[go: up one dir, main page]

JP4018099B2 - Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen - Google Patents

Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen Download PDF

Info

Publication number
JP4018099B2
JP4018099B2 JP2004325920A JP2004325920A JP4018099B2 JP 4018099 B2 JP4018099 B2 JP 4018099B2 JP 2004325920 A JP2004325920 A JP 2004325920A JP 2004325920 A JP2004325920 A JP 2004325920A JP 4018099 B2 JP4018099 B2 JP 4018099B2
Authority
JP
Japan
Prior art keywords
liquid
gas
dissolved oxygen
water
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004325920A
Other languages
Japanese (ja)
Other versions
JP2006136756A (en
Inventor
徹也 濱口
欽一 坂上
樹 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIR WATER PLANT & ENGINEERING INC.
Original Assignee
AIR WATER PLANT & ENGINEERING INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIR WATER PLANT & ENGINEERING INC. filed Critical AIR WATER PLANT & ENGINEERING INC.
Priority to JP2004325920A priority Critical patent/JP4018099B2/en
Publication of JP2006136756A publication Critical patent/JP2006136756A/en
Application granted granted Critical
Publication of JP4018099B2 publication Critical patent/JP4018099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、例えば空調システム,ボイラ給水、飲料水製造用、食品製造用、半導体超純水製造用あるいは各種試験研究用等に用いる液体中の溶存酸素除去装置および溶存酸素除去方法に関するものである。   The present invention relates to a device for removing dissolved oxygen and a method for removing dissolved oxygen used in, for example, an air conditioning system, boiler water supply, drinking water production, food production, semiconductor ultrapure water production or various test research. .

建物の各所に配置した空調器(例えばファンコイル)に蓄熱槽内の冷水または温水を供給して空気調和を行なう水熱源空調システムはビル空調等で一般化しているが、循環させる液体中の溶存酸素により配管やコイル等が腐食するという問題がある。   Water heat source air conditioning systems for air conditioning by supplying cold water or hot water in heat storage tanks to air conditioners (for example, fan coils) arranged at various locations in buildings are common in building air conditioning, etc., but dissolved in circulating liquids There is a problem that piping and coils are corroded by oxygen.

そこで、高効率で気液接触可能な気液接触部を多段に組み合わせ、原水と不活性ガスを向流接触させることにより、不活性ガスのガス分圧差分を有効に利用して不活性ガスの消費量を低減する溶存酸素低減装置が提案されている(例えば、下記の特許文献1参照。)。この特許文献1に示す装置は、実質的に垂直方向に複数個の気液接触部とその気液接触部間に気液分離部を配置してなる放散塔の上部に原水を供給し、放散塔の下部より不活性ガスを導入し、気液接触部内で流下する原水と上昇する不活性ガスを向流接触させることを繰り返し、原水中の溶存酸素を不活性ガス側に放散して物質移動させるようになっている。
特開2004−141840号公報
Therefore, by combining gas-liquid contact parts capable of gas-liquid contact with high efficiency in multiple stages and bringing the raw water and the inert gas into countercurrent contact, the gas partial pressure difference of the inert gas can be effectively used to make the inert gas A dissolved oxygen reduction device that reduces consumption is proposed (for example, see Patent Document 1 below). The apparatus shown in Patent Document 1 supplies raw water to an upper portion of a diffusion tower in which a plurality of gas-liquid contact portions and gas-liquid separation portions are arranged between the gas-liquid contact portions in a substantially vertical direction, Introducing an inert gas from the bottom of the tower, repeatedly bringing the raw water flowing down in the gas-liquid contact section into countercurrent contact with the rising inert gas, dissipating dissolved oxygen in the raw water to the inert gas side, and mass transfer It is supposed to let you.
JP 2004-141840 A

しかしながら、上記特許文献1に示すような装置では、溶存酸素の除去性能を確保するために複雑な構造の気液接触部(リアクタ)を多段に配置しているため、内部構造が複雑で、装置サイズに下限があって小型化ができない。また、構造が複雑で高価なリアクタを多段配置しているため、設備コストが嵩む。このため、原水の量が少ない用途に対しては、設備の無駄が多すぎて実質的に適用が困難であった。一方、小型化しようとしてリアクタの段数を少なくすると、十分な溶存酸素の除去性能を得ることはできないという問題があった。   However, in the apparatus as shown in Patent Document 1, since the gas-liquid contact portions (reactors) having a complicated structure are arranged in multiple stages in order to ensure the removal performance of dissolved oxygen, the internal structure is complicated. There is a lower limit on the size, so miniaturization is not possible. In addition, since the reactors are complicated and expensive and are arranged in multiple stages, the equipment cost increases. For this reason, for applications where the amount of raw water is small, there is too much equipment waste and it has been substantially difficult to apply. On the other hand, if the number of reactor stages is reduced in order to reduce the size, there is a problem that sufficient dissolved oxygen removal performance cannot be obtained.

また、いわゆるスタティックミキサ、バブリング等の方法により、水と窒素を接触させるものは、接触効率が悪いため、窒素使用量が多く、装置の大型化、DO値(溶存酸素値)の削減限界値が高い等の制約がある。また、膜式脱酸素装置等の窒素式以外の方式の場合、DO値の制限、水質、水温等の制限がある。   In addition, those that contact water and nitrogen by methods such as so-called static mixers and bubbling have poor contact efficiency, so they use a large amount of nitrogen, increase the size of the device, and limit the reduction in DO value (dissolved oxygen value). There are restrictions such as high. In the case of a system other than the nitrogen system such as a membrane deoxygenator, there are limitations on DO value, water quality, water temperature, and the like.

本発明は、上記のような事情に鑑みなされたもので、液体中の溶存酸素を効果的に除去する液体中の溶存酸素除去装置および溶存酸素除去方法の提供を目的とする。   This invention is made | formed in view of the above situations, and it aims at provision of the dissolved oxygen removal apparatus and dissolved oxygen removal method in a liquid which remove effectively the dissolved oxygen in a liquid.

上記目的を達成するため、本発明の液体中の溶存酸素除去装置は、処理対象の液体と不活性ガスとを気液接触させて上記液体中の溶存酸素を除去する気液接触部を有する脱酸素塔と、
上記液体を脱酸素塔の気液接触部より上方に供給する液体供給路と、
上記不活性ガスを脱酸素塔の気液接触部より下方に供給する不活性ガス供給路と、
上記脱酸素塔の気液接触部により不活性ガスと気液接触した液体を貯溜する貯溜槽と、
上記貯溜槽に貯溜された液体のうち一部を処理液として外部に導出する導出路と、
上記貯溜槽に貯溜された液体のうち一部を上記脱酸素塔の気液接触部より上方に導入して還流させる還流路と
上記還流路により上記脱酸素塔の気液接触部より上方に導入する液体の流量と、上記導出路により外部に導出する液体の流量または上記液体供給路により供給される液体の流量との比率を、導出管で導出された液体の溶存酸素量に応じて制御する流量制御手段とを備えたことを要旨とする。
In order to achieve the above object, a device for removing dissolved oxygen in a liquid according to the present invention has a gas-liquid contact portion that removes dissolved oxygen in the liquid by bringing the liquid to be treated and an inert gas into gas-liquid contact. An oxygen tower,
A liquid supply path for supplying the liquid above the gas-liquid contact portion of the deoxygenation tower;
An inert gas supply path for supplying the inert gas downward from the gas-liquid contact portion of the deoxygenation tower;
A storage tank for storing the liquid in gas-liquid contact with the inert gas by the gas-liquid contact portion of the deoxygenation tower;
A lead-out path for leading a part of the liquid stored in the storage tank to the outside as a processing liquid;
A reflux path for introducing a part of the liquid stored in the storage tank above the gas-liquid contact part of the deoxygenation tower to reflux ;
The ratio between the flow rate of the liquid introduced above the gas-liquid contact portion of the deoxygenation tower by the reflux path and the flow rate of the liquid led to the outside by the lead-out path or the flow rate of the liquid supplied by the liquid supply path The gist of the invention is that it includes a flow rate control means for controlling the amount of dissolved oxygen in the liquid led out by the lead-out pipe .

また、上記目的を達成するため、本発明の液体中の溶存酸素除去方法は、処理対象の液体と不活性ガスとを気液接触させて上記液体中の溶存酸素を除去する気液接触部を有する脱酸素塔の気液接触部より上方に液体供給路より上記液体を供給し、
上記脱酸素塔の気液接触部より下方に上記不活性ガスを供給し、
上記脱酸素塔の気液接触部により不活性ガスと気液接触した液体を所定の貯溜槽に貯溜し、
上記貯溜槽に貯溜された液体のうち一部を処理液として導出路より外部に導出し、
上記貯溜槽に貯溜された液体のうち一部を上記脱酸素塔の気液接触部より上方に導入して還流させ
上記還流により上記脱酸素塔の気液接触部より上方に導入する液体の流量と、上記導出路により外部に導出する液体の流量または上記液体供給路により供給される液体の流量との比率を、導出管で導出された液体の溶存酸素量に応じて流量制御手段により制御することを要旨とする。
In order to achieve the above object, the method for removing dissolved oxygen in a liquid according to the present invention includes a gas-liquid contact portion that removes dissolved oxygen in the liquid by bringing the liquid to be treated and an inert gas into gas-liquid contact. Supplying the liquid from the liquid supply path above the gas-liquid contact portion of the deoxygenation tower,
Supply the inert gas below the gas-liquid contact portion of the deoxygenation tower,
The liquid in gas-liquid contact with the inert gas by the gas-liquid contact part of the deoxygenation tower is stored in a predetermined storage tank,
A part of the liquid stored in the storage tank is led out from the lead-out path as a processing liquid,
A part of the liquid stored in the storage tank is introduced above the gas-liquid contact part of the deoxidation tower to be refluxed ,
The ratio of the flow rate of the liquid introduced above the gas-liquid contact part of the deoxygenation tower by the reflux and the flow rate of the liquid led out to the outside by the lead-out path or the flow rate of the liquid supplied by the liquid feed path and gist that you controlled by flow control means in accordance with the amount of dissolved oxygen in the liquid derived by the derivation tube.

すなわち、本発明によれば、上記貯溜槽に貯溜された液体のうち一部を上記脱酸素塔の気液接触部より上方に導入して還流させる。   That is, according to the present invention, a part of the liquid stored in the storage tank is introduced above the gas-liquid contact portion of the deoxygenation tower and refluxed.

したがって、上記液体を上記貯溜槽と上記気液接触部間で循環させ、気液接触させる頻度を向上させることができるため、当該液体中の溶存酸素の濃度を効率よく低下させ、溶存酸素の濃度が極めて低い液体を処理液として得ることができる。また、例えばリアクタの段数を少なくする等、構造を簡素化しても、十分な溶存酸素除去性能を確保することができるため、本装置を小型化することができ、本装置の設備コストやランニングコストを抑えることができる。また、本装置は小型化できるため、供給される原液の流量が少ない用途に対しても適用が可能になる。
また、上記還流路により上記脱酸素塔の気液接触部より上方に導入する液体の流量と、上記導出路により外部に導出する液体の流量または上記液体供給路により供給される液体の流量との比率を、導出管で導出された液体の溶存酸素量に応じて制御する流量制御手段を備えたため、上記脱酸素塔の気液接触部より上方に導入して還流させる循環液の流量を、上記外部に導出する処理液の流量または上記供給される原液の流量より多くすることができる。これにより、上記貯溜槽と上記気液接触部間において上記処理液として外部に導出する液体の流量よりも多い流量の液体を循環液として循環させることができるため、溶存酸素の濃度が極めて低い処理液を容易に得ることができる。また、上記還流路による循環液が上記脱酸素塔の気液接触部より上方に導入されるため、上記脱酸素塔の気液接触部より上方において、原液を循環液で十分に希釈して供給することができ、上記貯溜槽に貯留される液体の溶存酸素の濃度が高まることを防止し、溶存酸素の濃度が極めて低い処理液を得ることができる。しかも、溶存酸素値が高い場合には、上記貯溜槽と上記気液接触部間で循環させる循環水量を多くして気液接触させる頻度を向上させ循環中の溶存酸素の濃度をさらに低下させることができ、溶存酸素値が低い場合には、上記貯溜槽と上記気液接触部間で循環させる循環水量を少なくして気液接触させる頻度を少なくして溶存酸素の濃度をある程度低下させることができ、処理水の水質を自動的に安定させることができる。
Therefore, since the liquid can be circulated between the storage tank and the gas-liquid contact portion to improve the frequency of gas-liquid contact, the concentration of dissolved oxygen in the liquid can be efficiently reduced, and the concentration of dissolved oxygen Can be obtained as a treatment liquid. Moreover, even if the structure is simplified, for example, by reducing the number of reactor stages, sufficient dissolved oxygen removal performance can be ensured, so that the apparatus can be reduced in size, and the equipment cost and running cost of the apparatus can be reduced. Can be suppressed. Moreover, since this apparatus can be reduced in size, it can be applied to applications where the flow rate of the supplied stock solution is small.
Further, the flow rate of the liquid introduced above the gas-liquid contact portion of the deoxygenation tower by the reflux path and the flow rate of the liquid led out by the lead-out path or the flow rate of the liquid supplied by the liquid supply path Since the flow rate control means for controlling the ratio according to the dissolved oxygen amount of the liquid led out by the lead-out pipe is provided, the flow rate of the circulating fluid to be introduced and refluxed above the gas-liquid contact part of the deoxygenation tower is The flow rate of the processing liquid led out to the outside or the flow rate of the supplied stock solution can be increased. As a result, it is possible to circulate a liquid having a flow rate larger than the flow rate of the liquid led out as the treatment liquid between the storage tank and the gas-liquid contact portion as the treatment liquid, so that the treatment with a very low concentration of dissolved oxygen is performed. A liquid can be obtained easily. In addition, since the circulating liquid in the reflux path is introduced above the gas-liquid contact part of the deoxygenation tower, the stock solution is sufficiently diluted with the circulating liquid and supplied above the gas-liquid contact part of the deoxygenation tower. The concentration of dissolved oxygen in the liquid stored in the storage tank can be prevented from increasing, and a treatment liquid having a very low concentration of dissolved oxygen can be obtained. Moreover, when the dissolved oxygen value is high, the amount of circulating water to be circulated between the storage tank and the gas-liquid contact part is increased to improve the frequency of gas-liquid contact and further reduce the concentration of dissolved oxygen in the circulation. When the dissolved oxygen value is low, the concentration of dissolved oxygen can be reduced to some extent by reducing the amount of circulating water between the storage tank and the gas-liquid contact part to reduce the frequency of gas-liquid contact. And can automatically stabilize the quality of the treated water.

本発明において、上記貯留槽から処理済の液体を送出する送出ポンプの下流側で上記導出路と還流路が分岐している場合には、導出管と還流管のそれぞれに送水ポンプを設ける必要がなく、送水ポンプや制御装置等の設備コストを節減することができる。 In the present invention, when the outlet channel and the reflux channel are branched downstream of the delivery pump for delivering the treated liquid from the storage tank, it is necessary to provide a water feed pump for each of the outlet tube and the reflux tube. In addition, it is possible to reduce equipment costs such as a water pump and a control device.

本発明において、上記液体供給路と連通する第1エジェクターを備え、上記第1エジェクターは、上記液体供給路により上記脱酸素塔の気液接触部より上方に供給される液体と上記不活性ガスとを気液接触させる場合には、上記気液接触部で原液から溶存酸素を除去する前に、上記第1エジェクターで上記原液の溶存酸素の濃度を効果的に低下させることができる。したがって、上記脱酸素塔の気液接触部より上方において上記液体供給路により供給される原液と上記還流路により導入される循環液が混ざることにより、溶存酸素の濃度が上がりすぎてしまうということを防止することができる。また、エジェクターを用いるため上記原液の流量が少ないときでも当該原液の溶存酸素の濃度を効果的に低下させることができる。   In the present invention, a first ejector communicating with the liquid supply path is provided, and the first ejector includes a liquid supplied above the gas-liquid contact portion of the deoxygenation tower by the liquid supply path, and the inert gas. When the gas is brought into gas-liquid contact, the concentration of dissolved oxygen in the stock solution can be effectively reduced by the first ejector before removing the dissolved oxygen from the stock solution at the gas-liquid contact portion. Therefore, the concentration of dissolved oxygen is increased too much by mixing the stock solution supplied by the liquid supply path and the circulating liquid introduced by the reflux path above the gas-liquid contact portion of the deoxygenation tower. Can be prevented. Moreover, since the ejector is used, the concentration of dissolved oxygen in the stock solution can be effectively reduced even when the flow rate of the stock solution is small.

本発明において、上記還流路と連通する第2エジェクターを備え、上記第2エジェクターは、上記還流路により上記脱酸素塔の気液接触部より上方に導入される液体と上記不活性ガスとを気液接触させる場合には、上記第2エジェクターで上記還流路により導入される循環液中の溶存酸素の濃度をさらに低下させることができる。また、エジェクターを用いるため、上記還流路により導入される循環液の流量が少ないときでも当該循環液の溶存酸素の濃度を効果的に低下させることができる。   In the present invention, a second ejector that communicates with the reflux path is provided, and the second ejector removes the liquid introduced above the gas-liquid contact portion of the deoxygenation tower and the inert gas through the reflux path. In the case of contact with the liquid, the concentration of dissolved oxygen in the circulating liquid introduced through the reflux path by the second ejector can be further reduced. Further, since the ejector is used, the concentration of dissolved oxygen in the circulating fluid can be effectively reduced even when the flow rate of the circulating fluid introduced through the reflux path is small.

つぎに、本発明を実施するための最良の形態を説明する。   Next, the best mode for carrying out the present invention will be described.

図1は、本発明の溶存酸素除去装置の一実施の形態を示す図である。   FIG. 1 is a diagram showing an embodiment of a dissolved oxygen removing apparatus according to the present invention.

図1に示すように、本実施例では、溶存酸素除去装置1は、ビル等の建物内の各所に配置した空調機3に冷水または温水等の循環水を供給して空気調節を行なう水熱源空調システムに用いられる。以下では、空調機3に冷水を供給する場合を例にして説明する。   As shown in FIG. 1, in this embodiment, the dissolved oxygen removing device 1 is a water heat source that adjusts air by supplying circulating water such as cold water or hot water to an air conditioner 3 arranged at various locations in a building or the like. Used in air conditioning systems. Hereinafter, a case where cold water is supplied to the air conditioner 3 will be described as an example.

上記水熱源空調システムは、冷媒ガスを循環させるガス管11、冷媒ガスを圧縮する圧縮機13、後述の冷却塔23で冷却された冷却水によりガス管11内の冷媒ガスを冷却する熱交換器15、冷媒ガスを膨張する膨張機17等からなるガス循環系と、熱交換器15内で冷媒ガスを冷却するための冷却水を循環させる冷却水配管21、冷却水を大気と接触させて冷却する冷却塔(クーリングタワー)23、冷却水配管21を開閉する配管開閉弁25、冷却水配管21内の冷却水を循環させるための冷却塔側循環ポンプ27等からなる冷却水循環系と、空調を行なう空調機3、膨張機17で膨張し冷却された冷媒ガスにより後述の空調機側冷温水配管33内の水を冷却する熱交換器32と、熱交換器32により冷却された冷水を空調機3に供給する空調機側冷温水配管33、当該空調機側冷温水配管33を開閉する空調機側開閉弁35、空調機側冷温水配管33内の冷水を循環させるための空調機側循環ポンプ37等からなる冷水循環系で構成されている。   The water heat source air conditioning system includes a gas pipe 11 that circulates refrigerant gas, a compressor 13 that compresses the refrigerant gas, and a heat exchanger that cools the refrigerant gas in the gas pipe 11 using cooling water cooled by a cooling tower 23 described later. 15. A gas circulation system including an expander 17 that expands refrigerant gas, a cooling water pipe 21 that circulates cooling water for cooling the refrigerant gas in the heat exchanger 15, and cooling the cooling water in contact with the atmosphere. A cooling tower (cooling tower) 23, a pipe opening / closing valve 25 for opening and closing the cooling water pipe 21, a cooling water circulation system including a cooling tower side circulation pump 27 for circulating the cooling water in the cooling water pipe 21, and the like. A heat exchanger 32 that cools water in an air-conditioner-side cold / hot water pipe 33 (described later) with the refrigerant gas expanded and cooled by the air conditioner 3 and the expander 17, and the cold water cooled by the heat exchanger 32 To supply From an air conditioner side cold / hot water pipe 33, an air conditioner side on / off valve 35 for opening / closing the air conditioner side cold / hot water pipe 33, an air conditioner side circulation pump 37 for circulating cold water in the air conditioner side cold / hot water pipe 33, etc. It consists of a cold water circulation system.

上記冷却水循環系は冷却塔23で大気と接触する開放系であり、冷水循環系は大気と接触しない密閉系である。熱交換器15,32は、冷温水発生機やボイラ等に用いられて、冷暖房に対応するようになっている。   The cooling water circulation system is an open system that comes into contact with the atmosphere in the cooling tower 23, and the cold water circulation system is a closed system that does not come into contact with the atmosphere. The heat exchangers 15 and 32 are used for a cold / hot water generator, a boiler, etc., and respond | correspond to an air conditioning.

本発明の溶存酸素除去装置1は、この例では、2つ準備され、開放系である冷却水循環系の冷却水配管21と、密閉系である冷水循環系の空調機側冷温水配管33のそれぞれに接続されている。これらの溶存酸素除去装置1により冷却水循環系の冷却水中の溶存酸素や、冷水循環系の冷水中の溶存酸素を除去して、溶存酸素に原因する各配管の腐食等を防止するようになっている。   In this example, two dissolved oxygen removal apparatuses 1 of the present invention are prepared, each of a cooling water pipe 21 of a cooling water circulation system that is an open system and an air conditioner side cold / hot water pipe 33 of a cold water circulation system that is a closed system. It is connected to the. These dissolved oxygen removal devices 1 remove dissolved oxygen in the cooling water of the cooling water circulation system and dissolved oxygen in the cold water of the cooling water circulation system, thereby preventing corrosion of each pipe caused by the dissolved oxygen. Yes.

冷却水循環系の冷却水配管21に接続された溶存酸素除去装置1は、冷却水配管21のうち冷却塔23の下流側に接続され、冷却塔23を通過した後の冷却水(原液)を冷却水配管21から取り込み、当該取り込んだ冷却水(原水)中の溶存酸素を除去して冷却水配管21のうち熱交換器15の上流側に戻すようになっている。   The dissolved oxygen removing apparatus 1 connected to the cooling water pipe 21 of the cooling water circulation system is connected to the downstream side of the cooling tower 23 in the cooling water pipe 21 and cools the cooling water (raw solution) after passing through the cooling tower 23. It takes in from the water pipe 21, removes dissolved oxygen in the taken-in cooling water (raw water), and returns it to the upstream side of the heat exchanger 15 in the cooling water pipe 21.

空調機側冷温水配管33に接続された溶存酸素除去装置1は、空調機側冷温水配管33からの冷水(原液)漏れや、水(冷水)抜き等の際に減少した水を補うための補給水を外部から取り込み、当該取り込んだ補給水(原水)中の溶存酸素を除去して空調機側冷温水配管33に供給するようになっている。このようにすることにより、溶存酸素が除去された補給水を空調機側冷温水配管33に供給することができる。なお、空調機側冷温水配管33から冷水(原液)を取り込み、当該取り込んだ冷水(原水)中の溶存酸素を除去して空調機側冷温水配管33に戻すようにしてもよい。このようにすることにより、空調機側冷温水配管33内を流通する原水の全量に対して溶存酸素除去処理を施すことができる。これにより、空調機側冷温水配管33を流通する冷水中に酸素が溶け込んでしまった場合に対応することができる。   The dissolved oxygen removing device 1 connected to the air conditioner side cold / hot water pipe 33 is used to compensate for water that has decreased when the cold water (raw solution) leaks from the air conditioner side cold / hot water pipe 33 or when water (cold water) is removed. The make-up water is taken in from the outside, dissolved oxygen in the taken-in make-up water (raw water) is removed, and supplied to the air conditioner side cold / hot water pipe 33. By doing in this way, the supplementary water from which dissolved oxygen was removed can be supplied to the air conditioner side cold / hot water pipe 33. In addition, cold water (raw solution) may be taken in from the air conditioner side cold / hot water pipe 33, and dissolved oxygen in the taken cold water (raw water) may be removed and returned to the air conditioner side cold / hot water pipe 33. By doing in this way, a dissolved oxygen removal process can be performed with respect to the whole quantity of the raw | natural water which distribute | circulates the inside of the air-conditioner side cold / hot water piping 33. FIG. Thereby, it can respond to the case where oxygen has melted into the cold water flowing through the air-conditioner side cold / hot water pipe 33.

上記2つの溶存酸素除去装置1は、同じものであるため、冷却水配管21に接続された方を例にして説明する。   Since the two dissolved oxygen removing devices 1 are the same, the one connected to the cooling water pipe 21 will be described as an example.

つぎに、図2を参照して、溶存酸素除去装置1について説明する。   Next, the dissolved oxygen removing apparatus 1 will be described with reference to FIG.

上記溶存酸素除去装置1は、処理対象の液体である原水と不活性ガスである窒素ガス(N)とを気液接触させて上記原水中の溶存酸素を除去する気液接触部41を有する脱酸素塔43と、上記原水を脱酸素塔43の気液接触部41より上方に供給する液体供給路である原水供給管45と、窒素ガスを供給する窒素ガス供給装置46と、窒素ガス供給装置46から供給される窒素ガスを脱酸素塔43の気液接触部41より下方に供給する不活性ガス供給路(後述の窒素ガス供給管47や貯溜槽49内の水面上空間49a)と、上記脱酸素塔43の気液接触部41により窒素ガスと気液接触した原水を貯溜する貯溜槽49と、上記貯溜槽49に貯溜された原水のうち一部を処理水(処理液)として外部(具体的には、冷却水配管21)に導出する導出路である導出管51と、導出管51から分岐した分岐管51aと、上記貯溜槽49に貯溜された原水である貯溜水のうち一部を上記脱酸素塔43の気液接触部41より上方に導入して還流させる還流路である還流管53等とを備えている。 The dissolved oxygen removing apparatus 1 has a gas-liquid contact portion 41 that removes dissolved oxygen in the raw water by bringing the raw water that is the liquid to be treated into contact with the nitrogen gas (N 2 ) that is the inert gas. Deoxygenation tower 43, raw water supply pipe 45 that is a liquid supply path for supplying the raw water above gas-liquid contact portion 41 of deoxygenation tower 43, nitrogen gas supply device 46 for supplying nitrogen gas, and nitrogen gas supply An inert gas supply path (nitrogen gas supply pipe 47 and water space 49a in the storage tank 49 described later) for supplying nitrogen gas supplied from the apparatus 46 downward from the gas-liquid contact portion 41 of the deoxygenation tower 43; A storage tank 49 for storing raw water in gas-liquid contact with nitrogen gas by the gas-liquid contact section 41 of the deoxygenation tower 43, and a part of the raw water stored in the storage tank 49 as treated water (processed liquid) Derived to (specifically, cooling water piping 21) A part of the outlet water 51, the branch pipe 51a branched from the outlet pipe 51, and the stored water, which is the raw water stored in the storage tank 49, is part of the gas-liquid contact portion 41 of the deoxygenation tower 43. And a reflux pipe 53 which is a reflux path for introducing and refluxing further upward.

上記原水供給管45は、一端が冷却水配管21(図1)に接続され、他端が上記脱酸素塔43の気液接触部41より上方に接続されることにより、冷却水配管21から供給される原水を脱酸素塔43内の気液接触部41より上方に導入するようになっている。   The raw water supply pipe 45 is supplied from the cooling water pipe 21 by having one end connected to the cooling water pipe 21 (FIG. 1) and the other end connected above the gas-liquid contact portion 41 of the deoxygenation tower 43. The raw water is introduced above the gas-liquid contact part 41 in the deoxygenation tower 43.

上記窒素ガス供給管47は、一端が窒素ガス供給装置46に接続され、他端が貯溜槽49に接続されることにより、窒素ガス供給装置46から供給される窒素ガスを貯溜槽49内に導入するようになっている。   The nitrogen gas supply pipe 47 has one end connected to the nitrogen gas supply device 46 and the other end connected to the storage tank 49, thereby introducing nitrogen gas supplied from the nitrogen gas supply device 46 into the storage tank 49. It is supposed to be.

上記導出管51は、一端が貯溜槽49に接続され、他端が冷却水配管21に接続されることにより、貯溜槽49に貯留された原水を処理水として外部(具体的には、冷却水配管21)に導出するようになっている。   One end of the lead-out pipe 51 is connected to the storage tank 49 and the other end is connected to the cooling water pipe 21, so that the raw water stored in the storage tank 49 is treated as external water (specifically, cooling water). It is led out to the piping 21).

上記還流管53は、一端が導出管51に接続され、他端が上記脱酸素塔43の気液接触部41より上方に接続されることにより、上記貯溜槽49に貯溜された原水を脱酸素塔43内の気液接触部41より上方に導入するようになっている。すなわち、上記還流管53は、導出管51から分岐し、処理水の一部を脱酸素塔43内の気液接触部41より上方に導入するようになっている。   The reflux pipe 53 has one end connected to the outlet pipe 51 and the other end connected above the gas-liquid contact portion 41 of the deoxygenation tower 43 to deoxygenate the raw water stored in the storage tank 49. It is introduced above the gas-liquid contact portion 41 in the tower 43. That is, the reflux pipe 53 branches from the outlet pipe 51 and introduces a part of the treated water above the gas-liquid contact portion 41 in the deoxygenation tower 43.

上記導出管51のうち上記還流管53が分岐する部分の上流側には、貯溜槽49内の原水を送水する送水ポンプ54が設けられている。このように、送水ポンプ54の下流側で導出管51から還流管53を分岐することにより、導出管51と還流管53のそれぞれに送水ポンプを設ける必要がなく、送水ポンプや制御装置等の設備コストを節減することができる。   A water feed pump 54 for feeding the raw water in the storage tank 49 is provided on the upstream side of the portion where the reflux pipe 53 branches in the outlet pipe 51. Thus, by branching the return pipe 53 from the outlet pipe 51 on the downstream side of the water pump 54, there is no need to provide a water pump in each of the outlet pipe 51 and the reflux pipe 53, and facilities such as a water pump and a control device are provided. Cost can be saved.

上記脱酸素塔43の頂部には窒素ガスを排気する排気管55が接続されている。   An exhaust pipe 55 for exhausting nitrogen gas is connected to the top of the deoxygenation tower 43.

上記貯溜槽49は、上記脱酸素塔43の下部に接続され、上記脱酸素塔43内を流下する原水を貯留する。窒素ガス供給管47から導入された窒素ガスは、貯溜槽49内の水面上空間49aに充填されて上昇し脱酸素塔43の気液接触部41に供給される。すなわち、窒素ガス供給管47や貯溜槽49内の水面上空間49aは、窒素ガス供給装置46から供給される窒素ガスを脱酸素塔43の気液接触部41より下方に供給する不活性ガス供給路としての役割を果たす。   The storage tank 49 is connected to the lower part of the deoxygenation tower 43 and stores raw water flowing down in the deoxygenation tower 43. The nitrogen gas introduced from the nitrogen gas supply pipe 47 is filled in the water surface space 49 a in the storage tank 49 and rises, and is supplied to the gas-liquid contact portion 41 of the deoxygenation tower 43. That is, the water surface space 49 a in the nitrogen gas supply pipe 47 and the storage tank 49 supplies an inert gas that supplies the nitrogen gas supplied from the nitrogen gas supply device 46 downward from the gas-liquid contact portion 41 of the deoxygenation tower 43. Act as a road.

上記貯溜槽49の底部には、貯溜槽49内の原水を外部に排水する排水管67が接続されている。排水管67には、当該排水管67を開閉し外部への原水の排水を開閉制御する排水管開閉弁69が設けられている。   A drain pipe 67 for draining raw water in the storage tank 49 to the outside is connected to the bottom of the storage tank 49. The drain pipe 67 is provided with a drain pipe opening / closing valve 69 that opens and closes the drain pipe 67 and controls the drainage of raw water to the outside.

上記原水供給管45には、貯溜槽49内に貯留された原水の水位に応じて当該原水供給管45を開閉し脱酸素塔43内への原水の導入を開閉制御するボールタップと連動した供給管開閉弁71が設けられている。例えば、上記貯溜槽49内に貯留された原水の液面が下がれば、ボールタップにより供給管開閉弁71が開状態になり、原水が原水供給管45から脱酸素塔43内へ導入され、液面が上がれば、ボールタップにより供給管開閉弁71が閉状態になり、原水供給管45から脱酸素塔43内への原水の導入が停止するようになっている。このため、原水は、導出された処理水の量と略同じ量が原水供給管45から供給されるようになっている。   The raw water supply pipe 45 is connected to a ball tap that opens and closes the raw water supply pipe 45 in accordance with the level of the raw water stored in the storage tank 49 and controls the opening and closing of the introduction of the raw water into the deoxygenation tower 43. An on-off valve 71 is provided. For example, when the liquid level of the raw water stored in the storage tank 49 is lowered, the supply pipe opening / closing valve 71 is opened by the ball tap, and the raw water is introduced from the raw water supply pipe 45 into the deoxygenation tower 43, Is raised, the supply pipe on-off valve 71 is closed by the ball tap, and the introduction of the raw water from the raw water supply pipe 45 into the deoxygenation tower 43 is stopped. For this reason, the raw water is supplied from the raw water supply pipe 45 in substantially the same amount as the derived treated water.

上記窒素ガス供給管47には、当該窒素ガス供給管47を開閉し窒素ガス供給装置46から貯溜槽49内への窒素ガスの導入を開閉制御するガス管開閉弁73と、窒素ガス供給管47の窒素ガスの流量を計測する窒素ガス流量計75とが設けられている。   The nitrogen gas supply pipe 47 includes a gas pipe opening / closing valve 73 for opening / closing the nitrogen gas supply pipe 47 and controlling the opening / closing of the introduction of nitrogen gas from the nitrogen gas supply device 46 into the storage tank 49, and the nitrogen gas supply pipe 47. And a nitrogen gas flow meter 75 for measuring the flow rate of the nitrogen gas.

上記導出管51には、当該導出管51を開閉し冷却水配管21への処理水の導出を開閉制御する導出管開閉弁76と、導出管51の処理水の流量を計測する処理水流量計77と、逆方向(貯溜槽49方向)への流れを制限する逆止弁78とが設けられている。上記逆止弁78は、導出管51の導出口近傍に設けられている。   The outlet pipe 51 includes a outlet pipe opening / closing valve 76 that opens and closes the outlet pipe 51 and controls the opening and closing of the outlet of the treated water to the cooling water pipe 21, and a treated water flow meter that measures the flow rate of the treated water in the outlet pipe 51. 77 and a check valve 78 that restricts the flow in the reverse direction (in the direction of the storage tank 49). The check valve 78 is provided in the vicinity of the outlet of the outlet pipe 51.

上記還流管53には、当該還流管53を開閉し上記脱酸素塔43内への原水(ここでは、循環水)の導入を開閉制御する還流管開閉弁79と、還流管53の循環水の流量を計測する循環水流量計81とが設けられている。   The reflux pipe 53 includes a reflux pipe on / off valve 79 that opens and closes the reflux pipe 53 and controls the opening and closing of the introduction of raw water (here, circulating water) into the deoxygenation tower 43, and the circulating water in the reflux pipe 53. A circulating water flow meter 81 for measuring the flow rate is provided.

上記導出管51から分岐した分岐管51aには、当該分岐管51aを開閉し導出管51への水の導入を開閉制御する分岐管開閉弁83と、分岐管51aの原水中の溶存酸素濃度値(DO値)を計測するDOセンサ85とが設けられている。上記導出管51から分岐した分岐管51aは、導出管51のうち処理水流量計77の下流側に接続されている。   The branch pipe 51a branched from the outlet pipe 51 has a branch pipe on-off valve 83 that opens and closes the branch pipe 51a and controls the opening and closing of water into the outlet pipe 51, and the dissolved oxygen concentration value in the raw water of the branch pipe 51a. A DO sensor 85 that measures (DO value) is provided. The branch pipe 51 a branched from the outlet pipe 51 is connected to the downstream side of the treated water flow meter 77 in the outlet pipe 51.

本実施例では、上記還流管53により上記脱酸素塔43の気液接触部41より上方に導入する循環水の流量と、上記導出管51により外部に導出する処理水の流量または上記原水供給管45により供給される原水の流量との比率が上記還流管開閉弁79,導出管開閉弁76,分岐管開閉弁83等の流量制御手段により制御される。   In the present embodiment, the flow rate of circulating water introduced above the gas-liquid contact portion 41 of the deoxygenation tower 43 by the reflux pipe 53 and the flow rate of treated water led out by the lead-out pipe 51 or the raw water supply pipe The ratio with the flow rate of the raw water supplied by 45 is controlled by flow control means such as the reflux pipe on / off valve 79, the outlet pipe on / off valve 76, and the branch pipe on / off valve 83.

具体的には、上記還流管開閉弁79,導出管開閉弁76,分岐管開閉弁83の開閉度合いが予め設定されていることで、上記還流管53により上記脱酸素塔43の気液接触部41より上方に導入する循環水(循環液)の流量と上記導出管51により外部に導出する処理水の流量の比率と、上記循環水の流量と上記原水供給管45により供給される原水の流量の比率が制御されている。   Specifically, the degree of opening and closing of the reflux pipe on / off valve 79, the outlet pipe on / off valve 76, and the branch pipe on / off valve 83 is set in advance, so that the gas-liquid contact portion of the deoxygenation tower 43 is connected to the reflux pipe 53. The ratio of the flow rate of circulating water (circulated liquid) introduced above 41 and the flow rate of treated water led out to the outside by the outlet pipe 51, the flow rate of the circulating water and the raw water flow rate supplied by the raw water supply pipe 45 The ratio is controlled.

このようにすることにより、上記循環水の流量を、上記処理水または上記供給される液体の流量より多くすることができる。これにより、上記貯溜槽49と上記気液接触部41間において上記外部に導出する処理水の流量よりも多い流量の液体を循環水として循環させることができるため、溶存酸素の濃度が極めて低い処理水を容易に得ることができる。また、上記還流管53による循環水が上記脱酸素塔43の気液接触部41より上方に導入されるため、上記脱酸素塔43の気液接触部41より上方において、原水を循環水で十分に希釈して供給することができ、上記貯溜槽49に貯留される原水(貯留水)の溶存酸素の濃度が高まることを防止し、溶存酸素の濃度が極めて低い処理水を得ることができる。   By doing in this way, the flow volume of the said circulating water can be made larger than the flow volume of the said treated water or the said supplied liquid. As a result, since a liquid having a flow rate larger than the flow rate of the treated water led out to the outside can be circulated between the storage tank 49 and the gas-liquid contact portion 41 as the circulating water, the treatment with a very low concentration of dissolved oxygen is performed. Water can be easily obtained. In addition, since the circulating water from the reflux pipe 53 is introduced above the gas-liquid contact portion 41 of the deoxygenation tower 43, the circulating water is sufficient for the raw water above the gas-liquid contact portion 41 of the deoxygenation tower 43. The raw water (reserved water) stored in the storage tank 49 can be prevented from increasing the concentration of dissolved oxygen, and treated water having a very low dissolved oxygen concentration can be obtained.

また、上記のように、導出される処理水量の所定倍の原水を循環させ、リアクタでの脱酸素処理を繰り返すことにより、複数のリアクタを備えた装置と同様の処理を安価に効率よく行なうことができる。なお、本実施例では、上記還流管開閉弁79,導出管開閉弁76,分岐管開閉弁83の開閉度合いは、予め設定されているが、DOセンサ85の計測結果に基づいて制御されてもよい。すなわち、DOセンサ85も流量制御手段として機能し、上記還流管開閉弁79,導出管開閉弁76,分岐管開閉弁83は、DOセンサ85の計測結果に基づいて、それぞれ開閉度合いを制御するようにしてもよい。例えば、DOセンサ85の計測結果としてDO値が高い場合には、上記還流管開閉弁79の開閉度合いを大きくする、または/および導出管開閉弁76や分岐管開閉弁83の開閉度合いを小さくするようにしてもよい。一方、DOセンサ85の計測結果としてDO値が低い場合には、上記還流管開閉弁79の開閉度合いを小さくする、または/および導出管開閉弁76や分岐管開閉弁83の開閉度合いを大きくするようにしてもよい。また、DO値が高いか低いかの判別は、DO値が所定の閾値より高いか低いかにより行なってもよい。この場合、DOセンサ85の計測結果としてDO値が所定の閾値より高い場合には、上記還流管開閉弁79の開閉度合いを大きくする、または/および導出管開閉弁76や分岐管開閉弁83の開閉度合いを小さくするようにしてもよい。一方、DOセンサ85の計測結果としてDO値が所定の閾値より低い場合には、上記還流管開閉弁79の開閉度合いを小さくする、または/および導出管開閉弁76や分岐管開閉弁83の開閉度合いを大きくするようにしてもよい。上記還流管開閉弁79,導出管開閉弁76,分岐管開閉弁83の開閉度合いの制御は、上記還流管開閉弁79,導出管開閉弁76,分岐管開閉弁83自体がDOセンサ85の計測結果に基づいて行なってもよいし、開閉度合いの制御機能を持たせたDOセンサ85が行なってもよい。このようにすることにより、DO値が高い場合には、上記貯溜槽49と上記気液接触部41間で循環させる循環水量を多くし、気液接触させる頻度を向上させ循環中の溶存酸素の濃度をさらに低下させることができる。一方、DO値が低い場合には、上記貯溜槽49と上記気液接触部41間で循環させる循環水量を少なくし、気液接触させる頻度を少なくして溶存酸素の濃度をある程度低下させることができる。これにより、処理水の水質を自動的に安定させることができる。   In addition, as described above, the same amount of raw water as the derived amount of treated water is circulated, and the deoxygenation treatment in the reactor is repeated, so that the same treatment as that of the apparatus having a plurality of reactors can be performed efficiently at low cost. Can do. In this embodiment, the degree of opening / closing of the reflux pipe on / off valve 79, the outlet pipe on / off valve 76, and the branch pipe on / off valve 83 is set in advance, but may be controlled based on the measurement result of the DO sensor 85. Good. That is, the DO sensor 85 also functions as a flow control means, and the reflux pipe on / off valve 79, the outlet pipe on / off valve 76, and the branch pipe on / off valve 83 control the degree of opening and closing based on the measurement result of the DO sensor 85, respectively. It may be. For example, when the DO value is high as a measurement result of the DO sensor 85, the degree of opening / closing of the reflux pipe on / off valve 79 is increased or / and the degree of opening / closing of the outlet pipe on / off valve 76 or the branch pipe on / off valve 83 is decreased. You may do it. On the other hand, when the DO value is low as a measurement result of the DO sensor 85, the degree of opening / closing of the reflux pipe on / off valve 79 is decreased, and / or the degree of opening / closing of the outlet pipe on / off valve 76 or the branch pipe on / off valve 83 is increased. You may do it. The determination of whether the DO value is high or low may be made based on whether the DO value is higher or lower than a predetermined threshold value. In this case, when the DO value is higher than a predetermined threshold as a measurement result of the DO sensor 85, the degree of opening / closing of the reflux pipe on / off valve 79 is increased or / and the outlet pipe on / off valve 76 and the branch pipe on / off valve 83 are increased. The degree of opening and closing may be reduced. On the other hand, when the DO value is lower than a predetermined threshold as a measurement result of the DO sensor 85, the degree of opening / closing of the reflux pipe on / off valve 79 is reduced, and / or the opening / closing of the outlet pipe on / off valve 76 or the branch pipe on / off valve 83 is opened / closed. The degree may be increased. Control of the degree of opening / closing of the reflux pipe on / off valve 79, the outlet pipe on / off valve 76, and the branch pipe on / off valve 83 is carried out by the DO sensor 85 measuring the reflux pipe on / off valve 79, the outlet pipe on / off valve 76, and the branch pipe on / off valve 83 itself. It may be performed based on the result, or may be performed by the DO sensor 85 having a function of controlling the degree of opening and closing. By doing so, when the DO value is high, the amount of circulating water circulated between the reservoir 49 and the gas-liquid contact part 41 is increased, the frequency of gas-liquid contact is improved, and the dissolved oxygen in circulation is increased. The concentration can be further reduced. On the other hand, when the DO value is low, the amount of circulating water circulated between the storage tank 49 and the gas-liquid contact portion 41 can be reduced, the frequency of gas-liquid contact can be reduced, and the concentration of dissolved oxygen can be lowered to some extent. it can. Thereby, the quality of treated water can be automatically stabilized.

ここで、図3を参照して、上記窒素ガス供給装置46について説明する。   Now, the nitrogen gas supply device 46 will be described with reference to FIG.

上記窒素ガス供給装置46は、PSA(Pressure Swing Adsorption)方式を用いて、所定量の原料空気から所定の窒素収率で窒素ガスを抽出し、窒素ガス供給管47を介して貯溜槽49内に所定量の窒素ガスを供給するようになっている。上記窒素ガス供給装置46は、連続的に窒素ガスを供給するために所定容量(PSA容量)の第1吸着塔101と第2吸着塔103の2つの吸着塔を有し、これらの吸着塔を切り替えて運転するようになっている。   The nitrogen gas supply device 46 uses a PSA (Pressure Swing Adsorption) method to extract nitrogen gas from a predetermined amount of raw material air with a predetermined nitrogen yield, and into the storage tank 49 via a nitrogen gas supply pipe 47. A predetermined amount of nitrogen gas is supplied. The nitrogen gas supply device 46 has two adsorption towers, a first adsorption tower 101 and a second adsorption tower 103, having a predetermined capacity (PSA capacity) in order to continuously supply nitrogen gas. Switch to drive.

上記窒素ガス供給装置46の第1吸着塔101内と第2吸着塔103内には、主として酸素を吸着する吸着剤が封入されている。上記吸着剤は、吸着塔内の圧力を高くすると酸素を吸着し、圧力を下げると吸着した酸素を放出するようになっている。   An adsorbent that mainly adsorbs oxygen is sealed in the first adsorption tower 101 and the second adsorption tower 103 of the nitrogen gas supply device 46. The adsorbent adsorbs oxygen when the pressure in the adsorption tower is increased, and releases the adsorbed oxygen when the pressure is decreased.

図3(A)は、上記第1吸着塔101から所定量の窒素ガスを供給し、第2吸着塔103から所定量の酸素ガスを排出している窒素ガス供給装置46を示し、図3(B)は、上記第2吸着塔103から所定量の窒素ガスを供給し、第1吸着塔101から所定量の酸素ガスを排出している窒素ガス供給装置46を示している。   3A shows a nitrogen gas supply device 46 that supplies a predetermined amount of nitrogen gas from the first adsorption tower 101 and exhausts a predetermined amount of oxygen gas from the second adsorption tower 103. FIG. B) shows a nitrogen gas supply device 46 that supplies a predetermined amount of nitrogen gas from the second adsorption tower 103 and discharges a predetermined amount of oxygen gas from the first adsorption tower 101.

図3(A)に示す窒素ガス供給装置46は、高圧の第1吸着塔101に所定量の原料空気を導入し、第1吸着塔101で原料空気から酸素を吸着することで窒素ガスを抽出し、その窒素ガスを供給口から窒素ガス供給管47を介して貯溜槽49内に供給している。この間、上記抽出された窒素ガスのうちの所定量を低圧の第2吸着塔103に導入し、第2吸着塔103から所定量の酸素を含む酸素ガスを排出口から排出している(逆流パージ)。なお、図示のように、窒素ガス供給装置46には、原料空気,窒素ガス,酸素ガスが流通する流通路、これらの流通路を制御する複数の開閉弁はそれぞれ必要に応じて流通方向を切り替えるよう流通路を開閉するようになっている。   A nitrogen gas supply device 46 shown in FIG. 3A introduces a predetermined amount of raw material air into the high-pressure first adsorption tower 101 and extracts nitrogen gas by adsorbing oxygen from the raw material air in the first adsorption tower 101. The nitrogen gas is supplied from the supply port into the storage tank 49 through the nitrogen gas supply pipe 47. During this time, a predetermined amount of the extracted nitrogen gas is introduced into the low-pressure second adsorption tower 103, and oxygen gas containing a predetermined amount of oxygen is discharged from the second adsorption tower 103 through the discharge port (reverse flow purge). ). As shown in the figure, the nitrogen gas supply device 46 has a flow passage through which the raw air, nitrogen gas, and oxygen gas flow, and a plurality of on-off valves that control these flow passages, each switching the flow direction as necessary. The flow passage is opened and closed.

図3(B)に示すように、第1吸着塔101の吸着材が酸素で飽和する前に、窒素ガス供給装置46は、第2吸着塔103内を高圧に切り替えるとともに、第1吸着塔101内を低圧に切り替える。そして、高圧の第2吸着塔103に所定量の原料空気を導入し、第2吸着塔103により原料空気から酸素を吸着することで窒素ガスを抽出し、その窒素ガスを供給口から窒素ガス供給管47を介して貯溜槽49内に供給している。この間、上記抽出された窒素ガスのうちの所定量を低圧の第1吸着塔101に導入し、第1吸着塔101から所定量の酸素を含む酸素ガスを排出口から排出している。   As shown in FIG. 3B, before the adsorbent of the first adsorption tower 101 is saturated with oxygen, the nitrogen gas supply device 46 switches the inside of the second adsorption tower 103 to a high pressure, and at the same time, the first adsorption tower 101. Switch to low pressure inside. Then, a predetermined amount of raw material air is introduced into the high-pressure second adsorption tower 103, nitrogen gas is extracted by adsorbing oxygen from the raw material air by the second adsorption tower 103, and the nitrogen gas is supplied from the supply port. It is supplied into the storage tank 49 through the pipe 47. During this time, a predetermined amount of the extracted nitrogen gas is introduced into the low-pressure first adsorption tower 101, and oxygen gas containing a predetermined amount of oxygen is discharged from the first adsorption tower 101 through the discharge port.

このように、窒素ガス供給装置46は、連続的に所定量の窒素ガスを窒素ガス供給管47を介して貯溜槽49内に供給するようになっている。   Thus, the nitrogen gas supply device 46 continuously supplies a predetermined amount of nitrogen gas into the storage tank 49 via the nitrogen gas supply pipe 47.

なお、上記実施例では、上記窒素ガス供給装置として、PSA方式の窒素ガス供給装置46を採用しているが、これに限定されるものではなく、例えば膜分離式の窒素ガス供給装置を採用してもよい。   In the above embodiment, the PSA-type nitrogen gas supply device 46 is adopted as the nitrogen gas supply device, but the present invention is not limited to this, and for example, a membrane separation type nitrogen gas supply device is adopted. May be.

上記膜分離式の窒素ガス供給装置は、気体の膜透過速度の違いを利用して、原料空気中の窒素ガスを分離・発生するようになっている。ガスが膜を透過する速度が気体分子の膜に対する溶解性と拡散性等により決まるため、透過速度の早い酸素等が膜外部に排出され、透過速度の遅い窒素が供給されるようになっている。   The membrane separation type nitrogen gas supply apparatus separates and generates nitrogen gas in the raw material air by utilizing the difference in gas membrane permeation speed. Since the speed at which the gas permeates the membrane is determined by the solubility and diffusibility of the gas molecules in the membrane, oxygen with a fast permeation rate is discharged outside the membrane, and nitrogen with a slow permeation rate is supplied. .

上記膜分離式の窒素ガス供給装置を採用することにより、窒素ガスを安定して供給、操作が簡単、振動部がなく騒音振動が少ないとともに、装置構成が簡易、設置スペースが小さい、メンテナンスフリー、高圧ガス保安法に規制を受けない等の効果を奏する。   By adopting the above membrane separation type nitrogen gas supply device, stable supply of nitrogen gas, easy operation, no vibration part and less noise vibration, simple device configuration, small installation space, maintenance free, It has the effect of not being restricted by the High Pressure Gas Safety Law.

また、窒素ガス供給装置46として窒素ガスを収容する窒素ガスボンベを採用してもよい。   A nitrogen gas cylinder that stores nitrogen gas may be employed as the nitrogen gas supply device 46.

つぎに、図4を参照して、上記気液接触部41について説明する。   Next, the gas-liquid contact portion 41 will be described with reference to FIG.

図示のように、本実施例の気液接触部41は、多数の孔111を設けた複数枚の右捻り羽根113を有するミキシングエレメント115(図4(A))と多数の孔111を設けた複数枚の左捻り羽根117を有するミキシングエレメント119(図4(B))を交互に上下に配置した静止型混合器(リアクタ)を用いている。ミキシングエレメント115,119は、孔111を多数穿孔した右捻り羽根113または左捻り羽根117を複数枚(例えば、6枚)組み合わせて6個の原水通路に仕切ったものである。原水と窒素ガスは、複数個のミキシングエレメント115,119を通過する間に、右捻り羽根113および左捻り羽根117による右および左方向の回転および分割、合流、反転、剪断応用作用を連続的に繰り返しながら、各羽根113,117を穿孔した孔111を通過して微細気泡となって原水中を上昇する窒素ガスと接触、攪拌、混合し、原水中の溶存酸素は窒素ガス中に移行する。また、原水は、多数の孔111、右捻り羽根113、左捻り羽根117により微細水滴となることで、窒素ガスとの接触面積が飛躍的に増大する。また、水滴が小さくなることで水の中の酸素の移動距離が短くなる。これにより、短時間でかつ少量の窒素ガスで脱酸素が可能となる。   As shown in the figure, the gas-liquid contact portion 41 of this embodiment is provided with a mixing element 115 (FIG. 4A) having a plurality of right twist blades 113 provided with a large number of holes 111 and a large number of holes 111. A static mixer (reactor) in which mixing elements 119 (FIG. 4B) having a plurality of left twist blades 117 are alternately arranged up and down is used. The mixing elements 115 and 119 are a combination of a plurality of (for example, six) right-handed blades 113 or left-handed blades 117 each having a large number of holes 111 and partitioned into six raw water passages. While the raw water and nitrogen gas pass through the plurality of mixing elements 115 and 119, the right and left rotations and divisions, merging, reversing, and shearing are continuously performed by the right twist blade 113 and the left twist blade 117. Repetitively, the dissolved oxygen in the raw water is transferred into the nitrogen gas by contacting, stirring and mixing with the nitrogen gas which passes through the holes 111 perforated through the blades 113 and 117 and becomes fine bubbles and rises in the raw water. Further, the raw water becomes fine water droplets by the large number of holes 111, the right twist blade 113, and the left twist blade 117, so that the contact area with the nitrogen gas is remarkably increased. Moreover, the movement distance of oxygen in water becomes short because a water droplet becomes small. Thereby, deoxygenation can be performed in a short time with a small amount of nitrogen gas.

また、上記リアクタは、処理水量ではなく、循環水量にあわせて選定することができるため、従来の既存のサイズのものを使用することができる。   Moreover, since the said reactor can be selected according to the amount of circulating water instead of the amount of treated water, the thing of the existing existing size can be used.

なお、上記気液接触部41は、静止型混合器として、ミキシングエレメント115,119を2個配置したものに限定されるものではなく、1個、3個、4個等の任意個数配置された構造であってもよい。   Note that the gas-liquid contact portion 41 is not limited to a static mixer in which two mixing elements 115 and 119 are arranged, and an arbitrary number of one, three, four, and the like are arranged. It may be a structure.

図5に示すように、上記脱酸素塔43上部には、原水供給管45と連通する第1エジェクター121と、第1エジェクター121を介して供給された原水を受けるオーバーフロー槽123と、上記気液接触部41の上面から所定のバッファ空間124を隔てて浮床状に設けられた気液分離板125とが設けられている。   As shown in FIG. 5, in the upper part of the deoxygenation tower 43, a first ejector 121 communicating with the raw water supply pipe 45, an overflow tank 123 for receiving raw water supplied via the first ejector 121, and the gas-liquid A gas-liquid separation plate 125 provided in a floating floor shape with a predetermined buffer space 124 from the upper surface of the contact portion 41 is provided.

上記第1エジェクター121は、原水供給管45の原水供給口と連通し、上記原水供給管45により上記脱酸素塔43の気液接触部41より上方に供給される原水と上記窒素ガスとを気液接触させるようになっている。   The first ejector 121 communicates with the raw water supply port of the raw water supply pipe 45, and removes the raw water and the nitrogen gas supplied from the raw water supply pipe 45 above the gas-liquid contact portion 41 of the deoxygenation tower 43. It comes to be in liquid contact.

より詳しく説明すると、上記第1エジェクター121は、内部に細い原水流路が形成され、当該原水流路により原水供給管45からの原水の流速を増大させて内部空間を減圧させ、周囲に充満している窒素ガスを吸引するようになっている。これにより、原水供給管45からの原水と窒素ガスとを気液接触させ脱酸素処理するようになっている。   More specifically, the first ejector 121 has a thin raw water flow path formed therein, and the raw water flow path increases the flow rate of the raw water from the raw water supply pipe 45 to depressurize the internal space and fill the surroundings. Nitrogen gas is sucked. As a result, the raw water from the raw water supply pipe 45 and nitrogen gas are brought into gas-liquid contact for deoxidation treatment.

このようにすることにより、上記気液接触部41で上記原水から溶存酸素を除去する前に、上記第1エジェクター121で上記原水の溶存酸素の濃度を効果的に低下させることができる。したがって、上記脱酸素塔43の気液接触部41より上方において上記原水供給管45により供給される原水と上記還流管53により導入される原水が混ざることにより、溶存酸素の濃度が上がりすぎてしまうということを防止することができる。また、エジェクターを用いるため上記原水の流量が少ないときでも当該原水の溶存酸素の濃度を効果的に低下させることができる。   By doing in this way, before removing the dissolved oxygen from the raw water by the gas-liquid contact part 41, the concentration of the dissolved oxygen of the raw water can be effectively reduced by the first ejector 121. Therefore, when the raw water supplied by the raw water supply pipe 45 and the raw water introduced by the reflux pipe 53 are mixed above the gas-liquid contact portion 41 of the deoxygenation tower 43, the concentration of dissolved oxygen is excessively increased. Can be prevented. Moreover, since the ejector is used, the concentration of dissolved oxygen in the raw water can be effectively reduced even when the flow rate of the raw water is small.

上記オーバーフロー槽123は、上記気液分離板125上に配置され、上記第1エジェクター121から噴射された原水を受けるようになっている。このように、オーバーフロー槽123を設け、上記第1エジェクター121から噴射された原水を受けて一時貯留することで、一時貯留された原水から、上記第1エジェクター121により原水中に混入し原水中の溶存酸素と結びついた微細気泡の窒素ガスを抜くことができる。このようにして、オーバーフロー槽123では、原水中から微細気泡の窒素ガス(酸素を含む)を分離することができる。   The overflow tank 123 is disposed on the gas-liquid separation plate 125 and receives raw water sprayed from the first ejector 121. As described above, the overflow tank 123 is provided, and the raw water sprayed from the first ejector 121 is received and temporarily stored, so that the raw water is temporarily mixed from the temporarily stored raw water by the first ejector 121. Nitrogen gas in fine bubbles combined with dissolved oxygen can be extracted. In this manner, in the overflow tank 123, fine bubble nitrogen gas (including oxygen) can be separated from the raw water.

上記気液分離板125には、オーバーフロー槽123の上部開口縁から溢れた原水を下方の気液接触部41に原水を流下させる貫通孔125aが形成されている。また、気液分離板125には、その下方から上昇する窒素ガスの流路である窒素ガス流路パイプ125bが設けられている。窒素ガス流路パイプ125bは、オーバーフロー槽123の上部開口縁から溢れた原水が通らないようオーバーフロー槽123の上部開口縁より高い位置まで延びている。   The gas-liquid separation plate 125 is formed with a through hole 125 a through which raw water overflowing from the upper opening edge of the overflow tank 123 flows down to the gas-liquid contact portion 41 below. Further, the gas-liquid separation plate 125 is provided with a nitrogen gas flow channel pipe 125b which is a flow channel of nitrogen gas rising from below. The nitrogen gas passage pipe 125b extends from the upper opening edge of the overflow tank 123 to a position higher than the upper opening edge of the overflow tank 123 so that the overflowing raw water does not pass.

上記原水供給管45から供給された原水は、第1エジェクター121で脱酸素処理され、気液分離板125で一端気液分離された後、貯留槽49と気液接触部41間で循環する循環水と合流する。より詳しく説明すると、気液分離板125は、脱酸素塔43の内径と同径の円盤状に形成されている。貫通孔125aは、窒素ガス流路パイプ125bの周辺に原水量に応じて上記気液分離板125上に所定の深さ、例えば50mmの深さに水が一時貯留されるよう孔径が調整されるとともに、所定数(図示では2個)設け、上記気液分離板125上に水を一時貯留するための一時貯留部126が形成されている。すなわち、一時貯留部126は、気液分離板125、貫通孔125a、脱酸素塔43の内側面等から構成されている。そして、原水中に混入し原水中の溶存酸素と結びついた微細気泡の窒素ガスをさらに分離した後、当該窒素ガスが抜けた原水を順次、貫通孔125aを介して下部のバッファ空間124に流下させる構造となっている。これにより、バッファ空間124内の気液接触部41に、微細気泡の窒素ガス(酸素を含む)が分離し溶存酸素濃度をある程度低下させた原水を供給することができる。   The raw water supplied from the raw water supply pipe 45 is deoxygenated by the first ejector 121, and once gas-liquid separated by the gas-liquid separation plate 125, and then circulated between the storage tank 49 and the gas-liquid contact part 41. Merge with water. More specifically, the gas-liquid separation plate 125 is formed in a disk shape having the same diameter as the inner diameter of the deoxygenation tower 43. The diameter of the through-hole 125a is adjusted around the nitrogen gas passage pipe 125b so that water is temporarily stored on the gas-liquid separation plate 125 at a predetermined depth, for example, 50 mm, according to the amount of raw water. In addition, a predetermined number (two in the drawing) is provided, and a temporary storage portion 126 for temporarily storing water is formed on the gas-liquid separation plate 125. That is, the temporary storage unit 126 includes a gas-liquid separation plate 125, a through hole 125a, an inner surface of the deoxygenation tower 43, and the like. Then, after further separating the fine bubble nitrogen gas mixed in the raw water and combined with the dissolved oxygen in the raw water, the raw water from which the nitrogen gas has been released is sequentially flowed down to the lower buffer space 124 through the through hole 125a. It has a structure. As a result, the raw water whose fine bubble nitrogen gas (including oxygen) is separated and the dissolved oxygen concentration is reduced to some extent can be supplied to the gas-liquid contact portion 41 in the buffer space 124.

図6は、本装置に原水と窒素ガスを同時に流し始めてから5分経過後の実験データを示す。   FIG. 6 shows experimental data after a lapse of 5 minutes from the start of flowing raw water and nitrogen gas through the apparatus simultaneously.

図では、処理水流量計77の計測結果である処理水の流量(m/h)を示す「処理水量」、循環水流量計81の計測結果である循環水の流量(m/h)を示す「循環水量」、窒素ガス流量計75の計測結果である窒素ガスの流量(m/h)を示す「窒素流量」、原水の温度(℃)を示す「水温」、原水のDO値(mg/l)を示す「処理前」、処理水のDO値(mg/l)を示す「処理後」、処理水量に対する窒素の量を示す「気液比」、エジェクターの有無を示す「エジェクター有無」、気液分離板125の有無を示す「気液分離有無」を示す。 In the figure, a measurement result of the process water flow meter 77 of the treated water flow rate (m 3 / h) "processing water" indicating a measurement result of the circulating water flow meter 81 of the circulating water flow rate (m 3 / h) “Circulation water amount” indicating the nitrogen gas flow meter 75, “nitrogen flow rate” indicating the nitrogen gas flow rate (m 3 / h), “water temperature” indicating the raw water temperature (° C.), DO value of the raw water "Before treatment" indicating (mg / l), "After treatment" indicating the DO value (mg / l) of treated water, "Gas-liquid ratio" indicating the amount of nitrogen relative to the amount of treated water, "Ejector" indicating presence or absence of an ejector “Presence / absence” and “gas-liquid separation presence / absence” indicating the presence / absence of the gas-liquid separation plate 125 are shown.

図では、大きく区分して、「処理水量」が0.3(m/h)の場合のデータと、0.5(m/h)の場合のデータを示している。 In the figure, the data when the “treatment water amount” is 0.3 (m 3 / h) and the data when it is 0.5 (m 3 / h) are roughly shown.

実験データから循環水の流量を多くすると、溶存酸素の除去率が高くなることがわかった。また、第1エジェクター121や気液分離板125を設けた方が溶存酸素の除去率が高く、処理水/循環水の比率(循環比)を0.1(1:10)程度にすることで処理水のDO値を0.5程度に低下させることができることがわかった。   From the experimental data, it was found that the removal rate of dissolved oxygen increases when the flow rate of circulating water is increased. Also, the removal rate of dissolved oxygen is higher when the first ejector 121 and the gas-liquid separation plate 125 are provided, and the ratio of treated water / circulated water (circulation ratio) is about 0.1 (1:10). It was found that the DO value of treated water can be reduced to about 0.5.

このように、上記貯溜槽49に貯溜された原水のうち一部を上記脱酸素塔43の気液接触部41より上方に導入して還流させることで、上記原水を上記貯溜槽49と上記気液接触部41間で循環させることができ、気液接触させる頻度を向上させることができるため、当該原水中の溶存酸素の濃度を効率よく低下させ、溶存酸素の濃度が極めて低い原水を処理水として得ることができる。また、例えばリアクタの段数を少なくする等、構造を簡素化しても、十分な溶存酸素除去性能を確保することができるため、本装置を小型化することができ、本装置の設備コストやランニングコストを抑えることができる。また、本装置は小型化できるため、供給される原水の流量が少ない用途に対しても適用が可能になる。   In this way, a part of the raw water stored in the storage tank 49 is introduced and refluxed above the gas-liquid contact portion 41 of the deoxygenation tower 43, so that the raw water is recirculated from the storage tank 49 and the gas. Since it can be circulated between the liquid contact parts 41 and the frequency of gas-liquid contact can be improved, the concentration of dissolved oxygen in the raw water can be efficiently reduced, and raw water with a very low concentration of dissolved oxygen can be treated. Can be obtained as Moreover, even if the structure is simplified, for example, by reducing the number of reactor stages, sufficient dissolved oxygen removal performance can be ensured, so that the apparatus can be reduced in size, and the equipment cost and running cost of the apparatus can be reduced. Can be suppressed. Moreover, since this apparatus can be reduced in size, it can be applied to applications where the flow rate of supplied raw water is small.

このようにして、水熱源空調システムにおいて、開放系である冷却水循環系の冷却水中の溶存酸素や、密閉系である冷水循環系の冷水中の溶存酸素を効果的に除去することができ、各配管の腐食等が防止される。   In this way, in the water heat source air conditioning system, dissolved oxygen in the cooling water of the cooling water circulation system that is an open system and dissolved oxygen in the cold water of the cooling water circulation system that is a closed system can be effectively removed. Corrosion of piping is prevented.

なお、上記脱酸素塔43内に還流管53の導入口と連通し、上述の第1エジェクター121と同様な構成の第2エジェクターを設け、上記還流管53により上記脱酸素塔43の気液接触部41より上方に導入される還流水と上記窒素ガスとを気液接触させるようにしてもよい。このようにすることにより、上記第2エジェクターで前述の還流路により導入される液体中の溶存酸素の濃度をさらに低下させることができる。また、エジェクターを用いるため、上記還流路により導入される液体の流量が少ないときでも当該液体の溶存酸素の濃度を効果的に低下させることができる。   In addition, a second ejector having the same configuration as the first ejector 121 is provided in the deoxygenation tower 43 so as to communicate with the inlet of the reflux pipe 53, and the gas-liquid contact of the deoxygenation tower 43 is performed by the reflux pipe 53. The reflux water introduced above the portion 41 may be brought into gas-liquid contact with the nitrogen gas. By doing in this way, the density | concentration of the dissolved oxygen in the liquid introduce | transduced by the above-mentioned reflux path with the said 2nd ejector can further be reduced. Further, since the ejector is used, the concentration of dissolved oxygen in the liquid can be effectively reduced even when the flow rate of the liquid introduced through the reflux path is small.

また、前述のエジェクターに代えてシャワーノズル等を採用してもよい。原水の供給量が循環水の循環量に比べて少ない場合であっても、原水処理部では気液比を0.5〜1程度と高くとることができる。また、圧力損失の高い規則充填物であっても使用することができる。さらに、インジェクタ、ラシヒリング等の簡易的な気液接触システムでも溶存酸素を除去することができる。   Further, a shower nozzle or the like may be employed instead of the above-described ejector. Even if the supply amount of the raw water is smaller than the circulation amount of the circulating water, the gas-liquid ratio can be as high as about 0.5 to 1 in the raw water treatment unit. Even regular packing with high pressure loss can be used. Furthermore, dissolved oxygen can be removed even with a simple gas-liquid contact system such as an injector or Raschig ring.

本発明は、例えばボイラ給水、飲料水製造用、食品製造用、半導体超純水製造用あるいは各種試験研究用等に用いる液体中の溶存酸素を除去する用途に用いることができ、大規模なシステムに用いる場合だけでなく、小規模なシステムに用いる場合であっても好適に適用できる。   The present invention can be used for, for example, boiler water supply, drinking water production, food production, semiconductor ultrapure water production or various test research applications for removing dissolved oxygen in a liquid, and a large-scale system. The present invention can be suitably applied not only to the case of use in a small system but also to the case of use in a small system.

本発明の溶存酸素除去装置の一実施例を示す図である。It is a figure which shows one Example of the dissolved oxygen removal apparatus of this invention. 溶存酸素除去装置の構成を示す図である。It is a figure which shows the structure of a dissolved oxygen removal apparatus. 窒素ガス供給装置を示す図である。It is a figure which shows a nitrogen gas supply apparatus. ミキシングエレメントを示す図である。It is a figure which shows a mixing element. 脱酸素塔の上部を示す図である。It is a figure which shows the upper part of a deoxygenation tower. 実験データを示す図である。It is a figure which shows experimental data.

符号の説明Explanation of symbols

1 溶存酸素除去装置
3 空調機
11 ガス管
13 圧縮機
15 熱交換器
17 膨張機
21 冷却水配管
23 冷却塔
25 配管開閉弁
27 冷却塔側循環ポンプ
33 空調機側冷温水配管
35 空調機側開閉弁
37 空調機側循環ポンプ
41 気液接触部
43 脱酸素塔
45 原水供給管
46 窒素ガス供給装置
47 窒素ガス供給管
49 貯溜槽
49a 水面上空間
51 導出管
51a 分岐管
53 還流管
54 送水ポンプ
55 排気管
67 排水管
69 排水管開閉弁
71 供給管開閉弁
73 ガス管開閉弁
75 窒素ガス流量計
76 導出管開閉弁
77 処理水流量計
78 逆止弁
79 還流管開閉弁
81 循環水流量計
83 分岐管開閉弁
85 DOセンサ
101 第1吸着塔
103 第2吸着塔
111 孔
113 右捻り羽根
115 ミキシングエレメント
117 左捻り羽根
119 ミキシングエレメント
121 第1エジェクター
123 オーバーフロー槽
124 バッファ空間
125 気液分離板
125a 貫通孔
125b 窒素ガス流路パイプ
126 一時貯留部
DESCRIPTION OF SYMBOLS 1 Dissolved oxygen removal apparatus 3 Air conditioner 11 Gas pipe 13 Compressor 15 Heat exchanger 17 Expander 21 Cooling water piping 23 Cooling tower 25 Piping on-off valve 27 Cooling tower side circulation pump 33 Air conditioning machine side cold / hot water piping 35 Air conditioning side open / close Valve 37 Air-conditioner side circulation pump 41 Gas-liquid contact part 43 Deoxygenation tower 45 Raw water supply pipe 46 Nitrogen gas supply device 47 Nitrogen gas supply pipe 49 Reservoir 49a Water surface space 51 Outlet pipe 51a Branch pipe 53 Reflux pipe 54 Water feed pump 55 Exhaust pipe 67 Drain pipe 69 Drain pipe on / off valve 71 Supply pipe on / off valve 73 Gas pipe on / off valve 75 Nitrogen gas flow meter 76 Outlet pipe on / off valve 77 Treated water flow meter 78 Check valve 79 Recirculation pipe on / off valve 81 Circulating water flow meter 83 Branch pipe opening / closing valve 85 DO sensor 101 First adsorption tower 103 Second adsorption tower 111 Hole 113 Right twist blade 115 Mixing element 117 left twisting vanes 119 mixing element 121 first ejector 123 overflow tank 124 buffer space 125 gas-liquid separator plate 125a through hole 125b of nitrogen gas passage pipes 126 temporary storage unit

Claims (5)

処理対象の液体と不活性ガスとを気液接触させて上記液体中の溶存酸素を除去する気液接触部を有する脱酸素塔と、
上記液体を脱酸素塔の気液接触部より上方に供給する液体供給路と、
上記不活性ガスを脱酸素塔の気液接触部より下方に供給する不活性ガス供給路と、
上記脱酸素塔の気液接触部により不活性ガスと気液接触した液体を貯溜する貯溜槽と、
上記貯溜槽に貯溜された液体のうち一部を処理液として外部に導出する導出路と、
上記貯溜槽に貯溜された液体のうち一部を上記脱酸素塔の気液接触部より上方に導入して還流させる還流路と
上記還流路により上記脱酸素塔の気液接触部より上方に導入する液体の流量と、上記導出路により外部に導出する液体の流量または上記液体供給路により供給される液体の流量との比率を、導出管で導出された液体の溶存酸素量に応じて制御する流量制御手段とを備えたことを特徴とする液体中の溶存酸素除去装置。
A deoxygenation tower having a gas-liquid contact portion for removing the dissolved oxygen in the liquid by bringing the liquid to be treated and an inert gas into gas-liquid contact;
A liquid supply path for supplying the liquid above the gas-liquid contact portion of the deoxygenation tower;
An inert gas supply path for supplying the inert gas downward from the gas-liquid contact portion of the deoxygenation tower;
A storage tank for storing the liquid in gas-liquid contact with the inert gas by the gas-liquid contact portion of the deoxygenation tower;
A lead-out path for leading a part of the liquid stored in the storage tank to the outside as a processing liquid;
A reflux path for introducing a part of the liquid stored in the storage tank above the gas-liquid contact part of the deoxygenation tower to reflux ;
The ratio between the flow rate of the liquid introduced above the gas-liquid contact portion of the deoxygenation tower by the reflux path and the flow rate of the liquid led to the outside by the lead-out path or the flow rate of the liquid supplied by the liquid supply path A device for removing dissolved oxygen in a liquid, comprising: a flow rate control unit that controls the amount of dissolved oxygen in the liquid led out by the lead-out pipe .
上記貯留槽から処理済の液体を送出する送出ポンプの下流側で上記導出路と還流路が分岐している請求項1記載の液体中の溶存酸素除去装置。 The device for removing dissolved oxygen in a liquid according to claim 1, wherein the lead-out path and the reflux path are branched downstream of a delivery pump for delivering the treated liquid from the storage tank . 上記液体供給路と連通する第1エジェクターを備え、
上記第1エジェクターは、上記液体供給路により上記脱酸素塔の気液接触部より上方に供給される液体と上記不活性ガスとを気液接触させる請求項1または2記載の液体中の溶存酸素除去装置。
A first ejector communicating with the liquid supply path;
3. The dissolved oxygen in the liquid according to claim 1, wherein the first ejector causes the liquid supplied above the gas-liquid contact portion of the deoxygenation tower to gas-liquid contact with the inert gas through the liquid supply path. Removal device.
上記還流路と連通する第2エジェクターを備え、
上記第2エジェクターは、上記還流路により上記脱酸素塔の気液接触部より上方に導入される液体と上記不活性ガスとを気液接触させる請求項1〜3のいずれか一項に記載の液体中の溶存酸素除去装置。
A second ejector communicating with the reflux path;
The said 2nd ejector makes the liquid introduced above the gas-liquid contact part of the said deoxidation tower by the said reflux path, and the said inert gas, and gas-liquid contact as described in any one of Claims 1-3 Equipment for removing dissolved oxygen in liquids.
処理対象の液体と不活性ガスとを気液接触させて上記液体中の溶存酸素を除去する気液接触部を有する脱酸素塔の気液接触部より上方に液体供給路より上記液体を供給し、
上記脱酸素塔の気液接触部より下方に上記不活性ガスを供給し、
上記脱酸素塔の気液接触部により不活性ガスと気液接触した液体を所定の貯溜槽に貯溜し、
上記貯溜槽に貯溜された液体のうち一部を処理液として導出路より外部に導出し、
上記貯溜槽に貯溜された液体のうち一部を上記脱酸素塔の気液接触部より上方に導入して還流させ
上記還流により上記脱酸素塔の気液接触部より上方に導入する液体の流量と、上記導出路により外部に導出する液体の流量または上記液体供給路により供給される液体の流量との比率を、導出管で導出された液体の溶存酸素量に応じて流量制御手段により制御することを特徴とする液体中の溶存酸素除去方法。
The liquid is supplied from the liquid supply path above the gas-liquid contact part of the deoxygenation tower having a gas-liquid contact part that removes dissolved oxygen in the liquid by bringing the liquid to be treated and the inert gas into gas-liquid contact. ,
Supply the inert gas below the gas-liquid contact portion of the deoxygenation tower,
The liquid in gas-liquid contact with the inert gas by the gas-liquid contact part of the deoxygenation tower is stored in a predetermined storage tank,
A part of the liquid stored in the storage tank is led out from the lead-out path as a processing liquid,
A part of the liquid stored in the storage tank is introduced above the gas-liquid contact part of the deoxidation tower to be refluxed ,
The ratio of the flow rate of the liquid introduced above the gas-liquid contact part of the deoxygenation tower by the reflux and the flow rate of the liquid led out to the outside by the lead-out path or the flow rate of the liquid supplied by the liquid feed path, dissolved oxygen removal method in a liquid, characterized that you controlled by flow control means in accordance with the amount of dissolved oxygen in the liquid derived by the derivation tube.
JP2004325920A 2004-11-10 2004-11-10 Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen Expired - Lifetime JP4018099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325920A JP4018099B2 (en) 2004-11-10 2004-11-10 Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325920A JP4018099B2 (en) 2004-11-10 2004-11-10 Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen

Publications (2)

Publication Number Publication Date
JP2006136756A JP2006136756A (en) 2006-06-01
JP4018099B2 true JP4018099B2 (en) 2007-12-05

Family

ID=36617908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325920A Expired - Lifetime JP4018099B2 (en) 2004-11-10 2004-11-10 Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen

Country Status (1)

Country Link
JP (1) JP4018099B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923266B2 (en) * 2007-06-08 2012-04-25 株式会社松村組 Contaminated water treatment equipment
JP2009285641A (en) * 2008-06-02 2009-12-10 Toyobo Engineering Kk Method for effectively controlling nitrogen type deoxidation apparatus
JP5027865B2 (en) * 2009-06-24 2012-09-19 川幸産業株式会社 Gas-liquid separator
JP5559528B2 (en) * 2009-12-15 2014-07-23 株式会社 エオネックス Method and apparatus for selective methane gas separation of hot spring water
JP2015058377A (en) * 2013-09-18 2015-03-30 地熱ワールド工業株式会社 Open system bubbling type methane gas removing mechanism
JP5817081B2 (en) * 2013-12-17 2015-11-18 株式会社ゼックフィールド Dissolved oxygen remover
CN105650942A (en) * 2016-03-25 2016-06-08 中冶南方工程技术有限公司 Air energy heat pump water replenishing, deoxygenizing and air conditioning system
JP6941521B2 (en) * 2017-09-22 2021-09-29 株式会社Ihiプラント Degassing system
CN108680709B (en) * 2018-06-12 2024-05-10 中国石油工程建设有限公司 Device for evaluating deoxidizer performance
CN110203989A (en) * 2018-09-10 2019-09-06 西安华江环保科技股份有限公司 A kind of high-purity water preparation apparatus of deoxidation and technique

Also Published As

Publication number Publication date
JP2006136756A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
US4235607A (en) Method and apparatus for the selective absorption of gases
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
US4265167A (en) Deoxygenating unit
US4216711A (en) Deoxygenation system for production of beer
AU2021435297B2 (en) Method and systems for oxygenation of water bodies
JP4409047B2 (en) Equipment for reducing dissolved oxygen in water
RU2446000C1 (en) Universal mass-transfer absorbtion-desorption unit
JP2004305794A (en) Oil-water separator
JP2011103292A (en) Water treatment device and method for fuel cell
JP5114987B2 (en) Gas ventilation method, gas ventilation device, waste water treatment device using the same, and combustion device
JP3737687B2 (en) Deoxygenation device for water supply
WO2012056249A1 (en) Fluid treatment apparatus
JPH08124590A (en) Carbon dioxide separator device for fuel cell
KR20140095589A (en) Submarine with an installation for bringing gas out of a submarine
CN214734760U (en) Device for treating sewage by three-phase catalytic oxidation
CN104556281A (en) Method for removing carbon dioxide contained in water
WO2012127689A1 (en) Flue gas desulfurization apparatus
JP2010207726A (en) Apparatus and method for purifying gas
JP2006159142A (en) Oil-water separation method and oil-water separator
CN101117253A (en) Activated sludge enriching method and vacuum suction concentration device
CN105126434B (en) Filtering and defoaming combined treatment device for amine liquid
JP4126203B2 (en) Oil-water separation method and apparatus
KR102751741B1 (en) Gas-liquid separator device
JP3770638B2 (en) Gas-liquid contact reactor
US12179160B2 (en) Method and device for saturating a product with carbon dioxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Ref document number: 4018099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140928

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350