JP4026741B2 - Brushless motor drive circuit with overcurrent protection circuit - Google Patents
Brushless motor drive circuit with overcurrent protection circuit Download PDFInfo
- Publication number
- JP4026741B2 JP4026741B2 JP2001318827A JP2001318827A JP4026741B2 JP 4026741 B2 JP4026741 B2 JP 4026741B2 JP 2001318827 A JP2001318827 A JP 2001318827A JP 2001318827 A JP2001318827 A JP 2001318827A JP 4026741 B2 JP4026741 B2 JP 4026741B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- signal generation
- output
- overcurrent protection
- energization control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims description 61
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 48
- 239000003990 capacitor Substances 0.000 claims description 43
- 238000004804 winding Methods 0.000 claims description 18
- 238000007599 discharging Methods 0.000 description 5
- 238000013021 overheating Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
Images
Landscapes
- Protection Of Generators And Motors (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、過電流保護回路を有するブラシレスモータの駆動回路、特に回転子がロックされた際にも通電電流を遮断して駆動回路の過熱損傷を防止することの出来る過電流保護回路を有するブラシレスモータの駆動回路に関する。
【0002】
【従来の技術】
図2は従来周知の過電流保護回路を有するブラシレスモータの駆動回路の一例で、1は永久磁石の磁極位置を検出するためのホール素子、2は該ホール素子の出力を受け通電制御信号を発生する通電制御信号発生回路、3、4は通電制御スイッチング素子、5は固定子巻線、6は固定子巻線の電流を検出するための電流検出抵抗、7は抵抗、8はコンデンサ、9、10は比較回路の基準電圧を発生するための分圧抵抗、11は比較回路、12はダイオードである。
そして、通電制御信号発生回路2には、通電信号を発生するロジック信号発生回路2−1と、パルス信号発生回路2−2と、ロック検出用コンデンサ33の電圧検出回路2−3と、同コンデンサの充放電回路2−4が設けられている。
【0003】
図2に示す従来技術に成る過電流保護回路を有するブラシレスモータの駆動回路の動作を説明する。
当該ブラシレスモータの駆動回路は、ホール素子1の出力を通電制御信号発生回路2に入力し、該通電制御信号発生回路2のロジック信号発生回路2−1から2個の通電信号が通電制御スイッチング素子3、4に送られ、固定子巻線5に交互に通電して、回転子を所定方向に回転させるようになっている。
【0004】
図2に示すブラシレスモータは、固定子巻線2個と、永久磁石の磁極を検出するためのホール素子1個と、図示はしないが自己起動手段としてレラクタンスピースを備え、通電しない状態では、レラクタンスピースの作用で永久磁石の磁極の1つがホール素子と重なる位置に静止しており、電源端子に所定のDC電圧を印加すると、ホール素子1から出力信号が出て通電制御信号発生回路2のロジック信号発生回路2−1から通電信号が例えば通電制御スイッチング素子3に入ってこれが通電し、一方の固定子巻線5に通電することで永久磁石が吸引され、所定の方向に回転し自己起動が出来るようになっている。
【0005】
ところが、静止した状態で電源端子に所定のDC電圧を印加すると、固定子巻線5には逆起電力が発生していないため、回路の電流を規制する要素は固定子巻線5の抵抗と通電制御スイッチング素子3、4の内部抵抗だけであることから、大きな起動電流が流れる。
ここで一度起動すれば固定子巻線5に逆起電力が発生するので、巻線電流は減少し、回転速度が上昇して安全に起動動作をすることができる。
【0006】
しかし上述した構成では、回転子がロックされると、その磁極位置によっては回転子が正回転方向と逆回転方向間を往復する起動ハンチング現象が生じ、大きな起動電流が繰り返えし流れ、通電制御スイッチング素子3,4が過熱することがある。そこで従来技術に成る駆動回路では、図2に見るように通電制御スイッチング素子3、4と接地の間に電流検出抵抗6を設け、該電流検出抵抗6の電圧を抵抗7とコンデンサ8による時定数回路を介して比較回路の−側端子に入力し、該比較回路の+側端子に抵抗9と抵抗10でVCCを分圧した基準電圧を入力し、該比較回路の出力をダイオード12を介して通電制御信号発生回路2の2個の出力に接続するように構成されている過電流保護回路が設けられている。
【0007】
上述過電流保護回路の動作は、起動時に大きな起動電流が流れると、電流検出抵抗6の電圧が抵抗7を介してコンデンサ8を充電し、その電圧が比較回路11の−側端子に入力され、抵抗9と抵抗10で分圧され比較回路11の+側端子に入力される基準電圧と比較して、上述コンデンサ8の電圧が基準電圧より高いと判断されると、比較回路11の出力がLoレベルとなってダイオード12がONとなり、通電制御信号発生回路2の2個の出力が接地レベルとなって通電制御スイッチング素子3と4がOFFとなり、固定子巻線5の通電を遮断し過電流保護回路として動作する。
【0008】
また、通電制御信号発生回路2には、ロジック信号発生回路2−1と、該ロジック信号発生回路2−1の出力により回転を検出するパルス信号発生回路2−2と、ロック検出用コンデンサ33の電圧検出回路2−4と同コンデンサの充放電回路2−3が設けられており、ロック検出用コンデンサ33は常時充放電回路2−3により充電され、かつパルス信号発生回路2−2の出力パルスにより放電されており、このロック検出用コンデンサ33の電圧を電圧検出回路2−4で検出し、充電により所定のロック検出電圧値に達していることを検出するとロジック信号発生回路2−1の出力を遮断し、放電により所定の自動復帰電圧値に達していることを検出するとロジック信号発生回路2−1の信号として出力するように構成されている。
【0009】
モータが正常に回転しているときは、パルス信号発生回路2−2の信号により充放電回路2−3がロック検出用コンデンサ33の電荷を放電するので、その電圧は上昇せず、電圧検出回路2−4が所定の自動復帰電圧値以下の電圧であることを検出すると、ロジック信号発生回路2−1は通電信号を通電制御スイッチング素子3と4に送りモータは回転を継続する。
【0010】
回転子が機械的にロックされると、パルス信号発生回路2−2の出力信号が出なくなるので充放電回路2−3は放電を停止し充電のみとなって、ロック検出用コンデンサ33の電圧が上昇し、電圧検出回路2−4が所定のロック検出電圧値以上の電圧であることを検出すると、ロジック信号発生回路2−1の出力を遮断し、通電制御スイッチング素子3と4が遮断されることになって、過電流保護回路として動作しモータは停止する。
電圧検出回路2−4が充電により所定のロック検出電圧値に達していることを検出すると、ロック検出用コンデンサ33が充放電回路2−3の時定数の長い回路により放電を開始し、所定時間後に電圧検出回路2−4が放電により所定の自動復帰電圧値に達したことを検出すると、ロジック信号発生回路2−1の信号が通電制御スイッチング素子3と4に入力され、モータの回転が自動的に復帰することになる。
【0011】
【発明が解決しようとする課題】
ところが、上述した過電流保護回路は、これが動作して通電制御スイッチング素子3、4をOFFし通電を遮断すると電流検出抵抗6の電圧が無くなるから、コンデンサ8が放電して比較回路11がリセットされ、その出力がHIレベルとなり、ダイオード12がOFFとなって、通電制御信号発生回路2に設けられているロジック信号発生回路2−1の2個の出力が通電制御スイッチング素子3、4に送られ、該通電制御スイッチング素子3、4がONとなって固定子巻線5に電流が流れる。このとき再度過電流が流れると、過電流保護回路が動作し通電が遮断されることになって、この動作を繰り返えすことがあり、通電を完全に遮断させることが出来ず、通電制御スイッチング素子3、4の過熱焼損に至る懸念があった。
【0012】
又、回転子が機械的にロックされ起動ハンチング現象が生じると、回転子が正常の回転動作では無いにも関わらず、パルス信号発生回路2−2からパルス信号が発生して充放電回路2−3がロック検出用コンデンサ33の電荷を放電するため、該ロック検出用コンデンサ33の電圧は上昇せずロック状態の検出に繋がらないので、過電流が継続して流れることになる。このような場合にも通電制御スイッチング素子3、4の過熱焼損に至る懸念があった。
【0013】
【課題を解決するための手段】
本発明においては上述の如き課題を解決するため、従来技術に成る過電流保護回路と共に、電流検出抵抗の出力を第2基準電圧と比較する第2比較回路と、該第2比較回路の出力により制御されトランジスタとダイオードでロック検出用コンデンサを強制的に充電する回路を設け、該ロック検出用コンデンサの電圧により通電制御信号発生回路の通電信号を遮断するように構成された第2の過電流保護回路を設けることで、通電を完全に遮断出来るように構成している。
【0014】
【発明の実施の形態】
以下図面によって本発明の実施例を説明する。
【0015】
【実施例】
図1は本発明に成る過電流保護回路を有するブラシレスモータの駆動回路の回路図である。
図1において、ホール素子1、通電制御信号発生回路2、通電制御スイッチング素子3,4、固定子巻線5、電流検出抵抗6、抵抗7、コンデンサ8、ダイオード12、第1比較回路20より成る構成、及び前記通電制御信号発生回路2にロジック信号発生回路2−1、パルス信号発生回路2−2、ロック検出用コンデンサ33の電圧検出回路2−4と同コンデンサの充放電回路2−3が設けられていることは上述図2に見る従来技術の構成と同じである。また、電流検出抵抗6と通電制御スイッチング素子3、4との接続点と、接地との間に抵抗7とコンデンサ8が直列に接続され、抵抗7とコンデンサ8との接続点が第1比較回路20の−側端子に、VCCと抵抗21、抵抗22、抵抗23が直列に接続されて、抵抗21と抵抗22の接続点と第1比較回路20の+側端子とが接続され、第1比較回路20の出力端子が2個のダイオード12を介して通電制御信号発生回路2に設けられているロジック信号発生回路2−1の出力側と接続されることも従来技術に成る図2の構成と同じで、新たな構成として、上述第1比較回路20の−側端子と接地との間に抵抗25とコンデンサ24を直列に接続して設け、該抵抗25とコンデンサ24の接続点が第2比較回路27の−側端子と、抵抗22と抵抗23の接続点が第2比較回路27の+側端子と、第2比較回路27の出力端子が第1トランジスタ28のベース及び抵抗30を介してVCCに、さらに、第1トランジスタ28のコレクタが第2トランジスタ29のベース及び抵抗31を介してVCCに、また第2トランジスタ29のベースはダイオード32に、ダイオード32と接地の間にロック検出用コンデンサ33が、該ロック検出用コンデンサ33とダイオード32の接続点が通電制御信号発生回路2に設けられている電圧検出回路2−4に、そして第2トランジスタ29のコレクタは抵抗を介して第2比較回路の+側端子に、第2トランジスタ29と第1トランジスタ28のエミッタがいずれも接地に、夫々接続されるように構成される。
【0016】
上述図1に示す本発明に成る過電流保護回路の動作を説明する。
起動時の過電流が電流検出抵抗6により電圧に変換され、この電圧は抵抗7とコンデンサ8とによる時定数回路を介して第1比較回路20の−側端子に入力される。VCCと接地の間には抵抗21と抵抗22と抵抗23とが直列接続され、抵抗22と抵抗23とで分圧回路が形成され、前記抵抗21と分圧回路を形成する抵抗22との接続点の電圧が、基準電圧として第1比較回路20の−側端子に入力されて第1比較回路で比較される。過電流を検出した前記電圧が、基準電圧より高いと判断されると第1比較回路の出力がLoレベルとなってダイオード12がONとなり、通電制御信号発生回路2の出力が接地レベルとなって通電制御スイッチング素子3、4がOFFとなり巻線への通電が遮断される。
【0017】
上述のように通電が遮断されると電流検出抵抗6の電圧が無くなるから、第1比較回路20の−側端子の電圧は基準電圧より低くなる。こうして第1比較回路20の−側端子の電圧が基準電圧より低くなると、第1比較回路の出力がHIレベルとなってダイオード12がOFFとなり、通電制御信号発生回路2の出力により通電制御スイッチング素子3、4はONとなって巻線への通電が再開する。即ち、従来技術に成る第1の過電流保護回路だけの構成では、上述のような動作が繰り返えされ、通電制御スイッチング素子3、4の過熱を回避出来なかった。
【0018】
本発明においては、上述のように第1の過電流保護回路が動作したとき、続いて第2過電流保護回路が動作し、第1比較回路20の−側端子の電圧が、抵抗25とコンデンサ24による時定数回路を介して第2比較回路27の−側端子に入力され、抵抗22と抵抗23の接続点より入力された基準電圧と比較され、第2比較回路27の−側端子の電圧が基準電圧より高いと判断されると、第2比較回路27の出力がLoレベルとなって、第1トランジスタ28がOFFとなり、第2トランジスタ29のベースがHIレベルとなって、VCCから抵抗31とダイオード32を介してロック検出用コンデンサ33が充電される。
【0019】
電圧検出回路2−4で、ロック検出用コンデンサ33の端子電圧が充電により所定の電圧に達していることを検出すると、ロジック信号発生回路2−1の信号が遮断され、通電制御スイッチング素子3、4がOFFとなり、通電が遮断される。通電が遮断されると、電流検出抵抗6の電圧が出なくなり、第2比較回路27がリセットして出力がHIレベルとなるから、第1トランジスタ28がONとなって第1トランジスタ28のコレクタが接地レベルとなり、ダイオード32を介してロック検出用コンデンサ33を充電することができなくなるが、ロック検出用コンデンサ33の電圧はダイオード32でブロック・保持されるから、電圧検出回路2−4は継続して自動復帰電圧値以上の電圧であることを検出して、ロジック信号発生回路2−1の出力遮断状態を維持するので、通電制御スイッチング素子3、4のOFFが継続され、完全に通電を遮断することになって過熱が防止出来る。
【0020】
又、第1の過電流保護回路が自動復帰して再度通電し、再度保護回路が動作して又自動復帰、と繰り返えされる場合には、ロック検出用コンデンサ33が少しずつ充電され、電圧検出回路2−4で、ロック検出用コンデンサ33の電圧が充電により所定のロック検出電圧値に達していることを検出すると、ロジック信号発生回路2−1の出力を遮断し、通電制御スイッチング素子3、4に通電信号が入力されなくなって巻線の通電が遮断される。
【0021】
そして通電が遮断されると、ロック検出用コンデンサ33の電圧が充放電回路2−3の時定数の長い回路により放電を開始し、所定時間後、電圧検出回路2−4で放電による所定の自動復帰電圧値に達していることを検出すると、ロジック信号発生回路2−1の信号が出力され、通電信号スイッチング素子3、4に通電信号が送られモータの回転が再開される。
【0022】
上述のように、従来技術に成る回転検出によるロック検出回路と第1の過電流保護回路の組合せでは、ロック検出が万全ではなかったが、第2の過電流保護回路を追加して、通電電流を検出しロック検出用コンデンサ33を強制的に充電する構成とすることで、通電電流の遮断が確実となり通電制御スイチング素子の焼損を防止することが出来る。
また、通電遮断から所定の時間経過後、ロック検出用コンデンサの電圧が所定の自動復帰電圧値に達していることを検出して、自動的に通電を再開しモータを運転出来るようになっている。
【0023】
図1及び図2に示す本発明に成る過電流保護回路を有するブラシレスモータの駆動回路は、通常回路部品を接続した構成としているが、通電制御回路、第1の過電流保護回路、第2の過電流保護回路、を集積回路として構成することもできる。
【0024】
【発明の効果】
本発明に成る過電流保護回路を有するブラシレスモータの駆動回路は、上述のような構成であるから、回転子がロックして過電流が継続して流れるような状態においても、第2の過電流保護回路が動作して通電電流を遮断し、通電遮断後所定時間後に、自動復帰回路の動作により通電が復帰するまでは通電を完全に停止させることが出来るので、通電制御スイッチング素子の焼損を防止し、しかも自動復帰も出来る効果がある。
【図面の簡単な説明】
【図1】本発明に成る過電流保護回路を有するブラシレスモータの駆動回路の回路図である。
【図2】従来技術に成る過電流保護回路を有するブラシレスモータの駆動回路の回路図である。
【符号の説明】
1 ホール素子
2 通電制御信号発生回路
2−1 ロジック信号発生回路
2−2 パルス信号発生回路
2−3 充放電回路
2−4 電圧検出回路
3、4 通電制御スイッチング素子
5 固定子巻線
6 電流検出抵抗
7 抵抗
8 コンデンサ
9、10 分圧抵抗
11 比較回路
12 ダイオード
20 第1比較回路
21 抵抗
22、23 分圧抵抗
24 コンデンサ
25 抵抗
27 第2比較回路
28 第1トランジシタ
29 第2トランジスタ
30、31 抵抗
32 ダイオード
33 ロック検出用コンデンサ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive circuit for a brushless motor having an overcurrent protection circuit, and in particular, a brushless having an overcurrent protection circuit capable of preventing overheating damage of the drive circuit by interrupting the energization current even when the rotor is locked. The present invention relates to a motor drive circuit.
[0002]
[Prior art]
FIG. 2 shows an example of a driving circuit for a brushless motor having a conventionally known overcurrent protection circuit. 1 is a Hall element for detecting the magnetic pole position of a permanent magnet, 2 is an output of the Hall element and generates an energization control signal. Energization control signal generating circuit, 3 and 4 are energization control switching elements, 5 is a stator winding, 6 is a current detection resistor for detecting the current of the stator winding, 7 is a resistor, 8 is a capacitor, Reference numeral 10 denotes a voltage dividing resistor for generating a reference voltage for the comparison circuit, 11 is a comparison circuit, and 12 is a diode.
The energization control signal generation circuit 2 includes a logic signal generation circuit 2-1 that generates an energization signal, a pulse signal generation circuit 2-2, a voltage detection circuit 2-3 of the lock detection capacitor 33, and the same capacitor. Charging / discharging circuit 2-4 is provided.
[0003]
The operation of the drive circuit of the brushless motor having the overcurrent protection circuit according to the prior art shown in FIG. 2 will be described.
The drive circuit of the brushless motor inputs the output of the Hall element 1 to the energization control signal generation circuit 2, and two energization signals are supplied from the logic signal generation circuit 2-1 of the energization control signal generation circuit 2. The stator windings 5 are alternately energized to rotate the rotor in a predetermined direction.
[0004]
The brushless motor shown in FIG. 2 includes two stator windings, one hall element for detecting the magnetic pole of the permanent magnet, and a reluctance piece as a self-starting means (not shown), Due to the action of the reluctance piece, one of the magnetic poles of the permanent magnet is stationary at a position where it overlaps the Hall element, and when a predetermined DC voltage is applied to the power supply terminal, an output signal is output from the Hall element 1 and the energization control signal generating circuit 2 An energization signal from the logic signal generation circuit 2-1 enters, for example, the energization control switching element 3, energizes it, and energizes one of the stator windings 5, whereby the permanent magnet is attracted, rotates in a predetermined direction, and self You can start up.
[0005]
However, when a predetermined DC voltage is applied to the power supply terminal in a stationary state, no back electromotive force is generated in the stator winding 5, so the element that regulates the circuit current is the resistance of the stator winding 5. Since only the internal resistance of the energization control switching elements 3 and 4 is large, a large starting current flows.
Here, since the counter electromotive force is generated in the stator winding 5 once activated, the winding current decreases, the rotational speed increases, and the activation operation can be performed safely.
[0006]
However, in the configuration described above, when the rotor is locked, depending on the magnetic pole position, a startup hunting phenomenon occurs in which the rotor reciprocates between the forward rotation direction and the reverse rotation direction. The control switching elements 3 and 4 may overheat. Therefore, in the driving circuit according to the prior art, as shown in FIG. 2, a current detection resistor 6 is provided between the energization control switching elements 3 and 4 and the ground, and the voltage of the current detection resistor 6 is set to a time constant by the resistor 7 and the capacitor 8. The reference voltage obtained by dividing VCC by the resistors 9 and 10 is input to the + side terminal of the comparison circuit via the circuit, and the output of the comparison circuit is supplied via the diode 12 to the + side terminal of the comparison circuit. An overcurrent protection circuit configured to connect to the two outputs of the energization control signal generation circuit 2 is provided.
[0007]
In the operation of the above-described overcurrent protection circuit, when a large start-up current flows during start-up, the voltage of the current detection resistor 6 charges the capacitor 8 via the resistor 7, and the voltage is input to the negative terminal of the comparison circuit 11, When it is determined that the voltage of the capacitor 8 is higher than the reference voltage compared with the reference voltage divided by the resistors 9 and 10 and input to the + side terminal of the comparison circuit 11, the output of the comparison circuit 11 is Lo. The level of the diode 12 is turned on, the two outputs of the energization control signal generation circuit 2 are grounded, the energization control switching elements 3 and 4 are turned off, the energization of the stator winding 5 is cut off, and the overcurrent Operates as a protection circuit.
[0008]
The energization control signal generation circuit 2 includes a logic signal generation circuit 2-1, a pulse signal generation circuit 2-2 that detects rotation based on the output of the logic signal generation circuit 2-1, and a lock detection capacitor 33. The voltage detection circuit 2-4 and the same capacitor charge / discharge circuit 2-3 are provided, and the lock detection capacitor 33 is always charged by the charge / discharge circuit 2-3 and the output pulse of the pulse signal generation circuit 2-2. The voltage of the lock detection capacitor 33 is detected by the voltage detection circuit 2-4, and when it is detected that the predetermined lock detection voltage value has been reached by charging, the output of the logic signal generation circuit 2-1 And when it is detected that a predetermined automatic return voltage value has been reached by discharging, the signal is output as a signal of the logic signal generation circuit 2-1.
[0009]
When the motor is rotating normally, the charge / discharge circuit 2-3 discharges the electric charge of the lock detection capacitor 33 by the signal of the pulse signal generation circuit 2-2, so that the voltage does not rise and the voltage detection circuit When 2-4 detects that the voltage is equal to or lower than a predetermined automatic return voltage value, the logic signal generation circuit 2-1 sends an energization signal to the energization control switching elements 3 and 4, and the motor continues to rotate.
[0010]
When the rotor is mechanically locked, the output signal of the pulse signal generation circuit 2-2 is not output, so the charging / discharging circuit 2-3 stops discharging and only charges, and the voltage of the lock detecting capacitor 33 is increased. When the voltage detection circuit 2-4 detects that the voltage is equal to or higher than a predetermined lock detection voltage value, the output of the logic signal generation circuit 2-1 is cut off, and the energization control switching elements 3 and 4 are cut off. As a result, it operates as an overcurrent protection circuit and the motor stops.
When the voltage detection circuit 2-4 detects that the predetermined lock detection voltage value has been reached by charging, the lock detection capacitor 33 starts discharging by a circuit having a long time constant of the charge / discharge circuit 2-3, for a predetermined time. When the voltage detection circuit 2-4 later detects that a predetermined automatic return voltage value has been reached due to discharge, the signal of the logic signal generation circuit 2-1 is input to the energization control switching elements 3 and 4, and the rotation of the motor is automatically performed. Will return.
[0011]
[Problems to be solved by the invention]
However, when the above-described overcurrent protection circuit operates to turn off the energization control switching elements 3 and 4 and cut off the energization, the voltage of the current detection resistor 6 is lost, so the capacitor 8 is discharged and the comparison circuit 11 is reset. The output becomes the HI level, the diode 12 is turned OFF, and the two outputs of the logic signal generation circuit 2-1 provided in the energization control signal generation circuit 2 are sent to the energization control switching elements 3 and 4. The energization control switching elements 3 and 4 are turned ON, and a current flows through the stator winding 5. If an overcurrent flows again at this time, the overcurrent protection circuit operates and the energization is interrupted. This operation may be repeated, and the energization cannot be completely interrupted. There was a concern of overheating burnout of the elements 3 and 4.
[0012]
When the rotor is mechanically locked and a startup hunting phenomenon occurs, a pulse signal is generated from the pulse signal generation circuit 2-2 even though the rotor is not operating normally, and the charge / discharge circuit 2- 3 discharges the electric charge of the lock detection capacitor 33, so that the voltage of the lock detection capacitor 33 does not rise and does not lead to detection of the lock state, so that an overcurrent continues to flow. Even in such a case, there is a concern that the energization control switching elements 3 and 4 may be overheated.
[0013]
[Means for Solving the Problems]
In order to solve the above-described problems in the present invention, the overcurrent protection circuit according to the prior art, a second comparison circuit that compares the output of the current detection resistor with the second reference voltage, and the output of the second comparison circuit A second overcurrent protection circuit configured to forcibly charge a lock detection capacitor with a transistor and a diode, and to cut off an energization signal of an energization control signal generation circuit by the voltage of the lock detection capacitor By providing a circuit, it is configured so that energization can be completely interrupted.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
【Example】
FIG. 1 is a circuit diagram of a drive circuit for a brushless motor having an overcurrent protection circuit according to the present invention.
In FIG. 1, it comprises a Hall element 1, an energization control signal generation circuit 2, an energization control switching elements 3 and 4, a stator winding 5, a current detection resistor 6, a resistor 7, a capacitor 8, a diode 12, and a
[0016]
The operation of the overcurrent protection circuit according to the present invention shown in FIG. 1 will be described.
The overcurrent at the time of startup is converted into a voltage by the current detection resistor 6, and this voltage is input to the negative terminal of the
[0017]
Since the voltage of the current detection resistor 6 disappears when the energization is interrupted as described above, the voltage at the negative terminal of the
[0018]
In the present invention, when the first overcurrent protection circuit is operated as described above, the second overcurrent protection circuit is subsequently operated, and the voltage of the negative terminal of the
[0019]
When the voltage detection circuit 2-4 detects that the terminal voltage of the lock detection capacitor 33 reaches a predetermined voltage by charging, the signal of the logic signal generation circuit 2-1 is cut off, and the energization control switching element 3; 4 is turned off and the power is cut off. When the energization is cut off, the voltage of the current detection resistor 6 is not output, the second comparison circuit 27 is reset, and the output becomes the HI level. Therefore, the first transistor 28 is turned on and the collector of the first transistor 28 is turned on. The lock detection capacitor 33 cannot be charged via the diode 32 due to the ground level, but the voltage of the lock detection capacitor 33 is blocked and held by the diode 32, so that the voltage detection circuit 2-4 continues. Since the output signal of the logic signal generation circuit 2-1 is detected by detecting that the voltage is equal to or higher than the automatic return voltage value, the energization control switching elements 3 and 4 are continuously turned off, and the energization is completely interrupted. Therefore, overheating can be prevented.
[0020]
When the first overcurrent protection circuit automatically recovers and is energized again, and the protection circuit operates again and repeats automatic recovery, the lock detection capacitor 33 is charged little by little, When the detection circuit 2-4 detects that the voltage of the lock detection capacitor 33 has reached a predetermined lock detection voltage value by charging, the output of the logic signal generation circuit 2-1 is cut off, and the energization control switching element 3 No energization signal is input to 4 and the energization of the winding is cut off.
[0021]
When the energization is cut off, the voltage of the lock detection capacitor 33 starts to be discharged by a circuit having a long time constant of the charge / discharge circuit 2-3, and after a predetermined time, the voltage detection circuit 2-4 performs a predetermined automatic by discharge. When it is detected that the return voltage value has been reached, a signal of the logic signal generation circuit 2-1 is output, an energization signal is sent to the energization signal switching elements 3 and 4, and the rotation of the motor is resumed.
[0022]
As described above, in the combination of the lock detection circuit based on rotation detection and the first overcurrent protection circuit according to the conventional technique, the lock detection is not perfect. However, the second overcurrent protection circuit is added, Is detected and the lock detection capacitor 33 is forcibly charged, the energization current can be reliably cut off, and the energization control switching element can be prevented from being burned out.
In addition, after the elapse of a predetermined time since the energization is cut off, it is possible to detect that the voltage of the lock detection capacitor has reached a predetermined automatic return voltage value, and to automatically resume energization and operate the motor. .
[0023]
The drive circuit of the brushless motor having the overcurrent protection circuit according to the present invention shown in FIGS. 1 and 2 is configured by connecting normal circuit components, but the energization control circuit, the first overcurrent protection circuit, the second The overcurrent protection circuit can also be configured as an integrated circuit.
[0024]
【The invention's effect】
Since the brushless motor drive circuit having the overcurrent protection circuit according to the present invention has the above-described configuration, the second overcurrent is maintained even in a state where the rotor is locked and the overcurrent continues to flow. The protection circuit is activated to cut off the energized current, and after a predetermined time after the energization is cut off, the energization can be completely stopped until the energization is restored by the operation of the automatic return circuit, thus preventing the energization control switching element from being burned out. In addition, there is an effect that automatic recovery is possible.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a drive circuit of a brushless motor having an overcurrent protection circuit according to the present invention.
FIG. 2 is a circuit diagram of a driving circuit for a brushless motor having an overcurrent protection circuit according to the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hall element 2 Energization control signal generation circuit 2-1 Logic signal generation circuit 2-2 Pulse signal generation circuit 2-3 Charge / discharge circuit 2-4 Voltage detection circuit 3, 4 Energization control switching element 5 Stator winding 6 Current detection Resistor 7 Resistor 8 Capacitor 9, 10 Voltage dividing resistor 11 Comparison circuit 12
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001318827A JP4026741B2 (en) | 2001-10-17 | 2001-10-17 | Brushless motor drive circuit with overcurrent protection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001318827A JP4026741B2 (en) | 2001-10-17 | 2001-10-17 | Brushless motor drive circuit with overcurrent protection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003134877A JP2003134877A (en) | 2003-05-09 |
JP4026741B2 true JP4026741B2 (en) | 2007-12-26 |
Family
ID=19136460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001318827A Expired - Fee Related JP4026741B2 (en) | 2001-10-17 | 2001-10-17 | Brushless motor drive circuit with overcurrent protection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4026741B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1790068B8 (en) | 2004-09-17 | 2013-04-10 | Airbus Operations GmbH | Counter electro-motoric force based functional status detection of an electro-motor |
JP5297641B2 (en) | 2007-11-29 | 2013-09-25 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | Motor drive circuit |
JP5814065B2 (en) * | 2011-10-03 | 2015-11-17 | 株式会社マキタ | Motor current detection device, motor control device, and electric tool |
CN105262061B (en) * | 2015-11-24 | 2018-09-07 | 珠海格力节能环保制冷技术研究中心有限公司 | A kind of the protection circuit and control device of brshless DC motor |
CN108923387B (en) * | 2018-06-15 | 2020-01-21 | 珠海格力电器股份有限公司 | Motor protection device, motor and protection method thereof |
-
2001
- 2001-10-17 JP JP2001318827A patent/JP4026741B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003134877A (en) | 2003-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59220092A (en) | Burnout preventing circuit of commutatorless motor | |
JP4026741B2 (en) | Brushless motor drive circuit with overcurrent protection circuit | |
US6396226B2 (en) | Electronically commutated DC motor | |
US5574608A (en) | Brushless motor lock detection apparatus | |
JP2006029342A (en) | Drive for electric compressor | |
JP4170054B2 (en) | DC brushless motor control circuit with protection circuit | |
JP4392831B2 (en) | Brushless motor drive circuit with variable current limiter circuit | |
US7045979B2 (en) | Multiple-speed electric machine and method of operating the same | |
JP3547880B2 (en) | Motor control circuit | |
MX2013012892A (en) | Torque based electronic pulse width modulation control system for a switched reluctance motor. | |
JP2001309691A (en) | Switched reluctance motor and its sensorless drive circuit | |
JP2000324877A (en) | Driving circuit for brushless dc motor | |
JPH06141587A (en) | Brushless motor driver | |
JP3230757B2 (en) | Three-phase DC brushless motor | |
JPH0787782A (en) | Controlling device for drive dc brushless motor | |
JP2538977B2 (en) | Drive device equipped with a motor burnout prevention device | |
TWI780592B (en) | Motor unit | |
JP3300242B2 (en) | Brushless motor drive circuit | |
JP2890091B2 (en) | Motor overload stop circuit | |
JP3119299B2 (en) | Control circuit of DC motor with current limiter | |
JP2002247880A (en) | Dc brushless motor controlling device | |
JP3545318B2 (en) | Sensorless motor lock and beat lock combined detection circuit | |
CN114977670A (en) | motor unit | |
JP3814061B2 (en) | Motor control circuit | |
JPH0537629Y2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071004 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4026741 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |