[go: up one dir, main page]

JP4043805B2 - Method and apparatus for producing hollow alumina particles - Google Patents

Method and apparatus for producing hollow alumina particles Download PDF

Info

Publication number
JP4043805B2
JP4043805B2 JP2002054026A JP2002054026A JP4043805B2 JP 4043805 B2 JP4043805 B2 JP 4043805B2 JP 2002054026 A JP2002054026 A JP 2002054026A JP 2002054026 A JP2002054026 A JP 2002054026A JP 4043805 B2 JP4043805 B2 JP 4043805B2
Authority
JP
Japan
Prior art keywords
aqueous solution
hollow
alumina
particles
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002054026A
Other languages
Japanese (ja)
Other versions
JP2003160331A (en
Inventor
孝幸 加藤
誠 江頭
康博 清水
健生 兵頭
昌睦 田代
実 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002054026A priority Critical patent/JP4043805B2/en
Publication of JP2003160331A publication Critical patent/JP2003160331A/en
Application granted granted Critical
Publication of JP4043805B2 publication Critical patent/JP4043805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアルミナ中空粒子の製造方法に関し、より詳細には、アルミナ中空粒子の粒径制御が可能な製造方法に関する。また、本発明は、前記方法を実施するための製造装置に関する。
【0002】
【従来の技術】
例えば、材料の軽量化や強度の増強等を目的として、金属等の母材にセラミックス粒子を分散させた複合材料が広く使用されている。中でも、アルミナ中空粒子は、低い熱伝導性と高い熱安定性を備え、また熱間荷重軟化温度や熱間弾性係数、再熱収縮が小さい等の特性を有することから、材料に高付加価値を付与する機能性フィラーとして注目されている。
【0003】
アルミナ中空粒子の製造方法の一つとして、最近、硝酸アルミニウム水溶液に超音波を作用させて硝酸アルミニウム水溶液の微小液滴を霧状に発生させ、この微小液滴を焼成炉に導いて焼成する超音波噴霧熱分解法が提案されている。この超音波噴霧熱分解法によれば、微小液滴が瞬時に焼成されるため、真球に近い、微小なアルミナ中空粒子が得られる。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の超音波噴霧熱分解法では、超音波の作用により発生した微小液滴をそのまま焼成炉に送っているため、粒径の異なる種々の中空アルミナ粒子が混在しており、複合材料の原料とするために分級作業を別途必要としている。
【0005】
本発明はこのような状況に鑑みてなされたものであり、超音波噴霧熱分解法を採用しつつ、粒径制御が可能な中空アルミナ粒子の製造方法及び製造装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、下記のアルミナ中空粒子の製造装置及び製造方法を提供する。
(1)硝酸アルミニウム水溶液または酢酸アルミニウム水溶液を貯蔵する貯蔵容器と、前記水溶液に超音波を照射する超音波発生器と、超音波照射により発生した液滴を流入させる本体及び前記本体の内部に突入された空気導入管を備える液滴選別部と、一端が前記空気導入管と対向して他端が焼成炉内に設置された炉管に連結する管とを備えるとともに、前記液滴選抜部において、前記空気導入管から空気を噴出して気流により該空気導入管よりも上方を浮遊する液滴を前記炉管に送り、空気中で焼成することを特徴とするアルミナ中空粒子の製造装置。
(2)前記(1)記載の製造装置を用い、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液に超音波を照射して液滴を発生して液滴選別器に流入させ、空気導入管から空気を噴出させて該空気導入管よりも上方を浮遊する液滴を気流により炉管に導入して空気中で焼成し、焼成後の粒子から比重差を基に中実粒子と分別することを特徴とするアルミナ中空粒子の製造方法。
【0007】
【発明の実施の形態】
以下、本発明の好ましい実施形態について詳細に説明する。
【0008】
本発明のアルミナ中空粒子の製造方法は、超音波噴霧熱分解法を基本とする。即ち、図1(A)は本発明の製造方法を実施するために好適な装置の一例を示す概略構成図であるが、先ず、貯蔵容器10に充填した硝酸アルミニウム水溶液または酢酸アルミニウム水溶液1に、超音波発生器11から超音波を照射して硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1aを霧状に発生させる。それと同時に、空気導入管12を通じて一定量の空気を貯蔵容器10に導入し、発生した硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1aを供給管13の内部を上昇させて液滴選別部14に送る。
【0009】
液滴選別部14は、図1(B)にも拡大して示すように、本体15の中心に向かって水平に挿入された空気導入管16を備えている。そして、この空気導入管16を通じて本体15に一定量の空気を導入することにより、供給管13を通じて本体15に流入し、浮遊している硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1aを気流により焼成炉20の炉管21に送り出す構成となっている。従って、本体15の内部を浮遊する硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1aの中で、空気導入管16の位置よりも上方を浮遊する、より軽量の、即ちある粒径以下の微小液滴1bだけが気流により炉管21に送り出される。
【0010】
炉管21はヒータ22により焼成温度、例えば1200〜1300℃に維持されており、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1bは、この炉管21を通過する間に分解、焼成されてアルミナ中空粒子30となり、炉管21の端部に堆積する。ここで、焼成炉20における熱分解・焼成時間は、液低選別部14において空気導入管16から供給される空気量により調整される。また、熱分解、焼成に伴い発生したガス(NOx)は、適当なアルカリ40で洗浄した後、吸収した。
【0011】
上記の分解焼成機構は、図2に模式的に示すように、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1bは、先ず、その外周部分に存在するアルミニウムイオンが瞬時に酸化されてアルミナからなる外殻30aが形成され、それと同時に外殻30aの内部には硝酸アルミニウムまたは酢酸アルミニウム水溶液のゲル30bが生成する。次いで、このゲル30bが内包する水分を放出し、この放出に伴ってアルミニウムイオンが外方へと移動しつつ酸化され、生成したアルミナ30cが外殻30aの内壁に順次堆積して外殻30aが厚肉に成長し、最終的にアルミナ中空粒子30になると考えられる。従って、出発材料である硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1bの粒径がほぼ維持されて、アルミナ中空粒子30が得られる。本発明では、上記のように液滴選別部14により硝酸アルミニウムまたは酢酸アルミニウム水溶液の微小液滴1bをその粒径により選別しているため、得られるアルミナ中空粒子30は粒径が揃ったものとなる。
【0012】
また、後述する実施例にも示すように、上記の方法によれば、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1bは、小径になるほど中実のアルミナ粒子となる。この中実粒子の生成機構は、次のように推察される。
【0013】
即ち、液滴の濃度は液滴の粒径によらず同じであるから、焼成により、小径の液滴も大径の液滴と同等の肉厚の外殻30aが生成する。しかし、小径の液滴では、粒径に対して外殻30aの肉厚が相対的に大きくなり、より中心に近い部分まで外殻30aが形成される。そのため、小径の液滴では、中空部が小さくなり、中実粒子となる。
【0014】
後述する実施例にも示すように、中空粒子と中実粒子とは、ある粒径を境にして明確に区別されて生成する。上記の方法では、液滴選別部14により、ある粒径以下の微小液滴1bを分別できるが、更に小径の微細な液滴については分別できない。しかし、ある粒径以下の微細な液滴は中実粒子となるため、予め比重差により中実粒子を分離し、その粒径分布を求めておくことにより、以降は中空粒子と中実粒子とを篩により簡便に分別できるようになる。
【0015】
また、本発明では、上記の方法を基に、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の濃度により生成するアルミナ中空粒子30の内部構造(中空の形成状態)を制御することができる。
【0016】
図3は、高濃度の硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴1bを用いたときの中空アルミナ粒子30の生成状態を模式的に示す図である。焼成に際して、先ず、アルミナからなる外殻30aが同様に形成されるが、ゲル30bがより高濃度、即ち水分含有量が少ないことから、水分の放出が円滑に進行せず、局所的に生成したアルミナ30cが凝集して網目構造に似た組織を形成する。そして、水分が放出された後は、網目構造に由来する小さな空部30dが多数生成し、全体としてスポンジ状のアルミナ中空粒子30となる。
【0017】
以上のように、本発明の製造方法によれば、ある粒径範囲にあるアルミナ中空粒子を容易に得ることができる。また、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の濃度により、内部構造の異なるアルミナ中空粒子を得ることができる。
【0018】
尚、上記の熱分解・焼成により得られるアルミナ中空粒子は、δ−アルミナまたはγ−アルミナが支配的である。そこで、1300℃で1〜2時間程度再焼成して、安定なα−アルミナに転化することが好ましい。
【0019】
【実施例】
以下に実施例を挙げて本発明を更に説明するが、本発明はこれにより何ら制限されるものではない。
【0020】
(実施例1)
図1に示す製造装置を用い、0.5Mの硝酸アルミニウム水溶液を処理した。尚、処理条件は以下の通りである。
・空気導入管12への空気供給量:500mL/分
・空気導入管16への空気供給量:100mL/分
・焼成炉20の温度:1300℃
・熱分解・焼成時間:0.032分
【0021】
得られた粉末を取り出し、X線回折分析を行ったところ、δ−アルミナであることが確認された。そこで、粉末を1300℃で1時間、再焼成した。再焼成した粉末をX線回折分析したところ、α−アルミナであることが確認された。
【0022】
また、再焼成後の粉末の走査型電子顕微鏡写真及び透過型電子顕微鏡写真を撮影した。走査型電子顕微鏡写真を図4(a)に、透過型電子顕微鏡写真を図4(b)にそれぞれ示すが、ほぼ球形の中空粒子が生成していることがわかる。
【0023】
更に、再焼成後の粉末の粒度分布を求めた。結果を図5に示すが、大きく2つの分布曲線に分かれており、電子顕微鏡写真との比較から、小径側(a)は中実粒子であり、その平均粒径は56.6nmで、約30〜60nmの粒径範囲であった。また、大径側(b)は中空粒子であり、その平均粒径は275.7nmで、約150〜500nmの粒径範囲であった。
【0024】
(実施例2)
0.9Mの硝酸アルミニウム水溶液を実施例1と同条件にて処理し、再焼成後の粉末の透過型電子顕微鏡写真を撮影した。図6に示すように、内部に中空部が形成されたスポンジ状の中空粒子であることがわかる。また、再焼成後の粉末の粒度分布を求めたところ、図7に示すように、平均粒径568nmで、約150〜900nmの粒径範囲であった。尚、実施例1の結果を基に、予め篩により中実粒子は除去した。
【0025】
(実施例3)
図1に示す製造装置を用い、0.5Mの酢酸アルミニウム水溶液を処理した。尚、処理条件は以下の通りである。
・空気導入管12への空気供給量:1500mL/分
・空気導入管16への空気供給量:1500mL/分
・焼成炉20の温度:1300℃
・熱分解・焼成時間:0.032分
【0026】
得られた粉末を取り出し、X線回折分析を行ったところ、γ−アルミナであることが確認された。そこで、粉末を1300℃で2時間、再焼成した。再焼成した粉末をX線回折分析したところ、α−アルミナであることが確認された。
【0027】
また、再焼成後の粉末の走査型電子顕微鏡写真及び透過型電子顕微鏡写真を撮影したところ、平均粒径650nmで、約50〜1000nmの粒径範囲であった。また、粒子壁厚は、平均20nmであった。
【0028】
(実施例4)
0.9Mの酢酸アルミニウム水溶液を実施例3と同条件にて処理し、再焼成して平均粒径400nmで、約150〜900nmの粒径範囲のある粉末を得た。そして、この粉末の透過型電子顕微鏡写真を撮影したところ、内部に中空部が形成されたスポンジ状の中空粒子であることが確認された。
【0029】
【発明の効果】
以上説明したように、本発明によれば、超音波噴霧熱分解法を基に、粒径の揃った中空アルミナ粒子を得ることができる。
【図面の簡単な説明】
【図1】(A)は本発明の製造方法を実施するために好適な装置を示す概略構成図であり、(B)は液滴選別部の拡大図である。
【図2】アルミナ中空粒子の生成機構を説明するための模式図である。
【図3】スポンジ状アルミナ中空粒子の生成機構を説明するための模式図である。
【図4】実施例1で得られた再焼成後の粉末の走査型電子顕微鏡写真(a)及び透過型電子顕微鏡写真(b)である。
【図5】実施例1で得られた再焼成後の粉末の粒度分布を示すグラフである。
【図6】実施例2で得られた再焼成後の粉末の透過型電子顕微鏡写真である。
【図7】実施例2で得られた再焼成後の粉末の粒度分布を示すグラフである。
【符号の説明】
1 硝酸アルミニウム水溶液または酢酸アルミニウム水溶液
1b 硝酸アルミニウム水溶液または酢酸アルミニウム水溶液の微小液滴
10 貯蔵容器
11 超音波発生器
12 空気導入管
13 供給管
14 液滴選別部
15 本体
16 空気導入管
20 焼成炉
21 炉管
22 ヒータ
30 中空アルミナ粒子
30a 外殻
30b ゲル
30c アルミナ
30d 微小空部
40 アルカリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hollow alumina particles, and more particularly to a production method capable of controlling the particle size of hollow alumina particles. Moreover, this invention relates to the manufacturing apparatus for enforcing the said method.
[0002]
[Prior art]
For example, composite materials in which ceramic particles are dispersed in a base material such as metal are widely used for the purpose of reducing the weight of the material and increasing the strength. Among these, alumina hollow particles have low thermal conductivity and high thermal stability, and have characteristics such as hot load softening temperature, hot elastic modulus, and low reheat shrinkage. It attracts attention as a functional filler to be imparted.
[0003]
As one of the methods for producing hollow alumina particles, recently, ultrasonic waves are applied to an aluminum nitrate aqueous solution to generate fine droplets of the aluminum nitrate aqueous solution in the form of a mist. Sonic spray pyrolysis has been proposed. According to this ultrasonic spray pyrolysis method, since micro droplets are instantaneously fired, micro alumina hollow particles close to a true sphere can be obtained.
[0004]
[Problems to be solved by the invention]
However, in the conventional ultrasonic spray pyrolysis method, since fine droplets generated by the action of ultrasonic waves are sent to the firing furnace as they are, various hollow alumina particles having different particle sizes are mixed, and the composite material In order to use it as a raw material, classification work is required separately.
[0005]
This invention is made | formed in view of such a condition, and it aims at providing the manufacturing method and manufacturing apparatus of the hollow alumina particle which can control particle size, employ | adopting an ultrasonic spray pyrolysis method. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following alumina hollow particle production apparatus and production method.
(1) A storage container for storing an aqueous solution of aluminum nitrate or an aqueous solution of aluminum acetate, an ultrasonic generator for irradiating the aqueous solution with ultrasonic waves, a main body for flowing in droplets generated by ultrasonic irradiation, and an inside of the main body In the liquid droplet selection section, the liquid droplet selection section including the air introduction pipe and a pipe having one end facing the air introduction pipe and the other end connected to a furnace pipe installed in the firing furnace. An apparatus for producing hollow alumina particles, characterized in that air is jetted from the air introduction pipe, and droplets floating above the air introduction pipe are sent to the furnace pipe by an air flow and fired in the air.
(2) Using the manufacturing apparatus described in (1) above, ultrasonic waves are radiated to an aluminum nitrate aqueous solution or an aluminum acetate aqueous solution to generate droplets that are flown into a droplet sorter and eject air from an air introduction tube. The alumina is characterized in that droplets floating above the air introduction tube are introduced into the furnace tube by an air flow and baked in the air, and the baked particles are separated from solid particles based on the specific gravity difference. A method for producing hollow particles.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0008]
The method for producing hollow alumina particles of the present invention is based on the ultrasonic spray pyrolysis method. That is, FIG. 1 (A) is a schematic configuration diagram showing an example of an apparatus suitable for carrying out the production method of the present invention. First, an aluminum nitrate aqueous solution or an aluminum acetate aqueous solution 1 filled in a storage container 10 is used. Ultrasonic waves are emitted from the ultrasonic generator 11 to generate fine droplets 1a of an aluminum nitrate aqueous solution or an aluminum acetate aqueous solution in the form of a mist. At the same time, a certain amount of air is introduced into the storage container 10 through the air introduction tube 12, and the generated aluminum nitrate aqueous solution or the micro droplet 1 a of the aluminum acetate aqueous solution is raised inside the supply tube 13 to the droplet sorting unit 14. send.
[0009]
As shown in an enlarged view in FIG. 1B, the droplet sorting unit 14 includes an air introduction tube 16 that is horizontally inserted toward the center of the main body 15. Then, by introducing a certain amount of air into the main body 15 through the air introduction pipe 16, the air flows into the main body 15 through the supply pipe 13, and the floating microdroplets 1 a of the aqueous aluminum nitrate solution or the aqueous aluminum acetate solution are generated by the air current It is configured to send out to the furnace tube 21 of the firing furnace 20. Therefore, the lighter, ie, smaller than a certain particle size, microfluid that floats above the position of the air introduction pipe 16 in the microdroplet 1a of the aluminum nitrate aqueous solution or the aluminum acetate aqueous solution that floats inside the main body 15. Only the droplet 1b is sent out to the furnace tube 21 by the airflow.
[0010]
The furnace tube 21 is maintained at a firing temperature, for example, 1200 to 1300 ° C. by the heater 22, and the fine droplets 1b of the aluminum nitrate aqueous solution or the aluminum acetate aqueous solution are decomposed and fired while passing through the furnace tube 21 to be alumina. The hollow particles 30 are deposited on the end of the furnace tube 21. Here, the thermal decomposition / baking time in the baking furnace 20 is adjusted by the amount of air supplied from the air introduction pipe 16 in the liquid low sorting section 14. Further, the gas (NOx) generated during pyrolysis and firing was absorbed after washing with an appropriate alkali 40.
[0011]
As schematically shown in FIG. 2, the above-described decomposition and firing mechanism is such that the microdroplets 1 b of the aqueous aluminum nitrate solution or the aqueous aluminum acetate solution are made of alumina by instantly oxidizing the aluminum ions present in the outer peripheral portion thereof. An outer shell 30a is formed, and at the same time, an aluminum nitrate or aluminum acetate aqueous solution gel 30b is formed inside the outer shell 30a. Next, the moisture contained in the gel 30b is released, and along with this release, aluminum ions are oxidized while moving outward, and the generated alumina 30c is sequentially deposited on the inner wall of the outer shell 30a. It is thought that it grows thick and eventually becomes alumina hollow particles 30. Therefore, the particle diameter of the microdroplet 1b of the aluminum nitrate aqueous solution or the aluminum acetate aqueous solution as the starting material is substantially maintained, and the alumina hollow particles 30 are obtained. In the present invention, since the fine droplets 1b of the aluminum nitrate or aluminum acetate aqueous solution are sorted by the particle size by the droplet sorting unit 14 as described above, the obtained alumina hollow particles 30 have a uniform particle size. Become.
[0012]
Moreover, as shown also in the Example mentioned later, according to said method, the micro droplet 1b of aluminum nitrate aqueous solution or aluminum acetate aqueous solution becomes a solid alumina particle, so that it becomes small diameter. The generation mechanism of the solid particles is assumed as follows.
[0013]
That is, since the concentration of the droplets is the same regardless of the particle size of the droplets, the outer shell 30a having a wall thickness equivalent to that of the large-diameter droplets is generated by firing. However, in the case of a small-diameter droplet, the thickness of the outer shell 30a is relatively large with respect to the particle size, and the outer shell 30a is formed up to a portion closer to the center. Therefore, in a small-diameter droplet, the hollow portion becomes small and becomes a solid particle.
[0014]
As shown also in the Example mentioned later, a hollow particle and a solid particle produce | generate by distinguishing clearly on the boundary of a certain particle size. In the above-described method, the droplet selection unit 14 can separate the minute droplet 1b having a certain particle diameter or less, but cannot separate the smaller droplet having a smaller diameter. However, since fine droplets with a certain particle size or less become solid particles, the solid particles are separated in advance by the difference in specific gravity, and the particle size distribution is obtained in advance. Can be easily separated with a sieve.
[0015]
Moreover, in this invention, the internal structure (hollow formation state) of the alumina hollow particle 30 produced | generated by the density | concentration of aluminum nitrate aqueous solution or aluminum acetate aqueous solution is controllable based on said method.
[0016]
FIG. 3 is a diagram schematically showing the state of formation of the hollow alumina particles 30 when a micro-droplet 1b of a high concentration aluminum nitrate aqueous solution or aluminum acetate aqueous solution is used. At the time of firing, first, an outer shell 30a made of alumina is similarly formed. However, since the gel 30b has a higher concentration, that is, a lower water content, the release of water does not proceed smoothly and is generated locally. The alumina 30c aggregates to form a structure similar to a network structure. Then, after the moisture is released, a large number of small voids 30d derived from the network structure are generated, and the whole of the sponge-like alumina hollow particles 30 is obtained.
[0017]
As described above, according to the production method of the present invention, it is possible to easily obtain alumina hollow particles in a certain particle size range. Further, alumina hollow particles having different internal structures can be obtained depending on the concentration of the aluminum nitrate aqueous solution or the aluminum acetate aqueous solution.
[0018]
The alumina hollow particles obtained by the above pyrolysis / firing are predominantly δ-alumina or γ-alumina. Therefore, it is preferable to refire at 1300 ° C. for about 1 to 2 hours to convert to stable α-alumina.
[0019]
【Example】
The present invention will be further described below with reference to examples, but the present invention is not limited thereto.
[0020]
Example 1
A 0.5M aluminum nitrate aqueous solution was treated using the production apparatus shown in FIG. The processing conditions are as follows.
-Air supply amount to the air introduction tube 12: 500 mL / min-Air supply amount to the air introduction tube 16: 100 mL / min-Temperature of the firing furnace 20: 1300 ° C
・ Pyrolysis and firing time: 0.032 minutes
When the obtained powder was taken out and subjected to X-ray diffraction analysis, it was confirmed to be δ-alumina. Therefore, the powder was refired at 1300 ° C. for 1 hour. X-ray diffraction analysis of the refired powder confirmed that it was α-alumina.
[0022]
In addition, a scanning electron micrograph and a transmission electron micrograph of the powder after refiring were taken. A scanning electron micrograph is shown in FIG. 4 (a), and a transmission electron micrograph is shown in FIG. 4 (b). It can be seen that substantially spherical hollow particles are formed.
[0023]
Furthermore, the particle size distribution of the powder after recalcination was determined. The result is shown in FIG. 5, which is roughly divided into two distribution curves. From a comparison with an electron micrograph, the small diameter side (a) is solid particles, the average particle diameter is 56.6 nm, about 30 The particle size range was ˜60 nm. Moreover, the large diameter side (b) was a hollow particle, the average particle diameter was 275.7 nm, and was the particle size range of about 150-500 nm.
[0024]
(Example 2)
A 0.9M aluminum nitrate aqueous solution was treated under the same conditions as in Example 1, and a transmission electron micrograph of the powder after recalcination was taken. As shown in FIG. 6, it can be seen that the particles are sponge-like hollow particles having hollow portions formed therein. Moreover, when the particle size distribution of the powder after recalcination was calculated | required, as shown in FIG. 7, it was an average particle diameter of 568 nm, and was the particle size range of about 150-900 nm. In addition, based on the result of Example 1, solid particles were previously removed with a sieve.
[0025]
(Example 3)
A 0.5M aluminum acetate aqueous solution was treated using the production apparatus shown in FIG. The processing conditions are as follows.
-Air supply amount to the air introduction pipe 12: 1500 mL / min-Air supply amount to the air introduction pipe 16: 1500 mL / min-Temperature of the firing furnace 20: 1300 ° C
・ Pyrolysis and firing time: 0.032 minutes
When the obtained powder was taken out and subjected to X-ray diffraction analysis, it was confirmed to be γ-alumina. Therefore, the powder was refired at 1300 ° C. for 2 hours. X-ray diffraction analysis of the refired powder confirmed that it was α-alumina.
[0027]
Moreover, when the scanning electron micrograph and the transmission electron micrograph of the powder after rebaking were photographed, the average particle size was 650 nm and the particle size range was about 50 to 1000 nm. The average particle wall thickness was 20 nm.
[0028]
Example 4
A 0.9 M aluminum acetate aqueous solution was treated under the same conditions as in Example 3 and refired to obtain a powder having an average particle size of 400 nm and a particle size range of about 150 to 900 nm. And when the transmission electron micrograph of this powder was image | photographed, it was confirmed that it is a sponge-like hollow particle in which the hollow part was formed inside.
[0029]
【The invention's effect】
As described above, according to the present invention, hollow alumina particles having a uniform particle diameter can be obtained based on the ultrasonic spray pyrolysis method.
[Brief description of the drawings]
FIG. 1A is a schematic configuration diagram showing an apparatus suitable for carrying out the manufacturing method of the present invention, and FIG. 1B is an enlarged view of a droplet sorting unit.
FIG. 2 is a schematic view for explaining a generation mechanism of alumina hollow particles.
FIG. 3 is a schematic view for explaining a generation mechanism of sponge-like alumina hollow particles.
4 is a scanning electron micrograph (a) and a transmission electron micrograph (b) of the powder after refired obtained in Example 1. FIG.
5 is a graph showing the particle size distribution of the powder after recalcination obtained in Example 1. FIG.
6 is a transmission electron micrograph of the powder after refired obtained in Example 2. FIG.
7 is a graph showing the particle size distribution of the powder after recalcination obtained in Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aluminum nitrate aqueous solution or aluminum acetate aqueous solution 1b Microdroplet 10 of aluminum nitrate aqueous solution or aluminum acetate aqueous solution 10 Storage container 11 Ultrasonic generator 12 Air introduction pipe 13 Supply pipe 14 Droplet sorter 15 Main body 16 Air introduction pipe 20 Firing furnace 21 Furnace tube 22 Heater 30 Hollow alumina particles 30a Outer shell 30b Gel 30c Alumina 30d Minute void 40 Alkali

Claims (7)

硝酸アルミニウム水溶液または酢酸アルミニウム水溶液を貯蔵する貯蔵容器と、前記水溶液に超音波を照射する超音波発生器と、超音波照射により発生した液滴を気流により流入させる本体及び前記本体の内部に突入された空気導入管を備える液滴選別部と、一端が前記空気導入管と対向して他端が焼成炉内に設置された炉管に連結する管とを備えるとともに、
前記液滴選抜部において、前記空気導入管から空気を噴出して気流により該空気導入管よりも上方を浮遊する液滴を前記炉管に送り、空気中で焼成することを特徴とするアルミナ中空粒子の製造装置
A storage container for storing the aqueous solution of aluminum nitrate or acetate aqueous solution of aluminum, and ultrasonic generator for irradiating ultrasonic waves to the aqueous solution, rush droplets generated by the ultrasonic wave irradiation in the body and the body for flowing the air stream A liquid droplet sorting section including an air introduction pipe, and a pipe having one end facing the air introduction pipe and the other end connected to a furnace pipe installed in the firing furnace,
The alumina hollow characterized in that, in the droplet selection unit, air is ejected from the air introduction tube, and droplets floating above the air introduction tube are sent to the furnace tube by an air flow and fired in the air. Particle production equipment .
請求項1に記載の製造装置を用い、硝酸アルミニウム水溶液または酢酸アルミニウム水溶液に超音波を照射して液滴を発生して液滴選別器に流入させ、空気導入管から空気を噴出させて該空気導入管よりも上方を浮遊する液滴を気流により炉管に導入して空気中で焼成し、焼成後の粒子から比重差を基に中実粒子と分別することを特徴とするアルミナ中空粒子の製造方法。 Using the manufacturing apparatus according to claim 1, ultrasonic waves are radiated to an aluminum nitrate aqueous solution or an aluminum acetate aqueous solution to generate droplets, which are caused to flow into a droplet sorter, and air is ejected from an air introduction tube. the droplets float above the inlet pipe is introduced into the furnace tube by a gas stream and calcined in air, and characterized that you fractionation with solid particles based on specific gravity difference from the particles after firing to luer Lumina A method for producing hollow particles. 得られたアルミナ中空粒子を、更に再焼成することを特徴とする請求項記載のアルミナ中空粒子の製造方法。 The resulting hollow alumina particles, further refiring to method for producing alumina hollow particles according to claim 2, wherein Rukoto. 0.Mの硝酸アルミニウム水溶液を用い、粒径150〜00nmのアルミナ中空粒子を得ることを特徴とする請求項記載のアルミナ中空粒子の製造方法。0. With 5 M aqueous solution of aluminum nitrate, and method for producing alumina hollow particles according to claim 3, wherein the obtaining a hollow alumina particles having a particle diameter of 150 to 5 00n m. 0.Mの硝酸アルミニウム水溶液を用い、粒径50〜00nmで、かつ内部に複数の微小空部を有するスポンジ状のアルミナ中空粒子を得ることを特徴とする請求項記載のアルミナ中空粒子の製造方法。0. Using aluminum nitrate aqueous solution of 9 M, in particle size 1 50 to 9 nm, and a hollow alumina particles according to claim 3, wherein the obtaining a spongy hollow alumina particles having a plurality of fine hollow portion therein Production method. 0.Mの酢酸アルミニウム水溶液を用い、粒径50〜1000nmのアルミナ中空粒子を得ることを特徴とする請求項記載のアルミナ中空粒子の製造方法。0. 5 with M acetic acid aqueous solution of aluminum, a manufacturing method of hollow alumina particles according to claim 3, wherein the obtaining the alumina hollow particles having a particle diameter 5 0 to 10 00n m. 0.9Mの酢酸アルミニウム水溶液を用い、粒径150〜900nmで、かつ内部に複数の微小空部を有するスポンジ状のアルミナ中空粒子を得ることを特徴とする請求項記載のアルミナ中空粒子の製造方法。 Acetic acid aqueous solution of aluminum 0.9 M, at a particle size 150~900Nm, and inside of the hollow alumina particles according to claim 3, wherein Rukoto obtain a sponge-like alumina hollow particles having a plurality of fine hollow portion Production method.
JP2002054026A 2001-09-13 2002-02-28 Method and apparatus for producing hollow alumina particles Expired - Fee Related JP4043805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002054026A JP4043805B2 (en) 2001-09-13 2002-02-28 Method and apparatus for producing hollow alumina particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-278204 2001-09-13
JP2001278204 2001-09-13
JP2002054026A JP4043805B2 (en) 2001-09-13 2002-02-28 Method and apparatus for producing hollow alumina particles

Publications (2)

Publication Number Publication Date
JP2003160331A JP2003160331A (en) 2003-06-03
JP4043805B2 true JP4043805B2 (en) 2008-02-06

Family

ID=26622158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002054026A Expired - Fee Related JP4043805B2 (en) 2001-09-13 2002-02-28 Method and apparatus for producing hollow alumina particles

Country Status (1)

Country Link
JP (1) JP4043805B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271045B2 (en) * 2003-04-17 2009-06-03 矢崎総業株式会社 Method for producing alumina hollow particles
JP4848815B2 (en) * 2006-03-31 2011-12-28 大日本印刷株式会社 Method for producing corundum laminate
JP5248054B2 (en) * 2007-07-23 2013-07-31 関西電力株式会社 Method for producing spherical alumina particles
PT103838B (en) * 2007-09-28 2008-11-03 Cuf Companhia Uniao Fabril Sgp NANOCRYSTALLINE SPHERICAL CERAMIC OXIDES, PROCESS FOR THEIR SYNTHESIS AND THEIR USES
NO337267B1 (en) * 2014-02-10 2016-02-29 Elkem As Process for the production of alumina particles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58223606A (en) * 1982-06-14 1983-12-26 Nippon Soda Co Ltd Preparation of ultrafine hollow microsphere of metallic oxide
JPH0333011A (en) * 1989-06-28 1991-02-13 Mitsubishi Materials Corp Production of globular alumina grain
JPH0796165A (en) * 1992-12-11 1995-04-11 Asahi Glass Co Ltd Production of crystalline fine hollow body and crystalline fine hollow body
JP3533906B2 (en) * 1997-10-06 2004-06-07 株式会社豊田中央研究所 Method for producing hollow oxide powder
JP2000203810A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Hollow oxide powder particles
JP2001072403A (en) * 1999-09-01 2001-03-21 Toyota Motor Corp Oxide production method and emulsion combustion apparatus
JP2002020120A (en) * 2000-06-28 2002-01-23 Toyota Central Res & Dev Lab Inc Combustion equipment for oxide powder production
JP4172926B2 (en) * 2001-09-13 2008-10-29 矢崎総業株式会社 Alumina hollow particle production equipment

Also Published As

Publication number Publication date
JP2003160331A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US4744831A (en) Hollow inorganic spheres and methods for making such spheres
Jr Walker et al. Influence of slurry parameters on the characteristics of spray‐dried granules
EA020857B1 (en) Method for producing hollow microspheres
JPS58151474A (en) Manufacture of flame spray powder and porous coating
JP4043805B2 (en) Method and apparatus for producing hollow alumina particles
JP6422679B2 (en) Hollow particle production equipment
JP3876296B2 (en) Method for continuously producing hollow glass spheres
JP4172926B2 (en) Alumina hollow particle production equipment
JP4271045B2 (en) Method for producing alumina hollow particles
US3978269A (en) Hollow pellets and method of making same
JPH0613421B2 (en) Expanded mineral material manufacturing method and manufacturing equipment
JP6979754B2 (en) Thermal spray material and thermal spray coating
JP7114231B2 (en) inorganic particles
US20220185683A1 (en) Methods for Producing Seed for Growth of Hollow Spheres
JP2001017857A (en) Spray pyrolytic apparatus
US4755368A (en) Silica fillers from silicon powder
US3875273A (en) Hollow pellets and method of making same
JP5035563B2 (en) Manufacturing method of high strength, high sphericity glassy fine hollow sphere
KATO et al. Preparation of hollow alumina microspheres by ultrasonic spray pyrolysis
KR102084524B1 (en) Apparatus for a oxide powder
JP2018149501A (en) Equipment for producing fine particles by spray pyrolysis
JP5070505B2 (en) Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby
CN114620734A (en) Preparation method of micron silica gel with low dielectric constant and low dielectric loss
JP7584973B2 (en) Inorganic oxide secondary particles
Kim et al. Preparation of granule powders for thermal spray coating by utilization of pyrophyllite minerals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Ref document number: 4043805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees