[go: up one dir, main page]

JP4042409B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP4042409B2
JP4042409B2 JP2002002627A JP2002002627A JP4042409B2 JP 4042409 B2 JP4042409 B2 JP 4042409B2 JP 2002002627 A JP2002002627 A JP 2002002627A JP 2002002627 A JP2002002627 A JP 2002002627A JP 4042409 B2 JP4042409 B2 JP 4042409B2
Authority
JP
Japan
Prior art keywords
dummy
pixels
display
organic
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002002627A
Other languages
Japanese (ja)
Other versions
JP2002252083A (en
JP2002252083A5 (en
Inventor
関  俊一
克行 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002002627A priority Critical patent/JP4042409B2/en
Publication of JP2002252083A publication Critical patent/JP2002252083A/en
Publication of JP2002252083A5 publication Critical patent/JP2002252083A5/ja
Application granted granted Critical
Publication of JP4042409B2 publication Critical patent/JP4042409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Landscapes

  • Engineering & Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
有機エレクトロルミネッセンス(本明細書を通じてELと記す)装置に関する。
【0002】
【従来の技術】
近年液晶ディスプレイに替わる自発発光型ディスプレイとして有機物を用いた発光素子の開発が加速している。有機物を発光材料として用いた有機エレクトロルミネッセンス(本明細書を通じてELと記す)素子としては、低分子の有機EL材料(発光材料)を蒸着法で成膜する方法と(非特許文献1参照)、高分子の有機EL材料を塗布する方法(非特許文献2参照)が主に報告されている。
【0003】
カラー化の手段としては低分子系材料の場合、マスク越しに異なる発光材料を所望の画素上に蒸着し形成する方法が行われている。一方、高分子系材料については、インクジェット法を用いた微細パターニングによるカラー化が注目されている。インクジェット法による有機EL素子の形成方法が提案されている(特許文献1〜7参照)。
【特許文献1】
特開平7−235378号公報
【特許文献2】
特開平10−12377号公報
【特許文献3】
特開平10−153967号公報
【特許文献4】
特開平11−40358号公報
【特許文献5】
特開平11−54270号公報
【特許文献6】
特開平11−339957号公報
【特許文献7】
米国特許第006087196号
【非特許文献1】
Appl.Phys.Lett.51(12)、21 September(1987)913.
【非特許文献2】
Appl.Phys.Lett.71(1)、7 July(1997)34.
【0004】
【発明が解決しようとする課題】
インクジェット法は、直径がμmオーダーの液滴を高解像度で吐出、塗布することができるため、有機EL材料の高精細パターニングが可能である。しかしながら、基板上に塗布された微小液体の乾燥は極めて速く、さらに、基板上の塗布領域における端(上端、下端、右端、左端)では、画素領域に塗布された微小液体から蒸発した溶媒分子分圧が低いため、一般的に速く乾きはじめる。また、TFT素子によるアクティブ駆動を行う場合、TFT素子領域や、配線等の形状、配置の関係上、画素配置がX,Y方向ともに等間隔にできない場合があり、各画素上に塗布された液滴の周囲で局所的な蒸発溶媒分子分圧差が生じる。このような画素上に塗布された有機材料液体の乾燥時間の差は、画素内、画素間での有機薄膜の膜厚ムラを引き起こす。このような膜厚ムラは、輝度ムラ、発光色ムラ等の表示ムラの原因となってしまう。
【0005】
そこで本発明の目的とするところは、電極上に有機EL材料を吐出、塗布し有機EL層を形成する有機EL装置の製造において、画素領域に塗布された有機EL材料溶液の周囲の環境、乾燥を均一にし、有効光学領域における各画素間および画素内で輝度、発光色のムラの無い、均一な有機EL装置ならびに有機EL装置の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明の一実施形態に係る有機EL装置は、表示に関係する複数の表示画素が配置された有効光学領域と、表示に関係しない複数のダミー画素が配置されたダミー領域とを有する有機エレクトロルミネッセンス装置であって、前記ダミー領域は前記有効光学領域の周囲を囲うように配置され、前記複数の表示画素の各々及び前記複数のダミー画素の各々は、有機エレクトロルミネッセンス材料を溶媒に溶解または分散させた組成物を塗布することにより形成された有機エレクトロルミネッセンス層を有することを特徴とする。
【0007】
上記装置により、有効光学領域において、有効光学領域内に塗布された有機EL材料液体の周囲の環境、乾燥を均一にし、各画素間及び画素内での膜厚を均一にすることができる。なお、有機エレクトロルミネッセンス層とは、発光に寄与する層を指し、正孔注入層や発光層、電子注入層などを含む。また、有効光学領域とは、例えば有機EL装置が表示装置である場合は有効光学領域、また有機EL装置が照明装置である場合は照明に寄与する領域を示す。
【0008】
また本発明の一実施形態に係る有機EL装置は、前記複数の表示画素の一部である第1表示画素群と前記複数のダミー画素の一部である第1ダミー画素群とは同一方向に並んで配列されており、前記第1表示画素群における隣り合う表示画素間の距離と、前記第1表示画素群及び前記第1ダミー画素群のうち隣り合う表示画素とダミー画素との間の距離とは略等しいことを特徴とする。
【0009】
また本発明の一実施形態に係る有機EL装置は、前記複数の表示画素は各々電極を有し、かつ前記表示画素の各々は隔壁によって仕切られ、前記複数の表示画素の各々が有する前記有機エレクトロルミネッセンス層は、前記電極上に形成され、前記複数のダミー画素の各々が有する前記有機エレクトロルミネッセンス層は、前記隔壁と同一材料が延設された層上に形成されていることを特徴とする。
【0010】
また本発明の一実施形態に係る有機EL装置は、前記複数の表示画素は各々電極を有し、かつ前記表示画素の各々は隔壁によって仕切られ、前記隔壁は前記電極を露出する第1開口部を有する第1隔壁と、前記第1隔壁上に形成され、前記電極及び前記第1隔壁の一部を露出する第2開口部を有する第2隔壁とを有し、前記複数の表示画素の各々が有する前記有機エレクトロルミネッセンス層は、前記電極上に形成され、前記複数のダミー画素の各々が有する前記有機エレクトロルミネッセンス層は、前記第1隔壁と同一材料が延設された層上であって、前記第2隔壁と同一材料が延設された層に形成された前記第2開口部と同一の形状を有する第3開口部の内部に形成されていることを特徴とする。
【0011】
また本発明の一実施形態に係る有機EL装置は、基板と、前記基板上に形成された回路素子部とをさらに有し、前記複数の表示画素は各々前記回路素子部上に形成された電極を有し、かつ前記表示画素の各々は隔壁によって仕切られ、前記隔壁は前記電極を露出する第1開口部を有する第1隔壁と、前記第1隔壁上に形成され、前記電極及び前記第1隔壁の一部を露出する第2開口部を有する第2隔壁とを有し、前記複数の表示画素の各々が有する前記有機エレクトロルミネッセンス層は、前記電極上に形成され、前記複数のダミー画素の各々が有する前記有機エレクトロルミネッセンス層は、前記回路素子部上であって、前記第2隔壁と同一材料が延設された層に形成された前記第2開口部と同一の形状を有する第3開口部の内部に形成されていることを特徴とする。
【0013】
また本発明によれば、上記の有機EL装置を具備してなる電子機器が提供される。かかる電子機器によれば、各画素間および画素内で輝度、発光色のムラの無い、均一なEL表示や照明が実現される。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。なお、有機EL装置を表示装置として用いた例を示す。
【0015】
インクジェット方式による有機EL装置の製造方法とは、画素を形成する有機物からなる正孔注入層材料ならびに発光材料を溶媒に溶解または分散させたインク組成物を、インクジェットヘッドから吐出させて透明電極上にパターニング塗布し、正孔注入/輸送層ならびに発光層を形成する方法である。吐出されたインク滴を精度よく所定の画素領域にパターニング塗布する為に、画素領域を仕切る隔壁(以下バンク)を設けるのが通常である。
【0016】
図1はインクジェット方式による有機EL表示の製造に用いられる基板構造の一例の断面図を示したものである。ガラス基板10上に薄膜トランジスタ(TFT)11を有する回路素子部11’が形成され、この回路素子部11’上にITOからなる透明電極12がパターンニングされている。更に、透明電極12を区画する領域にSiO2バンク13と撥インク性あるいは撥インク化された有機物からなる有機物バンク14とが積層されている。バンクの形状つまり画素の開口形は、円形、楕円、四角、いずれの形状でも構わないが、インク組成物には表面張力があるため、四角形の角部は丸みを帯びているほうが好ましい。有機物バンク14の材料は、耐熱性、撥液性、インク溶剤耐性、下地基板との密着性にすぐれたものであれば、特に限定されるものではない。有機物バンク14は、元来撥液性を備えた材料、例えば、フッ素系樹脂でなくても、通常用いられる、アクリル樹脂やポリイミド樹脂等の有機樹脂をパターン形成し、CF4プラズマ処理等により表面を撥液化してもよい。バンクは、上述したような無機物と有機物とが積層されてなるものに限らないが、例えば透明電極14がITOからなる場合は、透明電極14との密着性を上げるために、SiO2バンク13がある方が好ましい。有機物バンク14の高さは、1〜2μm程度あれば十分である。
【0017】
次に、図2を参照して、インクジェット方式による有機EL装置の製造方法の一例を各工程の断面構造に沿って説明する。
【0018】
図2(A)において、バンク構造を有する画素基板にインクジェット方式により有機EL材料を含む溶液(インク組成物)をパターン塗布し、有機EL薄膜を形成する。有機EL材料インク組成物15をインクジェットヘッド16から吐出し、同図(B)に示すように着弾させ、パターン塗布する。塗布後、真空およびまたは熱処理あるいは窒素ガスなどのフローにより溶媒を除去し、有機EL薄膜層17を形成する(同図(C))。この有機EL薄膜層17は、例えば正孔注入層及び発光層からなる積層膜である。
【0019】
この際、有効光学領域(表示に関係する画素が形成された領域)の端の表示画素では周囲にインク滴が塗布されていないため、インク溶媒分子分圧が内側の画素上より低くなって溶媒が速く乾燥し、例えば、図2(C)に示したような、膜厚差が表示画素間で生じてしまう場合がある。
【0020】
そこで、各画素に塗布された液滴を均一に乾燥するためには、有効光学領域の周囲にもインク組成物を吐出、塗布し、有効光学領域に塗布された各液滴に対して同じ環境をつくることが好ましい。より同じ環境を構築するためには、インクジェットによる有機材料の塗布領域を有効光学領域より大きくし、例えば、有効光学領域の周囲に表示画素と同じ形状のバンク構造を有するダミー領域(表示に関係しないダミー画素が形成された領域)を設置することがより好ましい。
【0021】
また、有効光学領域の画素間におけるインク組成物の乾燥をより均一にするためには有効光学領域での個々の塗布領域が等間隔であることが望ましい。そのためには画素も等間隔で配置されていることが好ましい。TFTや配線等の設置により各画素間隔が、X方向とY方向で異なる設計になる場合は、間隔のより広い画素間に、塗布領域の間隔が等しくなるようにインク滴を吐出すればよい。該画素間に画素部と同じ形状のバンク構造を形成したダミー画素を設置できればより好ましい。画素の形状は、円、正方形のような点対称の形状でなくても、長方形、トラック形、楕円形でもよい。長方形、トラック形のような画素が、X方向とY方向で異なる間隔で配置されている場合は、画素部と同じ形状をもたなくても、画素間隔の広い領域に、塗布領域が同間隔になるように塗布領域を形成しても効果はある。
【0022】
尚、本発明は、有機EL装置の表示用途だけでなく、有機EL素子を発光源として用いる発光装置、照明装置に適用することができる。
【0023】
以下、実施例を参照して本発明を更に、具体的に説明するが、本発明はこれらに制限されるものではない。
【0024】
(実施例1)
本実施例に用いた基板は、直径30μm径の円形画素が、X、Y方向ともに70.5μmピッチで配置された2インチTFT基板である。このTFT基板は、ガラス基板25と、このガラス基板上に形成されたTFT26を有する回路素子部26’とから構成されている。図3(A)にTFT基板右端側の一部の断面図(X方向)を示す。回路素子部26’上にITOからなる透明電極27が形成され、この透明電極27を仕切るようにSiO2バンク28及びポリイミドバンク29の2層からなるバンクが回路素子部26’上に形成されている。SiO2バンク28はTEOS(tetraethylorthosilicate)をCVDで150nm形成しフォトエッチングでパターン形成される。更にその上に感光性ポリイミドを塗布し、露光、現像により、膜厚2μmのポリイミドバンク29が形成される。なお、このバンクを形成する材料は、非感光性材料を用いてもよい。
【0025】
また、図3において、透明電極27が形成されている領域が有効光学領域Aであり、SiO2バンク28及びポリイミドバンク29により透明電極27が区画されていない領域がダミー領域Bである。
【0026】
インクジェット塗布前に、大気圧プラズマ処理によりポリイミドバンク29を撥インク処理する。大気圧プラズマ処理の条件は、大気圧下で、パワー300W、電極−基板間距離1mm、酸素プラズマ処理では、酸素ガス流量100ml/min、ヘリウムガス流量10l/min、テーブル搬送速度10mm/sで行い、続けてCF4プラズマ処理では、 CF4ガス流量100ml/min、ヘリウムガス流量10l/min、テーブル搬送速度3mm/sの往復で行う。
【0027】
正孔注入層材料としてバイエル社のバイトロン(登録商標)を用い、極性溶剤であるイソプロピルアルコール,N−メチルピロリドン,1,3−ジメチルー2−イミダゾリジノンで分散させたインク組成物30を調製し、X,Y方向とも70.5μmピッチでインクジェットヘッド(エプソン製MJ−930C)から吐出、塗布する。その際、表示画素の周囲に上下、左右30ラインずつ余計に同じピッチで吐出する。図3(B)に正孔注入層材料インク組成物30をパターン塗布した後の、基板右端側の一部の断面図を示す。有効光学領域Aでは、正孔注入層材料インク組成物30が透明電極27上に塗布され、一方ダミー領域Bでは、正孔注入層材料インク組成物30がポリイミドバンク29上に塗布されている。
次に、真空中(1torr(133.3Pa))、室温、20分という条件で溶媒を除去し、その後、窒素中、200℃(ホットプレート上)、10分の熱処理により、図3(C)に示すように正孔注入層31を形成する。有効光学領域Aにおいては、膜厚の均一な正孔注入層31を形成することができる。
【0028】
次に、発光層として、赤色、緑色、青色に発光するポリフルオレン系材料を用いて、赤色発光層用インク組成物32、緑色発光層用インク組成物33、青色発光層用インク組成物34を3種類調製する。インク溶媒としては、シクロヘキシルベンゼンを用いた。図3(C)に示すように、これらのインク組成物32、33、34をインクジェットヘッドから吐出させ、X方向に211.5μmピッチ、Y方向には70.5μmピッチでパターン塗布した。その際、ダミー領域Bに上下、左右21ラインずつ余計に同じピッチで吐出する。
【0029】
次に、N2雰囲気中、ホットプレート上80℃、5分での熱処理により発光層35,36,37が形成される。有効光学領域Aにおいては、膜厚の均一な発光層35、36、37を形成することができる。
【0030】
発光層形成後、図3(D)に示すように、陰極38として、2nmのLiF層、20nmのCa層及び200nmのAl層を真空加熱蒸着で積層形成し、最後にエポキシ樹脂39により封止を行う。
【0031】
こうして、有効光学領域Aで輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができた。
【0032】
(実施例2)
本実施例では、図4に示すように、実施例1と同様に、有効光学領域Aの周囲にダミー領域Bを配置したTFT基板を用いた。このTFT基板は、ガラス基板25と、このガラス基板25上に形成されたTFT26を有する回路素子部26’とから構成されている。また回路素子部26’上にITOからなる透明電極27が形成され、更にこの透明電極27を仕切るようにSiO2バンク28及びポリイミドバンク29の2層からなるバンクが回路素子部26’上に形成されている。このようにして、有効光学領域Aに表示画素42が形成されている。
【0033】
また、ダミー領域Bには、SiO2バンクから延びるSiO2膜28’が設けられるとともに、このSiO2膜28’上に表示画素42と同じ形状、同ピッチでポリイミドバンク40が設けられてなるダミー画素43が形成されている。図4(A)に基板右端側の一部の断面図を示す。
【0034】
実施例1と同じ、正孔注入層用インク組成物41を70.5μmピッチで、表示画素42ならびにダミー画素43にパターニング塗布した様子を図4(B)に示す。実施例1と同様に乾燥、熱処理して形成された表示画素42の正孔注入層の膜厚は均一であった。
【0035】
次に、実施例1同様にポリフルオレン系材料からなる発光層インク組成物を表示画素42ならびにダミー画素43にパターニング塗布し、乾燥により形成された発光層膜厚は、表示画素42内で均一であった。陰極形成、封止を行いできあがった有機EL装置は、表示画素42を含む有効光学領域Aで輝度ムラ、色ムラのない表示の均一なものであった。
【0036】
(実施例3)
本実施例では、実施例1と同様に、有効光学領域Aの周囲にダミー領域Bを配置したTFT基板を用いた。図5(A)に示すように、このTFT基板は、ガラス基板25と、このガラス基板25上に形成されたTFT26を有する回路素子部26’とから構成されている。また回路素子部26’上にITOからなる透明電極27が形成され、更にこの透明電極27を仕切るようにSiO2バンク28及びポリイミドバンク29の2層からなるバンクが回路素子部26’上に形成されている。このようにして、有効光学領域Aに表示画素42が形成されている。
また、ダミー領域Bにおける回路素子部26’上には、表示画素42と同じ形状、同ピッチでポリイミドバンク29のみが形成されなるダミー画素44が設けられている。図5(A)は基板右端側の一部の断面図である。
【0037】
次に、実施例1と同様に、大気圧プラズマ処理によりポリイミドバンク29を撥インク処理する。
【0038】
次に、図5(B)に示すように、実施例1と同様に、正孔注入層材料を含むインク組成物30を、X,Y方向とも70.5μmピッチで表示画素42ならびにダミー画素44にパターニング塗布する。有効光学領域Aでは、正孔注入層材料インク組成物30が透明電極27上に塗布され、一方ダミー領域Bでは、正孔注入層材料インク組成物30が回路素子部26’上に塗布されている。
【0039】
次に、真空中(1torr(133.3Pa))、室温、20分という条件で溶媒を除去し、その後、窒素中、200℃(ホットプレート上)、10分の熱処理により、図5(C)に示すような正孔注入層31が形成される。有効光学領域Aにおいては、膜厚の均一な正孔注入層31を形成することができる。
【0040】
次に、実施例1と同様に、赤色発光層用インク組成物32、緑色発光層用インク組成物33、青色発光層用インク組成物34を3種類調製し、図5(C)に示すように、これらのインク組成物32、33、34をインクジェットヘッドから吐出させ、それぞれX方向に211.5μmピッチ、Y方向には70.5μmピッチでパターン塗布する。その際、ダミー領域Bに上下、左右21ラインずつ余計に同じピッチで吐出することが好ましい。
【0041】
次に、N2雰囲気中、ホットプレート上80℃、5分での熱処理により発光層35,36,37を形成する。有効光学領域Aにおいては、膜厚の均一な発光層35、36、37を形成することができる。
【0042】
発光層形成後、図5(D)に示すように、陰極38として、2nmのLiF層、20nmのCa層及び200nmのAl層を真空加熱蒸着で積層形成し、最後にエポキシ樹脂39により封止を行う。
【0043】
こうして、有効光学領域Aで輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができる。
【0044】
(実施例4)
本実施例では、実施例1と同様に、有効光学領域Aの周囲にダミー領域Bを配置したTFT基板を用いた。図6(A)に示すように、このTFT基板は、ガラス基板25と、このガラス基板25上に形成されたTFT26を有する回路素子部26’とから構成されている。また回路素子部26’上にITOからなる透明電極27が形成され、更にこの透明電極27を仕切るようにSiO2バンク28及びポリイミドバンク29の2層からなるバンクが形成されている。このようにして、有効光学領域Aに表示画素42が形成されている。
【0045】
また、ダミー領域Bにおける回路素子部26’上には、表示画素42と同じ形状、同ピッチでSiO2バンク28とポリイミドバンク29とが積層されることによりダミー画素45が設けられている。図6(A)は基板右端側の一部の断面図である。
【0046】
次に、実施例1と同様に、大気圧プラズマ処理によりポリイミドバンク29を撥インク処理し、更に図6(B)に示すように、正孔注入層材料を含むインク組成物30を表示画素42ならびにダミー画素45にパターニング塗布する。有効光学領域Aでは、正孔注入層材料インク組成物30が透明電極27上に塗布され、一方ダミー領域Bでは、正孔注入層材料インク組成物30が回路素子部26’上に塗布される。
【0047】
次に、実施例1と同じ条件で正孔注入層材料インク組成物30の溶媒を除去し、更に実施例1同じ条件で熱処理を行い、図6(C)に示すような正孔注入層31を形成する。有効光学領域Aにおいては、膜厚の均一な正孔注入層31を形成することができる。
【0048】
次に、実施例1と同様に、赤色発光層用インク組成物32、緑色発光層用インク組成物33、青色発光層用インク組成物34を調製し、図6(C)に示すように、各インク組成物32、33、34をインクジェットヘッドから吐出させてパターン塗布する。その際、ダミー領域Bに上下、左右21ラインずつ余計に同じピッチで吐出する。
【0049】
次に、N2雰囲気中、ホットプレート上80℃、5分での熱処理により発光層35,36,37を形成する。有効光学領域Aにおいては、膜厚の均一な発光層35、36、37を形成することができる。
【0050】
発光層形成後、図6(D)に示すように、陰極38として、2nmのLiF層、20nmのCa層及び200nmのAl層を真空加熱蒸着で積層形成し、最後にエポキシ樹脂39により封止を行う。
【0051】
こうして、有効光学領域Aで輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができる。
【0052】
(参考例5)
本実施例では、実施例1と同様に、有効光学領域Aの周囲にダミー領域Bを配置したTFT基板を用いた。図7(A)に示すように、このTFT基板は、ガラス基板25と、このガラス基板25上に形成されたTFT26を有する回路素子部26’とから構成されている。また回路素子部26’上にITOからなる透明電極27が形成され、更にこの透明電極27を仕切るようにSiO2バンク28及びポリイミドバンク29の2層からなるバンクが回路素子部26’上に形成されている。このようにして、有効光学領域Aに表示画素42が形成されている。
また、ダミー領域Bにおける回路素子部26’上には、表示画素42と同じ形状、同ピッチでSiO2バンク28とポリイミドバンク29とが積層されることによりダミー画素46が設けられている。尚、ダミー領域Bにおける回路素子部26’にはTFT26が設けられていない。図7(A)に基板右端側の一部の断面図を示す。
【0053】
次に、実施例1と同様に、大気圧プラズマ処理によりポリイミドバンク29を撥インク処理し、更に図7(B)に示すように、正孔注入層材料を含むインク組成物30を表示画素42ならびにダミー画素46にパターニング塗布する。有効光学領域Aでは、正孔注入層材料インク組成物30が透明電極27上に塗布され、一方ダミー領域Bでは、正孔注入層材料インク組成物30が回路素子部26’上に塗布されている。
【0054】
次に、実施例1と同じ条件で正孔注入層材料インク組成物30の溶媒を除去し、更に実施例1と同じ条件で熱処理を行い、図7(C)に示すような正孔注入層31を形成する。有効光学領域Aにおいては、膜厚の均一な正孔注入層31を形成することができる。
【0055】
次に、実施例1と同様に、赤色発光層用インク組成物32、緑色発光層用インク組成物33、青色発光層用インク組成物34を調製し、図7(C)に示すように、各インク組成物32、33、34をインクジェットヘッドから吐出させてパターン塗布する。その際、ダミー領域Bに上下、左右21ラインずつ余計に同じピッチで吐出することが好ましい。
【0056】
次に、N2雰囲気中、ホットプレート上80℃、5分での熱処理により発光層35,36,37を形成する。有効光学領域Aにおいては、膜厚の均一な発光層35、36、37を形成することができる。
【0057】
発光層形成後、図7(D)に示すように、陰極38として、2nmのLiF層、20nmのCa層及び200nmのAl層を真空加熱蒸着で積層形成し、最後にエポキシ樹脂39により封止を行う。
【0058】
こうして、有効光学領域Aで輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができる。
【0059】
また、ダミー画素46は、透明電極27と、この透明電極27を区画するSiO2バンク28及びポリイミドバンク29が設けられて構成されており、TFT26が設けられない点を除いて表示画素42と同じ構成なので、ダミー画素46に塗布した正孔注入層材料インク組成物30を、表示画素42に塗布した場合と同じ条件で乾燥させることができ、これにより有効光学領域Aには、膜厚がより均一な正孔注入層31を形成することができ、輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができる。
【0060】
(参考例6)
本実施例に用いた基板の表示画素領域とダミー画素領域の一部を図8(A)に示す。図8(A)は基板の平面図であり、ここではTFT素子は示してない。直径60μmの円形画素50が横(X)方向に80μmピッチで、縦(Y)方向に240μmピッチで配列されている。縦方向ラインの表示画素間には、80μmピッチで60μm径のダミーバンク画素51が有り、有効光学領域の周囲には、同じ形状のダミー画素52が、上下、左右、30ライン分、同じく80μmピッチで形成されている。表示画素は、これまで同様、SiO2バンク53とポリイミドバンク54との積層バンクで区画されてなり、画素径、ピッチ以外の基本的な断面構造は、実施例1または2と同様である。
【0061】
実施例1同様の正孔注入層材料インク組成物55を表示画素50ならびにダミー画素51,52に、すべて80μmピッチでパターン塗布した様子を図8(B)に示す。実施例1同様に正孔注入層を形成し、発光層においても、実施例1と同じ、発光層組成物を3種類56,57,58をそれぞれ縦80μmピッチ、横240μmピッチでパターン塗布し、乾燥により発光層を積層成膜した。発光層インク組成物のパターン塗布の様子を図8(C)に示す。陰極形成、封止を行いできあがった有機EL装置は、有効光学領域で輝度ムラ、色ムラのない表示の均一なものであった。
【0062】
(参考例7)
本実施例に用いた基板の有効光学領域とダミー領域の一部を図9(A)に示す。図9(A)は基板の平面図であり、ここではTFT素子は示してない。横幅50μm、縦幅200μmの長方(角は丸み)形画素60が横(X)方向に80μmピッチで、縦(Y)方向に290μmピッチで配列されている。横方向の画素間間隔は30μm、縦方向の画素間間隔は90μmである。表示画素60…の周囲には、同じ形状のダミー画素61が、上下、左右、30ライン分、同じく80μm、290μmピッチで形成されている。表示画素60は、これまで同様、SiO262,ポリイミド63の積層バンクにより区画されてなり、画素径、ピッチ以外の基本的な断面構造は、実施例1または2と同様である。
【0063】
実施例1同様の正孔注入層材料インク組成物64を表示画素60ならびにダミー画素61にすべてパターン塗布し、更に、縦方向の画素間の中央にも図9(B)に示すように組成物64をパターン塗布した。乾燥後、形成された画素内の正孔注入層は均一膜厚を示したが、縦方向の画素間の中央に塗布しなかった場合は、画素の縦方向の両端で、極端に膜厚が厚くなってしまった。
【0064】
正孔注入層を形成後、発光層においても、実施例1と同じ、発光層組成物を3種類65、66、67、それぞれ縦240μmピッチ、横290μmピッチでパターン塗布し、正孔注入層の場合と同様、縦方向の画素間の中央にも図9(C)に示すように発光層用インク組成物65、66、67、をパターン塗布した。これにより乾燥後られた発光層の膜厚は画素内、画素間で均一であった。陰極形成、封止を行いできあがった有機EL装置は、有効光学領域で輝度ムラ、色ムラのない表示の均一なものであった。
【0065】
(参考例8)
図10(A)に、本実施例に用いる基板の平面図を示す。図10(B)は図10(A)のMM’線に沿う部分断面図である。図10(A)及び図10(B)に示すように、この基板101は、正孔注入層及び発光層の形成前の基板であり、ガラス基板102上に形成された回路素子部103と、回路素子部103上に形成された発光素子部104とから構成されている。発光素子部104には、後述する表示画素とダミー画素とが設けられており、更に発光素子部104は、表示画素群からなる有効光学領域Aと、有効光学領域Aの周囲に配置されたダミー画素群からなるダミー領域Bとに区画されている。
【0066】
回路素子部103は、ガラス基板102上に形成された複数のTFT素子105…と、このTFT素子105…を覆う第1,第2層間絶縁膜106,107とから構成されている。TFT素子105…はマトリックス状に配置されており、各TFT素子105…にはITOからなる透明電極108…が接続されている。
透明電極108…は第2層間絶縁膜107上に形成されると共に、TFT素子105…に対応する位置に配置されている。なお透明電極108は、平面視において略円形、矩形、あるいは四角が円弧状の矩形などの形状で形成されていればよい。
【0067】
尚、TFT素子105と透明電極108は、発光素子部104の有効光学領域Aに対応する位置のみに形成されている。
【0068】
次に、発光素子部104の有効光学領域Aには、SiO2バンク109とポリイミドバンク110とが積層されている。SiO2バンク109及びポリイミドバンク110は、透明電極108…の間に設けられており、これにより透明電極108を囲む開口部111が設けられている。
【0069】
また、発光素子部104のダミー領域Bには、第2層間絶縁膜107上に形成されたSiO2薄膜109’と、SiO2薄膜109’上に形成されたポリイミドバンク110’とが備えられている。ダミー領域Bのポリイミドバンク110’により、表示画素領域Aの表示画素111とほぼ同一形状のダミー画素111’が設けられている。
【0070】
ダミー領域Bに設けられるダミー画素111’の数については、図10(A)の図示X方向に沿う幅X’の間に、R・G・Bの3つのダミー画素からなる組が10組以上設けることが好ましい。また、図10(A)の図示Y方向に沿う幅Y’の間に、R・G・Bの多数のダミー画素からなる列が10列以上設けることが好ましい。さらに好ましくは、幅X'と幅Y'の大きさが等しくなるようにダミー画素を配置する。こうすることにより、ダミー領域Bとの境界付近にある画素における組成物インクの乾燥条件を、有効光学領域Aの中央付近の画素における乾燥条件に、より一致させることができる。幅X'と幅Y'の大きさが等しくなるようにするには、例えば、各画素(表示画素、ダミー画素のいずれも)をX方向に70.5μmピッチ、Y方向に211.5μmピッチで形成した場合、幅X'の間に、Y方向に平行に30ライン(R、G、Bの3つのダミー画素からなる組が10組分のライン)、且つ、幅Y'の間に、X方向に平行なラインが10ライン、のダミー画素が形成されればよい。これによって、Y方向のピッチは、X方向のピッチの3倍であるため、幅X'と幅Y'の大きさがほぼ等しくなる。ダミー画素の数はこれに限らないが、ダミー画素111’の数が過剰になると、表示に関係しない額縁が大きくなり、すなわち表示モジュールが大きくなるので好ましくない。
【0071】
この基板101に対して、実施例1と同様に大気圧プラズマ処理を施してポリイミドバンク110,110’を撥インク処理し、正孔注入層材料を含むインク組成物をインクジェットヘッドから吐出させて表示画素111ならびにダミー画素111’にパターニング塗布する。表示画素111では、正孔注入層材料インク組成物が透明電極108上に塗布され、一方ダミー111’では、正孔注入層材料インク組成物がSiO2薄膜109’上に塗布される。
【0095】
尚、正孔注入層材料を含むインク組成物をインクジェットヘッドにより吐出させる際には、例えば、表示素子部104幅方向(図示X方向)と同程度の幅のノズル列を有するインクジェットヘッドを用意し、このインクジェットヘッドを、図10(A)の下側から図中矢印Y方向に沿って基板101上に移動させながら行うことが好ましい。これにより、インク組成物の吐出順序が、図中下側のダミー領域B、有効光学領域A、図中上側のダミー領域Bの順となり、インク組成物の吐出を、ダミー領域Bから始めてダミー領域Bで終了させることができる。ダミー領域Bで組成物インクを吐出させてから有効光学領域Aで吐出するため、有効光学領域Aでのインク組成物を均一に乾燥することができる。
【0096】
次に、実施例1と同じ条件で正孔注入層材料インク組成物の溶媒を除去し、更に実施例1同じ条件で熱処理を行い、図11(A)に示すような正孔注入層131を形成する。
【0097】
有効光学領域Aの外側にはダミー画素111’が設けられており、このダミー画素111’に対しても表示画素111と同様に組成物インクの吐出、乾燥を行うので、ダミー領域Bとの境界付近にある表示画素111における組成物インクの乾燥条件を、有効光学領域Aの中央付近の表示画素111における乾燥条件にほぼ一致させることができ、これによりダミー領域Bとの境界付近にある表示画素111でも均一な膜厚の正孔注入層131を形成することができる。従って有効光学領域Aの全体に渡って、膜厚の均一な正孔注入層131を形成することができる。
【0098】
次に、実施例1と同様に、赤色、緑色、青色の発光層用インク組成物をインクジェットヘッドから吐出させて表示画素111ならびにダミー画素111’にパターン塗布し、N2雰囲気中、ホットプレート上80℃、5分での熱処理により発光層135,136,137を形成する。有効光学領域Aにおいては、正孔注入層131の場合と同様にして、膜厚の均一な発光層135、136、137を形成することができる。
【0099】
尚、発光層の形成の際には、正孔注入層の場合と同様にしてインクジェットヘッドを図10(A)の下側から図中矢印Y方向に沿って基板101上に移動させながら行い、インク組成物の吐出順序を、図中下側のダミー領域B、有効光学領域A、図中上側のダミー領域Bの順とし、これによりインク組成物の吐出をダミー領域Bから始めてダミー領域Bで終了させるようにすることが好ましい。これにより、有効光学領域Aの全体において、発光層を含むインク組成物の乾燥を均一に行うことができた。
【0100】
発光層形成後、図11(B)に示すように、陰極138として、2nmのLiF層、20nmのCa層及び200nmのAl層を真空加熱蒸着で積層形成し、最後にエポキシ樹脂139により封止を行う。
【0101】
こうして、有効光学領域Aで輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができる。
【0102】
(参考例9)
図12に、本実施例に用いる基板の平面図を示す。図12に示すように、この基板201は、ガラス基板202上に形成された図示略の回路素子部と、この回路素子部上に形成された複数の発光素子部204…とを主体として構成されている。図12の基板201には、16個の発光素子部204…が4列4行のマトリックス状に配置されている。各発光素子部204には、参考例8と同様な図示略の表示画素及びダミー画素が設けられており、更に各発光素子部204…は、表示画素群からなる有効光学領域Aと、有効光学領域Aの周囲に配置されたダミー画素群からなるダミー領域Bとに区画されている。
【0103】
有効光学領域Aにおける表示画素と、ダミー領域Bにおけるダミー画素の構成は、参考例8において説明した表示画素111及びダミー画素111’の構成と同じである。また、図示略の回路素子部の構成も、参考例8の回路素子部103の構成と同じである。
【0104】
このようにして基板201には、複数の有効光学領域A…からなる有効光学領域群Cが形成されている。
【0105】
この基板201は最終的に、図中一点鎖線に沿って切り離され、16枚の小さな基板に切り分けられる。これにより、1つの基板から複数の有機EL装置を同時に製造することができる。
【0106】
更に基板201には、有効光学領域群Cの周囲に別のダミー領域Dが形成されている。
【0107】
ダミー領域Dに設けられるダミー画素の数は、図12の図示X方向に沿う幅X’の間には、R・G・Bの3つのダミー画素からなる組を10組以上設けることが好ましい。また、図12の図示Y方向に沿う幅Y’の間には、R・G・Bの多数のダミー画素からなる列を10列以上設けることが好ましい。
【0108】
この基板201に対して、参考例8と同様にしてポリイミドバンクを撥インク処理し、更に正孔注入層材料を含むインク組成物をインクジェットヘッドから吐出させて表示画素ならびにダミー画素にパターニング塗布する。
【0109】
尚、正孔注入層材料を含むインク組成物をインクジェットヘッドにより吐出させる際には、例えば、1つの表示素子部204幅方向(図示X方向)と同程度の幅のノズル列を有するインクジェットヘッドを用意し、このインクジェットヘッドを、図12の図中下側から表示素子部204上を図中矢印Y方向に沿って図中上側まで移動させながら行うことが好ましい。インクジェットヘッドの幅は、これに限らず、一つの表示素子部204の幅の整数倍であればよい。
【0110】
このときのインクジェットヘッドの軌跡は、例えば図13(A)に示すように、インクジェットヘッドHを図中上側に移動させた後に斜め下側まで空走し、再度上側に向けて移動させるジグザグな軌跡や、図13(B)に示すように上側に移動してから横方向にスライド(空走)し、次に下側に移動させるつづら折れ状の軌跡であっても良い。
【0111】
上記の場合はいずれも、インク組成物の吐出順序が、ダミー領域D、B、有効光学領域A、ダミー領域B、D、ダミー領域D、B、有効光学領域A、…、ダミー領域B、Dの順となり、インク組成物の吐出を、ダミー領域Dから始めてダミー領域Dで終了させることができる。
【0112】
また、参考例8のように、有効光学領域群Cの幅方向(図示X方向)と同程度の幅のノズル列を有するインクジェットヘッドを用意し、このインクジェットヘッドを、図12の図中下側から表示素子部204上を図中矢印Y方向に沿って図中上側まで移動させながら行ってもよい。この場合のインク組成物の吐出順序は、ダミー領域D、B、有効光学領域A、ダミー領域B、Dの順となり、インク組成物の吐出を、ダミー領域Dから始めてダミー領域Dで終了させることができる。
【0113】
従っていずれの場合も、ダミー領域Dでインク組成物を吐出させてから有効光学領域Aで吐出するため、有効光学領域Aの全体において、インク組成物の乾燥を均一に行うことができた。
【0114】
また、インクジェットヘッドがジグザグな軌跡やつづら折れ状の軌跡をとる場合は、空走の後に必ずダミー領域Dで吐出することになるので、空走中にインクジェットヘッドに充填されたインクの状態が変化した場合でも、ダミー領域Dで予備吐出してから有効光学領域Aで吐出することになり、有効光学領域Aでの吐出を安定して行うことができる。
【0115】
次に、実施例1と同様にして正孔注入層材料インク組成物の溶媒の除去、熱処理を行い、正孔注入層131を形成する。
【0116】
有効光学領域Aの外側にはダミー領域Bのダミー画素が設けられ、更にその外側には別のダミー領域Dのダミー画素が設けられているので、ダミー領域Bとの境界付近にある表示画素における組成物インクの乾燥条件を、有効光学領域Aの中央付近の表示画素における乾燥条件にほぼ一致させることができ、これによりダミー領域Bとの境界付近にある表示画素でも均一な厚さの正孔注入層を形成することができる。従って有効光学領域Aの全体に渡って、膜厚の均一な正孔注入層を形成することができる。
【0117】
特に、ダミー領域Dが有効光学領域群Cの周囲に設けられているので、1つの基板から多数の表示装置を製造する場合でも、膜厚の均一な正孔注入層を形成できる。
【0118】
次に、実施例1と同様に、赤色、緑色、青色の発光層用インク組成物をインクジェットヘッドから吐出させて有効光学領域ならびにダミー領域にパターン塗布して熱処理することでR・G・Bの発光層を形成する。有効光学領域Aにおいては、正孔注入層の場合と同様に、膜厚の均一な発光層を形成できる。
【0119】
尚、発光層の形成の際には、正孔注入層の場合と同様にしてインクジェットヘッドを図13(A)または図13(B)に示すように移動させながら行うことで、インク組成物の吐出順序を正孔注入層の場合と同様とし、これによりインク組成物の吐出をダミー領域Dから始めてダミー領域Dで終了させるようにできる。
これにより、有効光学領域Aの全体において、インク組成物の乾燥を均一に行うことができた。
【0120】
発光層形成後、陰極として、2nmのLiF層、20nmのCa層及び200nmのAl層を真空加熱蒸着で積層形成し、最後にエポキシ樹脂により封止を行う。
【0121】
こうして、有効光学領域Aで輝度ムラ、色ムラのない均一な表示の有機EL装置を得ることができる。
【0122】
なお、ここでは有機EL層として高分子材料を用いたが、低分子材料を用いてもよい。低分子材料を用いた場合は、図14のようにマスク71を用いた蒸着法によって形成することが好ましい。このとき、有効光学領域Eに対応する領域及び有効光学領域Eに対応する領域外(ダミー領域Fに対応する領域)が開口したマスクを用いて、材料を成膜することで本発明が実現できる。蒸着法を用いた場合も、ダミー領域を設けることによって、有効光学領域全体において均一な有機EL層を形成することが可能になる。
【0123】
(参考例10)
次に、前記の第1〜第9の実施例により製造された有機EL装置のいずれかを備えた電子機器の具体例について説明する。
【0124】
図15(A)は、携帯電話の一例を示した斜視図である。図15(A)において、符号600は携帯電話本体を示し、符号601は前記の有機EL装置のいずれかを用いた表示部を示している。
【0125】
図15(B)は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。図15(B)において、符号700は情報処理装置、符号701はキーボードなどの入力部、符号703は情報処理装置本体、符号702は前記の有機EL装置のいずれかを用いた表示部を示している。
【0126】
図15(C)は、腕時計型電子機器の一例を示した斜視図である。図15(C)において、符号800は時計本体を示し、符号801は前記の有機EL装置のいずれかを用いた表示部を示している。
【0127】
図15(A)〜(C)に示すそれぞれの電子機器は、前記の有機EL装置のいずれかを用いた表示部を備えたものであり、先の実施例1〜9で製造した有機EL装置の特徴を有するので、いずれの有機EL装置を用いても表示品質に優れた効果を有する電子機器となる。
【0128】
【発明の効果】
以上述べたように、本発明によれば、インクジェット方式で基板上に有機EL材料を吐出、塗布し有機EL層を形成する有機EL装置の製造において、表示画素領域の周囲に、ダミー吐出、塗布領域を導入し、有効光学領域において、塗布液滴を、同間隔で配置することにより、画素領域に塗布された有機EL材料溶液の乾燥を均一にし、有効光学領域画素間或いは各画素内で輝度、発光色のムラの無い、均一な表示装置ならびに表示装置の製造方法を提供することが出来る。
【図面の簡単な説明】
【図1】 インクジェット方式による有機EL装置の製造方法の一例を示す断面図。
【図2】 本発明に関わるインクジェット方式による有機EL装置の製造方法の一例を示す断面図。
【図3】 実施例1の有機EL装置の製造方法を説明する工程図。
【図4】 実施例2の有機EL装置の製造方法を説明する工程図。
【図5】 実施例3の有機EL装置の製造方法を説明する工程図。
【図6】 実施例4の有機EL装置の製造方法を説明する工程図。
【図7】 参考例5の有機EL装置の製造方法を説明する工程図。
【図8】 参考例6の有機EL装置の製造方法を説明する工程図。
【図9】 参考例7の有機EL装置の製造方法を説明する工程図。
【図10】 参考例8の有機EL装置の製造方法を説明する図であって、(A)は正孔注入層形成前の基板の平面図であり、(B)は(A)のMM’線に沿う部分断面図である。
【図11】 参考例8の有機EL装置の製造方法を説明する工程図。
【図12】 参考例9の有機EL装置の製造方法を説明する図であって、正孔注入層形成前の基板の平面図である。
【図13】 参考例9の有機EL装置の製造方法を説明する図であって、インクジェットヘッドの軌跡を示す模式図である。
【図14】 参考例9の有機EL装置の他の製造方法を説明する図である。
【図15】 参考例10の電子機器を示す斜視図である。
【符号の説明】
10、25、102、202 ガラス基板
11 薄膜トランジスタ(TFT)
12、27、108 透明電極
13、28、53、62、109 SiO2バンク
14、29,40、54、63、110、110’有機物(ポリイミド)バンク15 有機EL材料インク組成物
16 インクジェットヘッド
17 有機EL薄膜層
17 発光層用インク組成物
26 薄膜トランジスタ(TFT)
30、41,55、64 正孔注入層材料インク組成物
31 正孔注入層
32、56,65 赤色発光材料インク組成物
33、57,66 緑色発光材料インク組成物
34、58,67 青色発光材料インク組成物
35 赤色発光層
36 緑発光層
37 青色発光層
38 陰極
42 表示画素
43、44 ダミー画素
50 表示画素
51 表示画素領域内ダミー画素
52 表示画素領域外ダミー画素
60 表示画素
61 表示画素領域外ダミー画素
101、201 基板
103 回路素子部
104,204 表示素子部
105 TFT素子
109’ SiO2薄膜
111 表示画素
111’ダミー画素
131 正孔注入層
135,136,137 発光層
A 有効光学領域
B、D ダミー領域
C 有効光学領域群
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electroluminescence (referred to as EL throughout this specification) device.
[0002]
[Prior art]
In recent years, the development of light-emitting elements using organic substances has been accelerated as a spontaneous emission type display that replaces a liquid crystal display. As an organic electroluminescence element (referred to as EL throughout this specification) using an organic substance as a light emitting material, a method of forming a low molecular organic EL material (light emitting material) by a vapor deposition method (see Non-Patent Document 1), A method of applying a polymer organic EL material (see Non-Patent Document 2) has been mainly reported.
[0003]
As a means for colorization, in the case of a low molecular weight material, a method of depositing and forming a different light emitting material on a desired pixel through a mask is performed. On the other hand, coloration by fine patterning using an ink-jet method is attracting attention for polymer materials. A method for forming an organic EL element by an inkjet method has been proposed (see Patent Documents 1 to 7).
[Patent Document 1]
JP-A-7-235378
[Patent Document 2]
Japanese Patent Laid-Open No. 10-12377
[Patent Document 3]
JP-A-10-153967
[Patent Document 4]
Japanese Patent Laid-Open No. 11-40358
[Patent Document 5]
Japanese Patent Laid-Open No. 11-54270
[Patent Document 6]
Japanese Patent Laid-Open No. 11-339957
[Patent Document 7]
US Patent No. 006087196
[Non-Patent Document 1]
Appl. Phys. Lett. 51 (12), 21 September (1987) 913.
[Non-Patent Document 2]
Appl. Phys. Lett. 71 (1), 7 July (1997) 34.
[0004]
[Problems to be solved by the invention]
The ink jet method can discharge and apply droplets having a diameter of the order of μm with high resolution, and thus enables high-definition patterning of organic EL materials. However, the drying of the micro liquid applied on the substrate is very fast, and the solvent molecules evaporated from the micro liquid applied to the pixel area at the ends (upper end, lower end, right end, left end) of the application area on the substrate. Due to the low pressure, it generally begins to dry quickly. In addition, when active driving is performed using a TFT element, the pixel arrangement may not be equally spaced in the X and Y directions due to the shape and arrangement of the TFT element region, wiring, and the like. A local evaporation solvent molecular partial pressure difference occurs around the droplet. Such a difference in the drying time of the organic material liquid applied on the pixel causes unevenness of the film thickness of the organic thin film within the pixel and between the pixels. Such film thickness unevenness causes display unevenness such as luminance unevenness and emission color unevenness.
[0005]
Accordingly, an object of the present invention is to manufacture an organic EL device in which an organic EL material is discharged and applied onto an electrode to form an organic EL layer, and the environment surrounding the organic EL material solution applied to the pixel region, drying It is to provide a uniform organic EL device and a method for manufacturing the organic EL device that are uniform in luminance and emission color between pixels and within pixels in an effective optical region.
[0006]
[Means for Solving the Problems]
An organic EL device according to an embodiment of the present invention includes an organic electroluminescence device having an effective optical region in which a plurality of display pixels related to display are arranged and a dummy region in which a plurality of dummy pixels not related to display are arranged. The dummy area is disposed so as to surround the effective optical area, and each of the plurality of display pixels and each of the plurality of dummy pixels dissolves or disperses the organic electroluminescent material in a solvent. And an organic electroluminescence layer formed by applying the composition.
[0007]
With the above apparatus, in the effective optical region, the surrounding environment and drying of the organic EL material liquid applied in the effective optical region can be made uniform, and the film thickness between and within the pixels can be made uniform. The organic electroluminescence layer refers to a layer that contributes to light emission, and includes a hole injection layer, a light emitting layer, an electron injection layer, and the like. The effective optical region indicates, for example, an effective optical region when the organic EL device is a display device, and a region that contributes to illumination when the organic EL device is a lighting device.
[0008]
In the organic EL device according to an embodiment of the present invention, the first display pixel group that is a part of the plurality of display pixels and the first dummy pixel group that is a part of the plurality of dummy pixels are in the same direction. The distance between adjacent display pixels in the first display pixel group, and the distance between the adjacent display pixel and the dummy pixel in the first display pixel group and the first dummy pixel group. Is substantially equal.
[0009]
In the organic EL device according to an embodiment of the present invention, each of the plurality of display pixels includes an electrode, and each of the display pixels is partitioned by a partition, and each of the plurality of display pixels includes the organic electro The luminescence layer is formed on the electrode, and the organic electroluminescence layer of each of the plurality of dummy pixels is formed on a layer in which the same material as the partition wall is extended.
[0010]
In the organic EL device according to an embodiment of the present invention, each of the plurality of display pixels includes an electrode, each of the display pixels is partitioned by a partition, and the partition is a first opening that exposes the electrode. Each of the plurality of display pixels, and a first partition having a second opening formed on the first partition and exposing the electrode and a part of the first partition. The organic electroluminescence layer is formed on the electrode, and the organic electroluminescence layer of each of the plurality of dummy pixels is on a layer in which the same material as the first partition wall is extended, It is characterized in that it is formed inside a third opening having the same shape as the second opening formed in a layer in which the same material as the second partition wall is extended.
[0011]
The organic EL device according to an embodiment of the present invention further includes a substrate and a circuit element unit formed on the substrate, and each of the plurality of display pixels is an electrode formed on the circuit element unit. And each of the display pixels is partitioned by a partition, and the partition is formed on the first partition, the first partition having a first opening exposing the electrode, and the electrode and the first A second partition having a second opening exposing a part of the partition, and the organic electroluminescence layer of each of the plurality of display pixels is formed on the electrode, and the plurality of dummy pixels Each of the organic electroluminescence layers included in the third opening has the same shape as the second opening formed on the circuit element portion and in a layer in which the same material as the second partition wall is extended. Formed inside the part And wherein the are.
[0013]
Moreover, according to this invention, the electronic device which comprises said organic EL apparatus is provided. According to such an electronic device, uniform EL display and illumination without unevenness in luminance and emission color between pixels and within pixels are realized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. An example in which an organic EL device is used as a display device is shown.
[0015]
An organic EL device manufacturing method using an inkjet method is a method in which an ink composition in which a hole injection layer material composed of an organic material forming a pixel and a light emitting material are dissolved or dispersed in a solvent is ejected from an inkjet head onto a transparent electrode. In this method, patterning is applied to form a hole injection / transport layer and a light emitting layer. In order to pattern and apply the ejected ink droplets to a predetermined pixel area with high accuracy, it is usual to provide partition walls (hereinafter referred to as banks) that partition the pixel area.
[0016]
FIG. 1 shows a cross-sectional view of an example of a substrate structure used for manufacturing an organic EL display by an ink jet method. A circuit element portion 11 ′ having a thin film transistor (TFT) 11 is formed on a glass substrate 10, and a transparent electrode 12 made of ITO is patterned on the circuit element portion 11 ′. Further, the region that partitions the transparent electrode 12 is made of SiO. 2 A bank 13 and an organic bank 14 made of an ink-repellent or ink-repellent organic substance are stacked. The shape of the bank, that is, the opening shape of the pixel may be any of a circle, an ellipse, and a square. However, since the ink composition has surface tension, it is preferable that the square corners are rounded. The material of the organic bank 14 is not particularly limited as long as it has excellent heat resistance, liquid repellency, ink solvent resistance, and adhesion to the base substrate. The organic bank 14 is formed by patterning an organic resin such as an acrylic resin or a polyimide resin, which is normally used, even if it is not a material having liquid repellency, for example, a fluorine resin. Four The surface may be made liquid repellent by plasma treatment or the like. The bank is not limited to the one in which the inorganic material and the organic material are laminated as described above. For example, when the transparent electrode 14 is made of ITO, in order to improve the adhesion with the transparent electrode 14, SiO 2 The bank 13 is preferable. It is sufficient that the height of the organic bank 14 is about 1 to 2 μm.
[0017]
Next, with reference to FIG. 2, an example of a method for manufacturing an organic EL device by an ink jet method will be described along the cross-sectional structure of each step.
[0018]
In FIG. 2A, a solution (ink composition) containing an organic EL material is applied to a pixel substrate having a bank structure by an inkjet method to form an organic EL thin film. The organic EL material ink composition 15 is ejected from the inkjet head 16 and landed as shown in FIG. After coating, the solvent is removed by a flow of vacuum and / or heat treatment or nitrogen gas, and the organic EL thin film layer 17 is formed (FIG. 3C). The organic EL thin film layer 17 is a laminated film composed of, for example, a hole injection layer and a light emitting layer.
[0019]
At this time, since ink droplets are not applied to the periphery of the display pixel at the end of the effective optical region (region where pixels related to display are formed), the solvent partial pressure of the ink solvent is lower than that on the inner pixel and the solvent is reduced. May dry quickly, and for example, a film thickness difference as shown in FIG. 2C may occur between display pixels.
[0020]
Therefore, in order to uniformly dry the droplets applied to each pixel, the ink composition is discharged and applied around the effective optical region, and the same environment is applied to each droplet applied to the effective optical region. It is preferable to make. In order to construct a more same environment, the application area of the organic material by inkjet is made larger than the effective optical area. For example, a dummy area having a bank structure of the same shape as the display pixel around the effective optical area (not related to display) It is more preferable to install a region where dummy pixels are formed.
[0021]
Further, in order to make the drying of the ink composition between pixels in the effective optical area more uniform, it is desirable that the individual application areas in the effective optical area are equally spaced. For this purpose, the pixels are preferably arranged at equal intervals. In the case where the pixel intervals are designed differently in the X direction and the Y direction due to the installation of TFTs, wirings, etc., ink droplets may be ejected so that the intervals between the application regions are equal between the pixels with wider intervals. It is more preferable if a dummy pixel in which a bank structure having the same shape as the pixel portion is formed between the pixels. The shape of the pixel may not be a point-symmetric shape such as a circle or a square, but may be a rectangle, a track shape, or an ellipse. When pixels such as rectangles and track shapes are arranged at different intervals in the X direction and Y direction, the application regions have the same interval in a wide pixel interval even if they do not have the same shape as the pixel portion. Even if the coating region is formed so that
[0022]
The present invention can be applied not only to display applications of organic EL devices, but also to light emitting devices and lighting devices that use organic EL elements as light emission sources.
[0023]
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
[0024]
Example 1
The substrate used in this example is a 2-inch TFT substrate in which circular pixels with a diameter of 30 μm are arranged at a pitch of 70.5 μm in both the X and Y directions. The TFT substrate is composed of a glass substrate 25 and a circuit element portion 26 ′ having a TFT 26 formed on the glass substrate. FIG. 3A shows a partial cross-sectional view (X direction) of the right end side of the TFT substrate. A transparent electrode 27 made of ITO is formed on the circuit element portion 26 ′, and SiO 2 is formed so as to partition the transparent electrode 27. 2 A bank composed of two layers of a bank 28 and a polyimide bank 29 is formed on the circuit element portion 26 ′. SiO 2 The bank 28 is formed by patterning TEOS (tetraethylorthosilicate) with a thickness of 150 nm by CVD and by photoetching. Further, photosensitive polyimide is applied thereon, and a polyimide bank 29 having a thickness of 2 μm is formed by exposure and development. A non-photosensitive material may be used as a material for forming the bank.
[0025]
In FIG. 3, the area where the transparent electrode 27 is formed is the effective optical area A, and SiO 2 2 A region where the transparent electrode 27 is not partitioned by the bank 28 and the polyimide bank 29 is a dummy region B.
[0026]
Prior to inkjet coating, the polyimide bank 29 is subjected to ink repellent treatment by atmospheric pressure plasma treatment. The atmospheric pressure plasma treatment is performed under atmospheric pressure at a power of 300 W, an electrode-substrate distance of 1 mm, an oxygen plasma treatment at an oxygen gas flow rate of 100 ml / min, a helium gas flow rate of 10 l / min, and a table transfer speed of 10 mm / s Continue to CF Four In plasma processing, CF Four The reciprocation is performed at a gas flow rate of 100 ml / min, a helium gas flow rate of 10 l / min, and a table transfer speed of 3 mm / s.
[0027]
Using Bayer (registered trademark) of Bayer as a hole injection layer material, an ink composition 30 dispersed with isopropyl alcohol, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone as polar solvents was prepared. In the X and Y directions, the ink jet head (MJ-930C manufactured by Epson) is discharged and applied at a pitch of 70.5 μm. At that time, the upper and lower lines and the left and right lines are discharged around the display pixel at the same pitch. FIG. 3B shows a partial cross-sectional view on the right end side of the substrate after the hole injection layer material ink composition 30 has been pattern-coated. In the effective optical region A, the hole injection layer material ink composition 30 is applied on the transparent electrode 27, while in the dummy region B, the hole injection layer material ink composition 30 is applied on the polyimide bank 29.
Next, the solvent is removed in vacuum (1 torr (133.3 Pa)) at room temperature for 20 minutes, and then heat treatment is performed in nitrogen at 200 ° C. (on a hot plate) for 10 minutes in FIG. As shown, a hole injection layer 31 is formed. In the effective optical region A, the hole injection layer 31 having a uniform film thickness can be formed.
[0028]
Next, using a polyfluorene-based material that emits red, green, and blue as the light emitting layer, the red light emitting layer ink composition 32, the green light emitting layer ink composition 33, and the blue light emitting layer ink composition 34 are obtained. Prepare 3 types. As the ink solvent, cyclohexylbenzene was used. As shown in FIG. 3C, these ink compositions 32, 33, and 34 were ejected from an inkjet head, and applied with a pattern at a 211.5 μm pitch in the X direction and a 70.5 μm pitch in the Y direction. At this time, the upper and lower and left and right 21 lines are discharged to the dummy area B at an extra pitch.
[0029]
Next, N 2 The light emitting layers 35, 36, and 37 are formed by heat treatment at 80 ° C. for 5 minutes on the hot plate in the atmosphere. In the effective optical region A, the light emitting layers 35, 36, and 37 having a uniform film thickness can be formed.
[0030]
After forming the light emitting layer, as shown in FIG. 3D, as the cathode 38, a 2 nm LiF layer, a 20 nm Ca layer and a 200 nm Al layer are stacked by vacuum heating vapor deposition, and finally sealed with an epoxy resin 39. I do.
[0031]
In this manner, an organic EL device having a uniform display in the effective optical region A and free from luminance unevenness and color unevenness could be obtained.
[0032]
(Example 2)
In the present embodiment, as shown in FIG. 4, a TFT substrate in which a dummy region B is arranged around the effective optical region A is used as in the first embodiment. The TFT substrate is composed of a glass substrate 25 and a circuit element portion 26 ′ having a TFT 26 formed on the glass substrate 25. Further, a transparent electrode 27 made of ITO is formed on the circuit element portion 26 ′, and SiO 2 is further formed so as to partition the transparent electrode 27. 2 A bank composed of two layers of a bank 28 and a polyimide bank 29 is formed on the circuit element portion 26 ′. In this way, the display pixel 42 is formed in the effective optical area A.
[0033]
The dummy region B has SiO. 2 SiO extending from the bank 2 A film 28 ′ is provided and this SiO 2 2 On the film 28 ′, a dummy pixel 43 in which a polyimide bank 40 is provided in the same shape and pitch as the display pixel 42 is formed. FIG. 4A shows a partial cross-sectional view on the right end side of the substrate.
[0034]
FIG. 4B shows a state in which the hole injection layer ink composition 41 is applied by patterning to the display pixels 42 and the dummy pixels 43 at a pitch of 70.5 μm, as in the first embodiment. As in Example 1, the thickness of the hole injection layer of the display pixel 42 formed by drying and heat treatment was uniform.
[0035]
Next, a light emitting layer ink composition made of a polyfluorene material is applied to the display pixels 42 and the dummy pixels 43 by patterning in the same manner as in Example 1, and the thickness of the light emitting layer formed by drying is uniform in the display pixels 42. there were. The organic EL device completed by forming and sealing the cathode had a uniform display with no luminance unevenness and color unevenness in the effective optical region A including the display pixels 42.
[0036]
(Example 3)
In this example, as in Example 1, a TFT substrate in which a dummy area B was disposed around the effective optical area A was used. As shown in FIG. 5A, this TFT substrate is composed of a glass substrate 25 and a circuit element portion 26 ′ having a TFT 26 formed on the glass substrate 25. Further, a transparent electrode 27 made of ITO is formed on the circuit element portion 26 ′, and SiO 2 is further formed so as to partition the transparent electrode 27. 2 A bank composed of two layers of a bank 28 and a polyimide bank 29 is formed on the circuit element portion 26 ′. In this way, the display pixel 42 is formed in the effective optical area A.
A dummy pixel 44 in which only the polyimide bank 29 is formed at the same shape and pitch as the display pixel 42 is provided on the circuit element portion 26 ′ in the dummy region B. FIG. 5A is a partial cross-sectional view on the right end side of the substrate.
[0037]
Next, as in Example 1, the polyimide bank 29 is subjected to ink repellent treatment by atmospheric pressure plasma treatment.
[0038]
Next, as shown in FIG. 5B, in the same manner as in Example 1, the ink composition 30 containing the hole injection layer material was applied to the display pixel 42 and the dummy pixel 44 at a pitch of 70.5 μm in both the X and Y directions. Apply patterning to In the effective optical region A, the hole injection layer material ink composition 30 is applied on the transparent electrode 27, while in the dummy region B, the hole injection layer material ink composition 30 is applied on the circuit element portion 26 '. Yes.
[0039]
Next, the solvent is removed under vacuum (1 torr (133.3 Pa)) at room temperature for 20 minutes, and then heat treatment is performed in nitrogen at 200 ° C. (on a hot plate) for 10 minutes to obtain FIG. A hole injection layer 31 as shown is formed. In the effective optical region A, the hole injection layer 31 having a uniform film thickness can be formed.
[0040]
Next, as in Example 1, three types of red light emitting layer ink composition 32, green light emitting layer ink composition 33, and blue light emitting layer ink composition 34 were prepared, as shown in FIG. 5C. Then, these ink compositions 32, 33, and 34 are ejected from the ink jet head, and are applied in a pattern with a 211.5 μm pitch in the X direction and a 70.5 μm pitch in the Y direction, respectively. At that time, it is preferable that the upper and lower and left and right 21 lines are discharged to the dummy area B at an extra pitch.
[0041]
Next, N 2 The light emitting layers 35, 36 and 37 are formed by heat treatment at 80 ° C. for 5 minutes in a hot plate in an atmosphere. In the effective optical region A, the light emitting layers 35, 36, and 37 having a uniform film thickness can be formed.
[0042]
After the light emitting layer is formed, as shown in FIG. 5D, a 2 nm LiF layer, a 20 nm Ca layer and a 200 nm Al layer are stacked by vacuum heating deposition as the cathode 38 and finally sealed with an epoxy resin 39. I do.
[0043]
Thus, it is possible to obtain an organic EL device having a uniform display without luminance unevenness and color unevenness in the effective optical region A.
[0044]
Example 4
In this example, as in Example 1, a TFT substrate in which a dummy area B was disposed around the effective optical area A was used. As shown in FIG. 6A, the TFT substrate is composed of a glass substrate 25 and a circuit element portion 26 ′ having a TFT 26 formed on the glass substrate 25. Further, a transparent electrode 27 made of ITO is formed on the circuit element portion 26 ′, and SiO 2 is further formed so as to partition the transparent electrode 27. 2 A bank composed of two layers of a bank 28 and a polyimide bank 29 is formed. In this way, the display pixel 42 is formed in the effective optical area A.
[0045]
Further, on the circuit element portion 26 ′ in the dummy region B, SiO 2 having the same shape and the same pitch as the display pixels 42 is formed. 2 A dummy pixel 45 is provided by stacking the bank 28 and the polyimide bank 29. FIG. 6A is a partial cross-sectional view on the right end side of the substrate.
[0046]
Next, as in Example 1, the polyimide bank 29 is subjected to ink repellent treatment by atmospheric pressure plasma treatment, and an ink composition 30 containing a hole injection layer material is further displayed on the display pixel 42 as shown in FIG. 6B. In addition, patterning is applied to the dummy pixels 45. In the effective optical region A, the hole injection layer material ink composition 30 is applied on the transparent electrode 27, while in the dummy region B, the hole injection layer material ink composition 30 is applied on the circuit element portion 26 '. .
[0047]
Next, the solvent of the hole injection layer material ink composition 30 is removed under the same conditions as in Example 1, and further a heat treatment is performed under the same conditions as in Example 1, so that a hole injection layer 31 as shown in FIG. Form. In the effective optical region A, the hole injection layer 31 having a uniform film thickness can be formed.
[0048]
Next, as in Example 1, a red light emitting layer ink composition 32, a green light emitting layer ink composition 33, and a blue light emitting layer ink composition 34 were prepared. As shown in FIG. Each ink composition 32, 33, 34 is ejected from an inkjet head to apply a pattern. At this time, the upper and lower and left and right 21 lines are discharged to the dummy area B at an extra pitch.
[0049]
Next, N 2 The light emitting layers 35, 36 and 37 are formed by heat treatment at 80 ° C. for 5 minutes in a hot plate in an atmosphere. In the effective optical region A, the light emitting layers 35, 36, and 37 having a uniform film thickness can be formed.
[0050]
After forming the light emitting layer, as shown in FIG. 6D, a 2 nm LiF layer, a 20 nm Ca layer, and a 200 nm Al layer are stacked by vacuum heating deposition as the cathode 38, and finally sealed with an epoxy resin 39. I do.
[0051]
Thus, it is possible to obtain an organic EL device having a uniform display without luminance unevenness and color unevenness in the effective optical region A.
[0052]
(Reference Example 5)
In this example, as in Example 1, a TFT substrate in which a dummy area B was disposed around the effective optical area A was used. As shown in FIG. 7A, the TFT substrate is composed of a glass substrate 25 and a circuit element portion 26 ′ having a TFT 26 formed on the glass substrate 25. Further, a transparent electrode 27 made of ITO is formed on the circuit element portion 26 ′, and SiO 2 is further formed so as to partition the transparent electrode 27. 2 A bank composed of two layers of a bank 28 and a polyimide bank 29 is formed on the circuit element portion 26 ′. In this way, the display pixel 42 is formed in the effective optical area A.
Further, on the circuit element portion 26 ′ in the dummy region B, SiO 2 having the same shape and the same pitch as the display pixels 42 is formed. 2 A dummy pixel 46 is provided by stacking the bank 28 and the polyimide bank 29. Note that the TFT 26 is not provided in the circuit element portion 26 ′ in the dummy region B. FIG. 7A shows a partial cross-sectional view on the right end side of the substrate.
[0053]
Next, in the same manner as in Example 1, the polyimide bank 29 is subjected to ink repellent treatment by atmospheric pressure plasma treatment, and an ink composition 30 containing a hole injection layer material is further displayed on the display pixel 42 as shown in FIG. In addition, patterning is applied to the dummy pixel 46. In the effective optical region A, the hole injection layer material ink composition 30 is applied on the transparent electrode 27, while in the dummy region B, the hole injection layer material ink composition 30 is applied on the circuit element portion 26 '. Yes.
[0054]
Next, the solvent of the hole injection layer material ink composition 30 is removed under the same conditions as in Example 1, and further heat treatment is performed under the same conditions as in Example 1, so that a hole injection layer as shown in FIG. 31 is formed. In the effective optical region A, the hole injection layer 31 having a uniform film thickness can be formed.
[0055]
Next, as in Example 1, a red light emitting layer ink composition 32, a green light emitting layer ink composition 33, and a blue light emitting layer ink composition 34 were prepared, and as shown in FIG. Each ink composition 32, 33, 34 is ejected from an inkjet head to apply a pattern. At that time, it is preferable that the upper and lower and left and right 21 lines are discharged to the dummy area B at an extra pitch.
[0056]
Next, N 2 The light emitting layers 35, 36 and 37 are formed by heat treatment at 80 ° C. for 5 minutes in a hot plate in an atmosphere. In the effective optical region A, the light emitting layers 35, 36, and 37 having a uniform film thickness can be formed.
[0057]
After the light emitting layer is formed, as shown in FIG. 7D, a 2 nm LiF layer, a 20 nm Ca layer and a 200 nm Al layer are stacked by vacuum heating deposition as the cathode 38, and finally sealed with an epoxy resin 39. I do.
[0058]
Thus, it is possible to obtain an organic EL device having a uniform display without luminance unevenness and color unevenness in the effective optical region A.
[0059]
The dummy pixel 46 includes a transparent electrode 27 and SiO that partitions the transparent electrode 27. 2 The structure is the same as that of the display pixel 42 except that the bank 28 and the polyimide bank 29 are provided and the TFT 26 is not provided. Therefore, the hole injection layer material ink composition 30 applied to the dummy pixel 46 is displayed. Drying can be performed under the same conditions as when applied to the pixels 42, whereby the hole injection layer 31 having a more uniform film thickness can be formed in the effective optical region A, and there is no luminance unevenness or color unevenness. An organic EL device with uniform display can be obtained.
[0060]
(Reference Example 6)
FIG. 8A shows part of the display pixel region and the dummy pixel region of the substrate used in this example. FIG. 8A is a plan view of the substrate, and the TFT element is not shown here. Circular pixels 50 having a diameter of 60 μm are arranged at a pitch of 80 μm in the horizontal (X) direction and at a pitch of 240 μm in the vertical (Y) direction. There is a dummy bank pixel 51 having a diameter of 80 μm and a diameter of 60 μm between the display pixels in the vertical direction line. Around the effective optical region, dummy pixels 52 having the same shape are vertically, right and left, 30 lines, and the same pitch of 80 μm. It is formed with. The display pixels are the same as in the past. 2 The basic sectional structure other than the pixel diameter and pitch is the same as in the first or second embodiment.
[0061]
FIG. 8B shows a state in which the same hole injection layer material ink composition 55 as that of Example 1 is applied to the display pixel 50 and the dummy pixels 51 and 52 in a pattern with a pitch of 80 μm. In the same manner as in Example 1, a hole injection layer was formed, and in the light emitting layer, the same three types of light emitting layer compositions 56, 57, and 58 as in Example 1 were applied in a pattern with a vertical pitch of 80 μm and a horizontal pitch of 240 μm, A light emitting layer was laminated and formed by drying. FIG. 8C shows the pattern application of the light emitting layer ink composition. The organic EL device completed by forming and sealing the cathode had a uniform display with no luminance unevenness and color unevenness in the effective optical region.
[0062]
(Reference Example 7)
FIG. 9A shows part of the effective optical region and the dummy region of the substrate used in this example. FIG. 9A is a plan view of the substrate, and the TFT element is not shown here. Rectangular (rounded corners) -shaped pixels 60 having a horizontal width of 50 μm and a vertical width of 200 μm are arranged at a pitch of 80 μm in the horizontal (X) direction and at a pitch of 290 μm in the vertical (Y) direction. The interpixel spacing in the horizontal direction is 30 μm, and the interpixel spacing in the vertical direction is 90 μm. Around the display pixels 60..., Dummy pixels 61 having the same shape are formed at the same pitch of 80 μm and 290 μm for up and down, left and right, and 30 lines. The display pixel 60 has the same SiO 2 as before. 2 62 and a laminate bank of polyimide 63, and the basic cross-sectional structure other than the pixel diameter and pitch is the same as in the first or second embodiment.
[0063]
The hole injection layer material ink composition 64 similar to that in Example 1 was applied to all the display pixels 60 and dummy pixels 61 in a pattern, and the composition was also applied to the center between the pixels in the vertical direction as shown in FIG. 9B. 64 was applied in a pattern. After drying, the hole injection layer in the formed pixel showed a uniform film thickness, but if it was not applied at the center between the pixels in the vertical direction, the film thickness was extremely thick at both ends in the vertical direction of the pixel. It got thick.
[0064]
After forming the hole injection layer, the same light emitting layer composition 65, 66, and 67 as in Example 1 was applied to the light emitting layer by pattern coating at pitches of 240 μm and 290 μm, respectively. Similarly to the case, the light emitting layer ink compositions 65, 66, and 67 were also applied in a pattern at the center between the pixels in the vertical direction as shown in FIG. 9C. As a result, the thickness of the dried light emitting layer was uniform within and between pixels. The organic EL device completed by forming and sealing the cathode had a uniform display with no luminance unevenness and color unevenness in the effective optical region.
[0065]
(Reference Example 8)
FIG. 10A shows a plan view of a substrate used in this embodiment. FIG. 10B is a partial cross-sectional view taken along line MM ′ of FIG. As shown in FIGS. 10A and 10B, this substrate 101 is a substrate before the formation of the hole injection layer and the light emitting layer, and the circuit element portion 103 formed on the glass substrate 102; The light emitting element unit 104 is formed on the circuit element unit 103. The light emitting element section 104 is provided with display pixels and dummy pixels, which will be described later, and the light emitting element section 104 further includes an effective optical area A composed of display pixel groups and a dummy disposed around the effective optical area A. It is partitioned into a dummy area B consisting of a pixel group.
[0066]
The circuit element unit 103 includes a plurality of TFT elements 105 formed on the glass substrate 102 and first and second interlayer insulating films 106 and 107 covering the TFT elements 105. The TFT elements 105 are arranged in a matrix, and transparent electrodes 108 made of ITO are connected to the TFT elements 105.
The transparent electrodes 108 are formed on the second interlayer insulating film 107 and are disposed at positions corresponding to the TFT elements 105. The transparent electrode 108 only needs to be formed in a shape such as a substantially circular shape, a rectangular shape, or a rectangular shape having a square arc shape in plan view.
[0067]
The TFT element 105 and the transparent electrode 108 are formed only at positions corresponding to the effective optical region A of the light emitting element unit 104.
[0068]
Next, in the effective optical region A of the light emitting element portion 104, SiO 2 A bank 109 and a polyimide bank 110 are stacked. SiO 2 The bank 109 and the polyimide bank 110 are provided between the transparent electrodes 108. Thereby, an opening 111 surrounding the transparent electrode 108 is provided.
[0069]
In addition, in the dummy region B of the light emitting element portion 104, SiO formed on the second interlayer insulating film 107 is formed. 2 Thin film 109 'and SiO 2 And a polyimide bank 110 ′ formed on the thin film 109 ′. A dummy pixel 111 ′ having substantially the same shape as the display pixel 111 in the display pixel region A is provided by the polyimide bank 110 ′ in the dummy region B.
[0070]
Regarding the number of dummy pixels 111 ′ provided in the dummy region B, there are 10 or more sets of three dummy pixels of R, G, and B between the width X ′ along the X direction shown in FIG. It is preferable to provide it. In addition, it is preferable to provide 10 or more columns of a large number of R, G, and B dummy pixels between the width Y ′ along the Y direction shown in FIG. More preferably, the dummy pixels are arranged so that the width X ′ and the width Y ′ are equal. By doing so, the drying condition of the composition ink in the pixels near the boundary with the dummy area B can be made more consistent with the drying conditions in the pixels near the center of the effective optical area A. In order to make the width X ′ and the width Y ′ equal, for example, each pixel (both display pixel and dummy pixel) is arranged at a pitch of 70.5 μm in the X direction and a pitch of 211.5 μm in the Y direction. When formed, 30 lines parallel to the Y direction between the width X ′ (lines consisting of three pairs of three dummy pixels R, G, B) and X between the width Y ′ A dummy pixel having 10 lines parallel to the direction may be formed. Accordingly, since the pitch in the Y direction is three times the pitch in the X direction, the widths X ′ and Y ′ are substantially equal. The number of dummy pixels is not limited to this, but if the number of dummy pixels 111 ′ is excessive, the frame not related to display becomes large, that is, the display module becomes large, which is not preferable.
[0071]
The substrate 101 is subjected to atmospheric pressure plasma processing as in Example 1 to perform ink repellent treatment on the polyimide banks 110 and 110 ′, and an ink composition containing a hole injection layer material is ejected from the inkjet head for display. Patterning is applied to the pixel 111 and the dummy pixel 111 ′. In the display pixel 111, the hole injection layer material ink composition is applied on the transparent electrode 108, while in the dummy 111 ′, the hole injection layer material ink composition is SiO 2. 2 It is applied on the thin film 109 '.
[0095]
When the ink composition containing the hole injection layer material is ejected by the ink jet head, for example, an ink jet head having a nozzle row having a width approximately equal to the width direction (X direction in the drawing) of the display element unit 104 is prepared. It is preferable to carry out the inkjet head while moving it on the substrate 101 along the arrow Y direction in the figure from the lower side of FIG. As a result, the ejection order of the ink composition is in the order of the lower dummy area B in the figure, the effective optical area A, and the upper dummy area B in the figure, and the ink composition is ejected from the dummy area B to the dummy area. You can end with B. Since the composition ink is ejected in the dummy area B and then ejected in the effective optical area A, the ink composition in the effective optical area A can be uniformly dried.
[0096]
Next, the solvent of the hole injection layer material ink composition is removed under the same conditions as in Example 1, and heat treatment is further performed under the same conditions as in Example 1 to form a hole injection layer 131 as shown in FIG. Form.
[0097]
A dummy pixel 111 ′ is provided outside the effective optical region A, and the composition ink is discharged and dried in the same manner as the display pixel 111 on the dummy pixel 111 ′. The drying conditions of the composition ink in the display pixels 111 in the vicinity can be made to substantially coincide with the drying conditions in the display pixels 111 in the vicinity of the center of the effective optical area A, and thereby the display pixels in the vicinity of the boundary with the dummy area B 111 can form the hole injection layer 131 having a uniform film thickness. Therefore, the hole injection layer 131 having a uniform film thickness can be formed over the entire effective optical region A.
[0098]
Next, in the same manner as in Example 1, the red, green, and blue light emitting layer ink compositions were ejected from the ink jet head and applied to the display pixels 111 and the dummy pixels 111 ′. 2 The light emitting layers 135, 136, and 137 are formed by heat treatment at 80 ° C. for 5 minutes on a hot plate in an atmosphere. In the effective optical region A, the light emitting layers 135, 136, and 137 having a uniform film thickness can be formed in the same manner as in the case of the hole injection layer 131.
[0099]
In the formation of the light emitting layer, the inkjet head is moved from the lower side of FIG. 10A onto the substrate 101 along the arrow Y direction in the same manner as in the case of the hole injection layer. The ink composition is discharged in the order of the lower dummy area B in the figure, the effective optical area A, and the upper dummy area B in the figure, whereby the ink composition is discharged from the dummy area B in the dummy area B. It is preferable to end the process. Thereby, in the whole effective optical area A, the ink composition containing a light emitting layer was able to be dried uniformly.
[0100]
After the light emitting layer is formed, as shown in FIG. 11B, a 2 nm LiF layer, a 20 nm Ca layer and a 200 nm Al layer are stacked by vacuum heating deposition as a cathode 138, and finally sealed with an epoxy resin 139. I do.
[0101]
Thus, it is possible to obtain an organic EL device having a uniform display without luminance unevenness and color unevenness in the effective optical region A.
[0102]
(Reference Example 9)
FIG. 12 shows a plan view of the substrate used in this embodiment. As shown in FIG. 12, the substrate 201 is mainly composed of a circuit element portion (not shown) formed on the glass substrate 202 and a plurality of light emitting element portions 204... Formed on the circuit element portion. ing. On the substrate 201 of FIG. 12, 16 light emitting element portions 204 are arranged in a matrix of 4 columns and 4 rows. Each light emitting element section 204 is provided with display pixels and dummy pixels not shown in the same manner as in Reference Example 8, and each light emitting element section 204... Has an effective optical region A composed of display pixel groups, and effective optical elements. The area is divided into a dummy area B including dummy pixel groups arranged around the area A.
[0103]
The configurations of the display pixels in the effective optical region A and the dummy pixels in the dummy region B are the same as the configurations of the display pixel 111 and the dummy pixel 111 ′ described in Reference Example 8. The configuration of the circuit element unit (not shown) is the same as the configuration of the circuit element unit 103 of Reference Example 8.
[0104]
Thus, the substrate 201 is formed with an effective optical region group C composed of a plurality of effective optical regions A.
[0105]
The substrate 201 is finally cut along a one-dot chain line in the figure and cut into 16 small substrates. Thereby, a plurality of organic EL devices can be manufactured simultaneously from one substrate.
[0106]
Further, another dummy region D is formed around the effective optical region group C on the substrate 201.
[0107]
Regarding the number of dummy pixels provided in the dummy region D, it is preferable to provide 10 or more sets of three dummy pixels of R, G, and B between the widths X ′ along the X direction shown in FIG. Further, it is preferable to provide 10 or more columns of a large number of R, G, and B dummy pixels between the width Y ′ along the Y direction shown in FIG.
[0108]
The substrate 201 is subjected to ink repellent treatment in the same manner as in Reference Example 8, and an ink composition containing a hole injection layer material is further ejected from an inkjet head and applied to display pixels and dummy pixels by patterning.
[0109]
When the ink composition containing the hole injection layer material is ejected by the ink jet head, for example, an ink jet head having a nozzle row having the same width as one display element portion 204 in the width direction (X direction in the drawing) is used. It is preferable that the inkjet head is prepared and moved while moving from the lower side in the drawing of FIG. 12 to the upper side in the drawing along the arrow Y direction in the drawing. The width of the inkjet head is not limited to this, and may be an integer multiple of the width of one display element unit 204.
[0110]
The locus of the inkjet head at this time is a zigzag locus in which, for example, as shown in FIG. 13 (A), the inkjet head H is moved to the upper side in the drawing and then runs obliquely to the lower side and is moved again upward Alternatively, as shown in FIG. 13B, it may be a folded trajectory that moves upward, then slides (runs idle) in the horizontal direction, and then moves downward.
[0111]
In any of the above cases, the ejection order of the ink composition is dummy areas D and B, effective optical area A, dummy areas B and D, dummy areas D and B, effective optical areas A,..., Dummy areas B and D In this order, the ejection of the ink composition can be started from the dummy area D and ended in the dummy area D.
[0112]
Also, as in Reference Example 8, an ink jet head having a nozzle row having a width approximately the same as the width direction (X direction in the drawing) of the effective optical region group C is prepared, and this ink jet head is arranged on the lower side in FIG. The display element unit 204 may be moved to the upper side in the figure along the arrow Y direction in the figure. In this case, the ejection order of the ink composition is the order of the dummy areas D and B, the effective optical area A, and the dummy areas B and D. The ejection of the ink composition starts from the dummy area D and ends in the dummy area D. Can do.
[0113]
Therefore, in any case, since the ink composition is ejected from the dummy area D and then ejected from the effective optical area A, the ink composition can be uniformly dried in the entire effective optical area A.
[0114]
In addition, when the inkjet head takes a zigzag trajectory or a zigzag trajectory, the ink is always discharged from the dummy area D after the idle run, so the state of the ink filled in the inkjet head changes during the idle run. Even in this case, preliminary ejection is performed in the dummy area D and then ejection is performed in the effective optical area A, and ejection in the effective optical area A can be performed stably.
[0115]
Next, in the same manner as in Example 1, the solvent of the hole injection layer material ink composition is removed and heat treatment is performed to form the hole injection layer 131.
[0116]
Since the dummy pixels of the dummy area B are provided outside the effective optical area A and the dummy pixels of another dummy area D are further provided outside the effective optical area A, the display pixels in the vicinity of the boundary with the dummy area B The drying conditions of the composition ink can be made to substantially coincide with the drying conditions of the display pixels near the center of the effective optical region A, so that even a display pixel near the boundary with the dummy region B has a uniform thickness. An injection layer can be formed. Therefore, a hole injection layer having a uniform film thickness can be formed over the entire effective optical region A.
[0117]
In particular, since the dummy region D is provided around the effective optical region group C, a hole injection layer having a uniform thickness can be formed even when a large number of display devices are manufactured from one substrate.
[0118]
Next, in the same manner as in Example 1, the red, green, and blue light emitting layer ink compositions were ejected from the ink jet head, applied to the effective optical region and the dummy region, and then subjected to heat treatment to obtain R, G, and B A light emitting layer is formed. In the effective optical region A, a light emitting layer having a uniform thickness can be formed as in the case of the hole injection layer.
[0119]
When forming the light emitting layer, the ink jet head is moved as shown in FIG. 13 (A) or FIG. 13 (B) in the same manner as in the case of the hole injection layer. The ejection order is the same as that in the case of the hole injection layer, whereby the ejection of the ink composition can be started from the dummy area D and ended in the dummy area D.
As a result, the ink composition could be uniformly dried over the entire effective optical area A.
[0120]
After the light emitting layer is formed, a 2 nm LiF layer, a 20 nm Ca layer and a 200 nm Al layer are stacked by vacuum heating deposition as a cathode, and finally sealed with an epoxy resin.
[0121]
Thus, it is possible to obtain an organic EL device having a uniform display without luminance unevenness and color unevenness in the effective optical region A.
[0122]
Although a high molecular material is used here as the organic EL layer, a low molecular material may be used. When a low molecular material is used, it is preferably formed by an evaporation method using a mask 71 as shown in FIG. At this time, the present invention can be realized by depositing a material using a mask in which an area corresponding to the effective optical area E and an area outside the area corresponding to the effective optical area E (area corresponding to the dummy area F) are opened. . Even when the vapor deposition method is used, it is possible to form a uniform organic EL layer in the entire effective optical region by providing the dummy region.
[0123]
(Reference Example 10)
Next, specific examples of the electronic apparatus including any one of the organic EL devices manufactured according to the first to ninth embodiments will be described.
[0124]
FIG. 15A is a perspective view illustrating an example of a mobile phone. In FIG. 15A, reference numeral 600 denotes a mobile phone body, and reference numeral 601 denotes a display portion using any of the organic EL devices.
[0125]
FIG. 15B is a perspective view illustrating an example of a portable information processing device such as a word processor or a personal computer. In FIG. 15B, reference numeral 700 denotes an information processing apparatus, reference numeral 701 denotes an input unit such as a keyboard, reference numeral 703 denotes an information processing apparatus body, and reference numeral 702 denotes a display unit using any one of the organic EL devices. Yes.
[0126]
FIG. 15C is a perspective view illustrating an example of a wristwatch-type electronic device. In FIG. 15C, reference numeral 800 denotes a watch body, and reference numeral 801 denotes a display unit using any of the organic EL devices.
[0127]
Each of the electronic devices shown in FIGS. 15A to 15C includes a display unit using any one of the above-described organic EL devices, and the organic EL device manufactured in the previous Examples 1 to 9 Therefore, an electronic device having an effect of excellent display quality can be obtained regardless of which organic EL device is used.
[0128]
【The invention's effect】
As described above, according to the present invention, in the manufacture of an organic EL device in which an organic EL material is ejected and applied onto a substrate by an inkjet method to form an organic EL layer, dummy ejection and application are performed around the display pixel region. By introducing the region and arranging the application droplets at the same interval in the effective optical region, the organic EL material solution applied to the pixel region is uniformly dried, and the luminance between the effective optical region pixels or within each pixel. Further, it is possible to provide a uniform display device with no unevenness in emission color and a method for manufacturing the display device.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a method for manufacturing an organic EL device by an inkjet method.
FIG. 2 is a cross-sectional view showing an example of a method for manufacturing an organic EL device by an ink jet method according to the present invention.
3 is a process diagram illustrating a method for manufacturing the organic EL device of Example 1. FIG.
4 is a process diagram illustrating a method for manufacturing an organic EL device according to Example 2. FIG.
5 is a process diagram illustrating a method for manufacturing an organic EL device according to Example 3. FIG.
6 is a process diagram illustrating a method for manufacturing an organic EL device according to Example 4. FIG.
7 is a process diagram illustrating a method for manufacturing the organic EL device of Reference Example 5. FIG.
8 is a process diagram illustrating a method for manufacturing the organic EL device of Reference Example 6. FIG.
9 is a process diagram illustrating a method for manufacturing the organic EL device of Reference Example 7. FIG.
10A and 10B are diagrams illustrating a method for manufacturing an organic EL device according to Reference Example 8, in which FIG. 10A is a plan view of a substrate before forming a hole injection layer, and FIG. 10B is an MM ′ of FIG. It is a fragmentary sectional view which follows a line.
11 is a process diagram illustrating a method for manufacturing the organic EL device of Reference Example 8. FIG.
12 is a diagram for explaining the method of manufacturing the organic EL device of Reference Example 9, and is a plan view of the substrate before the hole injection layer is formed. FIG.
13 is a diagram illustrating a method for manufacturing an organic EL device according to Reference Example 9, and is a schematic diagram illustrating a locus of an inkjet head. FIG.
14 is a diagram illustrating another method of manufacturing the organic EL device of Reference Example 9. FIG.
15 is a perspective view showing an electronic apparatus of Reference Example 10. FIG.
[Explanation of symbols]
10, 25, 102, 202 Glass substrate
11 Thin film transistor (TFT)
12, 27, 108 Transparent electrode
13, 28, 53, 62, 109 SiO 2 bank
14, 29, 40, 54, 63, 110, 110 ′ organic matter (polyimide) bank 15 organic EL material ink composition
16 Inkjet head
17 Organic EL thin film layer
17 Ink composition for light emitting layer
26 Thin Film Transistor (TFT)
30, 41, 55, 64 Hole injection layer material ink composition
31 Hole injection layer
32, 56, 65 Red light emitting material ink composition
33, 57, 66 Green luminescent material ink composition
34, 58, 67 Blue light emitting material ink composition
35 Red light emitting layer
36 Green light emitting layer
37 Blue light emitting layer
38 Cathode
42 display pixels
43, 44 Dummy pixels
50 display pixels
51 Dummy pixel in display pixel area
52 Dummy pixel outside display pixel area
60 display pixels
61 Dummy pixel outside display pixel area
101, 201 substrate
103 Circuit element section
104,204 Display element section
105 TFT element
109 'SiO 2 Thin film
111 display pixels
111 'dummy pixel
131 Hole injection layer
135, 136, 137 Light emitting layer
A Effective optical area
B, D dummy area
C Effective optical region group

Claims (5)

表示に関係する複数の表示画素が配置された有効光学領域と、表示に関係しない複数のダミー画素が配置されたダミー領域とを有する有機エレクトロルミネッセンス装置であって、
前記ダミー領域は前記有効光学領域の周囲を囲うように配置され、
前記複数の表示画素の各々及び前記複数のダミー画素の各々は、有機エレクトロルミネッセンス材料を溶媒に溶解または分散させた組成物を塗布することにより形成された有機エレクトロルミネッセンス層を有することを特徴とする有機エレクトロルミネッセンス装置。
An organic electroluminescence device having an effective optical region in which a plurality of display pixels related to display are arranged and a dummy region in which a plurality of dummy pixels not related to display are arranged,
The dummy area is arranged so as to surround the effective optical area,
Each of the plurality of display pixels and each of the plurality of dummy pixels has an organic electroluminescence layer formed by applying a composition in which an organic electroluminescence material is dissolved or dispersed in a solvent. Organic electroluminescence device.
前記複数の表示画素の一部である第1表示画素群と前記複数のダミー画素の一部である第1ダミー画素群とは同一方向に並んで配列されており、
前記第1表示画素群における隣り合う表示画素間の距離と、前記第1表示画素群及び前記第1ダミー画素群のうち隣り合う表示画素とダミー画素との間の距離とは略等しいことを特徴とする請求項1に記載の有機エレクトロルミネッセンス装置。
The first display pixel group that is a part of the plurality of display pixels and the first dummy pixel group that is a part of the plurality of dummy pixels are arranged side by side in the same direction,
A distance between adjacent display pixels in the first display pixel group is substantially equal to a distance between adjacent display pixels and the dummy pixels in the first display pixel group and the first dummy pixel group. The organic electroluminescence device according to claim 1.
前記複数の表示画素は各々電極を有し、かつ前記表示画素の各々は隔壁によって仕切られ、
前記複数の表示画素の各々が有する前記有機エレクトロルミネッセンス層は、前記電極上に形成され、
前記複数のダミー画素の各々が有する前記有機エレクトロルミネッセンス層は、前記隔壁と同一材料が延設された層上に形成されていることを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス装置。
Each of the plurality of display pixels has an electrode, and each of the display pixels is partitioned by a partition;
The organic electroluminescence layer of each of the plurality of display pixels is formed on the electrode,
3. The organic electroluminescence layer according to claim 1, wherein the organic electroluminescence layer included in each of the plurality of dummy pixels is formed on a layer in which the same material as the partition wall is extended. Luminescence device.
前記複数の表示画素は各々電極を有し、かつ前記表示画素の各々は隔壁によって仕切られ、
前記隔壁は前記電極を露出する第1開口部を有する第1隔壁と、前記第1隔壁上に形成され、前記電極及び前記第1隔壁の一部を露出する第2開口部を有する第2隔壁とを有し、
前記複数の表示画素の各々が有する前記有機エレクトロルミネッセンス層は、前記電極上に形成され、
前記複数のダミー画素の各々が有する前記有機エレクトロルミネッセンス層は、前記第1隔壁と同一材料が延設された層上であって、前記第2隔壁と同一材料が延設された層に形成された前記第2開口部と同一の形状を有する第3開口部の内部に形成されていることを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス装置。
Each of the plurality of display pixels has an electrode, and each of the display pixels is partitioned by a partition;
The partition includes a first partition having a first opening exposing the electrode, and a second partition formed on the first partition and having a second opening exposing a part of the electrode and the first partition. And
The organic electroluminescence layer of each of the plurality of display pixels is formed on the electrode,
The organic electroluminescence layer included in each of the plurality of dummy pixels is formed on a layer in which the same material as that of the first partition wall is extended, and in a layer in which the same material as that of the second partition wall is extended. 3. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is formed inside a third opening having the same shape as the second opening.
基板と、前記基板上に形成された回路素子部とをさらに有し、
前記複数の表示画素は各々前記回路素子部上に形成された電極を有し、かつ前記表示画素の各々は隔壁によって仕切られ、
前記隔壁は前記電極を露出する第1開口部を有する第1隔壁と、前記第1隔壁上に形成され、前記電極及び前記第1隔壁の一部を露出する第2開口部を有する第2隔壁とを有し、
前記複数の表示画素の各々が有する前記有機エレクトロルミネッセンス層は、前記電極上に形成され、
前記複数のダミー画素の各々が有する前記有機エレクトロルミネッセンス層は、前記回路素子部上であって、前記第2隔壁と同一材料が延設された層に形成された前記第2開口部と同一の形状を有する第3開口部の内部に形成されていることを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス装置。
A substrate, and a circuit element portion formed on the substrate,
Each of the plurality of display pixels has an electrode formed on the circuit element unit, and each of the display pixels is partitioned by a partition;
The partition includes a first partition having a first opening exposing the electrode, and a second partition formed on the first partition and having a second opening exposing a part of the electrode and the first partition. And
The organic electroluminescence layer of each of the plurality of display pixels is formed on the electrode,
The organic electroluminescence layer of each of the plurality of dummy pixels is the same as the second opening formed on the circuit element portion and in a layer in which the same material as the second partition wall is extended. The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is formed inside a third opening having a shape.
JP2002002627A 2000-11-27 2002-01-09 Organic electroluminescence device Expired - Lifetime JP4042409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002002627A JP4042409B2 (en) 2000-11-27 2002-01-09 Organic electroluminescence device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-359885 2000-11-27
JP2000359885 2000-11-27
JP2002002627A JP4042409B2 (en) 2000-11-27 2002-01-09 Organic electroluminescence device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001356190A Division JP3628997B2 (en) 2000-11-27 2001-11-21 Method for manufacturing organic electroluminescence device

Related Child Applications (5)

Application Number Title Priority Date Filing Date
JP2005163954A Division JP4042762B2 (en) 2000-11-27 2005-06-03 ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE
JP2005163956A Division JP4086059B2 (en) 2000-11-27 2005-06-03 Method for manufacturing organic electroluminescence device
JP2005163953A Division JP4241670B2 (en) 2000-11-27 2005-06-03 Organic electroluminescence device
JP2005163952A Division JP4241669B2 (en) 2000-11-27 2005-06-03 Organic electroluminescence device
JP2005163955A Division JP4086058B2 (en) 2000-11-27 2005-06-03 Method for manufacturing organic electroluminescence device

Publications (3)

Publication Number Publication Date
JP2002252083A JP2002252083A (en) 2002-09-06
JP2002252083A5 JP2002252083A5 (en) 2005-10-13
JP4042409B2 true JP4042409B2 (en) 2008-02-06

Family

ID=26604642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002002627A Expired - Lifetime JP4042409B2 (en) 2000-11-27 2002-01-09 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4042409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722007B2 (en) 2014-12-31 2017-08-01 Samsung Display Co., Ltd. Light emitting display device

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4226867B2 (en) * 2002-09-25 2009-02-18 株式会社 日立ディスプレイズ Display device
JP3997888B2 (en) 2002-10-25 2007-10-24 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and electronic apparatus
US6771027B2 (en) * 2002-11-21 2004-08-03 Candescent Technologies Corporation System and method for adjusting field emission display illumination
JP4173722B2 (en) 2002-11-29 2008-10-29 三星エスディアイ株式会社 Vapor deposition mask, organic EL element manufacturing method using the same, and organic EL element
KR100538325B1 (en) * 2002-12-31 2005-12-22 엘지.필립스 엘시디 주식회사 Electro-luminescence Display Device And Fabricating Method and Apparatus Thereof
KR100936908B1 (en) 2003-07-18 2010-01-18 삼성전자주식회사 Thin film transistor of electroluminescent device, electroluminescent device using same and manufacturing method thereof
US8212474B2 (en) 2004-01-08 2012-07-03 Samsung Electronics Co., Ltd. Display device, and method of manufacturing the display device
US7495388B2 (en) * 2004-01-08 2009-02-24 Samsung Electronics Co., Ltd. Display device, and method of manufacturing the display device
JP4466115B2 (en) * 2004-02-24 2010-05-26 セイコーエプソン株式会社 ORGANIC ELECTROLUMINESCENT DEVICE, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE, AND ELECTRONIC DEVICE
JP4055171B2 (en) 2004-05-19 2008-03-05 セイコーエプソン株式会社 Color filter substrate manufacturing method, electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP2005339827A (en) * 2004-05-24 2005-12-08 Ricoh Co Ltd Organic el light-emitting element substrate, apparatus for manufacturing the same and image display using the same
JP2005339809A (en) * 2004-05-24 2005-12-08 Ricoh Co Ltd Organic el light-emitting element substrate, manufacturing apparatus thereof and image display using the same
JP4161956B2 (en) 2004-05-27 2008-10-08 セイコーエプソン株式会社 Color filter substrate manufacturing method, electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP2006038987A (en) 2004-07-23 2006-02-09 Seiko Epson Corp Display device, display device manufacturing method, and electronic apparatus
JP4613700B2 (en) * 2005-06-01 2011-01-19 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
JP4483757B2 (en) 2005-09-30 2010-06-16 セイコーエプソン株式会社 Organic EL device and optical device
TWI336953B (en) 2006-03-29 2011-02-01 Pioneer Corp Organic electroluminescent display panel and manufacturing method thereof
JP4924314B2 (en) 2007-09-14 2012-04-25 セイコーエプソン株式会社 Organic EL device and electronic device
KR102052331B1 (en) 2012-12-10 2019-12-06 삼성디스플레이 주식회사 Inkjet print head, apparatus and method using the same for manufacturing organic luminescence display
WO2014108931A1 (en) * 2013-01-08 2014-07-17 ナカンテクノ株式会社 Method for reducing uneven drying in low-viscosity thin-film printing, and print pattern in which said method is applied
KR20200082728A (en) * 2018-12-31 2020-07-08 엘지디스플레이 주식회사 Organic light emitting display device and method of fabricating thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722007B2 (en) 2014-12-31 2017-08-01 Samsung Display Co., Ltd. Light emitting display device

Also Published As

Publication number Publication date
JP2002252083A (en) 2002-09-06

Similar Documents

Publication Publication Date Title
JP3628997B2 (en) Method for manufacturing organic electroluminescence device
JP4042409B2 (en) Organic electroluminescence device
JP5880638B2 (en) Organic electroluminescence device and electronic device
JP4042691B2 (en) Method for manufacturing organic electroluminescence device
JP4042763B2 (en) Organic electroluminescence device and electronic device
JP4042692B2 (en) Method for manufacturing organic electroluminescence device
JP4241669B2 (en) Organic electroluminescence device
JP4042762B2 (en) ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT DEVICE
JP4241670B2 (en) Organic electroluminescence device
JP4086059B2 (en) Method for manufacturing organic electroluminescence device
JP2004087509A5 (en)
JP4086058B2 (en) Method for manufacturing organic electroluminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4042409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term