JP4030186B2 - Carbon electrode for chip-type quantitative analysis using enzyme and its production method - Google Patents
Carbon electrode for chip-type quantitative analysis using enzyme and its production method Download PDFInfo
- Publication number
- JP4030186B2 JP4030186B2 JP17175898A JP17175898A JP4030186B2 JP 4030186 B2 JP4030186 B2 JP 4030186B2 JP 17175898 A JP17175898 A JP 17175898A JP 17175898 A JP17175898 A JP 17175898A JP 4030186 B2 JP4030186 B2 JP 4030186B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- carbon
- graphite
- enzyme
- quantitative analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 53
- 229910052799 carbon Inorganic materials 0.000 title claims description 24
- 102000004190 Enzymes Human genes 0.000 title claims description 17
- 108090000790 Enzymes Proteins 0.000 title claims description 17
- 238000004445 quantitative analysis Methods 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 229910002804 graphite Inorganic materials 0.000 claims description 27
- 239000010439 graphite Substances 0.000 claims description 27
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 14
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 22
- 239000000126 substance Substances 0.000 description 17
- 229940088598 enzyme Drugs 0.000 description 14
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 12
- 239000008103 glucose Substances 0.000 description 12
- 235000012000 cholesterol Nutrition 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 8
- -1 polyethylene terephthalate Polymers 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 108091006149 Electron carriers Proteins 0.000 description 6
- 239000012488 sample solution Substances 0.000 description 6
- 108010015776 Glucose oxidase Proteins 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 108010089254 Cholesterol oxidase Proteins 0.000 description 4
- 239000004366 Glucose oxidase Substances 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229940116332 glucose oxidase Drugs 0.000 description 4
- 235000019420 glucose oxidase Nutrition 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000007833 carbon precursor Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 238000003411 electrode reaction Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007849 furan resin Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 231100000956 nontoxicity Toxicity 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000276 potassium ferrocyanide Substances 0.000 description 2
- MMXZSJMASHPLLR-UHFFFAOYSA-N pyrroloquinoline quinone Chemical compound C12=C(C(O)=O)C=C(C(O)=O)N=C2C(=O)C(=O)C2=C1NC(C(=O)O)=C2 MMXZSJMASHPLLR-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 102000034279 3-hydroxybutyrate dehydrogenases Human genes 0.000 description 1
- 108090000124 3-hydroxybutyrate dehydrogenases Proteins 0.000 description 1
- RXGJTUSBYWCRBK-UHFFFAOYSA-M 5-methylphenazinium methyl sulfate Chemical compound COS([O-])(=O)=O.C1=CC=C2[N+](C)=C(C=CC=C3)C3=NC2=C1 RXGJTUSBYWCRBK-UHFFFAOYSA-M 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 229910000497 Amalgam Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 108010050375 Glucose 1-Dehydrogenase Proteins 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 1
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 1
- 108010073450 Lactate 2-monooxygenase Proteins 0.000 description 1
- 108010007843 NADH oxidase Proteins 0.000 description 1
- 229930192627 Naphthoquinone Natural products 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 108010046334 Urease Proteins 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical class ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 108010023417 cholesterol dehydrogenase Proteins 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000003028 enzyme activity measurement method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 150000002791 naphthoquinones Chemical class 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229940107700 pyruvic acid Drugs 0.000 description 1
- 235000011835 quiches Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 108010085346 steroid delta-isomerase Proteins 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、試料液中の特定物質量を酵素活性を利用して電気化学的に迅速かつ高精度に測定することを可能にする炭素電極及びその製造方法に関するものである。
【0002】
【従来の技術】
従来、試料液中の特定物質量を電気化学的方法により測定するための作用電極としては、水銀滴下電極、静止水銀電極、白金、金、金アマルガム、銅、炭素(グラッシーカーボン、カーボンファイバー、カーボンペースト、パイログラファイト)などが検討されてきたが、その中でもグラッシーカーボンの利用が主流になってきている。しかしながら、グラッシーカーボンは電流感度が低く、高い正電位で電解質を介して電位がかかると、電極表面の再現性が悪くなる。そのために適用できる電位範囲は+1.0 V付近までであった。また酸化処理などの前処理の影響が大きく、測定の再現性に問題があった。
【0003】
黒鉛は電位窓も広く、電極反応活性があり、生体を害する毒性もないので有用な電極材料であるが、機械的強度に乏しく、単独では組織内に電解液が浸透するので油や樹脂を含浸する必要があり、有機溶媒が僅かでも含まれる系では含浸物が溶出するので電気化学的特性のバラツキが多く、データの再現性が得られなかった。これにも関わらず黒鉛の結晶端面(エッジ面)は、電極反応活性に富み、電位窓が大きく、前処理も容易であり、経時劣化せず安定性が高く、溶出せず毒性がない、などの優れた性質を有し、この性質に基づき、不浸透性を示すガラス状炭素をマトリックスとして、黒鉛を一方向に配向させた黒鉛複合炭素材料とすることにより得られた黒鉛/ガラス状炭素複合炭素による電極は、油や樹脂の含浸を必要とせず、単独で不浸透性を持ち、機械的強度が大きい。
【0004】
しかしながら、前記黒鉛/ガラス状炭素複合炭素による電極はその端面の活性の強さにより、酵素活性測定に不利な性質、すなわち、試料液中に含まれる測定を阻害する物質をも多量に電極表面に吸着してしまうという欠点を有していた。そこで、電極の特性を失うことなく、その阻害物質の影響を排除する方法について、高分子の透過性薄膜をその表面に被覆することで、阻害物質の濃度に影響されることなく、試料液中の特定物質量を酵素を用いて迅速かつ高精度に測定しうる方法について以下のような定量分析用炭素電極を提案した(特願平8−211395)。
【0005】
この電極はガラス状炭素のマトリックス中に黒鉛の結晶を黒鉛結晶固有の電極反応を持つよう一方向に配向させた黒鉛/ガラス状炭素複合材料である炭素材料からなる円柱状の電極と、この電極の表面を被覆する透過性薄膜とから構成される酵素を利用した特定物質定量用炭素電極である。
【0006】
【発明が解決しようとする課題】
このような従来の形状では、測定に必要なサンプル量が1mlと比較的多くなり、また電極の使い捨てを考えた場合に小型化が困難であった。
【0007】
【課題を解決するための手段】
本発明は上記課題を解決するため、ガラス状炭素のマトリックス中に黒鉛の結晶を一方向に配向させた黒鉛/ガラス状炭素複合材料である炭素材料を押し出して作成した棒状の炭素素材から薄片状のチップ電極を作成し、前記電極上に少なくとも親水性高分子層と酵素を含む反応層とを備えたものである。反応層にさらに電子伝達体を含むことにより、チップ化することで測定溶液の攪拌ができなくなったことにより起こる溶存酸素量の不足の影響を受けない。
【0008】
すなわち、上述のような電子伝達体を用いる特定物質定量の原理は次のようである。例えば特定物質がグルコースの場合、基質であるグルコースが酸化酵素であるグルコースオキシダーゼによって酸化されると、酵素の活性中心が酸化型から還元型に変化し、これにより電子伝達体を還元し酵素自身は再度酸化型に戻る。そして作用極上での適当な印加電圧によって電子伝達体は電解され、その際に得られる酸化電流を測定することによりグルコース濃度が測定できる。
【0009】
本発明における作用極に用いる黒鉛/ガラス状炭素複合材料は、材料構成の40%以上95%以下が不浸透性を持つガラス状炭素マトリックスで、黒鉛としてはキッシュ黒鉛、天然黒鉛の粉末が好ましい。ここでガラス状炭素とは、有機物を不活性雰囲気中または非酸化性雰囲気中で焼成する事で得られるガラス状の難黒鉛化性炭素で、具体的には有機高分子物質およびそのモノマー・オリゴマー類、タール・ピッチ類、乾留ピッチ類、熱可塑性樹脂、熱硬化性樹脂の初期重合体類などの一種または二種以上の混合物から得られる炭素化物である。
【0010】
本発明における黒鉛の結晶を一方向に配向させる方法は、次の如くして行うことができる。有機高分子物質と結晶性炭素微粉末を目的に応じて配合し、ヘンシェルミキサーなどで粉体分散を充分行う。ここに乾留ピッチを配合し、これに可塑剤、溶剤などを添加し、加圧ニーダーまたは二本ロールなどの高度に剪断力がかけられる混練機を用いて、十分に混合分散を施し、ペレタイザーにより顆粒化した後、スクリュー式やプランジャー式等の押し出し機により所望の直径に高速に押し出し成形して、押し出し方向に複合した黒鉛の結晶がよく配列するように配向操作を加えることにより生成形体が得られる。
【0011】
次に、この成形体に延伸操作を加えつつ180℃に加熱されたエアー・オーブン中にて、10時間処理して炭素前駆体(プリ・カーサー)材料とする。更に窒素、アルゴン等の不活性ガス雰囲気中で昇温速度を制御しつつ1000℃迄徐々に加熱して炭素化を終了させる。目的によっては、更に真空中またはアルゴン雰囲気中で2200℃迄加熱処理を施し全体を緻密化すると共に純度を高める操作を加える。このようにして本発明でいう、黒鉛を一方向に配向させた棒状の黒鉛/ガラス状炭素複合材料を準備できる。この炭素材料をダイヤモンドホイール等の切断装置により薄片状に加工する。得られた薄片状の炭素電極を、ポリエチレンテレフタレート等の絶縁樹脂基板の上に絶縁性を有す接着剤により接合する。更に炭素電極の露出部分の面積を一定とするよう、絶縁被膜層を形成する。電極部分を構成した後、親水性高分子層を形成する。次に、酵素と電子伝達体との複合層を形成する。
【0012】
ここで用いる親水性高分子としては、カルボキシメチルセルロースや他のセルロース系、ビニルアルコール系、デンプン系、無水マレイン酸系、アクリルアミド系などを用いても良い。これらの親水性高分子を適当な濃度の溶液などとしたものを滴下、乾燥することにより、必要な膜厚の親水性高分子層を電極上に形成することができる。
【0013】
また電子伝達体として使用できる材料としては、従来から使用されているものはいずれも使用でき、例えばフェリシアン化カリウム、p−ベンゾキノン、フェロセン、フェナジンメトサルフェート、チオニン、ピロロキノリンキノン、ナフトキノン、メチレンブルーなどを挙げることができる。
本発明の炭素電極に使用できる酵素は、特に限定されるものではなく、従来の酵素センサにおいて使用されている酵素を単独であるいは併用して使用できる。具体的には、グルコースオキシダーゼ、コレステロールオキシダーゼ、乳酸オキシダーゼ、ウリカーゼ、アルコールオキシダーゼ、NADHオキシダーゼ、アミンオキシダーゼなどのオキシダーゼ、グルコースデヒドロゲナーゼ、コレステロールデヒドロゲナーゼ、乳酸デヒドロゲナーゼ、3−ヒドロキシ酪酸デヒドロゲナーゼ、フルクトースデヒドロゲナーゼ、アルコールデヒドロゲナーゼ、ジアホラーゼ、ウレアーゼなどを使用できる。これらの酵素を利用して濃度を測定できる物質としては、使用する上述の酵素から適当に選択することにより種々の物質の濃度を測定できる。例えば代表的なものとしてはグルコース、コレステロール、乳酸、尿酸、アルコール、NADH、ガラクトース、ピルビン酸、アミン、フルクトース、グルタミン酸などが挙げられるが、その他、酵素反応の基質となりうる物質であればいかなる物質も定量的に測定可能である。
【0014】
次に実施例を示して、本発明の炭素電極の作製方法およびこれを用いた定量分析の結果を明らかにする。
【0015】
【実施例】
本発明の第1の実施例として、グルコースセンサについて記述する。まず、黒鉛/ガラス状炭素複合材料の作製方法を説明する。ガラス状炭素源として、塩素化塩化ビニル樹脂35重量部とフラン樹脂50重量部、平均粒度2μmの天然鱗状黒鉛粉末15重量部、可塑剤としてのジアリルフタレートモノマー20重量部を、ヘンシェルミキサーで混合・分散後、ミキシング用二本ロールで混練し、この混練物をスクリュー型押し出し機で押し出し、これを延伸操作を加えつつ180℃に加熱されたエアー・オーブン中にて、10時間処理して炭素前駆体(プリ・カーサー)材料とする。更に窒素ガス雰囲気中で昇温速度を制御しつつ1000℃迄徐々に加熱して炭素化を終了させる。更にアルゴン雰囲気中で1400℃迄加熱処理を施し全体を緻密化すると共に純度を高める操作を加えることで、黒鉛を一方向に配向させた棒状の黒鉛/ガラス状炭素複合材料を準備できる。この炭素材料をダイヤモンドホイールにより薄片状に加工する。得られた薄片状の電極10(図1の平面図および図2の断面図参照)の電極表面を2000番手の炭化珪素製研磨紙により平滑化処理した後、得られた薄片状の炭素電極を、ポリエチレンテレフタレート製の絶縁樹脂基板14の上に絶縁性を有す接着剤により接合する。リード16を形成し、更に炭素電極の露出部分の面積を一定とするよう、絶縁被膜層12を形成する。電極部分を構成した後、親水性高分子層を形成する。
【0016】
親水性高分子としてカルボキシメチルセルロース(以下CMCと略す)の0.5wt%水溶液を電極上に滴下、乾燥した。次に酵素としてグルコースオキシダーゼと電子受容体としてのフェリシアン化カリウムをリン酸緩衝液に溶解した液を滴下、乾燥させて反応層を形成した。上記のように作成した電極を作用極とし、対極兼参照極に銀/塩化銀電極を用い、柳本製ボルタンメトリックアナライザーP1000および東亜電波t−YレコーダーEPR−151Aを使用した2電極方式で測定を行った。グルコースオキシダーゼ(EC.1.1.3.4 微生物由来、1000U/l)はシグマ社製、グルコースは和光純薬製のグルコース標準液を使用した。また、緩衝液は0.1Mリン酸緩衝液(pH6.8)を用いた。
【0017】
次に測定に関して記す。上記のようにして作成した特定物質定量用炭素電極上にグルコース溶液をマイクロピペットで供給してから1分後に、電極系の対極を基準にして作用極にアノード方向へ600mVのパルス電圧を印加し、5分後の電流値を測定したところ、図3に示すように、試料液中のグルコース濃度に比例した応答電流値が得られた。極めて良好な直線性を示したことより未知濃度のグルコースを試料とした場合にも得られた電流値からその濃度を迅速、かつ正確に測定できることがわかった。
【0018】
本発明の第2の実施例としてのコレステロールセンサについて記述する。まず、黒鉛/ガラス状炭素複合材料の作製方法を説明する。ガラス状炭素源として、フラン樹脂60重量部、乾留ピッチ20重量部、平均粒度2μmの天然鱗状黒鉛粉末20重量部を、ヘンシェルミキサーで混合・分散後、ミキシング用二本ロールで混練し、この混練物をスクリュー型押し出し機で押し出し、これを延伸操作を加えつつ200℃に加熱されたエアー・オーブン中にて、8時間処理して炭素前駆体(プリ・カーサー)材料とする。更に窒素ガス雰囲気中で昇温速度を制御しつつ1000℃迄徐々に加熱して炭素化を終了させる。更に真空焼成炉留で1600℃迄加熱処理を施し全体を緻密化すると共に純度を高める操作を加えることで、黒鉛を一方向に配向させた棒状の黒鉛/ガラス状炭素複合材料を準備できる。この炭素材料をダイヤモンドホイールにより薄片状に加工する。第1の実施例と同様に、得られた薄片状の電極10の電極表面を2000番手の炭化珪素製研磨紙により平滑化処理した後、得られた薄片状の炭素電極を、ポリエチレンテレフタレート製の絶縁樹脂基板14の上に絶縁性を有す接着剤により接合する。リード16を形成し、更に炭素電極の露出部分の面積を一定とするよう、絶縁被膜層12を形成する。電極部分を構成した後、親水性高分子層を形成する。
【0019】
親水性高分子としてCMCの0.5wt%水溶液を電極上に滴下、乾燥した。次に酵素としてコレステロールオキシダーゼと電子受容体としてのフェリシアン化カリウムをリン酸緩衝液に溶解した液を滴下、乾燥させて反応層を形成した。上記のように作成した電極を作用極とし、対極兼参照極に銀/塩化銀電極を用い、柳本製ボルタンメトリックアナライザーP1000および東亜電波t−YレコーダーEPR−151Aを使用した2電極方式で測定を行った。コレステロールオキシダーゼ(EC.1.1.3.6 微生物由来、100U/l)は東洋紡製、コレステロールは和光純薬製の遊離コレステロール標準液A(200mg/dl)を使用した。また、緩衝液は Triton X−100を5ml/lになるように添加した0.1Mリン酸緩衝液(pH6.8)を用いた。
【0020】
上記のように構成した作用極表面に試料液としてコレステロール標準液を滴下し、滴下30分後に参照極を基準にして600mVのパルス電位を印加し、5分後の電流値を測定値とした。添加された試料液中コレステロールは電極上の反応層に担持されたフェリシアン化カリウムと反応してフェロシアン化カリウムを生成する。そこで、前記パルス電位の印加により、生成したフェロシアン化カリウム濃度に比例した酸化電流が得られ、この電流値は基質であるコレステロールの濃度に対応する。
【0021】
図4は、上記一連の反応で得られた電流値と、コレステロール濃度の関係を示すものであり、極めて良好な直線性を示した。このことより未知濃度のコレステロールを試料とした場合にも得られた電流値からその濃度を迅速、かつ正確に測定できることがわかった。
【0022】
【発明の効果】
以上説明したように本発明によれば、精度良く基質濃度を定量でき、かつ、小型化が容易なディスポーザブルタイプの定量分析用電極が提供される。
【図面の簡単な説明】
【図1】本発明に係る特定物質定量用炭素電極の平面図である。
【図2】図1の電極の断面図である。
【図3】第1の実施例のグルコースの定量実験により得られた、グルコース濃度と電流値との関係について示すグラフである。
【図4】第2の実施例のコレステロールの定量実験により得られた、コレステロール濃度と電流値との関係について示すグラフである。
【符号の説明】
10…作用極(端面)
12…絶縁被覆膜
14…絶縁樹脂基板
16…作用極リード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon electrode and a method for producing the same, which can electrochemically and rapidly measure the amount of a specific substance in a sample solution using enzyme activity.
[0002]
[Prior art]
Conventionally, as a working electrode for measuring the amount of a specific substance in a sample solution by an electrochemical method, a mercury dropping electrode, a stationary mercury electrode, platinum, gold, gold amalgam, copper, carbon (glassy carbon, carbon fiber, carbon Paste, pyrographite) and the like have been studied, but among them, the use of glassy carbon has become mainstream. However, glassy carbon has low current sensitivity, and when a potential is applied through the electrolyte at a high positive potential, the reproducibility of the electrode surface becomes poor. Therefore, the applicable potential range was up to around +1.0 V. In addition, the influence of pretreatment such as oxidation treatment was great, and there was a problem in measurement reproducibility.
[0003]
Graphite is a useful electrode material because it has a wide potential window, electrode reaction activity, and no toxicity to the living body, but it has poor mechanical strength, and it alone impregnates oil and resin because the electrolyte penetrates into the tissue. In a system containing even a small amount of organic solvent, the impregnated material is eluted, so that there are many variations in electrochemical characteristics, and data reproducibility cannot be obtained. In spite of this, the graphite crystal end face (edge face) is rich in electrode reaction activity, has a large potential window, is easy to pretreat, has high stability without deterioration over time, and does not elute and has no toxicity. Based on this property, graphite / glassy carbon composite obtained by using graphite-like carbon material in which graphite is oriented in one direction using glassy carbon showing impermeability as a matrix Carbon electrodes do not require oil or resin impregnation, are impervious by themselves, and have high mechanical strength.
[0004]
However, the electrode made of graphite / glassy carbon composite carbon has a disadvantageous property for enzyme activity measurement due to the strength of its end face, that is, a large amount of substances that hinder the measurement contained in the sample solution. It had the disadvantage of adsorbing. Therefore, a method for eliminating the influence of the inhibitor without losing the characteristics of the electrode, by coating the surface with a polymer permeable thin film without being affected by the concentration of the inhibitor, The following carbon electrode for quantitative analysis was proposed (Japanese Patent Application No. Hei 8-21395) for a method capable of measuring the amount of a specific substance using an enzyme quickly and with high accuracy.
[0005]
This electrode is a cylindrical electrode made of a carbon material which is a graphite / glassy carbon composite material in which a graphite crystal is oriented in one direction so as to have an electrode reaction unique to graphite crystal in a glassy carbon matrix, and this electrode It is a carbon electrode for specific substance quantification using the enzyme comprised from the permeable thin film which coat | covers the surface of this.
[0006]
[Problems to be solved by the invention]
With such a conventional shape, the amount of sample required for the measurement is as relatively large as 1 ml, and it is difficult to reduce the size when the electrode is disposable.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a flaky form from a rod-like carbon material prepared by extruding a carbon material which is a graphite / glass-like carbon composite material in which a graphite crystal is oriented in one direction in a glassy carbon matrix. The chip electrode was prepared, and at least a hydrophilic polymer layer and a reaction layer containing an enzyme were provided on the electrode. By further including an electron carrier in the reaction layer, it is not affected by the shortage of dissolved oxygen caused by the fact that the measurement solution can no longer be stirred by chipping.
[0008]
That is, the principle of specific substance quantification using the electron carrier as described above is as follows. For example, when the specific substance is glucose, when glucose, which is a substrate, is oxidized by glucose oxidase, which is an oxidase, the active center of the enzyme changes from an oxidized form to a reduced form, thereby reducing the electron carrier and the enzyme itself Return to the oxidized form again. The electron carrier is electrolyzed by an appropriate applied voltage on the working electrode, and the glucose concentration can be measured by measuring the oxidation current obtained at that time.
[0009]
The graphite / glassy carbon composite material used for the working electrode in the present invention is a glassy carbon matrix in which 40% or more and 95% or less of the material composition is impervious, and the graphite is preferably powder of quiche graphite or natural graphite. Glassy carbon is a glassy non-graphitizable carbon obtained by firing an organic substance in an inert atmosphere or a non-oxidizing atmosphere. Specifically, an organic polymer substance and its monomer / oligomer , Tar pitches, carbonized pitches, thermoplastic resins, and carbonized products obtained from a mixture of two or more of thermosetting resin initial polymers.
[0010]
The method of orienting the graphite crystals in the present invention in the present invention can be performed as follows. Mix organic polymer substance and crystalline carbon fine powder according to the purpose and thoroughly disperse the powder with Henschel mixer. A dry-distilled pitch is blended here, and a plasticizer, a solvent, etc. are added to this, and the mixture is sufficiently mixed and dispersed using a kneader capable of applying a high shearing force such as a pressure kneader or two rolls. After granulation, the formed shape is formed by extruding at a high speed to a desired diameter with an extruder such as a screw type or plunger type, and applying an orientation operation so that the composite crystals of graphite are well aligned in the direction of extrusion. can get.
[0011]
Next, the molded body is treated for 10 hours in an air oven heated to 180 ° C. while being stretched to obtain a carbon precursor (precursor) material. Further, the carbonization is completed by gradually heating up to 1000 ° C. while controlling the rate of temperature rise in an inert gas atmosphere such as nitrogen or argon. Depending on the purpose, heat treatment is further performed up to 2200 ° C. in a vacuum or an argon atmosphere to densify the whole and increase the purity. In this manner, a rod-like graphite / glassy carbon composite material in which graphite is oriented in one direction as used in the present invention can be prepared. This carbon material is processed into a thin piece by a cutting device such as a diamond wheel. The obtained flaky carbon electrode is bonded onto an insulating resin substrate such as polyethylene terephthalate with an insulating adhesive. Further, an insulating coating layer is formed so that the exposed area of the carbon electrode is constant. After constituting the electrode portion, a hydrophilic polymer layer is formed. Next, a composite layer of an enzyme and an electron carrier is formed.
[0012]
As the hydrophilic polymer used here, carboxymethyl cellulose, other cellulose, vinyl alcohol, starch, maleic anhydride, acrylamide, or the like may be used. A solution of these hydrophilic polymers in an appropriate concentration or the like is dropped and dried to form a hydrophilic polymer layer having a required film thickness on the electrode.
[0013]
In addition, as materials that can be used as an electron carrier, any conventionally used materials can be used, such as potassium ferricyanide, p-benzoquinone, ferrocene, phenazine methosulfate, thionine, pyrroloquinoline quinone, naphthoquinone, and methylene blue. be able to.
Enzymes that can be used in the carbon electrode of the present invention are not particularly limited, and enzymes used in conventional enzyme sensors can be used alone or in combination. Specifically, glucose oxidase, cholesterol oxidase, lactate oxidase, uricase, alcohol oxidase, NADH oxidase, amine oxidase and other oxidases, glucose dehydrogenase, cholesterol dehydrogenase, lactate dehydrogenase, 3-hydroxybutyrate dehydrogenase, fructose dehydrogenase, alcohol dehydrogenase, diaphorase , Urease, etc. can be used. As substances whose concentration can be measured using these enzymes, the concentration of various substances can be measured by appropriately selecting from the above-mentioned enzymes to be used. Typical examples include glucose, cholesterol, lactic acid, uric acid, alcohol, NADH, galactose, pyruvic acid, amine, fructose, glutamic acid, and any other substance that can be a substrate for enzyme reaction. It can be measured quantitatively.
[0014]
Next, an Example is shown and the production method of the carbon electrode of this invention and the result of the quantitative analysis using this are clarified.
[0015]
【Example】
A glucose sensor will be described as the first embodiment of the present invention. First, a method for producing a graphite / glassy carbon composite material will be described. As a glassy carbon source, 35 parts by weight of chlorinated vinyl chloride resin, 50 parts by weight of furan resin, 15 parts by weight of natural scaly graphite powder having an average particle size of 2 μm, and 20 parts by weight of diallyl phthalate monomer as a plasticizer are mixed with a Henschel mixer. After dispersion, the mixture is kneaded with two mixing rolls, the kneaded product is extruded with a screw type extruder, and this is treated for 10 hours in an air oven heated to 180 ° C. while being subjected to stretching operation, to obtain a carbon precursor. Body (pre-cursor) material. Further, the carbonization is completed by gradually heating up to 1000 ° C. while controlling the heating rate in a nitrogen gas atmosphere. Furthermore, a rod-like graphite / glassy carbon composite material in which graphite is oriented in one direction can be prepared by applying heat treatment up to 1400 ° C. in an argon atmosphere to densify the whole and increasing the purity. This carbon material is processed into a flake shape with a diamond wheel. After smoothing the electrode surface of the obtained flaky electrode 10 (see the plan view of FIG. 1 and the sectional view of FIG. 2) with 2000th silicon carbide abrasive paper, the obtained flaky carbon electrode was Then, the insulating
[0016]
A 0.5 wt% aqueous solution of carboxymethyl cellulose (hereinafter abbreviated as CMC) as a hydrophilic polymer was dropped on the electrode and dried. Next, a solution in which glucose oxidase as an enzyme and potassium ferricyanide as an electron acceptor were dissolved in a phosphate buffer was dropped and dried to form a reaction layer. Measured by a two-electrode method using the electrode prepared as described above as a working electrode, a silver / silver chloride electrode as a counter electrode and a reference electrode, and using a Yanagimoto voltammetric analyzer P1000 and a Toa radio t-Y recorder EPR-151A Went. Glucose oxidase (EC 1.1.3.4 microorganism-derived, 1000 U / l) was manufactured by Sigma, and glucose was a glucose standard solution manufactured by Wako Pure Chemical. Further, a 0.1 M phosphate buffer (pH 6.8) was used as the buffer.
[0017]
Next, the measurement will be described. One minute after supplying the glucose solution with the micropipette onto the carbon electrode for quantifying the specific substance prepared as described above, a pulse voltage of 600 mV was applied to the working electrode in the anode direction based on the counter electrode of the electrode system. When the current value after 5 minutes was measured, a response current value proportional to the glucose concentration in the sample solution was obtained as shown in FIG. From the fact that it showed extremely good linearity, it was found that the concentration could be measured quickly and accurately from the current value obtained even when glucose of unknown concentration was used as a sample.
[0018]
A cholesterol sensor as a second embodiment of the present invention will be described. First, a method for producing a graphite / glassy carbon composite material will be described. As a glassy carbon source, 60 parts by weight of a furan resin, 20 parts by weight of a carbonization pitch, and 20 parts by weight of natural scaly graphite powder having an average particle size of 2 μm are mixed and dispersed with a Henschel mixer, and then kneaded with two mixing rolls. The product is extruded with a screw-type extruder, and this is treated for 8 hours in an air oven heated to 200 ° C. while being stretched to obtain a carbon precursor (precursor) material. Further, the carbonization is completed by gradually heating up to 1000 ° C. while controlling the heating rate in a nitrogen gas atmosphere. Further, a rod-like graphite / glass-like carbon composite material in which graphite is oriented in one direction can be prepared by performing a heat treatment up to 1600 ° C. in a vacuum firing furnace to densify the whole and increase the purity. This carbon material is processed into a flake shape with a diamond wheel. In the same manner as in the first example, after the electrode surface of the obtained
[0019]
A 0.5 wt% aqueous solution of CMC as a hydrophilic polymer was dropped on the electrode and dried. Next, a solution obtained by dissolving cholesterol oxidase as an enzyme and potassium ferricyanide as an electron acceptor in a phosphate buffer was dropped and dried to form a reaction layer. Measured by a two-electrode method using the electrode prepared as described above as a working electrode, a silver / silver chloride electrode as a counter electrode and a reference electrode, and using a Yanagimoto voltammetric analyzer P1000 and a Toa radio t-Y recorder EPR-151A Went. Cholesterol oxidase (EC 1.1.3.6 microorganism-derived, 100 U / l) was manufactured by Toyobo, and cholesterol was a free cholesterol standard solution A (200 mg / dl) manufactured by Wako Pure Chemical Industries. The buffer used was a 0.1 M phosphate buffer (pH 6.8) to which Triton X-100 was added to 5 ml / l.
[0020]
A cholesterol standard solution was dropped as a sample solution on the surface of the working electrode configured as described above, and a pulse potential of 600 mV was applied 30 minutes after the dropping, using the reference electrode as a reference, and the current value after 5 minutes was taken as a measured value. The added cholesterol in the sample solution reacts with potassium ferricyanide supported on the reaction layer on the electrode to produce potassium ferrocyanide. Therefore, by applying the pulse potential, an oxidation current proportional to the generated potassium ferrocyanide concentration is obtained, and this current value corresponds to the concentration of cholesterol as a substrate.
[0021]
FIG. 4 shows the relationship between the current value obtained by the above series of reactions and the cholesterol concentration, and showed very good linearity. From this, it was found that even when cholesterol of unknown concentration was used as a sample, the concentration could be measured quickly and accurately from the obtained current value.
[0022]
【The invention's effect】
As described above, according to the present invention, there is provided a disposable type quantitative analysis electrode that can accurately quantify the substrate concentration and can be easily miniaturized.
[Brief description of the drawings]
FIG. 1 is a plan view of a carbon electrode for quantifying a specific substance according to the present invention.
FIG. 2 is a cross-sectional view of the electrode of FIG.
FIG. 3 is a graph showing the relationship between the glucose concentration and the current value obtained by the glucose quantitative experiment of the first example.
FIG. 4 is a graph showing the relationship between cholesterol concentration and current value obtained by cholesterol quantification experiment of the second example.
[Explanation of symbols]
10 ... Working electrode (end face)
12 ... Insulating
Claims (4)
該電極上に形成された、少なくとも親水性高分子層と酵素を含む反応層とを具備する定量分析用炭素電極。An electrode composed of a graphite / glassy carbon composite material in which graphite crystals are oriented in one direction in a glassy carbon matrix, and the shape of the electrode is a flaky chip type;
A carbon electrode for quantitative analysis comprising at least a hydrophilic polymer layer and a reaction layer containing an enzyme formed on the electrode.
該電極上に少なくとも親水性高分子層と酵素を含む反応層を形成する各段階を具備する定量分析用炭素電極の製造方法。Made of a graphite / glassy carbon composite material in which a graphite crystal is oriented in one direction in a glassy carbon matrix, the electrode is made of a chip-like chip shape,
A method for producing a carbon electrode for quantitative analysis, comprising each step of forming a reaction layer containing at least a hydrophilic polymer layer and an enzyme on the electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17175898A JP4030186B2 (en) | 1998-06-18 | 1998-06-18 | Carbon electrode for chip-type quantitative analysis using enzyme and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17175898A JP4030186B2 (en) | 1998-06-18 | 1998-06-18 | Carbon electrode for chip-type quantitative analysis using enzyme and its production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000009678A JP2000009678A (en) | 2000-01-14 |
JP4030186B2 true JP4030186B2 (en) | 2008-01-09 |
Family
ID=15929145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17175898A Expired - Fee Related JP4030186B2 (en) | 1998-06-18 | 1998-06-18 | Carbon electrode for chip-type quantitative analysis using enzyme and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4030186B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022361B (en) * | 2012-11-20 | 2015-05-13 | 溧阳市生产力促进中心 | Manufacturing method of photovoltaic cell |
CN103022360B (en) * | 2012-11-20 | 2016-03-02 | 溧阳市生产力促进中心 | A kind of manufacture method of photovoltaic cell of high open circuit voltage |
CN103094482B (en) * | 2012-11-20 | 2015-07-15 | 溧阳市生产力促进中心 | Manufacture method of solar battery with high open-circuit voltage |
-
1998
- 1998-06-18 JP JP17175898A patent/JP4030186B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000009678A (en) | 2000-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gouveia-Caridade et al. | Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol | |
Silber et al. | Poly (methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors | |
US5160418A (en) | Enzyme electrodes and improvements in the manufacture thereof | |
US5376251A (en) | Carbon micro-sensor electrode and method for preparing it | |
Li et al. | A pyrrole quinoline quinone glucose dehydrogenase biosensor based on screen-printed carbon paste electrodes modified by carbon nanotubes | |
CN1243952A (en) | Biological sensor | |
Erlenkötter et al. | Flexible amperometric transducers for biosensors based on a screen printed three electrode system | |
JPH02310457A (en) | Biosensor | |
KR100490762B1 (en) | Method of determining substrate, and biosensor | |
JPH08220055A (en) | Electrochemical enzyme biosensor | |
Wang et al. | Screen-printed amperometric biosensors for glucose and alcohols based on ruthenium-dispersed carbon inks | |
JPS5816698B2 (en) | Enzyme electrode and its manufacturing method | |
Alegret et al. | Carbon-polymer biocomposites for amperometric sensing | |
JPS5816697B2 (en) | Enzyme electrode and its manufacturing method | |
Laurinavicius et al. | Oxygen insensitive glucose biosensor based on PQQ-dependent glucose dehydrogenase | |
JPS5816696B2 (en) | enzyme electrode | |
Beitollahit et al. | Simultaneous voltammetric determination of ascorbic acid and uric acid using a modified multiwalled carbon nanotube paste electrode | |
Noorbakhsh et al. | Fabrication of Glucose Biosensor Based on Encapsulation of Glucose‐Oxidase on Sol‐Gel Composite at the Surface of Glassy Carbon Electrode Modified with Carbon Nanotubes and Celestine Blue | |
Li et al. | Porous carbon composite/enzyme glucose microsensor | |
JP4030186B2 (en) | Carbon electrode for chip-type quantitative analysis using enzyme and its production method | |
JP2636637B2 (en) | Manufacturing method of enzyme electrode | |
Rondeau et al. | The synergetic effect of redox mediators and peroxidase in a bienzymatic biosensor for glucose assays in FIA | |
JPS63317096A (en) | Biosensor | |
JPH09145665A (en) | Oxygen sensor | |
Zahir et al. | Fabrication of directly polymerized 4-vinylpyridine onto a pencil 2B graphite paste electrode for glucose monitoring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050527 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071016 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |