JP4016925B2 - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- JP4016925B2 JP4016925B2 JP2003342706A JP2003342706A JP4016925B2 JP 4016925 B2 JP4016925 B2 JP 4016925B2 JP 2003342706 A JP2003342706 A JP 2003342706A JP 2003342706 A JP2003342706 A JP 2003342706A JP 4016925 B2 JP4016925 B2 JP 4016925B2
- Authority
- JP
- Japan
- Prior art keywords
- led element
- light emitting
- light
- bumps
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007789 sealing Methods 0.000 claims description 75
- 239000011521 glass Substances 0.000 claims description 34
- 239000000919 ceramic Substances 0.000 claims description 13
- 239000012212 insulator Substances 0.000 claims description 9
- 150000004703 alkoxides Chemical class 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 67
- 239000000463 material Substances 0.000 description 27
- 239000000758 substrate Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 10
- 238000007747 plating Methods 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 8
- 229910003460 diamond Inorganic materials 0.000 description 8
- 239000010432 diamond Substances 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000004040 coloring Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000002210 silicon-based material Substances 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 238000004383 yellowing Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 108091006149 Electron carriers Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
Landscapes
- Led Device Packages (AREA)
Description
本発明は、発光装置に関し、特に、封止部材の封止時の加圧力が発光素子に付与されることに起因して生じる発光素子のバンプの変形、バンプ間短絡等を防止できるようにした発光装置に関する。 The present invention relates to a light emitting device, and in particular, it is possible to prevent deformation of bumps of a light emitting element, short circuit between bumps, and the like, which are caused by the pressure applied when sealing a sealing member is applied to the light emitting element. The present invention relates to a light emitting device.
LED(light-Emitting Diode:発光ダイオード)を光源とする発光装置の代表的な構造として、LED素子及びリード部の所定範囲を透光性を有する封止材料で覆うものがある。この封止材料には、エポキシやシリコン等の樹脂やガラスがあるが、成形性、量産性、及びコストの面から、一般に樹脂が用いられている。 As a typical structure of a light-emitting device using an LED (light-emitting diode) as a light source, there is one that covers a predetermined range of an LED element and a lead portion with a light-transmitting sealing material. As this sealing material, there are resins such as epoxy and silicon, and glass, but resins are generally used in terms of moldability, mass productivity, and cost.
LED素子を封止樹脂で封止することにより、発光装置の設計自由度や生産性に優れる反面、LED素子から放射される光によって、封止樹脂の光学的特性及び化学的特性が劣化し、その結果、発光装置の発光効率を低下させることが問題視されている。 By sealing the LED element with a sealing resin, the design freedom and productivity of the light emitting device are excellent, but the optical and chemical characteristics of the sealing resin are deteriorated by the light emitted from the LED element, As a result, reducing the luminous efficiency of the light emitting device has been regarded as a problem.
封止用の樹脂材(例えば、エポキシ樹脂)は、LED素子から放射される強い光を受けることによって次第に黄変し、樹脂材に着色を生じることが知られている。この様な着色が生じると、LED素子から放射される光が吸収されて発光装置の光出力を低下させ、また、出力光に着色の影響が現れるという問題がある。 It is known that a sealing resin material (for example, an epoxy resin) gradually turns yellow by receiving strong light emitted from an LED element, and the resin material is colored. When such coloring occurs, there is a problem that light emitted from the LED element is absorbed to reduce the light output of the light emitting device, and the influence of coloring appears on the output light.
かかる問題を解決するものとして、耐湿性を有するガラス層でLED素子を封止し、他の部分を樹脂で封止した発光装置がある(例えば、特許文献1参照。)。 As a solution to such a problem, there is a light emitting device in which an LED element is sealed with a glass layer having moisture resistance, and other portions are sealed with a resin (for example, see Patent Document 1).
図6は、特許文献1に示された発光装置を示す。この発光装置200は、配線導体201及び202と、配線導体202に形成されるカップ部203と、カップ部203内の底部203Aに接着されるLED素子204と、LED素子204の電極部(図示せず)と配線導体201及び202の所定部位とを電気的に接続するワイヤ205と、カップ部203内に設けられるLED素子204を封止するガラス層206と、ガラス層206に含有される蛍光物質206Aと、砲弾形に成形されて全体を封止するとともに光透過性を有する封止樹脂207とを有する。蛍光物質206Aは、波長変換を行うためにガラス層206に混入されており、LED素子204から放射された光が蛍光物質206Aによって波長変換される。
FIG. 6 shows a light-emitting device disclosed in Patent Document 1. The light emitting device 200 includes wiring conductors 201 and 202, a cup part 203 formed on the wiring conductor 202, an LED element 204 bonded to a bottom part 203A in the cup part 203, and an electrode part (not shown) of the LED element 204. ) And a predetermined portion of the wiring conductors 201 and 202, a glass layer 206 for sealing the LED element 204 provided in the cup portion 203, and a fluorescent material contained in the glass layer 206 206A, and a sealing resin 207 which is molded into a shell shape and seals the whole, and has optical transparency. The
このような構成によると、LED素子204がカップ部203に注入されたガラス層206によって包囲されるので、黄変や着色による光の減衰を低減することができる。また、水分の透過が防止されて蛍光体の劣化を防ぐことができる。 According to such a configuration, since the LED element 204 is surrounded by the glass layer 206 injected into the cup portion 203, attenuation of light due to yellowing or coloring can be reduced. Further, moisture permeation can be prevented and deterioration of the phosphor can be prevented.
近年、高出力のLEDの開発が進められており、すでに数ワットの大出力タイプも製品化されている。LEDは発熱の少ないことが特徴であるが、高出力(高輝度)タイプのLED素子は大電流が流れるため、無視できないレベルの発熱が生じる。このため、封止部材を従来の樹脂材に代え、耐熱性に優れる封止材、例えばガラス材にする必要がある。
しかし、従来の発光装置によると、封止部材をガラス材にした場合、ガラス材は樹脂材に比べて粘度が高いため、その封止には高温による加圧プレスを用いているが、これにより、封止加工時にはLED素子に加圧力や応力が付与され、LED素子がパンプにより接続される構成では、パンプに変形(潰れ等)や移動を生じ、或いはパンプ間の短絡等を生じ易くなる。 However, according to the conventional light emitting device, when the sealing member is made of a glass material, since the glass material has a higher viscosity than the resin material, a high-pressure press is used for the sealing. When the sealing process is performed, a pressure or stress is applied to the LED elements, and the LED elements are connected by a pump, and the pump is likely to be deformed (collapsed) or moved, or short-circuited between the pumps.
従って、本発明の目的は、封止時における封止部材の加圧力等が発光素子に付与されることに起因して生じる発光素子のバンプの変形、移動、バンプ間短絡等を防止できるようにした発光装置を提供することにある。 Therefore, an object of the present invention is to prevent the deformation, movement, short circuit between bumps, etc. of the light emitting element caused by the pressure applied by the sealing member during the sealing being applied to the light emitting element. An object of the present invention is to provide a light emitting device.
本発明は、上記の目的を達成するため、フリップタイプの発光素子と、前記発光素子が上面にバンプを介して搭載された給電部材と、前記給電部材と前記発光素子との間に設けられ、前記発光素子及び前記バンプを固定して前記バンプが短絡することを防ぎ、セラミックからなる耐熱性絶縁体と、前記耐熱性絶縁体の露出面、前記給電部材の前記上面及び前記発光素子を封止する透光性ガラスからなる単一層の封止部材と、を有し、前記耐熱性絶縁体は、アルコキシドから形成されるセラミックである発光装置を製造するにあたり、前記給電部材上に前記バンプを介して前記発光素子を配設し、前記給電部材と前記発光素子との間に前記アルコキシドを滴下又は充填により形成し、前記耐熱性絶縁体の露出面、前記給電部材の前記上面及び前記発光素子を、所定の温度雰囲気及びガラスシートを用いた加圧プレスにより、前記封止部材で封止することを特徴とする発光装置の製造方法を提供する。 The present invention for achieving the above object, provided between the light emitting element of the flip type, a power supply member for the light emitting element is mounted via a bump on the top surface, and the feeding member and the light emitting element The light-emitting element and the bump are fixed to prevent the bump from being short-circuited, and the heat-resistant insulator made of ceramic, the exposed surface of the heat-resistant insulator, the upper surface of the power supply member, and the light-emitting element are sealed. A single-layer sealing member made of translucent glass, and the heat-resistant insulator is a ceramic formed from an alkoxide. And the alkoxide is dropped or filled between the power feeding member and the light emitting element, and the exposed surface of the heat resistant insulator, the upper surface of the power feeding member, and the front A light emitting element, by pressing press using a predetermined temperature atmosphere and the glass sheet, to provide a method of manufacturing a light emitting device characterized by sealing with the sealing member.
本発明の発光装置によれば、発光素子のバンプ装着面側に絶縁層が充填されていることにより、LED素子に封止時に付与される圧力が絶縁層によって阻止されるため、発光素子のバンプの変形、移動、バンプ間の短絡等を防止できるようになる。 According to the light emitting device of the present invention, since the insulating layer is filled on the bump mounting surface side of the light emitting element, the pressure applied to the LED element at the time of sealing is blocked by the insulating layer. Deformation, movement, short circuit between bumps, and the like can be prevented.
図1は、本発明の第1の実施の形態に係る発光装置の構成を示す断面図である。この発光装置10は、給電部材としての基板部11と、電源供給用の少なくとも一対のAuからなるバンプ12a,12bを有すると共に基板部11の上面に搭載されるLED素子12と、LED素子12の下面と基板部11の間に充填される絶縁層13と、LED素子12及び基板部11の上面を覆うように形成された封止部材14とを備えて構成される。
FIG. 1 is a cross-sectional view showing a configuration of a light emitting device according to a first embodiment of the present invention. The light emitting device 10 includes a substrate portion 11 as a power supply member,
基板部11は、セラミック基板11aと、セラミック基板11aの上面に所定のパターンで形成された配線層11b,11c,11d,11eと、セラミック基板11aの下面に所定のパターンで形成された配線層11f,11gと、配線層11cの表面に被覆されたAuメッキ膜11hと、配線層11dの表面に被覆されたAuメッキ膜11iと、配線層11fの表面に被覆されたAuメッキ膜11jと、配線層11gの表面に被覆されたAuメッキ膜11kと、配線層11bと配線層11fを接続するスルーホール11lと、配線層11dと配線層11gを接続するスルーホール11mとを備えている。 The substrate unit 11 includes a ceramic substrate 11a, wiring layers 11b, 11c, 11d, and 11e formed on the upper surface of the ceramic substrate 11a with a predetermined pattern, and a wiring layer 11f formed on the lower surface of the ceramic substrate 11a with a predetermined pattern. 11g, an Au plating film 11h coated on the surface of the wiring layer 11c, an Au plating film 11i coated on the surface of the wiring layer 11d, an Au plating film 11j coated on the surface of the wiring layer 11f, and a wiring An Au plated film 11k coated on the surface of the layer 11g, a through hole 11l for connecting the wiring layer 11b and the wiring layer 11f, and a through hole 11m for connecting the wiring layer 11d and the wiring layer 11g are provided.
セラミック基板11aは、例えば、ガラス含有Al2O3材(熱膨張率:13.2×10-6/℃)が用いられる。配線層11c,11d,11f,11gは、電源を供給するための電極として機能する。また、Auメッキ膜11h,11i,11j,11kは、接続性、導電性、及び耐腐食性を向上させるために設けられている。なお、基板部11は、LED素子12を搭載する前に、配線層11b〜11g、Auメッキ膜11h,11i,11j,11k、及びスルーホール11l,11mは予めセラミック基板11aに形成される。
As the ceramic substrate 11a, for example, a glass-containing Al 2 O 3 material (thermal expansion coefficient: 13.2 × 10 −6 / ° C.) is used. The wiring layers 11c, 11d, 11f, and 11g function as electrodes for supplying power. Further, the Au plating films 11h, 11i, 11j, and 11k are provided in order to improve connectivity, conductivity, and corrosion resistance. In addition, before the
LED素子12は、例えば、GaN、AlInGaP等の半導体を用いて構成されており、そのチップサイズは、0.3×0.3mm(標準サイズ)、1×1mm(ラージサイズ)等である。また、LED素子12は、下面に電源用の電極12a,12bを有し、この電極12a,12bが基板部11の所定の配線層上に半田付けされる。
The
絶縁層13は、シリコン系材料、又はダイヤモンド、BN、SiC、あるいはAlNの粉末を含む絶縁材で形成されている。シリコン系材料としてシリコン樹脂を用いた場合、封止部材14の封止に伴う高温により、化学結合が切れることでSiO2になり、耐熱性を有する絶縁体として機能する。また、シリコン樹脂によって形成されるSiO2に代えてSi系やTi系等のアルコキシドによって形成されるセラミックを用いることもできる。なお、ダイヤモンドは高い熱伝導性を有する。BN、SiC、AlNはダイヤモンドと比べて熱伝導性は劣るが廉価である。また、ダイヤモンド、BN、SiCは透明あるいは白色であり、光吸収が少ないという特徴を有している。 The insulating layer 13 is formed of a silicon-based material or an insulating material containing diamond, BN, SiC, or AlN powder. When a silicon resin is used as the silicon-based material, the chemical bond is broken due to the high temperature associated with the sealing of the sealing member 14, so that it becomes SiO 2 and functions as an insulator having heat resistance. Further, instead of SiO 2 formed of silicon resin, a ceramic formed of Si-based or Ti-based alkoxide can also be used. Diamond has high thermal conductivity. BN, SiC, and AlN are inferior in thermal conductivity to diamond but are inexpensive. Further, diamond, BN, and SiC are transparent or white and have a feature of little light absorption.
封止部材14は、透光性で低融点の特性を有するガラス材を用いて形成されており例えば、住田光学ガラス株式会社製の「PSK100」(熱膨張率:11.4×10-6/℃)を用いることができる。なお、発明者らの実験では、セラミックとガラスとの良好な接合を得るためにはセラミック基板11aと封止部材14とを略同等の熱膨張率(熱膨張率差の比が15%以内)とする必要があり、ここでは熱膨張率の比は0.86である。 The sealing member 14 is formed using a glass material having translucency and a low melting point, for example, “PSK100” (thermal expansion coefficient: 11.4 × 10 −6 / manufactured by Sumita Optical Glass Co., Ltd.). ° C) can be used. In the experiments of the inventors, in order to obtain a good bonding between the ceramic and the glass, the ceramic substrate 11a and the sealing member 14 are approximately equal in thermal expansion coefficient (ratio of thermal expansion coefficient difference is within 15%). Here, the ratio of the thermal expansion coefficients is 0.86.
以下に、発光装置10の組み立てについて説明する。 Hereinafter, assembly of the light emitting device 10 will be described.
Auのバンプ12a,12bが配線層11c,11dに載るように位置決めし、基板部11上にLED素子12を配設した後、滴下、充填等により絶縁層13を形成する。
After positioning the
次に、LED素子12、絶縁層13の露出面及び基板部11の露出面にガラス材による封止部材14を封止する。封止部材14の封止には金型を用い、所定の温度雰囲気及び加圧プレスにより図1のように半円型に成形する。この封止の際、絶縁層13としてのシリコン材がSiO2化され、LED素子12の下面、及びバンプ12a,12bが固定された状態になるため、バンプ12a,12bの変形やバンプ間短絡等が回避される。以上により、発光装置10が完成する。
Next, the sealing member 14 made of a glass material is sealed on the
この発光装置10では、例えば、配線層11fがLED素子12のアノード側であるとすると、配線層11fに直流電源(図示せず)のプラス側が接続され、配線層11gにはマイナス側が接続される。LED素子12に対して、図示しないp型電極及びn型電極に電気的に接続されたバンプ2を介して順方向の電圧を印加すると、LED素子12の活性層においてホール及びエレクトロンのキャリア再結合が発生して発光し、出力光がLED素子12の外部へ放射される。この光の殆どは封止部材14内を透過して封止部材14の外へ出光し、一部は内面反射をして封止部材14の外へ出光する。
In the light emitting device 10, for example, if the wiring layer 11f is on the anode side of the
上記した第1の実施の形態によると、以下の効果が得られる。
(1)ガラス材による封止部材14で全体を封止したことにより、樹脂封止で問題になった黄変や着色による光の減衰を低減することができる。
(2)LED素子12の下側に耐熱性を有する絶縁層13を設けたことにより、封止部材14の封止時に、バンプ12a,12bを封止部材14が高熱で押圧してLED素子12にダメージを及ぼすことがなくなる。すなわち、封止部材14の高熱及び高圧力によりバンプ12a,12bが変形したり、破損したりしてバンプ間で短絡を生じることを防止できる。
(3)ダイヤモンド、BN、SiC、あるいはAlNの粉末を含む絶縁材を用いた場合、LED素子12の発する熱を放熱する効果を期待できるため、放熱性の向上を図ることができる。
According to the first embodiment described above, the following effects are obtained.
(1) By sealing the whole with the sealing member 14 made of a glass material, it is possible to reduce attenuation of light due to yellowing or coloring, which is a problem in resin sealing.
(2) Since the insulating layer 13 having heat resistance is provided on the lower side of the
(3) When an insulating material containing diamond, BN, SiC, or AlN powder is used, an effect of dissipating the heat generated by the
図2は、第2の実施の形態に係る発光装置の構成を示す断面図である。この発光装置20は、サブマウント22を用いてリードフレームに搭載される金属リードタイプであり、実装面にバンプ21a,21bが設けられたLED素子21と、このLED素子21が搭載されるサブマウント22と、このサブマウント22が搭載される給電部材としてのリード部23a,23bと、リード部23a,23bの上面とLED素子21の下面との間に充填される絶縁層24と、絶縁層24の端部及びLED素子21の表面を含むリード部23a,23bの先端部を封止するための透光性ガラスによる封止部材25とを有する。 FIG. 2 is a cross-sectional view showing the configuration of the light emitting device according to the second embodiment. The light-emitting device 20 is a metal lead type that is mounted on a lead frame using a submount 22. The LED element 21 is provided with bumps 21 a and 21 b on the mounting surface, and the submount on which the LED element 21 is mounted. 22, lead portions 23 a and 23 b as power supply members on which the submount 22 is mounted, an insulating layer 24 filled between the upper surfaces of the lead portions 23 a and 23 b and the lower surface of the LED element 21, and an insulating layer 24 And a sealing member 25 made of translucent glass for sealing the leading ends of the lead portions 23a and 23b including the surface of the LED element 21.
サブマウント22は、例えば、高熱伝導のAlN(窒化アルミニウム)が用いられ、バンプ21aの一方に接続される配線層22aが上面、側面、及び下面にかけてコの字形を成すように形成されており、反対側にはバンプ21bに接続される配線層22bが上面、側面、及び下面かけてコの字形を成すように形成されている。 The submount 22 is made of, for example, high thermal conductivity AlN (aluminum nitride), and the wiring layer 22a connected to one of the bumps 21a is formed in a U shape over the upper surface, the side surface, and the lower surface. On the opposite side, a wiring layer 22b connected to the bump 21b is formed so as to form a U shape over the upper surface, the side surface, and the lower surface.
また、サブマウント22は、必要に応じて素子破壊防止用のツェナーダイオード等の回路を内蔵させることもできる。また、配線層22a,22bに代えて、上下面に設けた電極と、その上下の電極相互を連通させるスルーホールとによる組み合わせによる配線手段を用いても良い。 Further, the submount 22 can incorporate a circuit such as a Zener diode for preventing element destruction as needed. Further, instead of the wiring layers 22a and 22b, a wiring means by a combination of electrodes provided on the upper and lower surfaces and through-holes communicating the upper and lower electrodes may be used.
リード部23a,23bは、銅系や鉄系の金属からなり、図示しないリードフレームの一部として両側の帯状部分より内側に所定の間隙で向かい合うように形成されており、1個のLED素子に対して一対が割り当てられている。リード部23a,23bの先端部の一部は、段差が形成されるように薄厚に作られており、この段差部分にサブマウント22が載置される。 The lead portions 23a and 23b are made of copper-based or iron-based metal, and are formed as a part of a lead frame (not shown) so as to face each other with a predetermined gap inside the belt-like portions on both sides. On the other hand, a pair is assigned. A part of the tip of the lead portions 23a and 23b is made thin so that a step is formed, and the submount 22 is placed on the step.
絶縁層24は、第1の実施の形態における絶縁層13と同様に、シリコン材、又はダイヤモンドやAlNの粉末を含む絶縁材を用いることができる。封止部材25の封止時に化学結合が切れてシリコン材がSiO2になる生成過程、及びダイヤモンド、BN、SiC、あるいはAlNの粉末を含む絶縁材を用いた場合の放熱効果等は絶縁層13の場合と同様である。 As the insulating layer 24, a silicon material or an insulating material containing diamond or AlN powder can be used as in the insulating layer 13 in the first embodiment. The insulating layer 13 includes a generation process in which the chemical bond is broken when the sealing member 25 is sealed and the silicon material becomes SiO 2 , and a heat dissipation effect when an insulating material containing powder of diamond, BN, SiC, or AlN is used. It is the same as the case of.
封止部材25には、上記した上記実施の形態と同様に、透光性で低融点の特性を有するガラス材が用いられる。 As the sealing member 25, a glass material having translucency and a low melting point is used as in the above-described embodiment.
この発光装置20では、リード部23aが正(+)電源供給端子であるとすると、リード部23aに供給された電流は、リード部23a、配線層22a、及びバンプ21aを経てLED素子21のアノードに流れ、さらに、LED素子21のカソードを出た電流は、バンプ21b、配線層22bを経てリード部23bに流れることにより、LED素子21が発光する。 In the light emitting device 20, if the lead portion 23a is a positive (+) power supply terminal, the current supplied to the lead portion 23a passes through the lead portion 23a, the wiring layer 22a, and the bump 21a, and the anode of the LED element 21. Furthermore, the current from the cathode of the LED element 21 flows to the lead portion 23b through the bump 21b and the wiring layer 22b, whereby the LED element 21 emits light.
以下に、発光装置20の組み立てについて説明する。 Hereinafter, assembly of the light emitting device 20 will be described.
まず、配線層22a,22bが予め形成済みのサブマウント22を準備する。このサブマウント22上の所定位置にバンプ21a,21bを形成し、そこへLED素子21を搭載し、バンプ21aと配線層22a、及びバンプ21bと配線層22bを電気的に接続すると共に機械的に固定する。 First, the submount 22 in which the wiring layers 22a and 22b are formed in advance is prepared. Bumps 21a and 21b are formed at predetermined positions on the submount 22, the LED element 21 is mounted thereon, the bumps 21a and the wiring layer 22a, and the bumps 21b and the wiring layer 22b are electrically connected and mechanically. Fix it.
次に、サブマウント22に搭載されたLED素子21をリード部23a,23bの先端部の窪み内に通電方向を合致させて配置する。なお、LED素子21をサブマウント22に搭載した後、このサブマウント22をリード部23a,23bに搭載する順序であっても良い。 Next, the LED elements 21 mounted on the submount 22 are arranged in the recesses at the tips of the lead portions 23a and 23b so that the energization directions are matched. In addition, after mounting the LED element 21 on the submount 22, the order in which the submount 22 is mounted on the lead portions 23a and 23b may be used.
次に、絶縁層24としてのシリコーン材をLED素子21の下面とサブマウント22の上面との間に充填する(この充填は、サブマウント22をリード部23a,23bに搭載する前に行っても良い。)。この状態のまま金型内に搬入し、封止部材25を形成するためのガラスシート(図示せず)をLED素子21の上方及び下方に配置し、所定の温度及び加圧プレスにより半球状に成形する。この封止の際、シリコーン材がSiO2化されて絶縁層24となり、LED素子21の下面及びバンプ12a,12bを固定するため、バンプ12a,12bの変形やバンプ間短絡等が回避される。以上により、発光装置20が完成する。最終的には、図示しないリードフレームからリード部23a,23bの他端を分離することにより、個々の発光装置20に個別化される。
Next, a silicone material as the insulating layer 24 is filled between the lower surface of the LED element 21 and the upper surface of the submount 22 (this filling may be performed before the submount 22 is mounted on the lead portions 23a and 23b). good.). The glass sheet (not shown) for carrying in this state in a metal mold | die and forming the sealing member 25 is arrange | positioned in the upper direction and the downward direction of the LED element 21, and hemispherical by predetermined temperature and pressure press Mold. At the time of sealing, the silicone material is converted into SiO 2 to form the insulating layer 24, and the lower surface of the LED element 21 and the
上記した第2の実施の形態によると、ガラス材との密着性に優れるリード部23a,23bを用いるとともにLED素子21の下側に絶縁層24を設けたことにより、封止部材25の封止時に、封止部材25がLED素子21にダメージを及ぼすことがなくなるので、バンプ21a,21bに変形、移動、短絡等が生じるのを防止することができる。さらに、ガラス材による封止部材25で全体を封止したことにより、封止部材が樹脂材のときのような黄変や着色による光の減衰が生じるのを防止することができる。 According to the second embodiment described above, the sealing of the sealing member 25 is achieved by using the lead portions 23a and 23b having excellent adhesion to the glass material and providing the insulating layer 24 below the LED element 21. Sometimes, the sealing member 25 does not damage the LED element 21, so that it is possible to prevent the bumps 21 a and 21 b from being deformed, moved, short-circuited, and the like. Furthermore, by sealing the whole with the sealing member 25 made of a glass material, it is possible to prevent the light from being attenuated due to yellowing or coloring as in the case where the sealing member is a resin material.
図3は、第3の実施の形態に係る発光装置を示す断面図である。この発光装置30は、第2の実施の形態と同様に、サブマウントを用いてリードフレームに搭載される金属リードタイプである。ここでは、図2と同様に、主要部の構成のみを図示し、更に、サブマウント32は非断面の状態で図示している。本実施の形態が第2の実施の形態と異なるところは、サブマウントの構造と、絶縁層の構成及び形成範囲にある。 FIG. 3 is a cross-sectional view showing a light emitting device according to the third embodiment. As in the second embodiment, the light emitting device 30 is a metal lead type that is mounted on a lead frame using a submount. Here, as in FIG. 2, only the configuration of the main part is shown, and the submount 32 is shown in a non-cross-sectional state. This embodiment differs from the second embodiment in the structure of the submount and the configuration and formation range of the insulating layer.
この発光装置30は、実装面にバンプ31a,31bが設けられたLED素子31と、このLED素子31が搭載されるサブマウント32と、このサブマウント32が先端部に搭載される給電部材としてのリード部33a,33bと、蛍光体34aが混合されていると共にLED素子31の全面を覆うように充填又は滴下される絶縁層34と、LED素子31の上面を含むリード部33a,33bの先端部を封止する透光性ガラスによる封止部材35とを有する。 The light emitting device 30 includes an LED element 31 provided with bumps 31a and 31b on a mounting surface, a submount 32 on which the LED element 31 is mounted, and a power supply member on which the submount 32 is mounted on a tip portion. Lead portions 33a and 33b, an insulating layer 34 in which phosphor 34a is mixed and filled or dropped so as to cover the entire surface of LED element 31, and tip portions of lead portions 33a and 33b including the upper surface of LED element 31 And a sealing member 35 made of translucent glass.
サブマウント32は、例えば高熱伝導のAlN(窒化アルミニウム)が用いられ、バンプ31a,31bに接続される電極32a,32bがLED素子31の実装面側に形成されており、反対側の面(リードフレーム側の面)には一対のリード部33a,33bに接続するための電極32c,32dが形成されている。電極32aと電極32c、及び電極32cと電極32dとを接続するために、サブマウント32内にはスルーホール32e,32fが設けられている。
The submount 32 is made of, for example, high thermal conductivity AlN (aluminum nitride), and
リード部33a,33bは、銅系や鉄系の金属からなり、図示しないリードフレームの一部として両側の帯状部分より内側に所定の間隙で対向するように形成され、1個のLED素子に対して一対が割り当てられている。リード部33a,33bの先端部の一部は、段差が生じるように薄厚に作られており、この段差部分にサブマウント32が載置される。 The lead portions 33a and 33b are made of copper-based or iron-based metal, and are formed as a part of a lead frame (not shown) so as to be opposed to the inner side of the belt-shaped portions on both sides with a predetermined gap, with respect to one LED element. A pair is assigned. A part of the tip portion of each of the lead portions 33a and 33b is made thin so that a step is generated, and the submount 32 is placed on the step portion.
絶縁層34は、シリコーン材を主体とし、これに蛍光体34aが混合されている。なお、封止部材25の封止時にシリコーン材の化学結合が切れてSiO2になる生成過程、及びダイヤモンドやAlNの粉末を含む絶縁材を用いた場合の放熱効果等は、絶縁層13の場合と同様である。 The insulating layer 34 is mainly made of a silicone material, and a phosphor 34a is mixed therewith. Note that the process of generating a SiO 2 by breaking the chemical bond of the silicone material at the time of sealing the sealing member 25 and the heat dissipation effect when using an insulating material containing diamond or AlN powder are the same as in the case of the insulating layer 13. It is the same.
蛍光体34aは、例えば、LED素子21が青色発光である場合、この青色光によって励起されることにより黄色光を放射する特性を有するCe(セリウム):YAG(イットリウム・アルミニウム・ガーネット)を用いる。 For example, when the LED element 21 emits blue light, the phosphor 34a uses Ce (cerium): YAG (yttrium, aluminum, garnet) having a characteristic of emitting yellow light when excited by the blue light.
封止部材35は、上記した各実施の形態と同様に、透光性で低融点の特性を有するガラス材が用いられる。 The sealing member 35 is made of a glass material having translucency and a low melting point as in the above-described embodiments.
この発光装置30では、リード部33aが正(+)電源供給端子であるとすると、リード部33aに供給された電流は、リード部33a、電極32c、スルーホール32e、電極32a、及びバンプ31aを経てLED素子31のアノードに流れ、さらに、LED素子31のカソードを出た電流は、バンプ31b、電極32b、スルーホール32f、及び電極32dを経てリード部33bに流れることにより、LED素子31が発光する。
In the light emitting device 30, if the lead portion 33a is a positive (+) power supply terminal, the current supplied to the lead portion 33a causes the lead portion 33a, the electrode 32c, the through hole 32e, the electrode 32a, and the bump 31a. Then, the LED element 31 flows to the anode of the LED element 31, and the current from the cathode of the LED element 31 flows to the lead portion 33b via the bump 31b, the
以下に、発光装置30の組み立てについて説明する。 Hereinafter, the assembly of the light emitting device 30 will be described.
まず、電極32a〜32d、及びスルーホール32e,32fが予め形成済みのサブマウント32を準備する。このサブマウント32上の所定位置に、バンプ31a,31bを形成し、LED素子31を搭載する。これによってLED素子31をバンプ31a,31bを介して電極32a,32bと電気的に接続し、同時に機械的に固定する。
First, the submount 32 in which the electrodes 32a to 32d and the through holes 32e and 32f are formed in advance is prepared. Bumps 31a and 31b are formed at predetermined positions on the submount 32, and the LED element 31 is mounted. As a result, the LED element 31 is electrically connected to the
次に、サブマウント32に搭載されたLED素子31をリード部33a,33bの先端部の窪み内に通電方向を合致させて配置する。或いは、サブマウント32をリード部33a,33bに搭載した後、サブマウント32にLED素子31を実装する手順であっても良い。 Next, the LED elements 31 mounted on the submount 32 are arranged in the recesses at the tips of the lead portions 33a and 33b so that the energization directions are matched. Alternatively, the procedure of mounting the LED element 31 on the submount 32 after mounting the submount 32 on the lead portions 33a and 33b may be used.
次に、サブマウント32の上面、側面、及び上面に及ぶように蛍光体34aを混入済みの絶縁層34を滴下又は充填する。 Next, the insulating layer 34 mixed with the phosphor 34 a is dropped or filled so as to cover the upper surface, the side surface, and the upper surface of the submount 32.
次に、金型内に搬入し、封止部材35を形成するためのガラスシート(図示せず)をLED素子31の上方及び下方に配置し、所定の温度のもとで加圧プレスにより半球状に成形すれば、発光装置30が完成する。この封止の際、シリコン材がSiO2化されて絶縁層34となり、LED素子31の下面及びバンプ31a,31bが固定された状態になるため、バンプ12aの変形やバンプ間短絡等が回避される。最終的には、リードフレームからリード部33a,33bの他端が分離され、個々の発光装置に個別化される。 Next, the glass sheet (not shown) for carrying in a metal mold | die and forming the sealing member 35 is arrange | positioned in the upper direction and the downward direction of the LED element 31, and hemisphere by pressure press under predetermined temperature If it shape | molds in a shape, the light-emitting device 30 is completed. At the time of sealing, the silicon material is turned into SiO 2 to form the insulating layer 34, and the lower surface of the LED element 31 and the bumps 31a and 31b are fixed, so that the deformation of the bump 12a, the short circuit between the bumps, and the like are avoided. The Eventually, the other ends of the lead portions 33a and 33b are separated from the lead frame and individualized into individual light emitting devices.
上記した第3の実施の形態によると、以下の効果が得られる。
(1)絶縁層34を設けたことにより、封止部材35の封止時に、封止部材35がLED素子31にダメージを及ぼすことがなくなるので、バンプ31a,31bに変形、移動、短絡等が生じるのを防止することができる。
(2)絶縁層34に蛍光体34aが混入されているため、リード部上の電極(又は、サブマウント上の配線層)による光の吸収を低減することができる。通常、電極や配線層にはAuメッキが施されている。このAuメッキは、青又は紫の光の吸収率が高いが、蛍光体入りの絶縁層34を設けることにより、LED素子側面から放射される光を波長変換することができ、Auメッキ面における光吸収を防止することができる。
(3)LED素子31の上面から放射される光に対しても波長変換をすることができる。また、ガラス材による封止部材35で全体を封止したことにより、封止部材が樹脂材のときのような黄変や着色による光の減衰を防止することができる。
According to the above-described third embodiment, the following effects can be obtained.
(1) By providing the insulating layer 34, the sealing member 35 does not damage the LED element 31 when the sealing member 35 is sealed, so that the bumps 31a and 31b are deformed, moved, short-circuited, and the like. It can be prevented from occurring.
(2) Since the phosphor 34a is mixed in the insulating layer 34, light absorption by the electrode on the lead portion (or the wiring layer on the submount) can be reduced. Usually, Au plating is given to an electrode and a wiring layer. This Au plating has a high absorption rate of blue or violet light. However, by providing the phosphor-containing insulating layer 34, the wavelength of light emitted from the side surface of the LED element can be converted. Absorption can be prevented.
(3) Wavelength conversion can also be performed on light emitted from the upper surface of the LED element 31. Moreover, by sealing the whole with the sealing member 35 made of a glass material, it is possible to prevent light attenuation due to yellowing or coloring as in the case where the sealing member is a resin material.
なお、サブマウント32は、これに代えて図2に示した"コ"の字形の配線層22a,22bを有するサブマウント22を用いても良い。逆に、図2のサブマウント22に代えて、図3に示したサブマウント32を用いても良い。 Instead of this, the submount 22 having “U” -shaped wiring layers 22a and 22b shown in FIG. 2 may be used instead. Conversely, the submount 32 shown in FIG. 3 may be used instead of the submount 22 of FIG.
図4は、標準サイズのLED素子のバンプ形成面を示す平面図である。このLED素子31は、0.3mm角のLED素子であり、n電極に接続されたパンプ41を搭載する小パターン42と、p電極に接続された大パターン43と、この大パターン43に搭載されたパンプ44a,44bとが設けられている。LED素子31は高出力型になるほど大電流が流れる。そこで、p電極側のパンプ数を複数にし、大きな電流容量に対応できるようにしている。 FIG. 4 is a plan view showing a bump forming surface of a standard size LED element. The LED element 31 is a 0.3 mm square LED element, and is mounted on the large pattern 43, the small pattern 42 that mounts the pump 41 connected to the n electrode, the large pattern 43 that is connected to the p electrode. Pumps 44a and 44b are provided. As the LED element 31 becomes a higher output type, a larger current flows. Therefore, the number of pumps on the p-electrode side is made plural so that a large current capacity can be accommodated.
図5は、ラージサイズのLED素子のバンプ形成面を示す平面図である。このLED素子31は、1mm角のLED素子であり、バンプ52a,52bを設けられる配線パターン54と、バンプ53a〜53pを設けられる配線パターン55とを有する。ラージサイズのLED素子は標準サイズよりも発光面積が大になるため、更に大電流が流れる。そこで、発光面での均一発光を図るために配線パターン54、55の形状面積に応じて、電極接点となるそれぞれのバンプを複数個にしている。
FIG. 5 is a plan view showing a bump forming surface of the large-size LED element. The LED element 31 is a 1 mm square LED element, and includes a
図4及び図5に示すように、バンプを介して電気的接続を行うLED素子では、ガラス封止時の温度および圧力によってバンプが圧潰し易くなる。特に、図5に示すように、多数のバンプ53a〜53pを有するものでは、各バンブ間の距離が接近するために、バンブに変形が生じるとより短絡が生じ易くなる。このようなLED素子31に対し、絶縁層34は、バンプ形成面を覆ってバンプ間の絶縁を確保するとともに、ガラス封止時の圧力に耐えることでバンプ53a〜53pの変形を抑制する。その結果、ガラス材による封止部材35の形成が可能になる。 As shown in FIGS. 4 and 5, in an LED element that is electrically connected via bumps, the bumps are easily crushed by the temperature and pressure during glass sealing. In particular, as shown in FIG. 5, in the case of having a large number of bumps 53a to 53p, since the distance between the bumps approaches, a short circuit is more likely to occur when the bumps are deformed. For such an LED element 31, the insulating layer 34 covers the bump forming surface to ensure insulation between the bumps and withstands the pressure at the time of glass sealing, thereby suppressing the deformation of the bumps 53a to 53p. As a result, the sealing member 35 can be formed from a glass material.
なお、上記した各実施の形態では、Auからなるバンプ12a、12bとして説明したが、Auに限定されず、半田で形成されるバンプとしても良い。また、バンプに限らず、電極に形成された半田めっきであっても良い。住田光学ガラス株式会社製の「PSK100」では400℃を超える温度での封止加工で、かつ、加工時のガラス粘度も高いためにAuバンプでも潰れが生じる。一方、無機有機混合をハイブリッド低融点ガラスでは、更に低い温度での封止加工が可能であるが、はんだバンプのように融点が封止加工温度より低ければ、小さな圧力でも電極間の短絡が生じる。これに対しても本発明は有効である。
In the above-described embodiments, the
また、上記した各実施の形態では、封止部材14,25,35内のLED素子12,32の上部に、波長変換のための蛍光体層を形成することもできる。
Moreover, in each above-mentioned embodiment, the fluorescent substance layer for wavelength conversion can also be formed in the upper part of
更に、上記した各実施の形態においては、1つの封止部材内に配設されるLED素子の個数は1個であるとしたが、LED素子が2個以上のマルチ発光型の発光装置にすることもできる。搭載する複数のLED素子は、異なる発光色のLED素子を複数設ける構成でも、同一発光色のLED素子を複数設ける構成でも良い。更に、LED素子の駆動形態としては、複数のLED素子の全部を並列接続し又はグループ単位で並列接続しても、複数単位に直列接続し又は全数を直列接続しても良い。 Further, in each of the above-described embodiments, the number of LED elements disposed in one sealing member is one, but a multi-light-emitting type light emitting device having two or more LED elements is provided. You can also. The plurality of LED elements to be mounted may have a configuration in which a plurality of LED elements having different emission colors are provided or a configuration in which a plurality of LED elements having the same emission color are provided. Furthermore, as a drive form of the LED element, all of the plurality of LED elements may be connected in parallel or in parallel in units of groups, may be connected in series in a plurality of units, or all may be connected in series.
また、封止部材14,25,35の形状として、ドーム状の構成を示したが、本発明は図示した形状に限定されるものではなく、レンズ部を有しない形状、多角形、円柱形等、任意の形状にすることができる。 Moreover, although the dome-shaped structure was shown as the shape of the sealing members 14, 25, and 35, the present invention is not limited to the illustrated shape, a shape without a lens portion, a polygon, a cylindrical shape, and the like. , Can be any shape.
更に、封止部材14,25,35の成形に際しては、ガラスシートを用いた加圧プレスによる成形方法に限定されるものではなく、他の封止方法を用いても良い。 Furthermore, the molding of the sealing members 14, 25, and 35 is not limited to a molding method using a pressure press using a glass sheet, and other sealing methods may be used.
2、バンプ 10、発光装置 11、基板部
11a、セラミック基板 11l,11m、スルーホール
11h,11i,11j,11k、メッキ膜
11b,11c,11d,11e,11f,11g、配線層
12、LED素子 12a,12b、バンプ 13、絶縁層
14、封止部材 14,25,35、封止部材 20、発光装置
21、LED素子 21a,21b、バンプ 22、サブマウント
22a,22b、配線層 23a,23b、リード部
24、絶縁層 25、封止部材 30、発光装置
31、LED素子 31a,31b、バンプ 32、サブマウント
32a,32b,32c,32d、電極
32e,32f、スルーホール
33a,33b、リード部 34、絶縁層 4a、蛍光体
35、封止部材 41、パンプ 42、小パターン 43、大パターン
44a,44b、パンプ 52a,52b、バンプ
53a〜53p、バンプ 54、配線パターン 55、配線パターン
200、発光装置 201、配線導体 202、配線導体 203、カップ部
203A、底部 204、LED素子 205、ワイヤ
206、ガラス層 206A、蛍光物質 207、封止樹脂
2, bump 10, light-emitting device 11, substrate portion 11a, ceramic substrates 11l and 11m, through holes 11h, 11i, 11j, and 11k, plating films 11b, 11c, 11d, 11e, 11f, and 11g,
Claims (1)
前記発光素子が上面にバンプを介して搭載された給電部材と、
前記給電部材と前記発光素子との間に設けられ、前記発光素子及び前記バンプを固定して前記バンプが短絡することを防ぎ、セラミックからなる耐熱性絶縁体と、
前記耐熱性絶縁体の露出面、前記給電部材の前記上面及び前記発光素子を封止する透光性ガラスからなる単一層の封止部材と、を有し、
前記耐熱性絶縁体は、アルコキシドから形成されるセラミックである発光装置を製造するにあたり、
前記給電部材上に前記バンプを介して前記発光素子を配設し、
前記給電部材と前記発光素子との間に前記アルコキシドを滴下又は充填により形成し、
前記耐熱性絶縁体の露出面、前記給電部材の前記上面及び前記発光素子を、所定の温度雰囲気及びガラスシートを用いた加圧プレスにより、前記封止部材で封止することを特徴とする発光装置の製造方法。 Flip type light emitting element,
A power supply member having the light emitting element mounted on the upper surface via a bump;
A heat-resistant insulator made of ceramic, provided between the power supply member and the light-emitting element, fixing the light-emitting element and the bump to prevent the bump from being short-circuited;
A single-layer sealing member made of translucent glass that seals the exposed surface of the heat-resistant insulator, the upper surface of the power supply member, and the light-emitting element;
The heat-resistant insulator is used for manufacturing a light-emitting device that is a ceramic formed from an alkoxide.
The light emitting element is disposed on the power supply member via the bump,
Forming the alkoxide by dropping or filling between the power supply member and the light emitting element;
The exposed surface of the heat resistant insulator, the upper surface of the power supply member, and the light emitting element are sealed with the sealing member by a pressure press using a predetermined temperature atmosphere and a glass sheet. Device manufacturing method.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342706A JP4016925B2 (en) | 2003-09-30 | 2003-09-30 | Light emitting device |
EP13156568.1A EP2596948B1 (en) | 2003-03-10 | 2004-03-10 | Method of making a semiconductor device |
CN2004800064031A CN1759492B (en) | 2003-03-10 | 2004-03-10 | Method for manufacturing solid state device |
PCT/JP2004/003089 WO2004082036A1 (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacture thereof |
KR1020057016878A KR100693969B1 (en) | 2003-03-10 | 2004-03-10 | Solid element device and manufacturing method thereof |
US10/548,560 US7824937B2 (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacturing the same |
TW093106393A TWI246780B (en) | 2003-03-10 | 2004-03-10 | Solid-state component device and manufacturing method thereof |
CN2010101176741A CN101789482B (en) | 2003-03-10 | 2004-03-10 | Solid element device and method for manufacture thereof |
EP04719060.8A EP1603170B1 (en) | 2003-03-10 | 2004-03-10 | Method for manufacturing a solid-state optical element device |
US12/923,788 US8154047B2 (en) | 2003-03-10 | 2010-10-07 | Solid element device and method for manufacturing the same |
US13/419,093 US8685766B2 (en) | 2003-03-10 | 2012-03-13 | Solid element device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003342706A JP4016925B2 (en) | 2003-09-30 | 2003-09-30 | Light emitting device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007006474A Division JP4147353B2 (en) | 2007-01-15 | 2007-01-15 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006054210A JP2006054210A (en) | 2006-02-23 |
JP4016925B2 true JP4016925B2 (en) | 2007-12-05 |
Family
ID=36031512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003342706A Expired - Fee Related JP4016925B2 (en) | 2003-03-10 | 2003-09-30 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4016925B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101354926B1 (en) | 2013-01-28 | 2014-01-27 | 동신대학교산학협력단 | Submount and manufacturing method for light emitting device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006112417A1 (en) | 2005-04-15 | 2006-10-26 | Asahi Glass Company, Limited | Glass-sealed light-emitting device, circuit board with glass-sealed light-emitting device, and methods for manufacturing those |
JP5272287B2 (en) * | 2006-03-17 | 2013-08-28 | 日亜化学工業株式会社 | Light emitting device |
EP2023408A4 (en) | 2006-05-18 | 2011-06-29 | Asahi Glass Co Ltd | METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE |
JP2007324417A (en) * | 2006-06-01 | 2007-12-13 | Sharp Corp | Semiconductor light emitting device and manufacturing method thereof |
KR100854328B1 (en) * | 2006-07-07 | 2008-08-28 | 엘지전자 주식회사 | Light emitting device package and its manufacturing method |
KR20090015734A (en) | 2007-08-09 | 2009-02-12 | 엘지이노텍 주식회사 | Light source device |
JP2009239116A (en) * | 2008-03-27 | 2009-10-15 | Sharp Corp | Light emitting device |
JP6244130B2 (en) * | 2013-07-26 | 2017-12-06 | 新光電気工業株式会社 | Light emitting element mounting package and light emitting element package |
-
2003
- 2003-09-30 JP JP2003342706A patent/JP4016925B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101354926B1 (en) | 2013-01-28 | 2014-01-27 | 동신대학교산학협력단 | Submount and manufacturing method for light emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP2006054210A (en) | 2006-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4303550B2 (en) | Light emitting device | |
US8324646B2 (en) | Chip coated light emitting diode package and manufacturing method thereof | |
JP4747726B2 (en) | Light emitting device | |
US8154047B2 (en) | Solid element device and method for manufacturing the same | |
KR101235460B1 (en) | Side-View Type Light Emitting Diode and Manufacturing Method thereof | |
JP4029843B2 (en) | Light emitting device | |
CN100472820C (en) | Light emitting device | |
CN103098247B (en) | The manufacture method of light-emitting device and light-emitting device | |
JP4192742B2 (en) | Light emitting device | |
CN101432896A (en) | Submounts for semiconductor light emitting device packages and semiconductor light emitting device packages including the same | |
JP4147353B2 (en) | Light emitting device | |
KR101186648B1 (en) | Light emitting diode package and method for fabricating the same diode | |
KR100849828B1 (en) | Light emitting diode package | |
JP4016925B2 (en) | Light emitting device | |
JP5126127B2 (en) | Method for manufacturing light emitting device | |
US20220005987A1 (en) | Lens arrangements for light-emitting diode packages | |
KR100634189B1 (en) | Thin film type light emitting diode package and manufacturing method thereof | |
JP4775403B2 (en) | Method for manufacturing light emitting device | |
KR20150042954A (en) | Side-view light emitting device and method of making the same | |
JP4737218B2 (en) | Method for manufacturing light emitting device | |
KR101946244B1 (en) | Semiconductor light emitting device | |
US20140159061A1 (en) | Protection element and light emitting device using same | |
KR20120019697A (en) | Light emitting device package and multi-chip illumination module employing the same | |
KR100675204B1 (en) | Light emitting diode package | |
JP2019117818A (en) | Mounting substrate, light emitting device, and manufacturing method of light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070115 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070507 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20070619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070910 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4016925 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |