[go: up one dir, main page]

JP4044434B2 - High-strength tailored blank material with excellent deformation characteristics - Google Patents

High-strength tailored blank material with excellent deformation characteristics Download PDF

Info

Publication number
JP4044434B2
JP4044434B2 JP2002380485A JP2002380485A JP4044434B2 JP 4044434 B2 JP4044434 B2 JP 4044434B2 JP 2002380485 A JP2002380485 A JP 2002380485A JP 2002380485 A JP2002380485 A JP 2002380485A JP 4044434 B2 JP4044434 B2 JP 4044434B2
Authority
JP
Japan
Prior art keywords
blank material
tailored blank
strength
steel plate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002380485A
Other languages
Japanese (ja)
Other versions
JP2004211134A (en
Inventor
浩一 槙井
周之 池田
宏 赤水
敦 三尾
明彦 長坂
公一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002380485A priority Critical patent/JP4044434B2/en
Publication of JP2004211134A publication Critical patent/JP2004211134A/en
Application granted granted Critical
Publication of JP4044434B2 publication Critical patent/JP4044434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械的特性の異なる2種以上の金属材料を溶接接合したテーラードブランク材料に関するものであり、殊に溶接継ぎ手部を含む材料全体の変形特性の改善を図ったテーラードブランク材料に関するものである。
【0002】
【従来の技術】
近年、自動車等の車体軽量化と衝突安全性の向上を目的に開発された高強度鋼板のなかで、残留オーステナイト(準安定オーステナイト)の変態誘起塑性(TRIP)を有効に利用したTRIP型複合組織鋼板(以下、「TDP鋼板」と呼ぶことがある)は特に優れたプレス成形性を有することが知られている。
【0003】
また自動車等のフレームにおいては、各部分によって要求される強度や異なることがあり、こうした背景の下で機械的特性の異なる金属材料を溶接によって接合して一体化する必要が生じる。このような異種材料接合部材は、テーラードブランク材料と呼ばれている。こうしたテーラードブランク材料は、一体化した後プレス成形されるものであるが、プレス成形性が素材鋼板よりも劣化し、母材や溶接部で破断が生じるという問題がある。
【0004】
こうした問題を解決するために、例えば接合する異種金属の夫々の加工硬化指数(n1,n2)の比(n1/n2)を適切な範囲内に制御することによって、溶接によるブランク材料の成形性劣化を抑制する技術も提案されている(例えば、特許文献1)。
【0005】
しかしながら、高強度側の金属材料の強度が650MPaを超え、且つ素材鋼板の溶接性が劣化するような状況下(例えば、高強度化のために炭素当量を大きくすると溶接性が劣化する)では、テーラードブランク材全体の溶接性が劣化することになり、高延性化や高成形性を実現することは困難であった。
【0006】
【特許文献1】
特開平11−222643号公報 特許請求の範囲
【0007】
【発明が解決しようとする課題】
本発明は、こうした状況の下でなされたものであって、その目的とするところは、溶接継ぎ手部を含む材料全体の変形特性の向上を図ったテーラードブランク材料を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成し得た本発明のテーラードブランク材料とは、残留オーステナイト分率Vγが2体積%未満で強度が650MPa以上である高強度鋼板と、残留オーステナイト分率Vγが2体積%以上の変態誘起塑性型鋼板との異種材料を接合したテーラードブランク材料であり、前記変態誘起塑性型鋼板同士を接合したテーラードブランク材料よりも延性または成形性が良好なものである点に要旨を有するものである。
【0009】
上記テーラードブランク材料にいては、前記高強度鋼板および変態誘起塑性型鋼板における下記(1)式で示される炭素当量Ceqがいずれも0.55質量%以下であると共に、両者の前記炭素当量Ceqの平均値が0.42〜0.50質量%の範囲内にあり、且つ両者の残留オーステナイト分率Vγの平均値:1〜8体積%、残留オーステナイト中の炭素濃度の平均値:0.6〜1.2質量%であることが好ましい。
【0010】
Ceq=[C]+1/6[Mn]+1/24[Si] ‥(1)
但し、[C],[Mn]および[Si]は、夫々C,MnおよびSiの含有量(質量%)を示す。
【0011】
【発明の実施の形態】
本発明者らは、上記課題を解決し得るテーラードブランク材料の構成について様々な角度から検討した。その結果、単一材料としては高強度高延性であるTRIP鋼板と汎用されている高強度鋼板(例えば、汎用高張力鋼板)をブランキングすれば、TRIP鋼板における歪誘起変態を有効に活用でき、テーラードブランキング材料全体としての延性や成形性が改善できることを見出し、本発明を完成した。
【0012】
特に、本発明のテーラードブランク材料によれば、その一方の高強度高延性鋼板同士を接合したテーラードブランク材料よりも延性または成形性が更に良好なものになるという、これまでには全く予期されることがなかった特性が発揮できたのである。
【0013】
本発明によってこうした効果が得られた理由については、その全てを解明し得た訳ではないが、おそらく次のように考えることができた。即ち、TRIP鋼の長所である高延性を生かしつつ、短所である溶接性を残留オーステナイト分率Vγが2体積%未満の複合組織鋼(Dual-phase steel)の低炭素当量Ceq材と掛け合わせることで、溶接部(ビード)強度を過度に硬くせずにできたことでテーラードブランク材として最適な構造が可能となり、これによって良好な成形性が達成されたものと推察できる。
【0014】
本発明で用いるTRIP鋼板は、その良好な成形性を確保するために、残留オーステナイト分率Vγは2体積%以上を確保する必要がある。これに対して、TRIP鋼板にブランキングする高強度鋼板については、その要求される特性を考慮してその強度を650MPa以上とすると共に、残留オーステナイト分率Vγを2体積%未満とする必要がある。この高強度鋼板の残留オーステナイト分率Vγが2体積%以上となると、残留オーステナイト分率Vγを高めるために必然的に炭素当量Ceqが高くなってしまい(C,Si,Mnを或る程度必要になる)、テーラードブランク材としての延性、成形性が劣化する。
【0015】
上記のような特性を発揮することのできる本発明のテーラードブランク材料を実現するための具体的な要件としては、夫々の素材鋼板の炭素当量Ceq、両者(高強度鋼板とTRIP鋼板)の炭素当量Ceqの平均値、両者の残留オーステナイト分率Vγの平均値、残留オーステナイト中の炭素濃度の平均値等を適切に制御することが好ましい。これらの要件における好ましい範囲およびその理由は下記の通りである。
【0016】
夫々の鋼板の炭素当量Ceqがいずれも0.55質量%以下
この炭素当量Ceqは、余り高くなると鋼板そのものの溶接性が劣化することは知られているが、本発明のテーラードブランク材料においては、その溶接性を確保するという観点から、上記炭素当量Ceqは0.55質量%以下に制御することが好ましい。即ち、この炭素当量Ceqが、被接合材のいずれかで0.55質量%を超えると、テーラードブランク材料の溶接性が劣化することになる。この炭素当量Ceqのより好ましい範囲は、いずれも0.45質量%以下である。尚、この炭素当量Ceqの下限については、特に限定されるものではないが、後述する炭素当量Ceqの両者の平均値を適切な範囲に制御することによって、自ずと決まってくる。
【0017】
両者の炭素当量Ceqの平均値が0.42〜0.50質量%
前記炭素当量Ceqが全体的に高くなると延性を発現するために必要な残留オーステナイト分率が十分に高くなるが、接合部分(ビード)の溶接性が悪くなり、結果的にブランク材としての延性が劣化することになる。また、全体的な炭素当量Ceqが低くなると、溶接性は良くなるが、延性発現に必要な残留オーステナイトが十分に確保できず、ブランク材としての延性が劣化する。こうした観点から、両者(例えば、被接合材としての高張力鋼板とTRIP鋼板)の炭素当量Ceqの平均値を適切な範囲内に制御することが好ましい。即ち、テーラードブランク材料における溶接性を確保しつつ良好な延性や成形性を得るためには、両者の炭素当量Ceqの平均値が0.42〜0.50質量%の範囲となるように制御することが好ましい。
【0018】
両者の残留オーステナイト分率Vγの平均値:1〜8体積%
上述の如く、TRIP効果によるブランク材の成形性を確保するためには、全体的な炭素当量Ceqを適切な範囲に制御して、適切な量の残留オーステナイト量の範囲にする必要がある。こうした観点からして、両者の残留オーステナイト分率Vγの平均値は1〜8体積%の範囲とすることが好ましい。
【0019】
残留オーステナイト中の炭素濃度Cγの平均値:0.6〜1.2質量%
残留オーステナイト中の炭素濃度Cγが全体的に高くなると、溶接部の強度が高くなり過ぎて、テーラードブランク材としての延性、成形性が劣化する。低くなりすぎると残留オーステナイトが不足して、溶接部以外の延性、成形性が劣化し、この場合においても結果としてテーラードブランク材の延性、成形性を劣化させることになる。こうしたことから、両者の上記炭素濃度Cγの平均値は、0.6〜1.2質量%の範囲とすることが好ましい。
【0020】
本発明のテーラードブランク材料における被接合材は、TRIP鋼板と高強度鋼板である。このうち、650MPa以上の強度を有する高強度鋼板は、基本的には溶接構造物として汎用されている高張力鋼(ハイテン)を想定したものであり、この鋼板は上記の強度を有する他、溶接性、低温靭性、耐候性の点で優れた特性を発揮するものである。またその化学成分組成は、通常の基本成分(C:0.06〜0.25%、Mn:0.5〜2.5%、Si:0.2〜2.0%程度)の他、Nb,V,Ti,Ni等の強度向上元素を含んでいるものであっても良い。
【0021】
一方、変態誘起塑性鋼板(TRIP鋼板)は、TRIP型複合組織鋼板(TDP)が最も代表的なものとして挙げられるが、このTRIP鋼板は変態誘起塑性現象を利用できるものであれば、例えばベイナイト母材型や焼戻しマルテンサイト型、或はそれらとポリゴナルフェライト型との複合型のTRIP鋼板であっても適用できるものである。また、このTRIP鋼板の化学成分組成は、これまで一般的に知られているものであれば適用できるが、代表的なものとしてはC:0.01〜0.25%、Mn:0.5〜3.0%、Si:0.5〜2.5%の他、Ni,Cr,Mo等を所定量(例えば、夫々1%程度)含んでいるものが挙げられる。
【0022】
上記の両接合材を接合するための溶接方法については、被接合材を相互に接合できる方法であれば特に限定するものではなく、後記実施例に示したレーザ溶接法(例えば、YAGレーザ法)の他、シーム溶接法、アーク溶接法、電子ビーム溶接法のいずれも採用できるものである。
【0023】
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
【0024】
【実施例】
実施例1
下記表1に示す化学成分組成を有する供試材を用い、各種組み合わせて(下記表2)突合せ溶接し、その機械的特性について調査した。尚、下記表1中、MSは通常の軟鋼であり、TDP1〜3は冷延まま鋼板に(2相焼きなまし+オーステンパ処理)を施し、フェライト+ベイナイト+残留オーステナイト(γR)の3相組織としたTRIP鋼板である。また、MDP0は、残留オーステナイト(γR)を含まないフェライト・複合組織鋼板であり、MDP4は同複合組織鋼板を400℃で焼き戻した鋼板である。また残留オーステナイト分率Vγ、残留オーステナイト中の炭素濃度CγについてはX線回折によって決定した。
【0025】
このときの突合せ溶接は、熱処理後の各素材をファインカッターにより切断し、パルスYAGレーザ加工機によって溶接した。このときの加工条件は、下記の通りである。
【0026】
(レーザ溶接加工条件)
パルスエネルギー:6J/P
パルス幅:3.8ms
パルス繰り返し数:45Hz
平均出力:270W(最大平均出力350W、最大ピーク出力4.5kW)
溶接方法:片側溶接(I型開先)
溶接速度:100〜900mm/min
シールドガス:N2
【0027】
【表1】

Figure 0004044434
【0028】
得られた各接合材(テーラードブランク材)について、引張試験を行なって機械的特性を測定すると共に、張出し試験を行って成形性について評価した。このときの引張試験条件および張り出し試験条件は、下記の通りである。
【0029】
(引張試験条件)
図1に示すJIS13号B材試験片を用い(標点距離:50mm、幅:12.5mm)、溶接線(ビード部)に対して垂直な方向で引張試験を行い、機械的特性(引張強度TS、伸びEL)を測定した。このときの試験機は、インスロン型万能試験機を用い、クロスヘッド速度:1mm/minとした。
【0030】
(張出し試験条件)
張り出し試験の状態を図2[図2(a)は試験装置の断面図、同(b)は試験片の平面図]に示す。2種類の鋼板を接合(ビード部)した試験片を用い、張り出し試験装置によって、室温(25℃)にてパンチで変形(変形速度1mm/min)したときに、破断するまでの高さ(最大張出し高さ:Hmax)によって評価した。
【0031】
その結果を、組織因子(被接合材の平均Vγ、平均Cγ、平均Ceq)と共に下記表2に示す。尚、表2のNo.1〜6のものは、素材鋼板をそのまま(接合せず)、引張試験および張出し試験を行った結果(前記表1と同じ)を示したものである。
【0032】
【表2】
Figure 0004044434
【0033】
この結果から明らかなように、TDP1〜3とMDP0,4を接合したテーラードブランク材料(No.8〜12)では、TDP(TRIP鋼板)同士のものに比べて、成形性(Hmax)および延性(伸びEL)のいいずれも良好な値を示していることが分かる。特に、残留オーステナイト分率Vγ、残留オーステナイト中の炭素濃度Cγおよび炭素当量Ceqが本発明の好ましい範囲を満足するもの(No.8,9,11)では、一方の被接合材(MDP0、MDP4)に比べて、延性および成形性のいずれかが更に向上していることが分かる。
【0034】
実施例2
上記表2に示したNo.8のサンプルを用い、試験実施温度(変形温度)を変化させて張り出し試験を行った。その結果を、下記表3に示す。
【0035】
【表3】
Figure 0004044434
【0036】
まず、変形温度が−50℃および300℃のものでは(No.13および20)、TS×Hmaxの値が3600未満となっているが、それ以外の変形温度では3600以上の優れた値が得られていた。
【0037】
この結果から、本発明のテーラードブランク材の加工に際しては、−50℃超〜300℃未満、好ましくは−25℃〜275℃、更に好ましくは0℃〜250℃の範囲を採用するのが良いことが分かる。
【0038】
【発明の効果】
本発明は以上のように構成されており、溶接継ぎ手部を含む材料全体の変形特性の向上を図ったテーラードブランク材料が実現できた。
【図面の簡単な説明】
【図1】引張試験片の形状を示す概略説明図である。
【図2】張り出し試験の状態を示す概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tailored blank material in which two or more kinds of metal materials having different mechanical properties are welded and joined, and more particularly to a tailored blank material for improving the deformation characteristics of the entire material including a weld joint. is there.
[0002]
[Prior art]
TRIP type composite structure that effectively uses transformation induced plasticity (TRIP) of retained austenite (metastable austenite) among high strength steel sheets developed for the purpose of reducing the weight of automobile bodies and improving collision safety in recent years. It is known that steel plates (hereinafter sometimes referred to as “TDP steel plates”) have particularly excellent press formability.
[0003]
Also, in a frame such as an automobile, the strength required for each part may differ, and it is necessary to join and integrate metal materials having different mechanical properties by welding under such a background. Such a dissimilar material joining member is called a tailored blank material. Such a tailored blank material is press-molded after being integrated, but there is a problem that the press formability is deteriorated more than that of the raw steel plate, and the base material or the welded portion is broken.
[0004]
In order to solve such problems, for example, by controlling the ratio (n1 / n2) of the respective work hardening indices (n1, n2) of dissimilar metals to be joined within an appropriate range, the formability of the blank material due to welding is deteriorated. A technique for suppressing the above has also been proposed (for example, Patent Document 1).
[0005]
However, in a situation where the strength of the metal material on the high strength side exceeds 650 MPa and the weldability of the material steel plate deteriorates (for example, the weldability deteriorates when the carbon equivalent is increased to increase the strength), The weldability of the entire tailored blank material will deteriorate, and it has been difficult to achieve high ductility and high formability.
[0006]
[Patent Document 1]
[Patent Document 1] Japanese Patent Laid-Open No. 11-222643 Patent Claims
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and an object of the present invention is to provide a tailored blank material in which the deformation characteristics of the entire material including the weld joint portion are improved.
[0008]
[Means for Solving the Problems]
The tailored blank material of the present invention capable of achieving the above object is a high strength steel sheet having a retained austenite fraction Vγ of less than 2% by volume and a strength of 650 MPa or more, and a transformation having a retained austenite fraction Vγ of 2% by volume or more. It is a tailored blank material in which different materials with the induced plastic steel sheet are joined, and has a gist in that the ductility or formability is better than the tailored blank material in which the transformation induced plastic steel sheets are joined together. .
[0009]
In the tailored blank material, the carbon equivalent Ceq represented by the following formula (1) in the high-strength steel plate and the transformation-induced plastic mold steel plate is 0.55% by mass or less, and the carbon equivalent Ceq of both The average value is in the range of 0.42 to 0.50 mass%, and the average value of the residual austenite fraction Vγ of both: 1 to 8% by volume, the average value of the carbon concentration in the residual austenite: 0.6 to It is preferable that it is 1.2 mass%.
[0010]
Ceq = [C] +1/6 [Mn] +1/24 [Si] (1)
However, [C], [Mn] and [Si] indicate the contents (mass%) of C, Mn and Si, respectively.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have studied the configuration of tailored blank materials that can solve the above problems from various angles. As a result, if blanking TRIP steel sheet that is high strength and high ductility as a single material and high-strength steel sheet that is widely used (for example, general-purpose high-tensile steel sheet), the strain-induced transformation in the TRIP steel sheet can be effectively utilized, The present invention has been completed by finding that the ductility and formability of the tailored blanking material as a whole can be improved.
[0012]
In particular, according to the tailored blank material of the present invention, it is completely expected that ductility or formability will be better than that of a tailored blank material in which one high-strength and high-ductility steel sheet is joined. The characteristics that did not occur were able to be exhibited.
[0013]
The reason why such an effect is obtained by the present invention has not been clarified, but could be considered as follows. That is, while taking advantage of the high ductility that is the advantage of TRIP steel, the weldability that is the disadvantage is multiplied by the low carbon equivalent Ceq material of dual-phase steel with a retained austenite fraction Vγ of less than 2% by volume. Thus, since the welded portion (bead) strength is not excessively hardened, an optimum structure as a tailored blank material is possible, and it can be inferred that good formability has been achieved.
[0014]
The TRIP steel sheet used in the present invention needs to secure a residual austenite fraction Vγ of 2% by volume or more in order to ensure its good formability. On the other hand, for a high-strength steel plate blanked to a TRIP steel plate, it is necessary to set the strength to 650 MPa or more and the residual austenite fraction Vγ to less than 2% by volume in consideration of the required characteristics. . When the retained austenite fraction Vγ of this high-strength steel sheet is 2% by volume or more, the carbon equivalent Ceq is inevitably increased in order to increase the retained austenite fraction Vγ (a certain amount of C, Si, Mn is required). The ductility and formability as a tailored blank material deteriorate.
[0015]
Specific requirements for realizing the tailored blank material of the present invention capable of exhibiting the above characteristics include carbon equivalent Ceq of each steel plate, carbon equivalent of both (high strength steel plate and TRIP steel plate) It is preferable to appropriately control the average value of Ceq, the average value of the residual austenite fraction Vγ, the average value of the carbon concentration in the residual austenite, and the like. Preferred ranges and reasons for these requirements are as follows.
[0016]
It is known that the carbon equivalent Ceq of each steel plate is 0.55% by mass or less. If this carbon equivalent Ceq is too high, it is known that the weldability of the steel plate itself deteriorates. In the material, the carbon equivalent Ceq is preferably controlled to 0.55% by mass or less from the viewpoint of ensuring the weldability. That is, if this carbon equivalent Ceq exceeds 0.55% by mass in any of the materials to be joined, the weldability of the tailored blank material will deteriorate. A more preferable range of the carbon equivalent Ceq is 0.45% by mass or less. The lower limit of the carbon equivalent Ceq is not particularly limited, but is naturally determined by controlling the average value of both of the carbon equivalents Ceq to be described later to an appropriate range.
[0017]
The average value of both carbon equivalents Ceq is 0.42 to 0.50 mass%.
When the carbon equivalent Ceq is increased as a whole, the retained austenite fraction necessary for expressing ductility is sufficiently high, but the weldability of the joint portion (bead) is deteriorated, and as a result, the ductility as a blank material is reduced. It will deteriorate. Further, when the overall carbon equivalent Ceq is lowered, weldability is improved, but sufficient austenite necessary for ductility development cannot be ensured, and ductility as a blank material is deteriorated. From such a viewpoint, it is preferable to control the average value of the carbon equivalent Ceq of both (for example, the high-tensile steel plate and the TRIP steel plate as the materials to be joined) within an appropriate range. That is, in order to obtain good ductility and formability while ensuring weldability in the tailored blank material, the average value of the carbon equivalent Ceq of both is controlled to be in the range of 0.42 to 0.50 mass%. It is preferable.
[0018]
Average value of residual austenite fraction Vγ of both: 1 to 8% by volume
As described above, in order to ensure the formability of the blank material due to the TRIP effect, it is necessary to control the overall carbon equivalent Ceq to an appropriate range so that an appropriate amount of retained austenite is in the range. From such a viewpoint, the average value of the retained austenite fraction Vγ is preferably in the range of 1 to 8% by volume.
[0019]
Average value of carbon concentration Cγ in retained austenite: 0.6 to 1.2% by mass
When the carbon concentration Cγ in the retained austenite increases as a whole, the strength of the welded portion becomes too high, and ductility and formability as a tailored blank material deteriorate. If it is too low, the retained austenite will be insufficient, and ductility and formability other than the welded portion will deteriorate, and even in this case, the ductility and formability of the tailored blank material will deteriorate as a result. For these reasons, the average value of the carbon concentration Cγ of both is preferably in the range of 0.6 to 1.2% by mass.
[0020]
Joined materials in the tailored blank material of the present invention are TRIP steel plates and high-strength steel plates. Among these, the high-strength steel sheet having a strength of 650 MPa or more is basically assumed to be a high-tensile steel (high-tensile) widely used as a welded structure. It exhibits excellent properties in terms of heat resistance, low temperature toughness and weather resistance. In addition, the composition of the chemical components is Nb in addition to normal basic components (C: 0.06 to 0.25%, Mn: 0.5 to 2.5%, Si: about 0.2 to 2.0%). , V, Ti, Ni, and the like may be included.
[0021]
On the other hand, the most representative transformation induced plastic steel sheet (TRIP steel sheet) is the TRIP type composite structure steel sheet (TDP). If this TRIP steel sheet can utilize the transformation induced plasticity phenomenon, for example, a bainite mother plate can be used. The present invention can also be applied to a TRIP steel sheet of a material type, a tempered martensite type, or a composite type of them and a polygonal ferrite type. The chemical component composition of this TRIP steel sheet can be applied as long as it is generally known so far. Typical examples include C: 0.01 to 0.25%, Mn: 0.5. In addition to -3.0%, Si: 0.5-2.5%, those containing a predetermined amount (for example, about 1% each) of Ni, Cr, Mo and the like can be mentioned.
[0022]
The welding method for joining both the above-mentioned joining materials is not particularly limited as long as the materials to be joined can be joined to each other, and the laser welding method (for example, YAG laser method) shown in the examples described later. In addition, any of seam welding, arc welding, and electron beam welding can be employed.
[0023]
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
[0024]
【Example】
Example 1
Using test materials having the chemical composition shown in Table 1 below, various combinations (Table 2 below) were butt welded, and the mechanical properties were investigated. In Table 1 below, MS is normal mild steel, and TDP1 to 3 are subjected to (two-phase annealing + austempering) on the steel sheet as cold-rolled, and the three-phase structure of ferrite + bainite + retained austenite (γ R ) TRIP steel sheet. Further, MDP0 is a ferritic / composite structure steel plate not containing retained austenite (γ R ), and MDP4 is a steel plate obtained by tempering the composite structure steel plate at 400 ° C. The retained austenite fraction Vγ and the carbon concentration Cγ in the retained austenite were determined by X-ray diffraction.
[0025]
The butt welding at this time cut | disconnected each raw material after heat processing with the fine cutter, and welded it with the pulse YAG laser processing machine. The processing conditions at this time are as follows.
[0026]
(Laser welding process conditions)
Pulse energy: 6J / P
Pulse width: 3.8ms
Pulse repetition rate: 45Hz
Average output: 270W (maximum average output 350W, maximum peak output 4.5kW)
Welding method: One side welding (I type groove)
Welding speed: 100 to 900 mm / min
Shielding gas: N 2
[0027]
[Table 1]
Figure 0004044434
[0028]
About each obtained joining material (tailored blank material), while performing the tensile test and measuring a mechanical characteristic, the overhang test was done and the moldability was evaluated. The tensile test conditions and the overhang test conditions at this time are as follows.
[0029]
(Tensile test conditions)
Using a JIS No. 13 B material specimen shown in FIG. 1 (marking distance: 50 mm, width: 12.5 mm), a tensile test was performed in a direction perpendicular to the weld line (bead part), and mechanical properties (tensile strength) TS, elongation EL) were measured. The testing machine at this time was an Instron type universal testing machine, with a crosshead speed of 1 mm / min.
[0030]
(Overhang test conditions)
The state of the overhang test is shown in FIG. 2 [FIG. 2 (a) is a cross-sectional view of the test apparatus, and (b) is a plan view of the test piece]. Using a test piece in which two types of steel plates are joined (bead part), the height until fracture (maximum) when deformed with a punch at a room temperature (25 ° C.) (deformation speed: 1 mm / min) using a bulging test device The overhang height was evaluated by Hmax).
[0031]
The results are shown in Table 2 below together with the tissue factors (average Vγ, average Cγ, average Ceq of the materials to be joined). In Table 2, No. Samples 1 to 6 show the results of the tensile test and the bulging test (same as in Table 1) as they are (without joining) the raw steel plates.
[0032]
[Table 2]
Figure 0004044434
[0033]
As is clear from this result, in the tailored blank material (Nos. 8 to 12) in which TDP 1 to 3 and MDP 0 and 4 are joined, formability (Hmax) and ductility (in comparison with those of TDP (TRIP steel plates)) ( It can be seen that all of the elongations EL) show good values. In particular, when the retained austenite fraction Vγ, the carbon concentration Cγ and the carbon equivalent Ceq in the retained austenite satisfy the preferred ranges of the present invention (No. 8, 9, 11), one of the materials to be joined (MDP0, MDP4) It can be seen that either ductility or formability is further improved as compared with.
[0034]
Example 2
No. shown in Table 2 above. Using the 8 samples, the overhang test was performed while changing the test execution temperature (deformation temperature). The results are shown in Table 3 below.
[0035]
[Table 3]
Figure 0004044434
[0036]
First, when the deformation temperatures are −50 ° C. and 300 ° C. (Nos. 13 and 20), the value of TS × Hmax is less than 3600, but at other deformation temperatures, an excellent value of 3600 or more is obtained. It was done.
[0037]
From this result, when processing the tailored blank material of the present invention, it is preferable to adopt a range of more than −50 ° C. to less than 300 ° C., preferably −25 ° C. to 275 ° C., more preferably 0 ° C. to 250 ° C. I understand.
[0038]
【The invention's effect】
The present invention is configured as described above, and a tailored blank material in which the deformation characteristics of the entire material including the weld joint portion are improved can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing the shape of a tensile test piece.
FIG. 2 is a schematic explanatory view showing a state of an overhang test.

Claims (2)

残留オーステナイト分率Vγが2体積%未満で強度が650MPa以上である高強度鋼板と、残留オーステナイト分率Vγが2体積%以上の変態誘起塑性型鋼板との異種材料を溶接接合したテーラードブランク材料であり、溶接継ぎ手部を含む前記テーラードブランク材料全体の延性または成形性が、前記変態誘起塑性型鋼板同士を接合したテーラードブランク材料全体の延性または成形性よりも良好なものであることを特徴とする変形特性に優れた高強度テーラードブランク材料。A tailored blank material in which dissimilar materials of a high-strength steel plate having a retained austenite fraction Vγ of less than 2% by volume and a strength of 650 MPa or more and a transformation-induced plastic mold steel plate having a retained austenite fraction Vγ of 2% by volume or more are welded. There, said the welded joint portion ductility or formability of the whole tailored blank material containing the said those good for good than ductile or molding of the entire tailored blank material obtained by bonding the transformation induced plasticity type steel plates High-strength tailored blank material with excellent deformation characteristics. 前記高強度鋼板および変態誘起塑性型鋼板における下記(1)式で示される炭素当量Ceqがいずれも0.55質量%以下であると共に、両者の前記炭素当量Ceqの平均値が0.42〜0.50質量%の範囲内にあり、且つ両者の残留オーステナイト分率Vγの平均値:1〜8体積%、残留オーステナイト中の炭素濃度の平均値:0.6〜1.2質量%である請求項1に記載の高強度テーラードブランク材料。
Ceq=[C]+1/6[Mn]+1/24[Si] ‥(1)
但し、[C],[Mn]および[Si]は、夫々C,MnおよびSiの含有量(質量%)を示す。
The carbon equivalent Ceq represented by the following formula (1) in the high-strength steel plate and the transformation-induced plastic steel plate is 0.55% by mass or less, and the average value of the carbon equivalent Ceq of both is 0.42 to 0. Within the range of 50% by mass, the average value of the residual austenite fraction Vγ of both: 1 to 8% by volume, the average value of the carbon concentration in the residual austenite: 0.6 to 1.2% by mass Item 2. The high-strength tailored blank material according to Item 1.
Ceq = [C] +1/6 [Mn] +1/24 [Si] (1)
However, [C], [Mn] and [Si] indicate the contents (mass%) of C, Mn and Si, respectively.
JP2002380485A 2002-12-27 2002-12-27 High-strength tailored blank material with excellent deformation characteristics Expired - Lifetime JP4044434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380485A JP4044434B2 (en) 2002-12-27 2002-12-27 High-strength tailored blank material with excellent deformation characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380485A JP4044434B2 (en) 2002-12-27 2002-12-27 High-strength tailored blank material with excellent deformation characteristics

Publications (2)

Publication Number Publication Date
JP2004211134A JP2004211134A (en) 2004-07-29
JP4044434B2 true JP4044434B2 (en) 2008-02-06

Family

ID=32816702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380485A Expired - Lifetime JP4044434B2 (en) 2002-12-27 2002-12-27 High-strength tailored blank material with excellent deformation characteristics

Country Status (1)

Country Link
JP (1) JP4044434B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065123A (en) * 2006-09-08 2008-03-21 Canon Inc Image forming apparatus
KR101757953B1 (en) * 2010-01-29 2017-07-26 타타 스틸 네덜란드 테크날러지 베.뷔. Process for the heat treatment of metal strip material, and strip material produced in that way
JP5089802B2 (en) * 2011-11-28 2012-12-05 住友金属工業株式会社 High strength bolt friction joint using high strength steel
CN114480980B (en) * 2021-12-29 2023-09-08 中国铁路设计集团有限公司 Chromium-copper alloyed weather-resistant twin induced plasticity steel and preparation method thereof

Also Published As

Publication number Publication date
JP2004211134A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP7299956B2 (en) Method for manufacturing steel plate for press hardening and method for manufacturing laser welded blank for press hardening
EP3243595B1 (en) Method of welding overlapped portion, method of manufacturing overlap-welded member, overlap-welded member, and automotive part
EP2516151B1 (en) High strength hot dip galvanised steel strip
US20100086803A1 (en) Hot-formed profile
JP5151615B2 (en) Spot welding method for high strength steel sheet
KR102133176B1 (en) Mechanical clinch joint parts and manufacturing method thereof
JP2011224578A (en) Method for joining dissimilar materials
KR102306924B1 (en) Resistance Spot Welding Method, Manufacturing Method of Resistance Spot Welded Joint
JP5429327B2 (en) Spot welding method for high strength steel sheet
JP5168204B2 (en) Spot welding method for steel sheet
JP2009235516A (en) 590 MPa CLASS HIGH YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP4044434B2 (en) High-strength tailored blank material with excellent deformation characteristics
JP3944046B2 (en) Fatigue strength improvement method of spot welded joint by ultrasonic impact treatment
JP2020519766A (en) Hot work materials, parts, and uses
WO2022171665A1 (en) Structural members for a vehicle and methods
JP4724535B2 (en) Fatigue strength improvement method for high strength steel spot welded joint
JP2020519765A (en) Hot forming materials, components, and uses
JP3875878B2 (en) Spot-welding method for high-strength steel sheets with excellent fatigue strength characteristics of welds
JP3958883B2 (en) Bonding method of high strength steel plate with excellent fatigue characteristics
JP5429326B2 (en) Spot welding method for high strength steel sheet
JP3501667B2 (en) Arc welding method for high strength steel sheet
JPS63310939A (en) Extra low carbon steel plate having good spot weldability
TH2101005835A (en) Automotive undercarriage parts
JP2006068796A (en) Plasma spot welding method for steel sheet
US20180117879A1 (en) Multilayer automotive component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Ref document number: 4044434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

EXPY Cancellation because of completion of term