[go: up one dir, main page]

JP4042713B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4042713B2
JP4042713B2 JP2004086252A JP2004086252A JP4042713B2 JP 4042713 B2 JP4042713 B2 JP 4042713B2 JP 2004086252 A JP2004086252 A JP 2004086252A JP 2004086252 A JP2004086252 A JP 2004086252A JP 4042713 B2 JP4042713 B2 JP 4042713B2
Authority
JP
Japan
Prior art keywords
generating means
differential pressure
oxygen
pressure generating
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004086252A
Other languages
Japanese (ja)
Other versions
JP2005273984A (en
Inventor
博澄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004086252A priority Critical patent/JP4042713B2/en
Priority to CNB2004100575325A priority patent/CN100523630C/en
Publication of JP2005273984A publication Critical patent/JP2005273984A/en
Application granted granted Critical
Publication of JP4042713B2 publication Critical patent/JP4042713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、酸素富化の機能を有する空気調和機に関するものである。   The present invention relates to an air conditioner having an oxygen enrichment function.

従来、この種の酸素富化空気供給装置付き空気調和機は加熱、冷却等を行う空気調和手段と空気中の酸素と窒素等を分離する空気分離手段を具備し、この空気分離手段は酸素と窒素等を分離して酸素を透過する機能膜とこの機能膜の酸素の特化する側に圧力差を発生させるためのポンプと前記機能膜の酸素の透過しない側には窒素等を排気する送風手段より構成されているものが提案されている(特許文献1)。
特公平7−30927号公報
Conventionally, this type of air conditioner with an oxygen-enriched air supply device has air conditioning means for heating, cooling, etc., and air separation means for separating oxygen, nitrogen, etc. in the air. A functional membrane that separates nitrogen or the like and permeates oxygen, a pump for generating a pressure difference on the oxygen-specific side of the functional membrane, and a blower that exhausts nitrogen or the like on the non-permeable side of the functional membrane The thing comprised from the means is proposed (patent document 1).
Japanese Patent Publication No. 7-30927

しかしながら、上記記載の酸素と窒素を分離して酸素を透過する機能膜である酸素富化膜には図7に示すように温度が高くなれば酸素流量は増えるが酸素濃度が低下し、逆に温度が低くなれば酸素濃度は上昇するが流量が低下する温度特性を有している。   However, the oxygen-enriched film, which is a functional film that separates oxygen and nitrogen and transmits oxygen as described above, increases the oxygen flow rate but decreases the oxygen concentration as the temperature increases, as shown in FIG. If the temperature decreases, the oxygen concentration increases, but the flow rate decreases.

即ち(酸素濃度)×(酸素富化空気通過量)で示される酸素供給量は、温度が低いほど低下する傾向にある。この為、機能膜が設けられた室外機の周囲温度が高くなればなるほどポンプの仕事量が増え、ポンプモータの温度上昇が大きくなり、ポンプ寿命の低下、ポンプ騒音の増大につながる。また、モータ温度上昇対応を図るとすれば、モータを大型化する必要があるなどコストアップに繋がるという課題を有していた。   That is, the oxygen supply amount represented by (oxygen concentration) × (oxygen-enriched air passage amount) tends to decrease as the temperature decreases. For this reason, the higher the ambient temperature of the outdoor unit provided with the functional film, the higher the work volume of the pump, the higher the temperature of the pump motor, and the shorter the pump life and the higher the pump noise. Moreover, if it was intended to cope with an increase in the motor temperature, there was a problem that it would lead to an increase in cost, such as the need to enlarge the motor.

また、酸素富化膜近傍の温度を検出し、ポンプの運転量をインバータ方式などで連続的に制御する手段も考えられるが、いわゆる一定速の空気調和機のように室内機から室外機に電源のオン/オフ信号しか発信できない空気調和機においては室外機側の温度を検出する手段も無く、上記のような対応が困難であった。   In addition, it is possible to detect the temperature in the vicinity of the oxygen-enriched membrane and continuously control the operation amount of the pump by an inverter system, etc., but power is supplied from the indoor unit to the outdoor unit like a so-called constant speed air conditioner. In the air conditioner that can transmit only the ON / OFF signal, there is no means for detecting the temperature on the outdoor unit side, and it has been difficult to cope with the above.

本発明は、上記課題に鑑み、酸素富化の温度特性に関係なくポンプの温度上昇を抑え、ポンプ寿命の向上、騒音の低減、更にはポンプモータの小型化等コスト削減を実現しうる空気調和機の提供を目的とするものである。   In view of the above problems, the present invention suppresses pump temperature rise regardless of the temperature characteristics of oxygen enrichment, improves air pump life, reduces noise, and further achieves cost reduction such as miniaturization of the pump motor. The purpose is to provide a machine.

上記課題を解決するために本発明の空気調和機は、酸素富化膜と、この酸素富化膜に圧力差を発生し酸素富化された富化空気を送出する差圧発生手段と、空気調和機の運転電流(Ta)もしくは空気調和機の室外機への供給電圧(Va)を検出する手段を有し、この運転電流(Ta)もしくは電圧(Va)に基づいて差圧発生手段にかかっている運転負荷を推定し、負荷に応じて差圧発生手段の運転を制御するようにするものである。   In order to solve the above problems, an air conditioner of the present invention includes an oxygen-enriched membrane, differential pressure generating means for generating a pressure difference in the oxygen-enriched membrane and sending oxygen-enriched air, and an air It has means for detecting the operating current (Ta) of the conditioner or the supply voltage (Va) to the outdoor unit of the air conditioner, and it is applied to the differential pressure generating means based on this operating current (Ta) or voltage (Va). The operation load is estimated, and the operation of the differential pressure generating means is controlled according to the load.

このとき、酸素富化運転の運転開始から所定の時間までは、上記の検出手段をはたらかせずに差圧発生手段を連続で運転する。これにより、差圧発生手段の温度が所定以上上昇するまでは酸素富化空気の連続供給を可能にし、ユーザの快適性に対応した制御を行なう。   At this time, from the start of the oxygen enrichment operation to a predetermined time, the differential pressure generating means is continuously operated without operating the detection means. As a result, the oxygen-enriched air can be continuously supplied until the temperature of the differential pressure generating means rises above a predetermined level, and control corresponding to user comfort is performed.

本発明の空気調和機は、酸素富化の温度特性に関係なくポンプの温度上昇を抑え、ポンプ寿命の向上、騒音の低減、更にはポンプモータの小型化等コスト削減を実現するもので
ある。
The air conditioner of the present invention suppresses the pump temperature rise regardless of the temperature characteristic of oxygen enrichment, and realizes cost reduction such as improvement of pump life, reduction of noise, and miniaturization of the pump motor.

以下、図面を用いて本発明の空気調和機の構成及び制御について詳細に説明する。
(実施の形態1)
まず実施の形態1について図1〜図2を用いて説明する。
図1は、本発明の空気調和機の室外機の断面模式図であり、図2は同空気調和機の室内機側面模式図である。図1に示すように室外機22には、室外熱交換器24、圧縮機25、送風ファン26を主要要素部品として具備している。
Hereinafter, the configuration and control of the air conditioner of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
First, the first embodiment will be described with reference to FIGS.
FIG. 1 is a schematic sectional view of an outdoor unit of an air conditioner of the present invention, and FIG. 2 is a schematic side view of an indoor unit of the air conditioner. As shown in FIG. 1, the outdoor unit 22 includes an outdoor heat exchanger 24, a compressor 25, and a blower fan 26 as main component parts.

本空気調和機はいわゆる一定速のものであり、室外機22には室外気温を検知して室内機側に温度を送信する室外温度センサや、室外熱交換器の温度を検知する熱交換器温度センサなど、室外機の温度環境を直接検知し得る手段が具備されていない。   This air conditioner has a so-called constant speed, and the outdoor unit 22 detects an outdoor temperature and transmits the temperature to the indoor unit, and a heat exchanger temperature that detects the temperature of the outdoor heat exchanger. No means such as a sensor that can directly detect the temperature environment of the outdoor unit is provided.

即ち室内機から室外機には、圧縮機の電源供給、ポンプの電源供給、冷房暖房を切り替えることができる機種では四方弁(図示せず)の切り替え信号程度しか具備されていない。   That is, the indoor unit to the outdoor unit includes only a switching signal for a four-way valve (not shown) in a model capable of switching between power supply of a compressor, power supply of a pump, and cooling and heating.

送風ファン26で室外熱交換器24に空気流動を発生させる送風回路の空間には酸素富化膜2aを有する酸素富化膜ユニット2が圧縮機の配置されている圧縮機室と送風回路の空間とを隔てるように配置された仕切り板22aに固定されており、送風ファン26の運転により酸素富化ユニット2aに新鮮な空気が供給されるように構成されている。   The space of the blower circuit in which the air flow is generated in the outdoor heat exchanger 24 by the blower fan 26, and the space of the blower circuit and the compressor chamber in which the oxygen enriched membrane unit 2 having the oxygen enriched membrane 2a is disposed. The fresh air is supplied to the oxygen-enriched unit 2 a by the operation of the blower fan 26.

一方、酸素富化ユニット2には、酸素富化膜2aに圧力差を発生し酸素富化された富化空気を室外機側へ搬送するための減圧型のポンプ3が一端に流路4aを介して接続されており、更に酸素富化空気を室内機側へ送出するホース4がポンプ3の他端に接続されており、室内機23までつながっている。   On the other hand, in the oxygen enrichment unit 2, a pressure reducing pump 3 for generating a pressure difference in the oxygen enriched film 2a and transporting the oxygen enriched air to the outdoor unit side is provided with a flow path 4a at one end. Further, a hose 4 for sending oxygen-enriched air to the indoor unit side is connected to the other end of the pump 3, and is connected to the indoor unit 23.

一方、室内機23にはホース4の先端部であり、富化空気を放出するために室内機の送風回路に面して設けられた酸素吐出口4aが設けられている。   On the other hand, the indoor unit 23 is provided with an oxygen discharge port 4a that is a tip portion of the hose 4 and faces the air blower circuit of the indoor unit in order to release the enriched air.

室内機23には空気調和機の運転電流を検出する電流検出センサー5が制御基板5a上に設けられている。空気調和機の電源は一般に室内機の配置された室内のコンセントから供給され、室内機から室外機へ電源を供給する内外接続線5bにより室外機に伝達しているため、室内機23においていわゆるカレントトランスなどのような電流検出手段を設けておけば、空気調和機に流れる総合電流を検知できるし、または圧縮機にかかっている負荷を推測することもできる。   The indoor unit 23 is provided with a current detection sensor 5 for detecting the operating current of the air conditioner on the control board 5a. Since the power of the air conditioner is generally supplied from an indoor outlet in which the indoor unit is arranged and is transmitted to the outdoor unit via an internal / external connection line 5b that supplies power from the indoor unit to the outdoor unit, If current detection means such as a transformer is provided, the total current flowing through the air conditioner can be detected, or the load applied to the compressor can be estimated.

即ち冷房運転であるときに、圧縮機の運転電流が大きければそれだけ空調負荷が大きいであろうことを推測でき、これにより室外機の環境温度が高いことを推測し、この推測に基づいて信頼性を考慮したポンプの運転を行なう。   In other words, during cooling operation, if the operating current of the compressor is large, it can be estimated that the air conditioning load will be large, thereby estimating that the environmental temperature of the outdoor unit is high, and reliability based on this estimation The pump is operated considering the above.

次に、上記構成の空気調和機の制御動作を以下に説明する。室内機側にて酸素富化運転が指示されると、室外機22の送風ファン26が運転され酸素富化膜ユニット2の酸素富化膜2aに空気が流入するとともに、ポンプ3が運転開始される。無論空気調和機を既に運転しているときに酸素富化運転が指示された場合は、既に送風ファン26は運転状態であり、ポンプ3のみ運転開始される。   Next, the control operation of the air conditioner having the above configuration will be described below. When the oxygen enrichment operation is instructed on the indoor unit side, the blower fan 26 of the outdoor unit 22 is operated, air flows into the oxygen enrichment membrane 2a of the oxygen enrichment membrane unit 2, and the pump 3 is started to operate. The Of course, when the oxygen enrichment operation is instructed when the air conditioner is already in operation, the blower fan 26 is already in operation and only the pump 3 is started.

この動作により酸素富化膜2aを透過しやすい酸素が選択的にポンプ3による圧力差により吸引されてポンプ3、ホース4を経由して室内機23の内部にある酸素吐出口4aよ
り室内へ吹き出される。一方、酸素富化膜2aを透過しにくい窒素は、送風ファン26により室外機22の外へ排出される。
By this operation, oxygen that easily passes through the oxygen-enriched membrane 2a is selectively sucked by the pressure difference by the pump 3 and blown out into the room through the pump 3 and the hose 4 from the oxygen discharge port 4a in the indoor unit 23. Is done. On the other hand, nitrogen that is difficult to permeate the oxygen-enriched film 2 a is exhausted out of the outdoor unit 22 by the blower fan 26.

また、室内機23では設けられた運転電流検出センサー5により電流が検知され、運転電流(Ta)に応じてポンプ3の運転オン/オフ時間を制御を行なう。   Further, in the indoor unit 23, the current is detected by the operating current detection sensor 5 provided, and the operation on / off time of the pump 3 is controlled according to the operation current (Ta).

例えば運転電流(Ta)が高い(室外側の負荷が高く、ポンプへの負荷が高い)場合、ポンプの運転時間をより少なくし、ポンプの温度上昇を抑えるようにする。   For example, when the operation current (Ta) is high (the outdoor load is high and the load on the pump is high), the operation time of the pump is reduced to suppress the pump temperature rise.

ポンプの運転時間は、例えば運転率=(所定時間スパンでのポンプの運転時間)/(所定時間スパン)で定義してもよい。具体的には10分間の内、連続運転すれば運転率=100%とし、10分の内で延べ7分運転し、3分停止させれば運転率70%である。   The operation time of the pump may be defined by, for example, operation rate = (pump operation time in a predetermined time span) / (predetermined time span). Specifically, if the continuous operation is performed within 10 minutes, the operation rate is 100%. If the operation is continued for 10 minutes, the operation rate is 70%.

即ち、運転電流(Ta)が予め設定された所定の電流より大きいときには外気温が運転電流(Ta)に対応すると推測指定る外気温度より高く、ポンプの配置されている環境も相対的に高温であると推測され、ポンプ3の運転率を低下させて、ポンプが過昇温にならないようにする。   That is, when the operating current (Ta) is larger than a predetermined current set in advance, the outside air temperature is higher than the outside air temperature which is speculated to correspond to the operating current (Ta), and the environment where the pump is arranged is also relatively high. It is presumed that the operation rate of the pump 3 is lowered and the pump is prevented from overheating.

具体的な制御について図3及び図4を用いて更に詳しく説明する。図3は、ポンプ3の制御系を示すブロック図である。同図において、8は交流電源、9は交流電源8の出力を整流して各回路に直流電源を供給するための電源供給回路、10は容量可変ポンプ3の制御を司るマイクロプロセッサーであり、電流検出センサー5の出力信号が入力される入力回路11、中央演算処理装置(以下CPUと称する)12、メモリ13および出力回路14とによって構成されている。ここで、メモリ13はあらかじめ設定された電流値を記憶する設定電流記憶手段である。15は出力回路14から送出された信号に応じてポンプ3を駆動制御するポンプドライブ回路である。   Specific control will be described in more detail with reference to FIGS. FIG. 3 is a block diagram showing a control system of the pump 3. In the figure, 8 is an AC power supply, 9 is a power supply circuit for rectifying the output of the AC power supply 8 and supplying DC power to each circuit, and 10 is a microprocessor for controlling the variable capacity pump 3. An input circuit 11 to which an output signal of the detection sensor 5 is input, a central processing unit (hereinafter referred to as CPU) 12, a memory 13, and an output circuit 14 are configured. Here, the memory 13 is set current storage means for storing a preset current value. A pump drive circuit 15 drives and controls the pump 3 in accordance with a signal sent from the output circuit 14.

次に上記構成の動作を図4を参照に説明する。同図は上記実施の形態のポンプ3の制御仕様を示す動作シーケンスフローチャートである。   Next, the operation of the above configuration will be described with reference to FIG. This figure is an operation sequence flowchart showing the control specifications of the pump 3 of the above embodiment.

まず、ステップ16において、運転電流検出手段である電流検出センサー5が検出した電流値Taを入力回路11を介してCPU12に読み込み、ステップ17において、ステップ16で読み込んだ電流値Taとメモリ13にあらかじめ設定した第一の設定電流ta1を比較し、Ta<ta1ならステップ18へ進み、Ta≧ta1ならステップ19へ進む。ステップ18では、ポンプ3のオン/オフ周期におけるオン時間を長くし、ステップ16へ戻る。   First, in step 16, the current value Ta detected by the current detection sensor 5, which is an operating current detection means, is read into the CPU 12 through the input circuit 11. In step 17, the current value Ta read in step 16 and the memory 13 are stored in advance. The set first set current ta1 is compared. If Ta <ta1, the process proceeds to step 18, and if Ta ≧ ta1, the process proceeds to step 19. In Step 18, the ON time in the ON / OFF cycle of the pump 3 is lengthened, and the process returns to Step 16.

ステップ19においては、運転電流Taとメモリ13にあらかじめ設定した第2の設定電流ta2とを比較し、ta1≦Ta<ta2ならばステップ20へ進み、Ta≧ta2ならばステップ21へ進む。ステップ20では、ポンプのポンプのオン/オフ周期におけるオン時間を短くし、ステップ16へ戻る。ステップ21ではポンプを停止し、ステップ16へ戻る。
(実施の形態2)
次に実施の形態2について図5を参照に説明する。実施の形態2は、実施の形態1の運転電流を検出するための電流検出手段5を電圧検出手段5bに置き換え、あらかじめ設定した電流を記憶する電流記憶手段を、あらかじめ設定した電圧記憶手段に置き換えたものであり、図5の動作シーケンスフローチャートを参照に説明する。
In step 19, the operating current Ta is compared with the second set current ta2 preset in the memory 13, and if ta1 ≦ Ta <ta2, the process proceeds to step 20, and if Ta ≧ ta2, the process proceeds to step 21. In step 20, the ON time in the pump ON / OFF cycle of the pump is shortened, and the process returns to step 16. In step 21, the pump is stopped and the process returns to step 16.
(Embodiment 2)
Next, a second embodiment will be described with reference to FIG. In the second embodiment, the current detection means 5 for detecting the operating current of the first embodiment is replaced with a voltage detection means 5b, and the current storage means for storing a preset current is replaced with a preset voltage storage means. The operation sequence will be described with reference to the operation sequence flowchart of FIG.

まず、ステップ27において、電圧検出手段である電圧検出センサー33が検出した電圧値Taを入力回路11を介してCPU12に読み込み、ステップ28において、ステッ
プ27で読み込んだ電圧値Vaとメモリ13にあらかじめ設定した第一の設定電圧va1を比較し、Va<va1ならステップ28へ進み、Va≧va1ならステップ29へ進む。ステップ29では、ポンプ3のオン/オフ周期におけるオン時間を長くし、ステップ27へ戻る。
First, in step 27, the voltage value Ta detected by the voltage detection sensor 33, which is a voltage detection means, is read into the CPU 12 via the input circuit 11, and in step 28, the voltage value Va read in step 27 and the memory 13 are preset. The first set voltage va1 is compared, and if Va <va1, the process proceeds to step 28, and if Va ≧ va1, the process proceeds to step 29. In step 29, the ON time in the ON / OFF cycle of the pump 3 is lengthened, and the process returns to step 27.

ステップ30においては、電圧Vaとメモリ13にあらかじめ設定した第2の設定電圧va2とを比較し、va1≦Va<va2ならばステップ20へ進み、Va≧va2ならばステップ21へ進む。ステップ31では、ポンプのポンプのオン/オフ周期におけるオン時間を短くし、ステップ27へ戻る。ステップ32ではポンプを停止し、ステップ27へ戻る。
(実施の形態3)
次に実施の形態3について図6のシーケンスフローチャートを参照して説明する。実施の形態3では、酸素富化空気供給装置の運転開始から所定の時間までは、検出手段を働かせずポンプを連続で運転する制御する。
In step 30, the voltage Va is compared with a second set voltage va2 preset in the memory 13, and if va1 ≦ Va <va2, the process proceeds to step 20, and if Va ≧ va2, the process proceeds to step 21. In step 31, the ON time in the pump ON / OFF cycle of the pump is shortened, and the process returns to step 27. In step 32, the pump is stopped and the process returns to step 27.
(Embodiment 3)
Next, Embodiment 3 will be described with reference to the sequence flowchart of FIG. In Embodiment 3, from the start of operation of the oxygen-enriched air supply device to a predetermined time, control is performed so that the pump is continuously operated without operating the detection means.

まず、ステップ34において、運転時間経過検知手段のタイマーにより酸素富化運転開始からの時間Tを入力回路11を介してCPU12に読み込み、ステップ35において、ステップ34で読み込んだ時間Tとメモリ13にあらかじめ設定した設定時間t1を比較し、T<t1ならステップ36へ進み、T≧t1ならステップ37へ進む。ステップ36では、ポンプ3を連続で運転し、ステップ34へ戻る。ステップ37においては、運転電流検出手段である電流検出センサー5が検出した電流値Taを入力回路11を介してCPU12に読み込み、ステップ38において、ステップ37で読み込んだ電流値Taとメモリ13にあらかじめ設定した第一の設定電流ta1を比較し、Ta<ta1ならステップ39へ進み、Ta≧ta1ならステップ40へ進む。ステップ39では、ポンプ3のオン/オフ周期におけるオン時間を長くし、ステップ34へ戻る。   First, in step 34, the time T from the start of the oxygen enrichment operation is read into the CPU 12 via the input circuit 11 by the timer of the operation time passage detection means, and in step 35, the time T read in step 34 and the memory 13 are stored in advance. The set set time t1 is compared, and if T <t1, the process proceeds to step 36, and if T ≧ t1, the process proceeds to step 37. In step 36, the pump 3 is continuously operated, and the process returns to step 34. In step 37, the current value Ta detected by the current detection sensor 5 as the operating current detection means is read into the CPU 12 via the input circuit 11, and in step 38, the current value Ta read in step 37 and the memory 13 are preset. The first set current ta1 is compared, and if Ta <ta1, the process proceeds to step 39, and if Ta ≧ ta1, the process proceeds to step 40. In step 39, the ON time in the ON / OFF cycle of the pump 3 is lengthened, and the process returns to step 34.

ステップ40においては、運転電流Taとメモリ13にあらかじめ設定した第2の設定電流ta2とを比較し、ta1≦Ta<ta2ならばステップ41へ進み、Ta≧ta2ならばステップ42へ進む。ステップ41では、ポンプのポンプのオン/オフ周期におけるオン時間を短くし、ステップ34へ戻る。ステップ42ではポンプを停止し、ステップ34へ戻る。このようにポンプの温度が上昇するまでは、ポンプを連続で運転することができ、室内への酸素供給を連続で行うことができ、室内の酸素濃度アップを短期に行うことができる。   In step 40, the operating current Ta is compared with the second set current ta2 preset in the memory 13, and if ta1 ≦ Ta <ta2, the process proceeds to step 41, and if Ta ≧ ta2, the process proceeds to step 42. In step 41, the ON time in the pump ON / OFF cycle of the pump is shortened, and the process returns to step 34. In step 42, the pump is stopped and the process returns to step 34. Thus, until the temperature of the pump rises, the pump can be operated continuously, oxygen can be continuously supplied into the room, and the oxygen concentration in the room can be increased in a short time.

以上のように本発明の空気調和機は、一定速の空気調和機などポンプの配置されている空間の温熱的負荷情報を温度センサを用いずに質内機側で推測することができるものである。従ってこのように差圧発生手段を室外やその他温熱的に過負荷になりうる環境に配置しながらも、その負荷を推測して差圧発生手段の信頼性を高める制御を行なう機器であれば適用可能であり、例えば酸素富化機能を有する車両用空気調和機などの機器にも適用可能である。   As described above, the air conditioner of the present invention can estimate the thermal load information of the space where the pump is arranged, such as a constant-speed air conditioner, on the internal unit side without using the temperature sensor. is there. Therefore, it is applicable to any device that controls the pressure difference generating means by estimating the load while arranging the pressure difference generating means outdoors or in an environment that can be overloaded thermally. For example, it can also be applied to devices such as a vehicle air conditioner having an oxygen enrichment function.

本発明の第一の実施形態を示す空気調和機の室外機断面模式図The outdoor unit cross-sectional schematic diagram of the air conditioner showing the first embodiment of the present invention 本発明の第一の実施形態を示す空気調和機の室内機側面模式図The indoor unit side surface schematic diagram of the air conditioner showing the first embodiment of the present invention 本発明の第1の実施形態における制御系を示すブロック図The block diagram which shows the control system in the 1st Embodiment of this invention 本発明の第1の実施形態におけるポンプの制御仕様例を示すフローチャートThe flowchart which shows the control specification example of the pump in the 1st Embodiment of this invention. 本発明の第2の実施形態におけるポンプの制御仕様例を示すフローチャートThe flowchart which shows the control specification example of the pump in the 2nd Embodiment of this invention. 本発明の第3の実施形態におけるポンプの制御仕様例を示すフローチャートThe flowchart which shows the control specification example of the pump in the 3rd Embodiment of this invention. 酸素富化膜の温度特性(流量・酸素濃度)を示す図Diagram showing temperature characteristics (flow rate and oxygen concentration) of oxygen-enriched film

符号の説明Explanation of symbols

2 酸素富化ユニット
3 ポンプ(差圧発生手段)
4 ホース
5 運転電流センサー
5b 内外接続線(の一部)
23 室内機
25 圧縮機
26 室外機
2 Oxygen enrichment unit 3 Pump (Differential pressure generating means)
4 Hose 5 Operating current sensor 5b Internal / external connection line (part)
23 Indoor unit 25 Compressor 26 Outdoor unit

Claims (5)

酸素富化膜と、この酸素富化膜に圧力差を発生し酸素富化された富化空気を送出する差圧発生手段とを有し、前記富化空気を被空調空間に放出する室内機と室外機とからなる空気調和機であって、少なくとも前記差圧発生手段は前記室外機に有し、前記室内機には前記空気調和機の運転電流(Ta)を検出する電流検出手段を有し、前記運転電流(Ta)が第1の所定の値より小なるとき前記差圧発生手段の運転量を増大させ、前記運転電流(Ta)が第1の所定の値以上且つ、第2の所定値より小なるとき前記差圧発生手段の運転量を減少させるようにし、さらに第2の所定値以上となったとき前記差圧発生手段を停止するよう制御することを特徴とする空気調和機。 An indoor unit having an oxygen-enriched membrane and differential pressure generating means for generating a pressure difference in the oxygen-enriched membrane and sending out the oxygen-enriched air and discharging the enriched air to the air-conditioned space And an outdoor unit, wherein at least the differential pressure generating means is provided in the outdoor unit, and the indoor unit has current detection means for detecting an operating current (Ta) of the air conditioner. When the operating current (Ta) is smaller than a first predetermined value , the operating amount of the differential pressure generating means is increased , and the operating current (Ta) is greater than or equal to a first predetermined value and the second An air conditioner characterized in that when the pressure difference is smaller than a predetermined value, the operation amount of the differential pressure generating means is decreased, and further, the differential pressure generating means is controlled to stop when the differential pressure generating means exceeds a second predetermined value. . 酸素富化膜と、この酸素富化膜に圧力差を発生し酸素富化された富化空気を送出する差圧発生手段とを有し、前記富化空気を被空調空間に放出する室内機と室外機とからなる空気調和機であって、少なくとも前記差圧発生手段は前記室外機に有し、前記室内機には前記空気調和機の室外機への供給電圧(Va)を検出する電圧検出手段を有し、この電圧(Va)が第1の所定の値より小なるとき前記差圧発生手段の運転量を増大させ、前記供給電圧(Va)が第1の所定の値以上且つ、第2の所定値より小なるとき前記差圧発生手段の運転量を減少させるようにし、さらに第2の所定値以上となったとき前記差圧発生手段を停止するよう制御することを特徴とする空気調和機。 An indoor unit having an oxygen-enriched membrane and differential pressure generating means for generating a pressure difference in the oxygen-enriched membrane and sending out the oxygen-enriched air and discharging the enriched air to the air-conditioned space And an outdoor unit, wherein at least the differential pressure generating means is included in the outdoor unit, and the indoor unit detects a supply voltage (Va) to the outdoor unit of the air conditioner. Having a detecting means, and when the voltage (Va) is smaller than a first predetermined value , the operating amount of the differential pressure generating means is increased , and the supply voltage (Va) is not less than a first predetermined value and When the pressure is smaller than a second predetermined value, the amount of operation of the differential pressure generating means is decreased, and when the pressure exceeds a second predetermined value, the differential pressure generating means is controlled to stop. Air conditioner. 前記運転電流(Ta)もしくは前記電圧(Va)のいずれかの値に応じて、前記差圧発生手段の運転率を変化させることを特徴とする請求項1または2のいずれか一項に記載の空気調和機。 The operation rate of the differential pressure generating means is changed according to either the operating current (Ta) or the voltage (Va). Air conditioner. 前記運転電流(Ta)もしくは前記電圧(Va)のいずれかの値がそれぞれの所定値いかである場合には、前記差圧発生手段を間欠運転させないことを特徴とする請求項1記載の空気調和機。 2. The air conditioning according to claim 1, wherein the differential pressure generating means is not intermittently operated when any one of the operating current (Ta) and the voltage (Va) is a predetermined value. Machine. 少なくとも酸素富化運転の開始指示から所定時間は前記差圧発生手段を間欠運転させないことを特徴とする請求項1〜4のいずれか一項に記載の空気調和機。
The air conditioner according to any one of claims 1 to 4, wherein the differential pressure generating means is not operated intermittently for a predetermined time from an instruction to start the oxygen enrichment operation.
JP2004086252A 2004-03-24 2004-03-24 Air conditioner Expired - Fee Related JP4042713B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004086252A JP4042713B2 (en) 2004-03-24 2004-03-24 Air conditioner
CNB2004100575325A CN100523630C (en) 2004-03-24 2004-08-17 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086252A JP4042713B2 (en) 2004-03-24 2004-03-24 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005273984A JP2005273984A (en) 2005-10-06
JP4042713B2 true JP4042713B2 (en) 2008-02-06

Family

ID=35046336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086252A Expired - Fee Related JP4042713B2 (en) 2004-03-24 2004-03-24 Air conditioner

Country Status (2)

Country Link
JP (1) JP4042713B2 (en)
CN (1) CN100523630C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111251825B (en) * 2020-01-20 2023-06-16 广州华凌制冷设备有限公司 Operation control method and device, plug-in air conditioner and computer storage medium
JPWO2021161669A1 (en) * 2020-02-12 2021-08-19
CN114543172B (en) * 2022-02-23 2023-08-08 青岛海信日立空调系统有限公司 Air conditioner

Also Published As

Publication number Publication date
CN1673631A (en) 2005-09-28
JP2005273984A (en) 2005-10-06
CN100523630C (en) 2009-08-05

Similar Documents

Publication Publication Date Title
JP5296369B2 (en) HVAC (heating, ventilation and air conditioning) systems
JP5268317B2 (en) Oil-cooled air compressor
EP3128172B1 (en) Air compressor
US20170207737A1 (en) Methods and systems for automatic rotation direction determination of electronically commutated motor
US20130139529A1 (en) Fan Speed Control For Air-Cooled Condenser In Precision Cooling
JP5410123B2 (en) air compressor
JPWO2010116824A1 (en) Heat exchange ventilator
JP3493238B2 (en) Electric vehicle air conditioner
JPH08226714A (en) Air conditioning equipment
JP2011202833A (en) Air conditioner
JP4042713B2 (en) Air conditioner
JP2005351587A (en) Air conditioning control system for building
JP6328902B2 (en) Air conditioning system
JP2004271167A (en) Air-conditioning system
JP5950897B2 (en) Air conditioner
JP2007092582A (en) Fluid control device and fluid control method
JP2005207362A (en) Driving device for electric compressor
JP4686242B2 (en) Control method and control apparatus for electric compressor
JP2004177063A (en) Air conditioner
CN100406809C (en) Air conditioning system
JP2010105505A (en) Air conditioner for vehicle
JP2004148249A (en) Oxygen-enriched air supply apparatus and air blowing apparatus using the same
JP2009296712A (en) Inverter apparatus
JP2001336810A (en) Pump operation control device for temperature controller
JP4389916B2 (en) Air conditioner control device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees