱温度の上限は1350℃とすることが推奨される。
【0039】
次に熱間圧延工程であるが、加熱温度を1050〜1150℃とすることが好ましい。加熱温度が低すぎると、B,Nb,Tiが固溶せず、焼入れ性が低下する場合がある。他方、加熱温度が高すぎると、加熱時のγ粒径が粗大化して、靭性を劣化させる場合がある。
【0040】
熱間圧延時の圧下率は、1000℃から900℃まででの累積圧下率(該温度域での圧下前厚みに対する比率、以下同じ)を40%以上とし、さらに900℃から700℃まででの累積圧下率を60%以上とすることが望ましい。1000℃から900℃まででの累積圧下率を40%以上とすることで、加熱γ粒を再結晶化することができ、γ粒の微細化および異常粒成長抑制が可能となる。また、900℃から700℃まででの累積圧下率を60%以上とすることで、再結晶しないγ粒の扁平度が増加すると共に、γ粒界が湾曲して、ベイナイトの核生成サイトが増加する。その結果、結晶粒が微細化し、良好な母材靭性が確保できるようになる。
【0041】
熱間圧延の圧延終了温度は、850〜700℃とすることが望ましい。850℃以上では圧延で導入されたベイナイトの核生成サイト(γ粒界の湾曲など)が減少し、靭性の劣化を引き起こす傾向にある。また、700℃以下ではフェライトが生成するため、母材強度が確保できなくなる場合がある。
【0042】
熱間圧延後の冷却では、冷却速度を3℃/秒以上とすることが好ましく、また、冷却停止温度は500℃以下が好ましい。冷却速度が3℃/秒未満であったり、冷却停止温度が500℃を超える場合には、フェライトが多量に生成して母材強度が劣化傾向にあると共に、ベイナイトの核生成駆動力が低いために結晶粒が粗大化し、靭性も劣化する傾向にある。
【0043】
本発明の鋼板では、焼戻し処理は行わなくてもよいが、焼戻し処理を実施する場合には、焼戻し温度を400〜600℃とすることが望ましい。焼戻し温度が400℃未満では、MAが分解せず、強度低下のみで靭性が向上しないため、焼戻し処理の効果が確保できない。他方、600℃を超えると、結晶粒が成長して粗大化し、母材靭性が劣化する。
【0044】
【実施例】
以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。
【0045】
表1に示す化学組成の鋼(鋼種番号1〜29)を通常の溶製法により溶製し、スラブとした後、表2および3に示す条件で均質化圧延、熱間圧延、および焼戻し処理を行い、所定の板厚からなる評価用鋼板(表2の評価用鋼板No.1〜22、表3の評価用鋼板No.23〜39)を製造した。
【0046】
このようにして得られた評価用鋼板No.1〜39について、下記の各測定を行った。結果を表4および5に示す。
【0047】
[母材特性]
引張試験:各評価用鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことにより引張強さ(TS)、0.2%伸長時の耐力(0.2%耐力)、引張伸び(EL)を測定した。このうち、引張強さについては、490MPa≦TS<690MPaを合格とした。
【0048】
衝撃試験:各評価用鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験を行うことにより延性破面率を求め、破面遷移温度を算出した。破面遷移温度(vTrs)は−80℃以下を合格とした。
【0049】
なお、母材特定に合格したものについては、下記の溶接性試験を実施した。
【0050】
[溶接性]
HAZ靭性:各評価用鋼板を1400℃に加熱して5秒保持した後、800℃から500℃まで500秒で冷却する熱サイクル処理(70kJ/mmの入熱でサブマージアーク溶接したときのHAZの熱履歴に相当)を施した後、板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験を行うことにより吸収エネルギー(vE−60)を測定した。vE−60≧70Jを合格とした。
【0051】
耐溶接割れ性:JIS Z 3158に記載のy形溶接割れ試験法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
【0052】
[ベイナイト組織評価]
各評価用鋼板の板厚1/4位置で、圧延方向に平行な断面において、2%ナイタール液(2%硝酸−エタノール液)を用いてエッチングを行い、光学顕微鏡を用いて200μm×150μmの範囲を400倍で10箇所写真撮影し、この写真を画像解析装置によって画像解析し、ベイナイト分率を測定した。
【0053】
[平均結晶粒径測定]
ベイナイト組織評価を実施した箇所と同じ箇所において、EBSP解析装置(TexSEM Laboratries社製)およびPhilips社製FE−SEM(電解放出型走査電子顕微鏡)「XL30S−FEG」を用いて測定した。傾角が10度以上の境界を結晶粒界として、結晶粒径を決定した。測定領域は100μm、測定ステップは0.4μm間隔とし、測定方位の信頼性を示すコンフィテンス・インデックス(Confidence Index)が0.1以下の測定点は解析対象から削除した。また、結晶粒径が1.2μm以下のものについては、測定ノイズと判断し、結晶粒径の平均値計算の対象から除外した。
【0054】
【表1】

Figure 0004044470
【0055】
【表2】
Figure 0004044470
【0056】
【表3】
Figure 0004044470
【0057】
【表4】
Figure 0004044470
【0058】
【表5】
Figure 0004044470
【0059】
表4および5から、次のように考察できる。評価用鋼板No.3,4,6、12〜22は、いずれも化学成分が良好な表1の鋼種番号1〜12を用いると共に、表4に示すように組織が良好であり、低温母材靭性、低温HAZ靭性を始めとする各種母材特性および溶接性が良好であった。これに対し、評価用鋼板No.1,2,5,7〜11,23〜39は、表2に示すように製造条件が不適であるために表4に示すように組織が不適であるか(評価用鋼板No.1,2,5,7〜11)、化学成分が不適な表1の鋼種番号13〜29を用いているために表5に示すように組織が不適(評価用鋼板No.23〜39)であり、以下の不具合を有している。
【0060】
No.1の評価用鋼板は熱間圧延前に均質化圧延処理を施していない例、No.2の評価用鋼板は均質化圧延処理時の加熱温度が低い例である。No.5の評価用鋼板は焼戻し温度が高い例である。No.7の評価用鋼板は1000から900℃までの累積圧下率が低い例、No.8の評価用鋼板は900から700℃までの累積圧下率が低い例である。No.9の評価用鋼板は熱間圧延後の冷却速度が遅い例、No.10の評価用鋼板は熱間圧延後の冷却停止温度が高い例である。No.11の評価用鋼板は熱間圧延時の加熱温度が高い例である。これらの評価用鋼板では、平均結晶粒径が大きく、低温母材靭性が劣っており、さらにNo.9および10の評価用鋼板では、母材強度も劣っている。
【0061】
No.23の評価用鋼板はC量が少ない例であり、ベイナイト分率が低く、平均結晶粒径が大きい。その結果、母材強度および低温母材靭性が劣っている。No.24の評価用鋼板はC量が多い例であり、低温HAZ靭性が劣っている。
【0062】
No.25の評価用鋼板はSi量が多い例であり、低温母材靭性および低温HAZ靭性が劣っている。
【0063】
No.26の評価用鋼板はMn量が少ない例であり、ベイナイト分率が低く、平均結晶粒径が大きい。その結果、母材強度および低温母材靭性が劣っている。
【0064】
No.27の評価用鋼板はMn量が多い例、No.28および29の評価用鋼板はKPが高い例、No.30の評価用鋼板はCr量が好ましい範囲を超えており且つKPが大きい例、No.31の評価用鋼板はMo量が多い例である。これらの評価用鋼板では、低温HAZ靭性が劣っている。
【0065】
No.32の評価用鋼板はNb量が多い例、No.33の評価用鋼板はV量が好ましい範囲を超える例である。これらの評価用鋼板では、平均結晶粒径が大きく、低温母材靭性および低温HAZ靭性が劣っている。
【0066】
No.34の評価用鋼板はNiおよびCuが多い例であり、低温HAZ靭性が劣っている。
【0067】
No.35の評価用鋼板はB量が少なく、ベイナイト分率が低い例であり、母材強度が劣っている。No.36の評価用鋼板はB量が多く、平均結晶粒径が大きい例であり、低温母材靭性および低温HAZ靭性が劣っている。
【0068】
No.37の評価用鋼板はN量が多い例、No.39の評価用鋼板はTi量が多い例であり、これらの評価用鋼板では平均結晶粒径が大きく、低温母材靭性および低温HAZ靭性が劣っている。No.38の評価用鋼板はTi量が少ない例であり、低温HAZ靭性が劣っている。
【0069】
【発明の効果】
本発明は以上のように構成されており、特定の化学組成(特にKP)に加えて、鋼組織のベイナイト分率および平均結晶粒径を特定の範囲とすることで、低温母材靭性および低温HAZ靭性(大入熱HAZ靭性)に優れた490MPa級以上の鋼板を提供することができた。本発明の鋼板は、例えば、船舶や海洋構造物など、特に低温環境下に曝される構造物(溶接構造物)用途に好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a steel plate having a tensile strength of 490 MPa or higher (hereinafter referred to as a steel plate of 490 MPa class or higher) excellent in base metal toughness at low temperature and excellent in weldability (high heat input HAZ toughness, weld crack resistance). It is about. The steel sheet of the present invention is mainly applied to welded structures such as ships and offshore structures.
[0002]
[Prior art]
Steel plates (thick steel plates) applied to ships, offshore structures, and the like are required to have excellent base material toughness at low temperatures in addition to high base material strength as well as their application environment. In steel sheets applied in such fields, weldability (high heat input HAZ toughness and weld crack resistance) is also required as an important characteristic.
[0003]
In such a steel sheet, various techniques for increasing the HAZ (welding heat affected zone) toughness (particularly high heat input HAZ toughness) while taking into account the securing of the base material toughness have been proposed. A technique is disclosed in which austenite grains are refined by utilizing pinning of oxide inclusions to ensure HAZ toughness.
[0004]
Further, Patent Document 2 suppresses the formation of intergranular ferrite by solute B, secures the base metal toughness with the steel structure as the main acicular ferrite, and utilizes the ferrite nucleation ability of CaS and MnS, A technique for improving the HAZ toughness is disclosed.
[0005]
Although these techniques ensure the base material toughness and the HAZ toughness at the −20 ° C. level and the −40 ° C. level, recently, in the base material toughness and the HAZ toughness of the steel sheet applied in the above field, for example, There is also a demand at a −60 ° C. level, and the steel sheets disclosed in Patent Document 1 and Patent Document 2 cannot sufficiently meet such a demand.
[0006]
[Patent Document 1]
JP 2001-89825 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-235114
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and the object thereof is a steel plate having a strength of 490 MPa or more excellent in toughness (base metal toughness and large heat input HAZ toughness) at a low temperature (for example, −60 ° C.). Is to provide.
[0008]
[Means for Solving the Problems]
The high toughness steel sheet of the present invention that can achieve the above object is C: 0.010 to 0.070% (meaning of mass%, the same shall apply hereinafter), Si: 0.8% or less, Mn: 1.0 to 1 0.9%, Nb: 0.032% or less (including 0%), Ti: 0.005-0.10%, B: 0.0006-0.0050%, N: 0.0020-0.010% , Satisfying KP <2.4, having a gist where 50% by volume or more of the steel structure is bainite and having an average crystal grain size of 8 μm or less, at a low temperature. Excellent toughness (base metal toughness and high heat input HAZ toughness).
[0009]
Here, the KP is expressed by the following formula (1).
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
<< In formula, [] means content (mass%) of each element. >>
[0010]
In the high toughness steel sheet of the present invention, Ni: 2.0% or less, or Cu: 2.0% or less; further, Cr: 1.0% or less, or Mo: 0.30% or less, or V: 0. Al: 0.20% or less; P: 0.020% or less; S: 0.010% or less; Ca: 0.0050% or less; Mg: 0.005% or less Or REM (rare earth element): 0.02% or less, or Zr: 0.050% or less, or P: 0.020% or less, S: 0.010% or less is also effective The properties of the high toughness steel sheet are further improved according to the types of these components. Such a high toughness steel sheet of the present invention has good characteristics even when the wall thickness is 50 mm or more.
[0011]
The chemical composition of the high toughness steel sheet according to the present invention typically consists of the balance of the above elements and the remaining Fe and unavoidable impurities, but other chemical components also do not impair the effects of the present invention. It may be contained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have made extensive studies to develop a steel plate (thick steel plate) of 490 MPa class or more that is particularly excellent in low-temperature (for example, −60 ° C.) base metal toughness and high heat input HAZ toughness. The invention has been completed.
[0013]
In securing high heat input HAZ toughness, C should be limited to low C, and Ti, which can contribute to refinement of the HAZ structure, and B, which can form nucleation sites of ferrite, should be added in an appropriate amount. Furthermore, the base material strength was set to 490 MPa or more by adding a non-carbide-generating element (Mn, preferably Cu, Ni, Cr, etc.) that does not relatively deteriorate the HAZ toughness, or by adding a small amount of Nb. However, it has been found that when the KP represented by the above formula (1) exceeds a specific value, the low-temperature HAZ toughness deteriorates. Therefore, the low temperature HAZ toughness was also secured by further controlling this KP. As for the base material toughness at low temperature, the refinement of crystal grains was achieved by controlling the solid solution B amount and optimizing the rolling conditions, thereby ensuring excellent low temperature base material toughness.
[0014]
Since solute B has high hardenability, it is effective in securing strength, but at the same time, it has been found that low C has an action of coarsening crystal grains. On the other hand, as described above, since B is an element that greatly contributes to the toughening of HAZ, it is not preferable to limit the addition amount of B. Therefore, by optimizing the rolling conditions, the control of the processing austenite is performed together with the control of the amount of dissolved B, the hardenability (that is, the base material strength), the refinement of the crystal grains (that is, the base material toughness, particularly at low temperatures). It has succeeded in securing all of the base material toughness) and the low temperature HAZ toughness at a high level. Hereinafter, the basic components and structure of the steel sheet of the present invention will be described.
[0015]
C: 0.010-0.070%
C is an important element for achieving both the weld crack resistance of the HAZ part during welding and the strength of the base material and improving the high heat input HAZ toughness. When C exceeds 0.070%, martensite is generated instead of low-temperature transformation bainite on the high cooling rate side, and the weld crack resistance is not improved. Further, on the low cooling rate side (high heat input HAZ), a large amount of martensite and austenite composite structure (hereinafter referred to as “MA”) is generated, and the high heat input HAZ toughness is not improved. Preferably it is 0.060% or less, More preferably, it is 0.055% or less. In addition, if it is less than 0.010%, the necessary minimum base material strength cannot be obtained. Preferably it is 0.020% or more, More preferably, it is 0.030% or more.
[0016]
Si: 0.8% or less Si is an element useful as a deoxidizer, but if added over 0.8%, the weldability and the base metal toughness deteriorate, so the upper limit was defined as 0.8%. Preferably it is 0.6% or less, More preferably, it is 0.3% or less.
[0017]
Mn: 1.0 to 1.9%
Mn has an effect of improving quenching and also has an effect of improving the toughness of the base metal by refining crystal grains. However, if it exceeds 1.9%, the weld crack resistance of the HAZ part is lowered. Preferably it is 1.8% or less, More preferably, it is 1.60% or less. On the other hand, if the Mn is less than 1.0%, sufficient base material strength cannot be obtained. Preferably it is 1.20% or more, more preferably 1.3% or more.
[0018]
Nb: 0.032% or less (including 0%)
Nb has the effect of significantly improving the hardenability due to the combined effect with B. However, if it exceeds 0.032%, the crystal grains become coarse, and the base metal toughness and the HAZ toughness are lowered. Preferably it is 0.025% or less, More preferably, it is 0.018% or less. On the other hand, in order to effectively exhibit the effect of adding Nb, the content is preferably 0.005% or more, and more preferably 0.008% or more.
[0019]
Ti: 0.005-0.10%
Ti forms nitrides with N to refine γ grains in the HAZ part, and becomes a BN generation site, promotes the formation of intragranular ferrite, and has the effect of greatly improving the HAZ toughness. If it is less than 005%, such an effect cannot be secured sufficiently. Preferably it is 0.007% or more, More preferably, it is 0.009% or more. On the other hand, when Ti exceeds 0.10%, both HAZ toughness and base metal toughness deteriorate. Preferably it is 0.025% or less, More preferably, it is 0.020% or less.
[0020]
B: 0.0006 to 0.0050%
B has the effect of improving the hardenability by being dissolved, but when the amount of the solid solution is too large, the toughness is impaired. Moreover, in HAZ, it becomes BN and works as a nucleation site of ferrite and has an effect of improving HAZ toughness. If the amount of B is less than 0.0006%, the effect of adding B cannot be secured sufficiently. Preferably it is 0.0010% or more, More preferably, it is 0.0012% or more. On the other hand, when the amount of B exceeds 0.0050%, the hardenability is lowered and the base material toughness and the HAZ toughness are deteriorated. Preferably it is 0.0030% or less, More preferably, it is 0.0025% or less.
[0021]
N: 0.0020 to 0.010%
N forms Ti and nitride to refine the γ grain size of the HAZ part, and N forms B and nitride to promote the formation of ferrite in the HAZ part and has the effect of improving the HAZ toughness. If the N content exceeds 0.010%, both the base metal toughness and the HAZ toughness deteriorate. Preferably it is 0.0060% or less. On the other hand, if the N content is less than 0.0020%, the effect of improving the HAZ toughness due to the formation of nitride with Ti becomes insufficient. Preferably it is 0.0030% or more.
[0022]
KP <2.4
KP is an index indicating the ease with which MA can be produced with low carbon bainite. When KP is 2.4 or more, the amount of MA produced is excessive and HAZ toughness (especially low-temperature HAZ toughness) deteriorates. From the viewpoint of improving the HAZ toughness, the smaller the value of KP, the more desirable it is, for example, 2.0 or less, more preferably 1.7 or less.
[0023]
Bainite fraction: 50% by volume or more Bainite is a structure that is effective in increasing the strength of the base metal. The higher the bainite fraction of the steel structure, the higher the base metal strength. That is, when the bainite fraction is less than 50% by volume, sufficient base material strength cannot be ensured. Preferably it is 75 volume% or more, More preferably, it is 90 volume% or more. In the present invention, the bainite includes a tempered bainite structure.
[0024]
Average crystal grain size: 8 μm or less As described above, the smaller the average crystal grain size in the steel sheet, the better the base metal toughness. That is, if the average crystal grain size exceeds 8 μm, the base material toughness becomes insufficient. Preferably it is 6.5 micrometers or less, More preferably, it is 5 micrometers or less.
[0025]
The “average crystal grain size” in the present invention is measured by FE-SEM-EBSP (electron backscatter diffraction image method using a field emission scanning electron microscope) in a cross section parallel to the rolling direction of the steel sheet. Value. Specifically, an EBSP analyzer (such as an EBSP analyzer manufactured by TexSEM Laboratories) is used in combination with an FE-SEM, and the crystal grain size is determined with a boundary having an inclination (crystal orientation difference) of 10 degrees or more as a grain boundary. decide. As measurement conditions, the measurement area is 100 μm, the measurement steps are 0.4 μm intervals, and measurement points with a confidence index (Confidence Index) indicating the reliability of the measurement direction are 0.1 or less are deleted from the analysis target. The average value of the crystal grain sizes thus obtained is calculated and used as the average crystal grain size of the present invention. A crystal grain size of 1.2 μm or less is determined as measurement noise and excluded from the target of calculating the average value of crystal grain sizes.
[0026]
Furthermore, in the present invention, it is recommended to actively add the following elements or suppress the content thereof in order to improve various properties.
[0027]
Ni: 2.0% or less Ni is an element useful for improving the toughness of the base metal. However, if the content exceeds 2.0%, the HAZ toughness tends to deteriorate instead, so the upper limit is 2.0%. It is preferable to do. More preferably, it is 1.5% or less, More preferably, it is 0.9% or less.
[0028]
Cu: 2.0% or less Cu has an effect of improving the hardenability as well as improving the strength of the base metal by solid solution strengthening and precipitation strengthening. However, if it exceeds 2.0%, the high heat input HAZ toughness tends to decrease, so the upper limit is preferably made 2.0%. More preferably, it is 1.2% or less, More preferably, it is 0.9% or less.
[0029]
Cr: 1.0% or less Cr has the effect of improving the base metal strength by improving the hardenability, but if it exceeds 1.0%, the amount of MA generated tends to increase and the HAZ toughness tends to deteriorate, so its upper limit Is preferably 1.0%. More preferably, it is 0.5% or less, More preferably, it is 0.3% or less.
[0030]
Mo: 0.30% or less Mo has the effect of improving the hardenability and improving the base metal strength, but also has the effect of greatly degrading the HAZ toughness, so the upper limit is made 0.30% or less. It is preferable. More preferably, it is 0.15% or less, More preferably, it is 0.10% or less.
[0031]
V: 0.10% or less V has the effect of increasing hardenability and temper softening resistance by addition of a small amount, but if it exceeds 0.10%, the base metal toughness and HAZ toughness tend to decrease, so the upper limit Is preferably 0.10%. More preferably, it is 0.06% or less, More preferably, it is 0.02% or less.
[0032]
Al: 0.20% or less Al is an effective deoxidizing element, but if it is contained in excess of 0.2%, the base material toughness and the HAZ toughness tend to decrease, so the upper limit is 0.20%. It is preferable to do. More preferably, it is 0.1% or less, More preferably, it is 0.05% or less.
[0033]
P: 0.020% or less, S: 0.010% or less P and S are impurities, and are preferably suppressed to 0.020% or less and 0.010% or less, respectively. More preferably, P is 0.010% or less, and S is 0.005% or less.
[0034]
Ca: 0.0050% or less Ca has the effect of spheroidizing MnS and reducing the anisotropy of inclusions. In order to fully exhibit this effect, it is preferable to add 0.0005% or more of Ca. More preferably, it is 0.001% or more. On the other hand, if the Ca content exceeds 0.0050%, the base material toughness tends to decrease, so the upper limit is preferably made 0.0050%. More preferably, it is 0.003% or less.
[0035]
Mg: 0.005% or less, REM: 0.02% or less, Zr: 0.05% or less These elements have an action of improving HAZ toughness, but if they are contained excessively, the HAZ toughness tends to deteriorate. Therefore, Mg: 0.005% or less, REM: 0.02% or less, and Zr: 0.05% or less are preferable. More preferably, Mg: 0.003% or less, REM: 0.01% or less, Zr: 0.03% or less. The REM that may be contained in the steel sheet of the present invention includes any of scandium (Sc), yttrium (Y), and lanthanoid series rare earth elements (atomic numbers 57 to 71) belonging to Group 3 of the periodic table. Can be used.
[0036]
As described above, the steel sheet of the present invention having the above chemical composition and structure is a so-called 490 MPa grade or more steel sheet, and the specific base material strength is 490 MPa or more in terms of tensile strength measured in Examples described later. Preferably there is. Also, if the tensile strength is too large, the elongation tends to decrease, so it is recommended that the upper limit of the tensile strength be 690 MPa.
[0037]
In manufacturing the steel sheet of the present invention, a steel having the above chemical composition is usually used except for considering the manufacturing conditions for satisfying the above-described structure (bainite fraction and average crystal grain size). What is necessary is just to employ | adopt suitably the manufacturing process and conditions (temperature, time, etc.) of a steel plate (thick steel plate). Below, the manufacturing method suitable in order to ensure the above-mentioned bainite fraction and average crystal grain diameter is demonstrated.
[0038]
First, a homogenization rolling process is provided before a hot rolling process (main rolling process). This homogenization rolling process is provided as a pretreatment process for controlling the amount of dissolved B in the hot rolling process. In this process, N fixed to Ti or Nb is decomposed as much as possible so that BN can be easily formed in the hot rolling process, so that the amount of dissolved B can be controlled. That is, in the hot rolling step, as described later, it is preferable to suppress the upper limit of the heating temperature to some extent from the viewpoint of securing the toughness of the steel sheet, but at such a temperature, N fixed to Ti or Nb is decomposed. Therefore, in the homogenization rolling process provided prior to the hot rolling process, the steel sheet is heated to a temperature at which N can be decomposed, and N is added to the heating temperature range of the next hot rolling process. The form is easy to form. From such a viewpoint, it is preferable that the heating temperature in the homogenization rolling step is 1150 ° C. or higher. The upper limit of the heating temperature is recommended to be 1350 ° C.
[0039]
Next, although it is a hot rolling process, it is preferable to make heating temperature into 1050-1150 degreeC. If the heating temperature is too low, B, Nb and Ti are not dissolved, and the hardenability may be lowered. On the other hand, if the heating temperature is too high, the γ particle size at the time of heating becomes coarse and the toughness may be deteriorated.
[0040]
The rolling reduction during hot rolling is a cumulative rolling reduction from 1000 ° C to 900 ° C (ratio to the thickness before rolling in the temperature range, the same applies hereinafter) of 40% or more, and further from 900 ° C to 700 ° C. The cumulative rolling reduction is desirably 60% or more. By setting the cumulative rolling reduction from 1000 ° C. to 900 ° C. to 40% or more, the heated γ grains can be recrystallized, and the γ grains can be refined and abnormal grain growth can be suppressed. In addition, by setting the cumulative reduction ratio from 900 ° C. to 700 ° C. to 60% or more, the flatness of γ grains that do not recrystallize increases, the γ grain boundary curves, and the nucleation sites of bainite increase. To do. As a result, the crystal grains become finer and good base material toughness can be secured.
[0041]
The rolling end temperature of the hot rolling is desirably 850 to 700 ° C. Above 850 ° C., the nucleation sites of bainite introduced by rolling (curvature of γ grain boundaries, etc.) tend to decrease, leading to deterioration of toughness. In addition, since ferrite is generated at 700 ° C. or lower, the strength of the base material may not be ensured.
[0042]
In the cooling after hot rolling, the cooling rate is preferably 3 ° C./second or more, and the cooling stop temperature is preferably 500 ° C. or less. When the cooling rate is less than 3 ° C./second or the cooling stop temperature exceeds 500 ° C., a large amount of ferrite is generated and the base material strength tends to deteriorate, and the nucleation driving force of bainite is low. In addition, the crystal grains become coarse and the toughness tends to deteriorate.
[0043]
In the steel sheet of the present invention, the tempering process may not be performed, but when the tempering process is performed, the tempering temperature is preferably set to 400 to 600 ° C. When the tempering temperature is less than 400 ° C., MA is not decomposed, and the toughness is not improved only by strength reduction, so that the effect of the tempering treatment cannot be ensured. On the other hand, when it exceeds 600 ° C., crystal grains grow and become coarse, and the base material toughness deteriorates.
[0044]
【Example】
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.
[0045]
Steel having the chemical composition shown in Table 1 (steel type numbers 1 to 29) is melted by a normal melting method to form a slab, and then homogenized rolling, hot rolling, and tempering treatment are performed under the conditions shown in Tables 2 and 3. The steel plate for evaluation which consists of predetermined plate | board thickness (Evaluation steel plate No. 1-22 of Table 2, Evaluation steel plate No. 23-39 of Table 3) was manufactured.
[0046]
Thus obtained steel plate for evaluation No. The following measurements were performed for 1 to 39. The results are shown in Tables 4 and 5.
[0047]
[Base material properties]
Tensile test: JIS No. 4 specimen was taken from 1/4 thickness part of each steel plate for evaluation and tensile test (TS), yield strength at 0.2% elongation (0.2% yield strength) ) And tensile elongation (EL) were measured. Among these, regarding the tensile strength, 490 MPa ≦ TS <690 MPa was accepted.
[0048]
Impact test: A JIS No. 4 test piece was collected from a ¼ part of the thickness of each evaluation steel plate, and subjected to a Charpy impact test to determine the ductile fracture surface ratio, and the fracture surface transition temperature was calculated. The fracture surface transition temperature (vTrs) was -80 ° C. or lower.
[0049]
In addition, the following weldability test was implemented about what passed the preform | base_material specification.
[0050]
[Weldability]
HAZ toughness: After heating each steel plate for evaluation to 1400 ° C. and holding it for 5 seconds, heat cycle treatment of cooling from 800 ° C. to 500 ° C. in 500 seconds (HAZ when submerged arc welding with 70 kJ / mm heat input) (Corresponding to the heat history), a JIS No. 4 test piece was taken from a ¼ part of the plate thickness, and the Charpy impact test was conducted to measure the absorbed energy (vE- 60 ). vE- 60 ≧ 70 J was accepted.
[0051]
Resistance to weld cracking: Covered arc welding was performed at a heat input of 1.7 kJ / mm based on the y-type weld crack test method described in JIS Z 3158, and the root crack prevention preheating temperature was measured. 25 degrees C or less was set as the pass.
[0052]
[Bainite structure evaluation]
Etching with a 2% nital solution (2% nitric acid-ethanol solution) in a cross section parallel to the rolling direction at a thickness of 1/4 of each steel plate for evaluation, and a range of 200 μm × 150 μm using an optical microscope Was taken at 400 magnifications at 10 locations, and the photographs were subjected to image analysis by an image analyzer, and the bainite fraction was measured.
[0053]
[Average crystal grain size measurement]
The measurement was performed using an EBSP analyzer (manufactured by TexSEM Laboratories) and an FE-SEM (electrolytic emission scanning electron microscope) “XL30S-FEG” manufactured by Philips at the same place where the bainite structure evaluation was performed. The crystal grain size was determined with a boundary having an inclination of 10 degrees or more as a grain boundary. The measurement area was 100 μm, the measurement step was 0.4 μm, and measurement points with a confidence index (Confidence Index) indicating the reliability of the measurement direction of 0.1 or less were deleted from the analysis target. In addition, those having a crystal grain size of 1.2 μm or less were judged as measurement noise and excluded from the target for calculating the average value of the crystal grain size.
[0054]
[Table 1]
Figure 0004044470
[0055]
[Table 2]
Figure 0004044470
[0056]
[Table 3]
Figure 0004044470
[0057]
[Table 4]
Figure 0004044470
[0058]
[Table 5]
Figure 0004044470
[0059]
From Tables 4 and 5, it can be considered as follows. Steel plate for evaluation No. 3, 4, 6, and 12 to 22 all use steel type numbers 1 to 12 in Table 1 with good chemical composition, and the structure is good as shown in Table 4, low temperature base material toughness, low temperature HAZ toughness The characteristics of various base materials such as and the weldability were good. On the other hand, the evaluation steel plate No. 1, 2, 5, 7 to 11, 23 to 39 are not suitable for the structure as shown in Table 4 because the manufacturing conditions are inappropriate as shown in Table 2 (Evaluation Steel Sheet Nos. 1 and 2) 5, 7 to 11), and the steel composition numbers 13 to 29 in Table 1 having an inappropriate chemical composition are used, so that the structure is unsuitable as shown in Table 5 (Evaluation Steel Plate Nos. 23 to 39). Have the defects.
[0060]
No. The steel plate for evaluation No. 1 is an example in which homogenization rolling treatment is not performed before hot rolling, No. 1 The steel plate for evaluation No. 2 is an example in which the heating temperature during the homogenization rolling treatment is low. No. The evaluation steel plate 5 is an example having a high tempering temperature. No. The steel plate for evaluation No. 7 is an example having a low cumulative rolling reduction from 1000 to 900 ° C. The steel plate for evaluation No. 8 is an example in which the cumulative rolling reduction from 900 to 700 ° C. is low. No. No. 9 steel plate for evaluation is an example where the cooling rate after hot rolling is slow, The steel plate for evaluation 10 is an example having a high cooling stop temperature after hot rolling. No. No. 11 steel plate is an example in which the heating temperature during hot rolling is high. These steel plates for evaluation have a large average crystal grain size and inferior low temperature base metal toughness. In the steel plates for evaluation of 9 and 10, the base material strength is also inferior.
[0061]
No. The steel plate for evaluation No. 23 is an example having a small amount of C, has a low bainite fraction, and a large average grain size. As a result, the base material strength and the low temperature base material toughness are inferior. No. The steel plate for evaluation of 24 is an example with a large amount of C, and the low-temperature HAZ toughness is inferior.
[0062]
No. The evaluation steel plate No. 25 is an example having a large amount of Si, and is inferior in low-temperature base material toughness and low-temperature HAZ toughness.
[0063]
No. The steel plate for evaluation No. 26 is an example having a small amount of Mn, has a low bainite fraction, and a large average grain size. As a result, the base material strength and the low temperature base material toughness are inferior.
[0064]
No. The steel plate for evaluation No. 27 is an example having a large amount of Mn, No. 27. The steel plates for evaluation of Nos. 28 and 29 are examples having high KP, No. No. 30 is an example in which the amount of Cr exceeds the preferable range and the KP is large. The evaluation steel plate 31 is an example having a large amount of Mo. These evaluation steel sheets have poor low-temperature HAZ toughness.
[0065]
No. The steel plate for evaluation No. 32 is an example having a large amount of Nb. The steel plate for evaluation of 33 is an example in which the V amount exceeds the preferable range. These steel plates for evaluation have a large average crystal grain size and are inferior in low temperature base metal toughness and low temperature HAZ toughness.
[0066]
No. The steel plate for evaluation of 34 is an example in which there are many Ni and Cu, and the low temperature HAZ toughness is inferior.
[0067]
No. The steel sheet for evaluation No. 35 is an example in which the B content is small and the bainite fraction is low, and the base metal strength is inferior. No. The steel plate for evaluation No. 36 is an example having a large B amount and a large average crystal grain size, and is inferior in low-temperature base material toughness and low-temperature HAZ toughness.
[0068]
No. The steel plate for evaluation No. 37 is an example with a large amount of N, No. 37. The evaluation steel plate No. 39 is an example having a large amount of Ti, and these evaluation steel plates have a large average crystal grain size and are inferior in low-temperature base material toughness and low-temperature HAZ toughness. No. The steel plate for evaluation No. 38 is an example having a small amount of Ti, and the low-temperature HAZ toughness is inferior.
[0069]
【The invention's effect】
The present invention is configured as described above, and in addition to a specific chemical composition (particularly KP), by setting the bainite fraction and the average crystal grain size of the steel structure to a specific range, the low temperature base material toughness and the low temperature It was possible to provide a 490 MPa grade or higher steel plate having excellent HAZ toughness (high heat input HAZ toughness). The steel plate of the present invention is suitable for use in a structure (welded structure) exposed to a low temperature environment such as a ship or an offshore structure.

Claims (14)

C:0.010〜0.070%(質量%の意味、以下同じ),Si:0.8%以下,Mn:1.3〜1.9%,Nb:0.032%以下(0%を含む),Ti:0.005〜0.10%,B:0.0006〜0.0050%,N:0.0020〜0.010%,Al:0.20%以下,P:0.020%以下,S:0.010%以下,残部:Feおよび不可避的不純物を満たす鋼からなり、
KP<2.4を満足すると共に、
鋼組織の50体積%以上がベイナイトであり、且つ平均結晶粒径が8μm以下であり、残部がフェライト、マルテンサイト、またはマルテンサイトとオーステナイトの複合組織であることを特徴とする低温母材靭性および低温HAZ靭性に優れた高靭性鋼板。
ただし、
KP=[Mn]+1.5×[Cr]+2×[Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.070% (meaning mass%, the same applies hereinafter), Si: 0.8% or less, Mn: 1.3 to 1.9%, Nb: 0.032% or less (0% Ti): 0.005-0.10%, B: 0.0006-0.0050%, N: 0.0020-0.010%, Al: 0.20% or less, P: 0.020% Hereinafter, S: 0.010% or less, the balance: made of steel satisfying Fe and inevitable impurities ,
While satisfying KP <2.4,
Is 50 vol% or more bainite steel structure, and an average grain size of Ri der less 8 [mu] m, low temperature preform and the balance ferrite, martensite, or a composite structure der Rukoto of martensite and austenite, High toughness steel sheet with excellent toughness and low temperature HAZ toughness .
However,
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
<< In formula, [] means content (mass%) of each element. >>
C:0.010〜0.055%である請求項1に記載の高靭性鋼板。C: The high toughness steel plate according to claim 1 which is 0.010 to 0.055%. さらに、Ni:2.0%以下、またはCu:2.0%以下を含有するものである請求項1または2に記載の高靭性鋼板。Furthermore, Ni: 2.0% or less, or Cu: 2.0% or less, The high toughness steel plate of Claim 1 or 2 . さらに、Cr:1.0%以下、またはMo:0.30%以下、またはV:0.10%以下を含有するものである請求項1〜3のいずれかに記載の高靭性鋼板。The high toughness steel sheet according to any one of claims 1 to 3, further comprising Cr: 1.0% or less, Mo: 0.30% or less, or V: 0.10% or less. さらに、Ca:0.0050%以下を含有するものである請求項1〜のいずれかに記載の高靭性鋼板。Furthermore, Ca: 0.0050% or less is contained, The high-toughness steel plate in any one of Claims 1-4 . さらに、Mg:0.005%以下、またはREM:0.02%以下、またはZr:0.050%以下を含有するものである請求項1〜のいずれかに記載の高靭性鋼板。Furthermore, Mg: 0.005% or less, REM: 0.02% or less, or Zr: 0.050% or less, The high toughness steel plate in any one of Claims 1-5 . 肉厚が50mm以上である請求項1〜のいずれかに記載の高靭性鋼板。The high toughness steel sheet according to any one of claims 1 to 6 , wherein the thickness is 50 mm or more. C:0.010〜0.070%,Si:0.8%以下,Mn:1.0〜1.9%,Nb:0.032%以下(0%を含む),Ti:0.005〜0.10%,B:0.0006〜0.0050%,N:0.0020〜0.010%,Al:0.20%以下,P:0.020%以下,S:0.010%以下,残部:Feおよび不可避的不純物を満たし、且つ、KP<2.4を満足する鋼を用い、C: 0.010 to 0.070%, Si: 0.8% or less, Mn: 1.0 to 1.9%, Nb: 0.032% or less (including 0%), Ti: 0.005 0.10%, B: 0.0006 to 0.0050%, N: 0.0020 to 0.010%, Al: 0.20% or less, P: 0.020% or less, S: 0.010% or less , Balance: using steel satisfying Fe and inevitable impurities and satisfying KP <2.4,
1150〜1350℃の温度で加熱する均質化圧延工程と、A homogenizing rolling step of heating at a temperature of 1150 to 1350 ° C .;
1050〜1150℃の温度で加熱し、1000〜900℃の温度で累積圧下率40%以上の圧下を加え、900〜700℃の温度で累積圧下率60%以上の圧下を加えた後、850〜700℃の温度で圧延を終了する熱間圧延工程と、After heating at a temperature of 1050 to 1150 ° C., applying a reduction of a cumulative reduction ratio of 40% or more at a temperature of 1000 to 900 ° C., and applying a reduction of a cumulative reduction ratio of 60% or more at a temperature of 900 to 700 ° C. A hot rolling step of ending rolling at a temperature of 700 ° C .;
3℃/秒以上の冷却速度で500℃以下の温度まで冷却する冷却工程と、A cooling step of cooling to a temperature of 500 ° C. or lower at a cooling rate of 3 ° C./second or higher;
を順次包含することを特徴とする高靭性鋼板の製造方法。A method for producing a high toughness steel sheet, characterized in that
ただし、However,
KP=[Mn]+1.5×[Cr]+2×[Mo]KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
《式中、[ ]は各元素の含有量(質量%)を意味する。》<< In formula, [] means content (mass%) of each element. >>
前記冷却工程の後に、さらに400〜600℃の温度で焼き戻しを行う請求項8に記載の高靭性鋼板の製造方法。The manufacturing method of the high toughness steel plate of Claim 8 which performs tempering at the temperature of 400-600 degreeC after the said cooling process further. 前記鋼は、さらに、Ni:2.0%以下、またはCu:2.0%以下を含有するものである請求項8または9に記載の高靭性鋼板の製造方法。The method for producing a high toughness steel plate according to claim 8 or 9, wherein the steel further contains Ni: 2.0% or less, or Cu: 2.0% or less. 前記鋼は、さらに、Cr:1.0%以下、またはMo:0.30%以下、またはV:0.10%以下を含有するものである請求項8〜10のいずれかに記載の高靭性鋼板の製造方法。The high toughness according to any one of claims 8 to 10, wherein the steel further contains Cr: 1.0% or less, Mo: 0.30% or less, or V: 0.10% or less. A method of manufacturing a steel sheet. 前記鋼は、さらに、Ca:0.0050%以下を含有するものである請求項8〜11のいずれかに記載の高靭性鋼板の製造方法。The method for producing a high toughness steel plate according to any one of claims 8 to 11, wherein the steel further contains Ca: 0.0050% or less. 前記鋼は、さらに、Mg:0.005%以下、またはREM:0.02%以下、またはZr:0.050%以下を含有するものである請求項8〜12のいずれThe steel further contains Mg: 0.005% or less, REM: 0.02% or less, or Zr: 0.050% or less. かに記載の高靭性鋼板の製造方法。The manufacturing method of the high toughness steel plate as described in a crab. 肉厚が50mm以上である請求項8〜13のいずれかに記載の高靭性鋼板の製造方法。The method for producing a high toughness steel plate according to any one of claims 8 to 13, wherein the thickness is 50 mm or more.
JP2003083265A 2003-03-25 2003-03-25 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same Expired - Fee Related JP4044470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083265A JP4044470B2 (en) 2003-03-25 2003-03-25 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003083265A JP4044470B2 (en) 2003-03-25 2003-03-25 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004292844A JP2004292844A (en) 2004-10-21
JP4044470B2 true JP4044470B2 (en) 2008-02-06

Family

ID=33398784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083265A Expired - Fee Related JP4044470B2 (en) 2003-03-25 2003-03-25 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4044470B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778779B2 (en) * 2005-11-04 2011-09-21 株式会社神戸製鋼所 High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP4787141B2 (en) * 2005-11-30 2011-10-05 株式会社神戸製鋼所 Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP4768526B2 (en) * 2006-02-08 2011-09-07 株式会社神戸製鋼所 Thick steel plate with excellent high heat input HAZ toughness and low temperature base metal toughness
JP4825024B2 (en) * 2006-03-09 2011-11-30 株式会社神戸製鋼所 High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness
JP4825025B2 (en) * 2006-03-09 2011-11-30 株式会社神戸製鋼所 High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness
JP4950529B2 (en) * 2006-03-16 2012-06-13 株式会社神戸製鋼所 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP4934505B2 (en) * 2007-05-29 2012-05-16 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth suppression characteristics and brittle fracture suppression characteristics
JP5096087B2 (en) * 2007-09-11 2012-12-12 株式会社神戸製鋼所 High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP5139015B2 (en) * 2007-09-18 2013-02-06 株式会社神戸製鋼所 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP5337412B2 (en) * 2008-06-19 2013-11-06 株式会社神戸製鋼所 Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP2010031309A (en) * 2008-07-25 2010-02-12 Kobe Steel Ltd Thick steel plate and method for producing the same
JP5729803B2 (en) * 2010-05-27 2015-06-03 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof
JP6277885B2 (en) * 2014-06-25 2018-02-14 新日鐵住金株式会社 High strength steel for welding
JP7616164B2 (en) 2021-07-19 2025-01-17 Jfeスチール株式会社 Steel plate and its manufacturing method
CN117363981B (en) * 2023-10-10 2024-07-23 鞍钢股份有限公司 High-strength corrosion-resistant steel plate for 560 MPa-level ocean engineering and production method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776174B2 (en) * 1992-09-11 1998-07-16 住友金属工業株式会社 Manufacturing method of high tensile strength and high toughness fine bainite steel
JP3440894B2 (en) * 1998-08-05 2003-08-25 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in stretch flangeability and method for producing the same

Also Published As

Publication number Publication date
JP2004292844A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US8216400B2 (en) High-strength steel plate and producing method therefor
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5029748B2 (en) High strength hot rolled steel sheet with excellent toughness and method for producing the same
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP5462069B2 (en) High-strength steel plate with excellent drop weight characteristics and base metal toughness
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
KR102106766B1 (en) Steel members and steel plates, and methods for manufacturing them
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP5432548B2 (en) Thick steel plate with excellent brittle crack propagation stop properties
JP3854807B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP4437972B2 (en) Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP2004323917A (en) High strength high toughness steel sheet
JP4313730B2 (en) High-tensile steel plate with low material anisotropy and excellent low-temperature toughness
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP3602396B2 (en) Low yield ratio high strength steel sheet with excellent weldability
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Ref document number: 4044470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees