JP4019139B2 - Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same - Google Patents
Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same Download PDFInfo
- Publication number
- JP4019139B2 JP4019139B2 JP2002136905A JP2002136905A JP4019139B2 JP 4019139 B2 JP4019139 B2 JP 4019139B2 JP 2002136905 A JP2002136905 A JP 2002136905A JP 2002136905 A JP2002136905 A JP 2002136905A JP 4019139 B2 JP4019139 B2 JP 4019139B2
- Authority
- JP
- Japan
- Prior art keywords
- photoelectric conversion
- conversion element
- electrolyte solution
- dye
- propylpyridine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 title claims 7
- 239000008151 electrolyte solution Substances 0.000 title claims 4
- OIALIKXMLIAOSN-UHFFFAOYSA-N 2-Propylpyridine Chemical compound CCCC1=CC=CC=N1 OIALIKXMLIAOSN-UHFFFAOYSA-N 0.000 title claims 2
- 229910052736 halogen Inorganic materials 0.000 claims 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims 2
- 239000003792 electrolyte Substances 0.000 claims 2
- 150000002366 halogen compounds Chemical class 0.000 claims 2
- 150000002367 halogens Chemical class 0.000 claims 2
- 229910052740 iodine Inorganic materials 0.000 claims 2
- 239000011630 iodine Substances 0.000 claims 2
- 150000002497 iodine compounds Chemical class 0.000 claims 2
- 229910017053 inorganic salt Inorganic materials 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2004—Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2059—Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Photovoltaic Devices (AREA)
- Hybrid Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高光電変換機能を有する電解質溶液およびそれを用いた光電変換素子に関する。
【0002】
【従来の技術】
太陽光発電に使用する太陽電池として、単結晶シリコン、多結晶シリコン、アモルファスシリコン、テルル化カドミウム、セレン化インジウム銅等の化合物を用いた太陽電池が実用化若しくは主な研究開発の対象となっているが、家庭用電源等に広く普及させる上では製造コストが高いこと、原材料の確保が困難であること、エネルギーペイバックタイムが長いこと等の問題点があり、これらを克服する必要がある。一方、電池の大面積化や低価格化を目的として有機材料を用いた太陽電池が多く提案されているが、一般にこのような太陽電池は光電変換効率が低く、耐久性も悪いという問題がある。
Nature,第353巻,737〜740頁(1991)、米国特許4190950号、WO94/04497号等は、ルテニウム錯体色素により分光増感された二酸化チタン多孔質薄膜を作用電極とする色素増感半導体型の光電変換素子及び太陽電池、並びにこれを作製するための材料及び製造技術を開示している。
これらの色素増感半導体型太陽電池は、半導体層電極、対電極、およびそれらの電極間に挟持された電解質層とから構成される。光電変換材料である半導体層電極において、半導体層表面には、可視光領域に吸収スペクトルを有する光増感色素が吸着されている。
これらの電池において、半導体層電極に光を照射すると、この電極側で電子が発生し、該電子は電気回路を通って対電極に移動する。対電極に移動した電子は、電解質中のイオンによって運ばれ、半導体層電極にもどる。このような過程が繰返されて電気エネルギーが取出される。
この色素増感半導体型光電変換素子の第一の利点は、二酸化チタン等の安価な酸化物半導体を高純度に精製することなく用いることができるため安価な光電変換素子を提供できる点であり、第二の利点は、用いる色素の吸収がブロードなため可視光線のほぼ全ての波長領域の光を電気に変換できることである。しかし、取り出し電圧が十分に得られないという問題があった。これは、電極から電荷輸送材料へ、光の照射とは関係なく逆電流が流れることに起因しており、この逆電流を十分に防止する手段はなかった。
【0003】
【発明が解決しようとする課題】
従って、本発明の目的は、光の照射の有無に関わらず流れる逆電流を防止することにより、開放電圧を高めた光電変換素子を提供することにある。本発明のさらなる目的は、開放電圧の向上によって光電変換効率を高めた光電変換素子を提供することである。
【0004】
【課題を解決するための手段】
そこで、本発明者らは前記課題を解決すべく、鋭意研究を重ねた結果、半導体層電極、対電極、電解質溶液からなる光電変換素子であって、2−n−プロピルピリジンを添加した電解質溶液を用いることにより、開放電圧が高く、高い光電変換効率を発現する光電変換素子の開発に成功した。
即ち、本発明は、2−n−プロピルピリジンを添加した電解質溶液を用いたことを特徴とする光電変換素子である。
また、さらに本発明においては、電解質溶液に、酸化還元系電解質を含むことを特徴としている。
さらに、本発明においては、酸化還元系電解質としてハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子を用いることができる。
また、ハロゲン化合物がヨウ素化合物で、ハロゲン分子がヨウ素であることが好ましい。とくに、ハロゲン化合物がヨウ素の無機塩であるのがより好ましい。
本願発明の光電変換素子の典型的な例が、色素増感型太陽電池であり、半導体層電極として半導体酸化物を用い、その表面を色素で覆った電極を用いるものであり、当業者はこのような構成を熟知している。
本発明は、当然、このような多様な光電変換素子を用いた色素増感型太陽電池を提供することもできる。
【0005】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明の2−n−プロピルピリジンを添加した電解質溶液は、電解質と溶媒からなる。
電解質溶液に対する2−n−プロピルピリジンの濃度は0.001mol/l〜10mol/lの範囲内であり、一層好ましい範囲は0.01mol/l〜5mol/lであり、特に好ましい範囲は0.05mol/l〜2mol/lであり、最も好ましい範囲は0.1mol/l〜1mol/lである。また、これらは単独または2種以上を組み合わせて用いることが出来る。
本発明で使用する酸化還元系電解質にはハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン系酸化還元系電解質、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシアニウムイオンなどの金属錯体等の金属酸化還元系電解質、アルキルチオール−アルキルジスルフィド、ビオロゲン色素、ヒドロキノン−キノン等の芳香族酸化還元系電解質などをあげることができるが、ハロゲン系酸化還元系電解質が好ましい。
【0006】
本発明の電解質はヨウ素分子とヨウ化物の組み合わせ(ヨウ化物としてはLiI、NaI、KI、CsI、CaI2 などの金属ヨウ化物、あるいはテトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩など)、臭素分子と臭化物の組み合わせ(臭化物としてはLiBr、NaBr、KBr、CsBr、CaBr2 などの金属臭化物、あるいはテトラアルキルアンモニウムブロマイド、ピリジニウムブロマイドなど4級アンモニウム化合物の臭素塩など)のほか、フェロシアン酸塩−フェリシアン酸塩やフェロセン−フェリシニウムイオンなどの金属錯体、ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィドなどのイオウ化合物、ビオロゲン色素、ヒドロキノン−キノンなどを用いることができる。
この中でもヨウ素分子とLiIやピリジニウムヨーダイド、イミダゾリウムヨーダイドなど4級アンモニウム化合物のヨウ素塩を組み合わせた電解質が好ましい。上述した電解質は混合して用いてもよい。
電解質の好ましい濃度は0.1M〜10Mであり、さらに好ましくは0.2M〜4Mである。また、電解液にヨウ素を添加する場合の好ましいヨウ素の添加濃度は0.01M〜0.5Mである。
【0007】
酸化還元電解質を溶解するために用いる溶媒としては、2−n−プロピルピリジンおよび酸化還元系電解質を溶解し、イオン伝導性に優れた化合物が望ましい。溶媒としては水性溶媒および有機溶媒のいずれも使用できるが、2−n−プロピルピリジンおよび酸化還元系電解質をより安定化するため、有機溶媒が好ましい。
例えばこのような溶媒としては、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3−メチル−2−オキサゾリジノンなどの複素環化合物、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、ジメチルスルフォキシド、スルフォランなど非プロトン性の極性物質等の有機溶剤等が挙げられる。
このなかでも、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物が特に好ましい。これらは、単独または2種以上を組み合わせて用いることが出来る。
本発明の2−n−プロピルピリジンを含有する電解質溶液を用いた光電変換素子は負極、正極及び電荷分離層から成る。光電変換素子としては一般的に光エネルギーを電気エネルギーに変換する素子全体を指す。
【0008】
本発明の2−n−プロピルピリジンを添加した電解質溶液を用いた光電変換素子は、種々の材料に使用可能であるが、色素増感型太陽電池に特に最適である。色素増感型太陽電池は半導体電極、対極、電解質溶液で構成される。半導体電極は酸化チタン、酸化亜鉛などの金属酸化物半導体を導電性ガラスなどの導電性材料表面に薄膜化させて、その酸化物半導体薄膜に色素を吸着担持することにより得られる。対極は導電性ガラスなどの導電性材料表面に白金などを蒸着して得られる。得られた半導体電極と対峙するように対極を配置する。その隙間に電解質溶液を充填して光電変換素子の周囲を樹脂で封止して色素増感型太陽電池となる。
【0009】
(参考例)
まず参考例を挙げて本発明を具体的に説明する。
溶媒がアセトニトリルでヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化ジメチルプロピルイミダゾリウム0.62Mを溶解した電解質溶液を調製した。
ここにピリジンを濃度0.5Mになるように添加し、溶解した。
この電解質溶液を、グレッツエル(M.Gratzel)らのJ.Am.Chem. Soc.115巻,6382頁の論文に記載の製造方法に従って作成した導電性ガラス付き増感色素担持多孔質酸化チタン半導体薄膜に滴下した。
対電極でこれを覆い、光電変換素子を構成した。
得られた光電変換素子に、Xeランプを光源として強度100mW/cm2の光を照射したところ、開放電圧は0.74V、光電変換効率は7.25%であった。
【0010】
次に本発明の実施例を挙げる。
【実施例1】
溶媒がアセトニトリルでヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化ジメチルプロピルイミダゾリウム0.62Mを溶解した電解質溶液を調製した。
ここに2−n−プロピルピリジンを濃度0.5Mになるように添加し、溶解した。
この電解質溶液を、グレッツエル(M.Gratzel)らのJ.Am.Chem. Soc.115巻,6382頁の論文に記載の製造方法に従って作成した導電性ガラス付き増感色素担持多孔質酸化チタン半導体薄膜に滴下した。
対電極でこれを覆い、光電変換素子を構成した。
得られた光電変換素子に、Xeランプを光源として強度100mW/cm2の光を照射したところ、開放電圧は0.70V、光電変換効率は7.61%であった。
【0011】
(比較例1)
溶媒がアセトニトリルでヨウ化リチウム0.1M、ヨウ素0.05M、ヨウ化ジメチルプロピルイミダゾリウム0.62Mを溶解した電解質溶液を調製した。
この電解質溶液を、グレッツエル(M.Gratzel)らのJ.Am.Chem. Soc.115巻,6382頁の論文に記載の製造方法に従って作成した導電性ガラス付き増感色素担持多孔質酸化チタン半導体薄膜に滴下した。
対電極でこれを覆い、光電変換素子を構成した。
得られた光電変換素子に、Xeランプを光源として強度100mW/cm2の光を照射したところ、開放電圧は0.62V、光電変換効率は5.92%であった。
【0012】
【発明の効果】
以上説明したように、半導体層電極、対電極、電解質溶液からなる光電変換素子であって、2−n−プロピルピリジンを添加した電解質溶液を用いることにより、非常に高い開放電圧と光電変換効率を示す光電変換素子を得ることができ、効率の良い太陽電池を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolyte solution having a high photoelectric conversion function and a photoelectric conversion element using the same.
[0002]
[Prior art]
Solar cells that use compounds such as single crystal silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and indium copper selenide have been put into practical use or the main research and development targets for solar power generation. However, there are problems such as high manufacturing cost, difficulty in securing raw materials, and long energy payback time in order to spread widely in household power sources and the like, and these need to be overcome. On the other hand, many solar cells using organic materials have been proposed for the purpose of increasing the area of the battery and reducing the price, but in general, such solar cells have a problem of low photoelectric conversion efficiency and poor durability. .
Nature, Vol. 353, pp. 737-740 (1991), U.S. Pat. No. 4,190,950, WO94 / 04497, etc. are dye-sensitized semiconductor types using a titanium dioxide porous thin film spectrally sensitized with a ruthenium complex dye as a working electrode. The photoelectric conversion element and solar cell of this invention, and the material and manufacturing technique for producing this are disclosed.
These dye-sensitized semiconductor solar cells are composed of a semiconductor layer electrode, a counter electrode, and an electrolyte layer sandwiched between these electrodes. In a semiconductor layer electrode that is a photoelectric conversion material, a photosensitizing dye having an absorption spectrum in the visible light region is adsorbed on the surface of the semiconductor layer.
In these batteries, when the semiconductor layer electrode is irradiated with light, electrons are generated on the electrode side, and the electrons move to the counter electrode through the electric circuit. The electrons that have moved to the counter electrode are carried by the ions in the electrolyte and return to the semiconductor layer electrode. Such a process is repeated to extract electric energy.
The first advantage of this dye-sensitized semiconductor type photoelectric conversion element is that an inexpensive photoelectric conversion element can be provided because an inexpensive oxide semiconductor such as titanium dioxide can be used without being highly purified. A second advantage is that light in almost all wavelength regions of visible light can be converted into electricity because absorption of the dye used is broad. However, there is a problem that a sufficient extraction voltage cannot be obtained. This is because a reverse current flows from the electrode to the charge transport material regardless of light irradiation, and there was no means for sufficiently preventing this reverse current.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a photoelectric conversion element having an increased open-circuit voltage by preventing a reverse current that flows regardless of the presence or absence of light irradiation. The further objective of this invention is providing the photoelectric conversion element which improved the photoelectric conversion efficiency by the improvement of an open circuit voltage.
[0004]
[Means for Solving the Problems]
Accordingly, the present inventors have conducted extensive research to solve the above problems, and as a result, are photoelectric conversion elements comprising a semiconductor layer electrode, a counter electrode, and an electrolyte solution, and an electrolyte solution to which 2-n-propylpyridine is added. As a result, the development of a photoelectric conversion element having a high open-circuit voltage and high photoelectric conversion efficiency has been successfully achieved.
That is, the present invention is a photoelectric conversion element using an electrolyte solution to which 2-n-propylpyridine is added .
Furthermore, the present invention is characterized in that the electrolyte solution contains a redox electrolyte.
Furthermore, in the present invention, halogen compounds and halogen molecules having halogen ions as counter ions can be used as the redox electrolyte.
Further, it is preferable that the halogen compound is an iodine compound and the halogen molecule is iodine. In particular, the halogen compound is more preferably an inorganic salt of iodine.
A typical example of the photoelectric conversion element of the present invention is a dye-sensitized solar cell, in which a semiconductor oxide is used as a semiconductor layer electrode, and an electrode whose surface is covered with a dye is used. I am familiar with such a structure.
Naturally, the present invention can also provide a dye-sensitized solar cell using such various photoelectric conversion elements.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The electrolyte solution to which 2-n-propylpyridine of the present invention is added comprises an electrolyte and a solvent.
The concentration of 2-n-propylpyridine with respect to the electrolyte solution is within a range of 0.001 mol / l to 10 mol / l, a more preferable range is 0.01 mol / l to 5 mol / l, and a particularly preferable range is 0.05 mol. / L to 2 mol / l, and the most preferred range is 0.1 mol / l to 1 mol / l. Moreover, these can be used individually or in combination of 2 or more types.
The oxidation-reduction electrolyte used in the present invention includes halogen compounds having halogen ions as counter ions and halogen-based oxidation-reduction electrolytes composed of halogen molecules, metals such as ferrocyanate-ferricyanate and ferrocene-ferricyanium ions. Examples thereof include metal redox electrolytes such as complexes, and aromatic redox electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, and hydroquinone-quinones. Halogen redox electrolytes are preferred.
[0006]
The electrolyte of the present invention is a combination of iodine molecules and iodides (as iodides, metal iodides such as LiI, NaI, KI, CsI, and CaI2, or quaternary grades such as tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide). Iodine salts of ammonium compounds), bromine molecules and bromide combinations (bromides include metal bromides such as LiBr, NaBr, KBr, CsBr, and CaBr2, or bromine salts of quaternary ammonium compounds such as tetraalkylammonium bromide and pyridinium bromide) In addition, metal complexes such as ferrocyanate-ferricyanate and ferrocene-ferricinium ions, sulfur compounds such as sodium polysulfide and alkylthiol-alkyldisulfides, viologen dyes, Droquinone-quinone and the like can be used.
Among these, electrolytes in which iodine molecules are combined with iodine salts of quaternary ammonium compounds such as LiI, pyridinium iodide and imidazolium iodide are preferable. The electrolytes described above may be used in combination.
The preferable concentration of the electrolyte is 0.1M to 10M, more preferably 0.2M to 4M. Moreover, the preferable addition density | concentration of iodine when adding iodine to electrolyte solution is 0.01M-0.5M.
[0007]
As the solvent used for dissolving the redox electrolyte, a compound that dissolves 2-n-propylpyridine and the redox electrolyte and has excellent ion conductivity is desirable. As the solvent, any of an aqueous solvent and an organic solvent can be used, but an organic solvent is preferable in order to further stabilize 2-n-propylpyridine and the redox electrolyte.
Examples of such solvents include carbonate compounds such as ethylene carbonate and propylene carbonate, heterocyclic compounds such as 3-methyl-2-oxazolidinone, ether compounds such as dioxane and diethyl ether, ethylene glycol dialkyl ether, propylene glycol dialkyl ether, Chain ethers such as polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, alcohols such as methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether and polypropylene glycol monoalkyl ether, ethylene glycol , Propylene glycol, polyethylene glycol, Organic solvents such as polyhydric alcohols such as propylene glycol and glycerol, nitrile compounds such as acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, and benzonitrile, aprotic polar substances such as dimethyl sulfoxide and sulfolane, etc. Is mentioned.
Among these, carbonate compounds such as ethylene carbonate and propylene carbonate, and nitrile compounds such as acetonitrile, glutaronitrile, methoxyacetonitrile, propionitrile, and benzonitrile are particularly preferable. These can be used alone or in combination of two or more.
The photoelectric conversion element using the electrolyte solution containing 2-n-propylpyridine of the present invention includes a negative electrode, a positive electrode, and a charge separation layer. A photoelectric conversion element generally refers to the entire element that converts light energy into electrical energy.
[0008]
Although the photoelectric conversion element using the electrolyte solution to which 2-n-propylpyridine of the present invention is added can be used for various materials, it is particularly optimal for a dye-sensitized solar cell. The dye-sensitized solar cell includes a semiconductor electrode, a counter electrode, and an electrolyte solution. The semiconductor electrode is obtained by thinning a metal oxide semiconductor such as titanium oxide or zinc oxide on the surface of a conductive material such as conductive glass and adsorbing and supporting a dye on the oxide semiconductor thin film. The counter electrode is obtained by depositing platinum or the like on the surface of a conductive material such as conductive glass. A counter electrode is disposed so as to face the obtained semiconductor electrode. The gap is filled with an electrolyte solution, and the periphery of the photoelectric conversion element is sealed with a resin to obtain a dye-sensitized solar cell.
[0009]
(Reference example)
First, the present invention will be specifically described with reference examples .
An electrolyte solution was prepared by dissolving 0.1M lithium iodide, 0.05M iodine, and 0.62M dimethylpropylimidazolium iodide in a solvent of acetonitrile.
Here, pyridine was added to a concentration of 0.5 M and dissolved.
This electrolyte solution was prepared as described by M. Gratzel et al. Am. Chem. Soc. No. 115, page 6382, and dropped onto a porous titanium oxide semiconductor thin film carrying a sensitizing dye with a conductive glass prepared according to the production method described in the paper.
This was covered with a counter electrode to constitute a photoelectric conversion element.
When the obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a Xe lamp as a light source, the open-circuit voltage was 0.74 V and the photoelectric conversion efficiency was 7.25%.
[0010]
Next, examples of the present invention will be given.
[Example 1]
An electrolyte solution was prepared by dissolving 0.1M lithium iodide, 0.05M iodine, and 0.62M dimethylpropylimidazolium iodide in a solvent of acetonitrile.
2-n-propylpyridine was added and dissolved to a concentration of 0.5M.
This electrolyte solution was prepared as described by M. Gratzel et al. Am. Chem. Soc. No. 115, page 6382, and dropped onto a porous titanium oxide semiconductor thin film carrying a sensitizing dye with a conductive glass prepared according to the production method described in the paper.
This was covered with a counter electrode to constitute a photoelectric conversion element.
When the obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a Xe lamp as a light source, the open circuit voltage was 0.70 V and the photoelectric conversion efficiency was 7.61%.
[0011]
(Comparative Example 1)
An electrolyte solution was prepared by dissolving 0.1M lithium iodide, 0.05M iodine, and 0.62M dimethylpropylimidazolium iodide with a solvent of acetonitrile.
This electrolyte solution was prepared as described by M. Gratzel et al. Am. Chem. Soc. No. 115, page 6382, and dropped onto a porous titanium oxide semiconductor thin film carrying a sensitizing dye with conductive glass prepared according to the production method described in the paper.
This was covered with a counter electrode to constitute a photoelectric conversion element.
When the obtained photoelectric conversion element was irradiated with light having an intensity of 100 mW / cm 2 using a Xe lamp as a light source, the open circuit voltage was 0.62 V and the photoelectric conversion efficiency was 5.92%.
[0012]
【The invention's effect】
As described above, it is a photoelectric conversion element composed of a semiconductor layer electrode, a counter electrode, and an electrolyte solution. By using an electrolyte solution to which 2-n-propylpyridine is added, a very high open-circuit voltage and photoelectric conversion efficiency can be obtained. The photoelectric conversion element shown can be obtained, and an efficient solar cell can be provided.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002136905A JP4019139B2 (en) | 2002-05-13 | 2002-05-13 | Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002136905A JP4019139B2 (en) | 2002-05-13 | 2002-05-13 | Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003331936A JP2003331936A (en) | 2003-11-21 |
JP4019139B2 true JP4019139B2 (en) | 2007-12-12 |
Family
ID=29698812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002136905A Expired - Lifetime JP4019139B2 (en) | 2002-05-13 | 2002-05-13 | Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4019139B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101058101B1 (en) | 2004-06-26 | 2011-08-24 | 삼성에스디아이 주식회사 | Electrolytic solution composition and solar cell using same |
JP2012004010A (en) * | 2010-06-18 | 2012-01-05 | Sony Corp | Photoelectric conversion element and its manufacturing method and electronic apparatus |
JP5914462B2 (en) | 2011-04-05 | 2016-05-11 | 株式会社Adeka | Novel compound and photoelectric conversion element |
CN103827126B (en) | 2011-11-18 | 2017-05-17 | 株式会社艾迪科 | Novel compound and support supporting this novel compound |
JP5874140B2 (en) | 2011-12-28 | 2016-03-02 | 株式会社Adeka | Dye-sensitized solar cell |
US9496095B2 (en) | 2012-03-07 | 2016-11-15 | Adeka Corporation | Compound and carrier system having the compound |
WO2013146933A1 (en) | 2012-03-30 | 2013-10-03 | グンゼ株式会社 | Dye-sensitized solar cell and method of manufacturing same |
WO2014092066A1 (en) | 2012-12-14 | 2014-06-19 | シャープ株式会社 | Photoelectric conversion element |
EP2940781A4 (en) | 2012-12-28 | 2016-08-17 | Adeka Corp | Loaded body and photoelectric conversion element |
KR20160048039A (en) | 2013-08-29 | 2016-05-03 | 가부시키가이샤 아데카 | Dye-sensitized solar cell |
JP2015053149A (en) * | 2013-09-05 | 2015-03-19 | 富士フイルム株式会社 | Photoelectric conversion element, dye-sensitized solar cell, and back migration preventing agent of electron for photoelectric conversion element |
CN105874550B (en) | 2014-02-06 | 2018-08-14 | 株式会社艾迪科 | Carrying body and photo-electric conversion element |
JP6568354B2 (en) * | 2014-12-25 | 2019-08-28 | 積水化学工業株式会社 | Electrolyte, electrolyte for photoelectric conversion element, photoelectric conversion element, and dye-sensitized solar cell |
-
2002
- 2002-05-13 JP JP2002136905A patent/JP4019139B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2003331936A (en) | 2003-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4235728B2 (en) | Photoelectric conversion element using electrolyte solution containing benzimidazole compound and dye-sensitized solar cell using the same | |
JP5404058B2 (en) | Ionic liquid electrolyte | |
Lee et al. | Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells | |
JP4019140B2 (en) | Photoelectric conversion element using electrolyte solution containing aminopyridine compound and dye-sensitized solar cell using the same | |
Hara et al. | Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer | |
JPH11185836A (en) | Photoelectric conversion element and photoregeneration type photoelectrochemical cell | |
JP4019139B2 (en) | Photoelectric conversion element using electrolyte solution containing 2-n-propylpyridine and dye-sensitized solar cell using the same | |
Dissanayake et al. | Optimization of iodide ion conductivity and nano filler effect for efficiency enhancement in polyethylene oxide (PEO) based dye sensitized solar cells | |
Chen et al. | An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells | |
JP4643792B2 (en) | Photoelectric conversion element and photoelectrochemical cell | |
JP4757433B2 (en) | Solar cell | |
JP2000058140A (en) | Gel electrolyte, gel electrolyte for photoelectrochemical battery and photoelectrochemical battery | |
JP4238350B2 (en) | Photoelectric conversion element using electrolyte solution containing aminopyrimidine compound and dye-sensitized solar cell using the same | |
JP2000036608A (en) | Gel electrolyte, photoelectric transducer and optical regenerative photoelectric chemical cell | |
JP2000195570A (en) | Photoelectric transfer element and photo- electrochemical battery | |
JP4264507B2 (en) | Photoelectric conversion element and dye-sensitized solar cell using the same | |
JP4328857B2 (en) | Photoelectric conversion element and dye-sensitized solar cell using the same | |
JP4264511B2 (en) | Photoelectric conversion element and dye-sensitized solar cell using the same | |
JP4370398B2 (en) | Photoelectric conversion element and dye-sensitized solar cell using the same | |
KR20140122361A (en) | Electrolyte for dye sensitized solar cell and dye sensitized solar cell using the same | |
JP4269054B2 (en) | Photoelectric conversion element and dye-sensitized solar cell using the same | |
JP2010218788A (en) | Dye-sensitized solar cell | |
JP2005108664A (en) | Photoelectric conversion element and dye-sensitized solar cell using the same | |
JP2000053662A (en) | Electrolyte, electrolyte for photo-electrochemical cell, photoelectrochemical cell and oxazolium compound | |
Hara et al. | Novel and efficient organic liquid electrolytes for dye-sensitized solar cells based on a Ru (II) terpyridyl complex photosensitizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070828 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4019139 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |