[go: up one dir, main page]

JP4035256B2 - Internal cleaning equipment for plant piping for power generation - Google Patents

Internal cleaning equipment for plant piping for power generation Download PDF

Info

Publication number
JP4035256B2
JP4035256B2 JP08853299A JP8853299A JP4035256B2 JP 4035256 B2 JP4035256 B2 JP 4035256B2 JP 08853299 A JP08853299 A JP 08853299A JP 8853299 A JP8853299 A JP 8853299A JP 4035256 B2 JP4035256 B2 JP 4035256B2
Authority
JP
Japan
Prior art keywords
pipe
cleaning
water
strainer
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08853299A
Other languages
Japanese (ja)
Other versions
JP2000279906A (en
Inventor
真人 新村
信彦 西
之男 上坂
節雄 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Ebara Industrial Cleaning Co Ltd
Original Assignee
Toshiba Corp
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Ebara Industrial Cleaning Co Ltd filed Critical Toshiba Corp
Priority to JP08853299A priority Critical patent/JP4035256B2/en
Publication of JP2000279906A publication Critical patent/JP2000279906A/en
Application granted granted Critical
Publication of JP4035256B2 publication Critical patent/JP4035256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は化学プラントや発電用プラント等に多数使用される炭素鋼配管等の配管の据え付け工事完了後の現地洗浄工事に好適した発電用プラント配管の内面洗浄方法、内面洗浄保管方法および内面洗浄装置に関する。
【0002】
【従来の技術】
従来における据え付け工事完了後の発電用プラント配管の系統内の洗浄方法およびその装置を図5および図6により説明する。
図5は従来この種の配管内面の洗浄装置を示す系統図で、図6は配管洗浄工程を示す工程図である。図5中、符号1は据え付け工事完了後の発電用プラント配管系統で、洗浄対象物となる配管系統である。配管系統1には洗浄ポンプ2およびストレーナ3が直列接続した循環配管4が取付けられる。
【0003】
洗浄ポンプ2とストレーナ3との間から分岐して給水管5と薬品注入装置6がそれぞれ弁を介して接続し、給水管5に給水ポンプ7と純水槽8が弁を介して接続している。ストレーナ3の上流側の循環配管4から分岐して排水管9が弁を介して接続し、排水管9の下流側は弁を介して中和槽10と沈殿槽11に並列接続される。
【0004】
沈殿槽11には弁を有する放水管12が設けられ、中和槽10には排水ポンプ13が設けられ、排水ポンプ13は流入管16に接続し弁を介して活性炭処理塔15に接続している。活性炭処理塔15の出口側は弁を介して流出管14が接続し、流出管14は沈殿槽11に接続している。上記洗浄装置における洗浄方法としては図6に示した工程図に従っている。
【0005】
すなわち、押し出し洗浄,循環洗浄,アルカリ洗浄および界面活性剤添加後、配管内面洗浄して保管される。それぞれの工程においてはその都度排水処理が行われる。錆の発生を抑制するために純水,ヒドラジンからなる洗浄水(以下、ヒドラジン水という)を使用し、純水槽8内の洗浄水を配管系統1から配管内面に残留する異物とともに押し出し、配管内面の洗浄を行う方法が一般的である。
【0006】
【発明が解決しようとする課題】
従来例では、ヒドラジンは防食効果が高い反面、化学的酸素要求量(以下、CODという)も高く、分解処理を行うためには処理設備が必要で、その排水処理には多大な時間と労力を要する課題がある。
【0007】
また、ヒドラジンは変異原性が認められた化学物質として公表されており、薬品としての取扱いが厄介であり、さらに配管を洗浄する洗浄水は押し出しで使用し、再利用しないため、図6に示した工程図のようにプラント全体では多量の洗浄水と、大規模な廃水処理設備を必要とする課題がある。
【0008】
すなわち、従来は、例えば原子力プラント1基の建設の洗浄に要する水(純水)は約35,000m3 にものぼり、造水やその設備に要する費用が相当に必要であった。
【0009】
また、昨今の水事情では、渇水時に水事情が逼迫して、十分な供給が困難となる場合も考えられ、かかる場合には工事を一時的に中断せねばならず、工期遅延の大きな要因となりうる。
【0010】
本発明は上記課題を解決するためになされたもので、ヒドラジンの処理等に要する課題および洗浄水を多量に使用する課題を解決し、脱気水、この脱気水にアンモニアを添加した溶液、または純水にアンモニアを添加した溶液から選択された少なくとも一種の洗浄水を循環させながらろ過設備に通水することにより、従来例と同様の防食効果を有し、かつ洗浄水の使用量が少なく廃水処理方法が簡単な発電用プラント配管の内面洗浄方法、内面洗浄保管方法および内面洗浄装置を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明は、洗浄対象物となる配管系統に洗浄ポンプおよびストレーナを有する循環配管を接続して洗浄ループを形成し、前記洗浄ポンプと前記ストレーナとの間から分岐して給水管とアンモニアを貯留する薬品注入装置を接続し、前記給水管に脱気装置を接続するとともに、この脱気装置に純水槽を接続し、前記洗浄ポンプの上流側にミキシング装置を接続し、前記ミキシング装置に蒸気供給管を介して蒸気供給装置を接続し、前記配管系統と前記ストレーナとの間を接続する前記循環配管と並列にろ過フィルタを接続し、前記ストレーナの入口側に排水管を分岐接続してなることを特徴とする。請求項1の発明によれば、仮設配管設備の簡素化と、廃水処理設備の簡素化を図ることができる。
【0018】
請求項2の発明は、前記ろ過フィルタは前段に活性炭処理塔を設けてなることを特徴とする。
【0019】
請求項3の発明は、前記ろ過フィルタは前段に脱塩装置を設けてなることを特徴とする。
請求項3の発明によれば、配管内の異物に由来する溶融塩類による水質の悪化を防止することができる。また、アンモニアを添加した溶液を洗浄水として用いた場合、脱塩装置により、アニオンだけを除去し、洗浄水の防食効果を保持することができる。
【0026】
【発明の実施の形態】
図1および図2により本発明に係る発電用プラント配管の内面洗浄方法およびその装置の第1の実施の形態を説明する。
図1は本発明に係る発電用プラント配管の内面洗浄装置の実施の形態を説明するための系統図で、図2は同じく洗浄方法の実施の形態を説明するための工程図である。なお、図1中、図5と同一部分には同一符号を付して重複する部分の説明は省略する。
【0027】
図1において、配管系統1と洗浄ポンプ2との間に接続した循環配管4に弁を介してブロア18が接続し、また洗浄ポンプ2の上流側にミキシング装置17が直列接続している。ミキシング装置17に蒸気供給管19の一端が弁を介して接続し、蒸気供給管19の他端に蒸気供給装置20が接続している。
【0028】
配管系統1の出口側循環配管4と並列にそれぞれ弁を介して活性炭処理塔15,脱塩装置46およびろ過フィルタ21が接続している。ろ過フィルタ21の出口側は循環配管4に弁を介して接続している。循環配管4には弁を介して排水管9が分岐接続し、この排水管9の下流側には廃水槽22が弁を介して接続している。
【0029】
廃水槽22にはサンプリング管23と排水ポンプ13が設置しており、排水ポンプ13の吐出側には弁を有する放水管12が接続し、サンプリング管23は分析装置24に接続している。放水管12から分岐してろ過フィルタ50が弁を介して接続しており、ろ過フィルタ50の下流側に弁を介して脱塩装置51が接続している。脱塩装置51の下流側は弁を介して戻り配管52が接続し、戻り配管52は純水槽8給水ポンプ7の吸込側にそれぞれ弁を介して接続している。
【0030】
前記ミキシング装置17とストレーナ3とを接続する循環配管4には弁を介して給水管5が分岐接続し、この給水管5には弁を介して脱気装置25が接続している。脱気装置25の入口側は給水ポンプ7の吐出側に弁を介して接続している。給水管5には脱気装置25をバイパスするバイパス配管53が弁を介して接続している。給水ポンプ7の吸込側は弁を介して純水槽8に接続している。
【0031】
なお、図1中、符号47は給水ポンプ7の吐出側に弁を介して接続した給水枝管で、この給水枝管47はストレーナ3と排水管9との間の循環配管4に分岐接続している。符号48は薬品注入主管で、薬品注入装置6に接続し、その下流側はストレーナ3の下流側の循環配管4に分岐接続している。49は薬品注入主管48から分岐した薬品注入枝管で、弁を介して給水管5に分岐接続している。
【0032】
ここで、バイパス配管53の弁を閉じることにより脱気装置25を流出した脱気水に薬品注入装置6からのアンモニアを添加することができ、バイパス配管53の弁を開くことにより純水にアンモニアを添加することができる。アンモニアを添加した脱気水またはアンモニアを添加した純水あるいはアンモニアを添加しない純水は洗浄水として給水管5から循環配管4に流入する。
【0033】
しかして、発電用プラント配管の配管系統1を洗浄するために配管系統1に接続する循環配管4,洗浄ポンプ2および循環配管4に付設する前述した機器類で洗浄ループを構成する。そして、洗浄ループ内に純水槽8から給水ポンプ7で供給される洗浄水を流入して循環させ配管系統1の内面を洗浄する。
【0034】
配管系統1の内部に残留する異物はストレーナ3で除去を行う。また、洗浄ループを循環する全流量の一部を活性炭処理塔15,ろ過フィルタ21に導き、活性炭処理塔15で洗浄水中の油脂分等を除去し、ろ過フィルタ21で微小な異物を除去する。洗浄ループには薬品注入装置6が薬品注入主管48および弁を介して接続されており、薬品注入装置6から給水管5または薬品注入主管48を通してアンモニアを添加した洗浄水または添加剤としてアンモニアを洗浄ループに供給する。
【0035】
なお、上述の構成においては、給水ポンプ7によらなくとも、洗浄ポンプ2によって洗浄水を洗浄ループ内で循環させるような構成も実現可能である。また、洗浄ループを循環する洗浄水の水質によっては、活性炭処理塔15とろ過フィルタ21との間に位置する脱塩装置46を通して、溶融塩類を除去するか、あるいはアニオンだけを除去することができる。
【0036】
純水槽8から給水ポンプ7で供給される洗浄水は脱気装置25により溶存酸素量を低減させる。また、配管系統1内の油分除去を行う場合には蒸気供給装置20から蒸気供給管19,ミキシング装置17を介して洗浄ループ内の洗浄水の温度を高め、添加剤(アンモニア)を添加した洗浄水で油分除去を行う。その洗浄水の処理にあたっては、上述の方法によって浄化を行い、保管液とすることもできる。
【0037】
廃水処理を行う場合、洗浄ループから排水管9に導き、一旦廃水槽22で排水を受け、分析装置24で排水の分析を行い、排水基準を判定し、適合していれば排水ポンプ13で放水管12から系外放出を行う。
【0038】
なお、水質条件によって、廃水槽22内の廃水を排水ポンプ13から放水管12,ろ過フィルタ50および脱塩装置51を通して洗浄用水とし、この洗浄用水を戻り配管52を通して純水槽8に戻すか、給水ポンプ7の吸込側に流入して再利用することもできる。
【0039】
洗浄作業が終了し、系統の試運転が始まるまでの間の系統保管に移行する場合には、系統を満水で保管する場合は発電用プラントの配管系統を隔離して満水状態で系統保管に移行させる。
【0040】
また、配管系統内面を乾燥状態に保つ乾燥保管を行う場合には、洗浄ループから水抜きを行った後で、配管系統1内にブロア18から乾燥空気を供給し、乾燥保管に移行させる。
【0041】
図2は本発明に係る発電用プラント配管の内面洗浄方法の実施の形態をまとめて工程図で示したものである。すなわち、図1に示した洗浄ループにより循環洗浄を行い、アルカリ洗浄後、保管する。循環洗浄およびアルカリ洗浄後の排水処理時にはそれぞれ排水を行う。
【0042】
つぎに図3により本発明に係る発電用プラント配管の内面洗浄保管方法の実施の形態を説明する。
本実施の形態はループ式試験装置によりアンモニア添加による配管内面の防食効果を確認した例である。ループ式試験装置は図3に示したように構成されている。
【0043】
すなわち、図3中、符号26は循環タンクで、この循環タンク26の下部側面にポンプ吸込み管27が接続し、ポンプ吸込み管27の下流側に循環ポンプ28,脱気装置入口管29,流量計30および脱気装置25が順次直列接続している。脱気装置25と循環タンク26との間には脱気装置出口管31が接続している。脱気装置出口管31は循環タンク26の上部側面に接続している。
【0044】
脱気装置出口管31には溶存酸素濃度計32および電気伝導度計33が設けられている。循環ポンプ28の吐出側に接続した脱気装置入口管29にバイパス管34が接続し、バイパス管34にテストピース座35および流量計36が接続している。テストピース座35の入口側バイパス管34と溶存酸素濃度計32の入口側の脱気装置出口管31との間に連結管37が接続している。
【0045】
上記構成のループ式試験装置により実プラントにおける洗浄,保管を想定した本発明の方法と従来の方法の比較試験を行った。
(1) 試験水
【表1】

Figure 0004035256
【0046】
試験水のうち、試験−1,試験−2が本発明の方法に対応し、試験−3が従来法に対応する。
(2) テストピース材質:STPT−370
(3) 試験方法
図3に示すループ式試験装置のテストピース座(3ヶ所)35にテストピースを挿入し、装置内に試験水を張込んだ。その後、表2に示すようにテストピース座35に対し、それぞれ操作−1〜3の異なった試験を行い、試験前と試験時に発生した錆を除去したテストピースの重量差から比較評価を行った。
【0047】
【表2】
Figure 0004035256
【0048】
(4) 試験結果
表3から明らかなように、操作−1,2のように全て満水状態の操作であれば、本発明の方法は従来法と同等の値を示した。操作−3の水抜き保管状態では本発明の方法が従来法の1/2の値を示し、防食効果が優れていることが確認された。
【0049】
【表3】
Figure 0004035256
【0050】
つぎに図4に示した試験装置により発電用プラント配管のろ過設備を用いた循環洗浄例を説明する。
図4に示す試験装置はつぎのように構成されている。すなわち、模擬廃水槽38に接続する廃水供給管39は弁および循環ポンプ28を介してろ過水槽41に接続している。ろ過水槽41内にはろ過フィルタ42が内蔵している。ろ過水槽41のろ過水流出管43には圧力計44が設けられてろ過水槽45に接続している。
【0051】
従来から配管系統内を洗浄するために、系統を洗浄水で満水とし、洗浄水を系統から押し出す方法が行われてきた。この方法によると、洗浄水を押し出しで使用するため、多量の洗浄水が必要であった。さらに、系統内の異物を含んだ多量の廃水が発生するため、洗浄する配管系統の容量に応じた廃水処理設備が必要であった。
【0052】
現在では、配管系統の本設または仮設の循環ポンプの吸込み側にストレーナを設置し、最初は押し出しにより洗浄水の濁度を下げ、洗浄水の濁度が下がったところで循環に切換える方法が行われている。この方法によると、洗浄水の使用量は押し出しだけの方法より削減されるものの、洗浄する配管系統の容量に応じた廃水処理設備は必要である。
【0053】
本発明の方法は、配管系統の本設または仮設の循環ポンプ28の吸込み側にストレーナ(60メッシュ程度)を設置し、系統洗浄水で満水とした後、ただちに循環を行い、系統の循環流量に応じた流量を仮設のろ過フィルタ42(孔径2.5 μm)に通水して行う。
【0054】
この方法によれば、洗浄水の再利用が可能であるため、系統からの排出量が少量ですみ、洗浄水の使用量は大幅に削減される。さらに、ろ過フィルタ42に通水されることによって洗浄水の濁度が十分に下がっているので、沈降分離等のための廃水処理設備および廃水処理作業の必要がなく、洗浄水を外部に放出することができる。
【0055】
ストレーナおよびろ過フィルタ42からなるろ過設備において、ろ過フィルタ42を採用するために行った模擬廃水(濁度50度,浮遊物質量48mg/リットルに調製)による試験結果の概要はつぎのとおりである。
【0056】
(1) ろ過フィルタ42の仕様選定
形式 プリーツ型
孔径 2.5 μm
【0057】
(2) 実機適用試験
ろ過面積36m2 以上に維持することにより、下記の処理条件を満足できることが認められた。
ろ過水の浮遊物質量 10mg/リットル以下
通水流量 30m3 /時
通水量 300 m3
【0058】
上記のろ過設備を採用して行った実プラントでの洗浄水使用量(実績値)は、ろ過設備を用いない場合の洗浄水使用量(計画値)の半分以下であり、洗浄水を削減する効果のあること、および廃水処理することなく洗浄水を外部に放出可能であることが確認された。
【0059】
すなわち、従来の洗浄方法によれば、原子力プラント1基の建設の洗浄に要する水(純水)は約35,000m3 にものぼるが、一方、本実施の形態を適用した場合の洗浄用水量は5,000 〜6,000 m3 程度であり、コストや工期遅延の問題を大きく改善することが可能となる。
【0060】
【発明の効果】
本発明の内面洗浄方法によれば、従来ヒドラジンを使用していた廃水処理の煩雑さを解消することができ、洗浄水を多量に使用する必要がなく、廃水処理方法が簡単となる。また、押し出し洗浄工程が削減できるため、使用水量を減少できる。
【0061】
また、本発明の内面洗浄保管方法によれば、配管系統内を洗浄水で満水状態として、配管系統内を防食効果の高い保管状態とすることができる。また、水抜き後、配管系統内を乾燥状態に保ち、防食効果を高めることができる。
さらに、本発明の内面洗浄装置によれば、内面洗浄方法と相俟って、仮設配管設備および廃水処理設備の簡素化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る発電用プラント配管の内面洗浄装置の第1の実施の形態を示す系統図。
【図2】本発明に係る発電用プラント配管の内面洗浄方法の第1の実施の形態を説明するための洗浄工程を示す工程図。
【図3】本発明に係る発電用プラント配管の内面洗浄保管方法の実施の形態を説明するためのループ式試験装置を示す系統図。
【図4】図2における直列式試験装置を示す系統図。
【図5】従来の発電用プラント配管の内面洗浄装置を説明するための系統図。
【図6】従来の発電用プラント配管の内面洗浄方法を説明するための工程図。
【符号の説明】
1…配管系統、2…洗浄ポンプ、3…ストレーナ、4…循環配管、5…給水管、6…薬品注入装置、7…給水ポンプ、8…純水槽、9…排水管、10…中和槽、11…沈殿槽、12…放水管、13…排水ポンプ、14…流出管、15…活性炭処理塔、16…流入管、17…ミキシング装置、18…ブロア、19…蒸気供給管、20…蒸気供給装置、21…ろ過フィルタ、22…廃水槽、23…サンプリング管、24…分析装置、25…脱気装置、26…循環タンク、27…ポンプ吸込み管、28…循環ポンプ、29…脱気装置入口管、30…流量計、31…脱気装置出口管、32…溶存酸素濃度計、33…電気伝導度計、34…バイパス管、35…テストピース座、36…流量計、37…連結管、38…模擬廃水槽、39…廃水供給管、40…圧力計、41…ろ過水槽、42…ろ過フィルタ、43…ろ過水流出管、44…圧力計、45…ろ過水槽、46…脱塩装置、47…給水枝管、48…薬品注入主管、49…薬品注入枝管、50…ろ過フィルタ、51…脱塩装置、52…戻り配管、53…バイパス配管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inner surface cleaning method, an inner surface cleaning storage method, and an inner surface cleaning device for power generation plant piping suitable for on-site cleaning work after completion of installation work of piping such as carbon steel piping used in many chemical plants and power generation plants. About.
[0002]
[Prior art]
A conventional method and apparatus for cleaning a power plant pipe after completion of installation work will be described with reference to FIGS. 5 and 6. FIG.
FIG. 5 is a system diagram showing a conventional pipe inner surface cleaning apparatus of this type, and FIG. 6 is a process diagram showing a pipe cleaning process. In FIG. 5, reference numeral 1 denotes a power generation plant piping system after installation work is completed, which is a piping system to be cleaned. A circulation pipe 4 having a cleaning pump 2 and a strainer 3 connected in series is attached to the piping system 1.
[0003]
The water supply pipe 5 and the chemical injection device 6 are branched from the washing pump 2 and the strainer 3 via a valve, and the water supply pump 7 and the pure water tank 8 are connected to the water supply pipe 5 via a valve. . The drain pipe 9 is branched from the circulation pipe 4 on the upstream side of the strainer 3 and connected through a valve, and the downstream side of the drain pipe 9 is connected in parallel to the neutralization tank 10 and the precipitation tank 11 through the valve.
[0004]
The settling tank 11 is provided with a water discharge pipe 12 having a valve, the neutralization tank 10 is provided with a drain pump 13, and the drain pump 13 is connected to an inflow pipe 16 and connected to an activated carbon treatment tower 15 via a valve. Yes. An outlet pipe 14 is connected to the outlet side of the activated carbon treatment tower 15 via a valve, and the outlet pipe 14 is connected to the sedimentation tank 11. The cleaning method in the cleaning apparatus follows the process diagram shown in FIG.
[0005]
That is, after the extrusion cleaning, the circulation cleaning, the alkali cleaning and the addition of the surfactant, the piping inner surface is cleaned and stored. In each process, wastewater treatment is performed each time. In order to suppress the generation of rust, cleaning water composed of pure water and hydrazine (hereinafter referred to as hydrazine water) is used, and the cleaning water in the pure water tank 8 is pushed out from the piping system 1 together with foreign substances remaining on the inner surface of the piping, and the inner surface of the piping A method of performing the cleaning is generally used.
[0006]
[Problems to be solved by the invention]
In the conventional example, hydrazine has a high anticorrosion effect, but also has a high chemical oxygen demand (hereinafter referred to as COD), and a treatment facility is required to perform the decomposition treatment, and the wastewater treatment takes a lot of time and labor. There is a problem that needs to be done.
[0007]
In addition, hydrazine has been published as a chemical substance that has been confirmed to be mutagenic, and is difficult to handle as a chemical. Furthermore, the water used to wash the piping is used for extrusion and is not reused. As shown in the process diagram, the entire plant has a problem of requiring a large amount of washing water and a large-scale wastewater treatment facility.
[0008]
That is, conventionally, for example, the water (pure water) required for the cleaning of the construction of one nuclear power plant has reached about 35,000 m 3 , and the cost required for water production and its facilities has been considerable.
[0009]
In addition, due to the current water situation, it may be difficult to supply water sufficiently due to the tight water situation during drought. In such a case, construction must be temporarily suspended, which is a major factor in delaying the construction period. sell.
[0010]
The present invention was made in order to solve the above problems, and solved the problems required for the treatment of hydrazine and the like and the problem of using a large amount of washing water, deaerated water, a solution obtained by adding ammonia to the deaerated water, Or, by circulating at least one kind of washing water selected from a solution obtained by adding ammonia to pure water through a filtration facility, the same anticorrosion effect as in the conventional example is obtained and the amount of washing water used is small. An object of the present invention is to provide an inner surface cleaning method, an inner surface cleaning storage method, and an inner surface cleaning apparatus for a power generation plant pipe that have a simple wastewater treatment method.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 is to connect a circulation pipe having a cleaning pump and a strainer to a piping system to be cleaned to form a cleaning loop, and between the cleaning pump and the strainer. A branch water supply pipe and a chemical injection device for storing ammonia are connected, a deaeration device is connected to the water supply pipe, a pure water tank is connected to the deaeration device, and a mixing device is connected upstream of the cleaning pump. Connect, connect a steam supply device to the mixing device via a steam supply pipe, connect a filtration filter in parallel with the circulation piping connecting between the piping system and the strainer, on the inlet side of the strainer The drainage pipe is branched and connected. According to invention of Claim 1, simplification of temporary piping equipment and simplification of waste water treatment equipment can be achieved.
[0018]
The invention of claim 2 is characterized in that the filtration filter is provided with an activated carbon treatment tower in the preceding stage .
[0019]
The invention of claim 3 is characterized in that the filtration filter is provided with a desalinator in the preceding stage.
According to the invention of claim 3, it is possible to prevent deterioration of water quality due to molten salts derived from foreign matters in the pipe. Moreover, when the solution which added ammonia is used as washing water, only an anion can be removed with a desalting apparatus and the anticorrosive effect of washing water can be maintained.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of a method and an apparatus for cleaning an inner surface of a power plant pipe according to the present invention will be described with reference to FIGS.
FIG. 1 is a system diagram for explaining an embodiment of an inner surface cleaning apparatus for power generation plant piping according to the present invention, and FIG. 2 is a process diagram for explaining the embodiment of the cleaning method. In FIG. 1, the same parts as those in FIG.
[0027]
In FIG. 1, a blower 18 is connected to a circulation pipe 4 connected between a piping system 1 and a cleaning pump 2 via a valve, and a mixing device 17 is connected in series on the upstream side of the cleaning pump 2. One end of a steam supply pipe 19 is connected to the mixing apparatus 17 via a valve, and the steam supply apparatus 20 is connected to the other end of the steam supply pipe 19.
[0028]
An activated carbon treatment tower 15, a desalinator 46, and a filtration filter 21 are connected in parallel with the outlet-side circulation pipe 4 of the piping system 1 through respective valves. The outlet side of the filtration filter 21 is connected to the circulation pipe 4 through a valve. A drain pipe 9 is branched and connected to the circulation pipe 4 via a valve, and a waste water tank 22 is connected to the downstream side of the drain pipe 9 via a valve.
[0029]
A sampling pipe 23 and a drainage pump 13 are installed in the wastewater tank 22. A drainage pipe 12 having a valve is connected to the discharge side of the drainage pump 13, and the sampling pipe 23 is connected to an analyzer 24. A filtration filter 50 is branched from the water discharge pipe 12 and connected via a valve, and a desalting apparatus 51 is connected to the downstream side of the filtration filter 50 via a valve. A return pipe 52 is connected to the downstream side of the desalination apparatus 51 via a valve, and the return pipe 52 is connected to the suction side of the pure water tank 8 water supply pump 7 via a valve.
[0030]
A water supply pipe 5 is branched and connected to the circulation pipe 4 connecting the mixing device 17 and the strainer 3 via a valve, and a deaeration device 25 is connected to the water supply pipe 5 via a valve. The inlet side of the deaerator 25 is connected to the discharge side of the water supply pump 7 via a valve. A bypass pipe 53 that bypasses the deaeration device 25 is connected to the water supply pipe 5 via a valve. The suction side of the water supply pump 7 is connected to the pure water tank 8 through a valve.
[0031]
In FIG. 1, reference numeral 47 is a water supply branch pipe connected to the discharge side of the water supply pump 7 via a valve. This water supply branch pipe 47 is branched and connected to the circulation pipe 4 between the strainer 3 and the drain pipe 9. ing. Reference numeral 48 denotes a chemical injection main pipe, which is connected to the chemical injection device 6, and its downstream side is branched and connected to the circulation pipe 4 on the downstream side of the strainer 3. 49 is a chemical injection branch pipe branched from the chemical injection main pipe 48, and is branched and connected to the water supply pipe 5 through a valve.
[0032]
Here, ammonia from the chemical injection device 6 can be added to the deaerated water that has flowed out of the deaerator 25 by closing the valve of the bypass pipe 53, and ammonia can be added to the pure water by opening the valve of the bypass pipe 53. Can be added. The deaerated water to which ammonia is added, pure water to which ammonia is added, or pure water to which ammonia is not added flows from the water supply pipe 5 into the circulation pipe 4 as cleaning water.
[0033]
Therefore, in order to clean the piping system 1 of the power generation plant piping, the cleaning loop is constituted by the above-described devices attached to the circulation pipe 4, the cleaning pump 2, and the circulation pipe 4 connected to the piping system 1. Then, the cleaning water supplied from the pure water tank 8 by the water supply pump 7 flows into the cleaning loop and circulates to clean the inner surface of the piping system 1.
[0034]
Foreign matter remaining inside the piping system 1 is removed by the strainer 3. Further, a part of the total flow rate circulating in the cleaning loop is guided to the activated carbon treatment tower 15 and the filtration filter 21, oil and fat in the washing water is removed by the activated carbon treatment tower 15, and minute foreign matters are removed by the filtration filter 21. A chemical injection device 6 is connected to the cleaning loop through a chemical injection main pipe 48 and a valve, and ammonia is washed from the chemical injection device 6 through the water supply pipe 5 or the chemical injection main pipe 48 as a cleaning water or additive. Supply to the loop.
[0035]
In the above-described configuration, a configuration in which the cleaning water is circulated in the cleaning loop by the cleaning pump 2 can be realized without using the water supply pump 7. Further, depending on the quality of the washing water circulating in the washing loop, the molten salt can be removed or only the anion can be removed through the desalinator 46 located between the activated carbon treatment tower 15 and the filtration filter 21. .
[0036]
The cleaning water supplied from the pure water tank 8 by the water supply pump 7 reduces the amount of dissolved oxygen by the deaeration device 25. When removing oil from the piping system 1, the temperature of the cleaning water in the cleaning loop is increased from the steam supply device 20 through the steam supply pipe 19 and the mixing device 17, and an additive (ammonia) is added. Remove oil with water. In the treatment of the washing water, purification can be performed by the above-described method to obtain a storage liquid.
[0037]
When wastewater treatment is performed, the wastewater is guided from the washing loop to the drainage pipe 9, and once drained by the wastewater tank 22, analyzed by the analyzer 24, the drainage standard is judged, and if it conforms, it is discharged by the drainage pump 13. Release from the water pipe 12 outside the system.
[0038]
Depending on the water quality conditions, the waste water in the waste water tank 22 is made into washing water from the drain pump 13 through the water discharge pipe 12, the filtration filter 50 and the desalinator 51, and this washing water is returned to the pure water tank 8 through the return pipe 52 or is supplied with water. It can also be reused by flowing into the suction side of the pump 7.
[0039]
When shifting to grid storage between the end of the cleaning operation and the start of system commissioning, when storing the grid in full water, isolate the power plant piping system and transfer to grid storage in a full condition. .
[0040]
Further, when performing dry storage to keep the inner surface of the piping system in a dry state, after draining water from the cleaning loop, dry air is supplied into the piping system 1 from the blower 18 to shift to dry storage.
[0041]
FIG. 2 is a process diagram collectively showing an embodiment of a method for cleaning the inner surface of a plant pipe for power generation according to the present invention. That is, circulation cleaning is performed by the cleaning loop shown in FIG. Drainage is performed at the time of wastewater treatment after circulation washing and alkali washing.
[0042]
Next, an embodiment of the method for cleaning and storing the inner surface of a power plant pipe according to the present invention will be described with reference to FIG.
This embodiment is an example in which the anticorrosion effect on the inner surface of the pipe by adding ammonia is confirmed by a loop type test apparatus. The loop type test apparatus is configured as shown in FIG.
[0043]
That is, in FIG. 3, reference numeral 26 denotes a circulation tank. A pump suction pipe 27 is connected to the lower side surface of the circulation tank 26, and a circulation pump 28, a deaerator inlet pipe 29, a flow meter is connected to the downstream side of the pump suction pipe 27. 30 and deaerator 25 are connected in series in sequence. A deaerator outlet pipe 31 is connected between the deaerator 25 and the circulation tank 26. The deaerator outlet pipe 31 is connected to the upper side surface of the circulation tank 26.
[0044]
The deaerator outlet pipe 31 is provided with a dissolved oxygen concentration meter 32 and an electric conductivity meter 33. A bypass pipe 34 is connected to the deaerator inlet pipe 29 connected to the discharge side of the circulation pump 28, and a test piece seat 35 and a flow meter 36 are connected to the bypass pipe 34. A connecting pipe 37 is connected between the inlet side bypass pipe 34 of the test piece seat 35 and the deaerator outlet pipe 31 on the inlet side of the dissolved oxygen concentration meter 32.
[0045]
A comparison test between the method of the present invention and the conventional method was performed by assuming the cleaning and storage in an actual plant by using the loop type testing apparatus having the above configuration.
(1) Test water [Table 1]
Figure 0004035256
[0046]
Among the test waters, Test-1 and Test-2 correspond to the method of the present invention, and Test-3 corresponds to the conventional method.
(2) Test piece material: STPT-370
(3) Test method A test piece was inserted into the test piece seat (three places) 35 of the loop type test apparatus shown in FIG. 3, and test water was filled in the apparatus. Thereafter, as shown in Table 2, the test piece seat 35 was subjected to different tests of operations -1 to 3, and a comparative evaluation was performed from the weight difference between the test pieces from which rust generated during the test and before the test was removed. .
[0047]
[Table 2]
Figure 0004035256
[0048]
(4) Test results As is clear from Table 3, the method of the present invention showed a value equivalent to that of the conventional method if the operation was fully filled as in operations-1 and 2. In the drained storage state of Operation-3, the method of the present invention showed a value half that of the conventional method, and it was confirmed that the anticorrosion effect was excellent.
[0049]
[Table 3]
Figure 0004035256
[0050]
Next, an example of circulating cleaning using a filtration facility for power generation plant piping will be described using the test apparatus shown in FIG.
The test apparatus shown in FIG. 4 is configured as follows. That is, the waste water supply pipe 39 connected to the simulated waste water tank 38 is connected to the filtered water tank 41 via the valve and the circulation pump 28. A filtration filter 42 is built in the filtration water tank 41. The filtered water outflow pipe 43 of the filtered water tank 41 is provided with a pressure gauge 44 and connected to the filtered water tank 45.
[0051]
Conventionally, in order to clean the inside of a piping system, a method of filling the system with cleaning water and pushing the cleaning water out of the system has been performed. According to this method, since washing water is used for extrusion, a large amount of washing water is required. Further, since a large amount of waste water containing foreign substances in the system is generated, a waste water treatment facility corresponding to the capacity of the piping system to be cleaned is necessary.
[0052]
At present, a strainer is installed on the suction side of the main or temporary circulation pump in the piping system, and the turbidity of the washing water is reduced by pushing it out first, and when the turbidity of the washing water is lowered, it is switched to circulation. ing. According to this method, although the amount of cleaning water used is reduced compared to the method of extrusion only, a wastewater treatment facility corresponding to the capacity of the piping system to be cleaned is necessary.
[0053]
In the method of the present invention, a strainer (about 60 mesh) is installed on the suction side of the main or temporary circulation pump 28 in the piping system, and after the water is filled with the system wash water, it is immediately circulated to the circulation flow rate of the system. A corresponding flow rate is passed through a temporary filtration filter 42 (pore diameter 2.5 μm).
[0054]
According to this method, since the cleaning water can be reused, the amount of discharge from the system is small, and the usage of the cleaning water is greatly reduced. Furthermore, since the turbidity of the washing water is sufficiently lowered by being passed through the filtration filter 42, there is no need for waste water treatment facilities and waste water treatment work for sedimentation separation, etc., and the washing water is discharged to the outside. be able to.
[0055]
The outline of the test results with simulated wastewater (prepared to turbidity 50 degrees, suspended matter amount 48 mg / liter) conducted to adopt the filtration filter 42 in the filtration facility comprising the strainer and the filtration filter 42 is as follows.
[0056]
(1) Specification selection format for filtration filter 42 Pleated hole diameter 2.5 μm
[0057]
(2) Actual machine application test It was confirmed that the following treatment conditions could be satisfied by maintaining the filtration area at 36m2 or more.
Flow rate of filtered water: 10 mg / liter or less Flow rate: 30 m 3 / Hour rate: 300 m 3
[0058]
The amount of cleaning water used (actual value) in the actual plant using the above filtration equipment is less than half of the amount of washing water used (the planned value) when the filtration equipment is not used. It was confirmed that there is an effect and that the wash water can be discharged to the outside without treating the waste water.
[0059]
That is, according to the conventional cleaning method, the amount of water (pure water) required for cleaning of the construction of one nuclear power plant is about 35,000 m 3 , while the amount of water for cleaning when this embodiment is applied is It is about 5,000 to 6,000 m 3 , and it is possible to greatly improve the cost and construction delay problems.
[0060]
【The invention's effect】
According to the inner surface cleaning method of the present invention, the complexity of wastewater treatment that has conventionally used hydrazine can be eliminated, and it is not necessary to use a large amount of cleaning water, and the wastewater treatment method is simplified. Moreover, since the extrusion washing process can be reduced, the amount of water used can be reduced.
[0061]
Further, according to the inner surface cleaning and storing method of the present invention, the inside of the piping system can be filled with cleaning water, and the inside of the piping system can be stored with a high anticorrosion effect. Moreover, after draining, the inside of the piping system can be kept dry, and the anticorrosion effect can be enhanced.
Furthermore, according to the inner surface cleaning apparatus of the present invention, in combination with the inner surface cleaning method, the temporary piping facility and the waste water treatment facility can be simplified.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of an inner surface cleaning apparatus for power generation plant piping according to the present invention.
FIG. 2 is a process diagram showing a cleaning process for explaining a first embodiment of a method for cleaning an inner surface of a plant pipe for power generation according to the present invention.
FIG. 3 is a system diagram showing a loop type test apparatus for explaining an embodiment of a method for cleaning and storing the inner surface of a power plant pipe according to the present invention.
4 is a system diagram showing a series test apparatus in FIG. 2;
FIG. 5 is a system diagram for explaining a conventional inner surface cleaning apparatus for power generation plant piping.
FIG. 6 is a process diagram for explaining a conventional method for cleaning the inner surface of a power plant pipe.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Piping system, 2 ... Cleaning pump, 3 ... Strainer, 4 ... Circulation piping, 5 ... Water supply pipe, 6 ... Chemical injection device, 7 ... Water supply pump, 8 ... Pure water tank, 9 ... Drain pipe, 10 ... Neutralization tank , 11 ... Precipitation tank, 12 ... Drain pipe, 13 ... Drain pump, 14 ... Outflow pipe, 15 ... Activated carbon treatment tower, 16 ... Inflow pipe, 17 ... Mixing device, 18 ... Blower, 19 ... Steam supply pipe, 20 ... Steam Supply device, 21 ... filtration filter, 22 ... waste water tank, 23 ... sampling tube, 24 ... analyzer, 25 ... deaeration device, 26 ... circulation tank, 27 ... pump suction pipe, 28 ... circulation pump, 29 ... deaeration device Inlet pipe, 30 ... Flow meter, 31 ... Deaerator outlet pipe, 32 ... Dissolved oxygen concentration meter, 33 ... Electrical conductivity meter, 34 ... Bypass pipe, 35 ... Test piece seat, 36 ... Flow meter, 37 ... Connecting pipe , 38 ... Simulated waste water tank, 39 ... Waste water supply pipe, 40 ... Pressure gauge, 41 ... Filtration water tank, 42 ... Filtration filter, 43 ... Filtration water outflow pipe, 44 ... Pressure gauge, 45 ... Filtration water tank, 4 6 ... Desalination equipment, 47 ... Feed water branch pipe, 48 ... Chemical injection main pipe, 49 ... Chemical injection branch pipe, 50 ... Filtration filter, 51 ... Desalination equipment, 52 ... Return pipe, 53 ... Bypass pipe.

Claims (3)

洗浄対象物となる配管系統に洗浄ポンプおよびストレーナを有する循環配管を接続して洗浄ループを形成し、前記洗浄ポンプと前記ストレーナとの間から分岐して給水管とアンモニアを貯留する薬品注入装置を接続し、前記給水管に脱気装置を接続するとともに、この脱気装置に純水槽を接続し、前記洗浄ポンプの上流側にミキシング装置を接続し、前記ミキシング装置に蒸気供給管を介して蒸気供給装置を接続し、前記配管系統と前記ストレーナとの間を接続する前記循環配管と並列にろ過フィルタを接続し、前記ストレーナの入口側に排水管を分岐接続してなることを特徴とする発電用プラント配管の内面洗浄装置。A chemical injection device for connecting a circulation pipe having a cleaning pump and a strainer to a piping system to be cleaned to form a cleaning loop, branching between the cleaning pump and the strainer, and storing a water supply pipe and ammonia. A deaerator is connected to the water supply pipe, a pure water tank is connected to the deaerator, a mixing device is connected upstream of the cleaning pump, and steam is supplied to the mixing device via a steam supply pipe. connect the supply device, the said circulation pipe and the filtration filter in parallel connecting the piping system and said strainer connect, characterized by comprising a discharge pipe branches connected to the inlet side of the strainer Internal cleaning equipment for power plant piping. ] 前記ろ過フィルタは前段に活性炭処理塔を設けてなることを特徴とする請求項記載の発電用プラント配管の内面洗浄装置。] The filtration filter inner surface cleaning apparatus of the power generation plant pipe according to claim 1, characterized by being provided with activated carbon treatment column in front. 前記ろ過フィルタは前段に脱塩装置を設けてなることを特徴とする請求項1又は2記載の発電用プラント配管の内面洗浄装置。The apparatus for cleaning an inner surface of a plant pipe for power generation according to claim 1 or 2, wherein the filtration filter is provided with a desalination device in the preceding stage.
JP08853299A 1999-03-30 1999-03-30 Internal cleaning equipment for plant piping for power generation Expired - Lifetime JP4035256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08853299A JP4035256B2 (en) 1999-03-30 1999-03-30 Internal cleaning equipment for plant piping for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08853299A JP4035256B2 (en) 1999-03-30 1999-03-30 Internal cleaning equipment for plant piping for power generation

Publications (2)

Publication Number Publication Date
JP2000279906A JP2000279906A (en) 2000-10-10
JP4035256B2 true JP4035256B2 (en) 2008-01-16

Family

ID=13945460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08853299A Expired - Lifetime JP4035256B2 (en) 1999-03-30 1999-03-30 Internal cleaning equipment for plant piping for power generation

Country Status (1)

Country Link
JP (1) JP4035256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345755A (en) * 2015-07-13 2017-01-25 中国石油天然气股份有限公司 Cleaning method for gathering and transportation pipe network

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010047746A (en) * 1999-11-23 2001-06-15 도시에이 가스마 washing apparatus of distributing pipe
JP2002052322A (en) * 2000-08-10 2002-02-19 Kurita Water Ind Ltd Cleaning method
JP2003024892A (en) * 2001-07-13 2003-01-28 Chubu Plant Service Co Ltd Method and apparatus for cleaning cooling water pipe
JP4649808B2 (en) * 2001-09-20 2011-03-16 栗田エンジニアリング株式会社 New plant equipment and pipe cleaning method
JP4710561B2 (en) * 2005-11-16 2011-06-29 栗田工業株式会社 Anti-corrosion method for boilers during suspension
JP2012115730A (en) * 2010-11-29 2012-06-21 Mitsubishi Heavy Ind Ltd Method of cleaning piping
JP5501266B2 (en) * 2011-02-25 2014-05-21 日立Geニュークリア・エナジー株式会社 Pipe cleaning method in nuclear power plant
JP6105220B2 (en) * 2011-07-12 2017-03-29 高砂熱学工業株式会社 Treatment method of flushing waste water from piping system of equipment with galvanized steel pipes
CN106345756B (en) * 2016-08-23 2018-04-24 中国化学工程第十六建设有限公司 A kind of large-scale compressor group oil circuit integral construction method
JP7150594B2 (en) * 2018-12-27 2022-10-11 三菱重工業株式会社 Boiler plant cleaning storage method and cleaning storage device
CN112226779A (en) * 2020-11-08 2021-01-15 西安热工研究院有限公司 A chemical cleaning system and method for the secondary circuit of a high temperature gas-cooled reactor nuclear power unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345755A (en) * 2015-07-13 2017-01-25 中国石油天然气股份有限公司 Cleaning method for gathering and transportation pipe network

Also Published As

Publication number Publication date
JP2000279906A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP4035256B2 (en) Internal cleaning equipment for plant piping for power generation
JP6762258B2 (en) Reverse osmosis treatment system and reverse osmosis treatment method
JP4042967B2 (en) Filtration device backwash method
JP2000500392A (en) Cleaning method of immersion membrane type filtration device
CN102814123A (en) Reverse osmosis membrane chemical cleaning method
US20070158278A1 (en) Sand filter cleaning apparatus and method thereof
CN103894072B (en) Seperation film purging system and the seperation film cleaning method using the system
CN102249372A (en) Immersed ultrafiltration and device and preparation system of pure water
CN205099414U (en) Reverse osmosis water treatment equipment
CN108314204B (en) Process system for treating geothermal tail water by utilizing tubular membrane
CN203436889U (en) Checking, guiding and filtering device
JP2011067716A (en) Water treatment method
JP2006255708A (en) Method for backwashing of hollow fiber membrane and hollow fiber membrane water treatment apparatus
CN214360405U (en) A highly integrated reverse osmosis membrane device for waste water treatment
RU2199377C1 (en) Membrane plant for separation of solutions
CN216630355U (en) Reverse osmosis membrane cleaning device
CN211871404U (en) Water purification system
JP3202605B2 (en) Plant chemical cleaning method and equipment
RU101707U1 (en) PREPARATION SYSTEM FOR INDUSTRIAL AND DOMESTIC WASTE WATERS
JP7134458B2 (en) water softener
WO2007076611A1 (en) Sand filter cleaning apparatus and method thereof
JP3881941B2 (en) Hollow fiber membrane backwash method and hollow fiber membrane water treatment apparatus
JP6999255B1 (en) Wastewater treatment system and its operation method
CN219658399U (en) Radioactive waste liquid treatment device
CN217746533U (en) Ceramic membrane CIP belt cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term