JP4016431B2 - Directional silicon steel strip manufacturing method and electrolytic etching apparatus - Google Patents
Directional silicon steel strip manufacturing method and electrolytic etching apparatus Download PDFInfo
- Publication number
- JP4016431B2 JP4016431B2 JP07519895A JP7519895A JP4016431B2 JP 4016431 B2 JP4016431 B2 JP 4016431B2 JP 07519895 A JP07519895 A JP 07519895A JP 7519895 A JP7519895 A JP 7519895A JP 4016431 B2 JP4016431 B2 JP 4016431B2
- Authority
- JP
- Japan
- Prior art keywords
- steel strip
- width direction
- silicon steel
- electrolytic etching
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
【0001】
【産業上の利用分野】
この発明は、方向性電磁鋼板の製造方法に関し、特に該鋼板表面に電解エッチングを施して線状又は点状の溝を形成させることで磁区細分化を図る場合における研究開発の成果を提案するところにある。
【0002】
【従来の技術】
含けい素鋼素材に熱間圧延を施し、次いで1回又は中間焼鈍を挟む2回の冷間圧延を施した後、最終仕上げ焼鈍を施すまでの間に局所的なエッチング処理を施して溝間隙2〜10mm、溝深さ5〜35μm の溝を形成することからなる方向性電磁鋼板の磁区細分化処理法は、特開昭63−42332 号公報に開示されているように公知である。このようなエッチング処理方法としては、化学的エッチングと電解エッチングとが知られているが、電流による溝深さのコントロールが容易である点で電解エッチングが有利である。
【0003】
この電解エッチングにおいては、あらかじめ鋼板表面にマスキング材(エッチングマスク)としてインキ等の絶縁材を選択的に塗布、焼付けした後、電解エッチングを施してマスキング材の形成されていない領域にエッチングを作用させて溝を形成し、その後絶縁材を除去する工程が一般的である。
【0004】
【発明が解決しようとする課題】
しかしながら、一般的に方向性けい素鋼はSi:2.0 〜4.0 %を含有するため硬く、しかも板厚が0.15〜0.35mmと比較的薄い。また、溝は一般に、線状又は点状に鋼帯の幅方向に全幅にわたって形成される。そのため、鋼帯の表面に2〜10mmピッチで深さ5〜35μm といった必要量の線状溝を電解エッチングで導入した場合には、その後の工程において鋼帯の幅方向端部(以下、エッジ部ともいう)の線状溝を起点として鋼帯破断が多発するという問題点があった。
【0005】
この発明は、前記問題点を有利に解決するものであり、鋼帯幅方向のエッチング量を制御して鋼帯破断の防止を図った方向性けい素鋼帯の製造方法及びこの方向性電磁鋼帯の製造の際に使用して好適な電解エッチング装置を提案することを目的とする。
【0006】
【課題を解決するための手段】
前記問題点を解決するこの発明は、
Si:2.0 〜4.0 wt%を含有する方向性けい素鋼素材に冷間圧延を施して最終板厚0.15〜0.35mmに仕上げた後、最終仕上焼鈍を施すまでの間に、鋼帯の表面にエッチングマスクを選択的に形成させてから電解エッチングを行うことにより線状又は点線状の溝を溝深さ5〜35μm 、溝ピッチ2〜10mmで該鋼帯表面に形成させる方向性けい素鋼板の製造方法において、
上記電解エッチングの際、鋼帯の幅方向端部のエッチングを抑制して、該幅方向端部における溝深さを、幅方向中央部における溝深さの70%以下にすることを特徴とする方向性けい素鋼帯の製造方法である。
【0007】
また、この発明は、
エッチングマスクを選択的に形成させたけい素鋼帯に対向する電極を電解槽の内部空間にそなえ、この電極と導通するとともにけい素鋼帯とも通電手段を介して導通する電源を有する電解エッチング装置であって、
電解エッチングを施すけい素鋼帯の幅方向端部から 15mm までの領域ないしは該幅方向端部から 80mm までの領域と電極との間に遮蔽手段を設けたことを特徴とする電解エッチング装置である。
【0008】
ここに、この発明の電解エッチング装置においては、遮蔽手段を鋼帯幅方向に移動させる駆動装置及びけい素鋼帯の端部位置を検出する検出手段を有し、遮蔽手段を、検出手段からの鋼帯端部位置データに基いて鋼帯幅方向に移動可能とすることが、より好適である。
【0009】
【作用】
以下、この発明の解明経緯について述べる。
発明者らは、板破断の原因を究明するために種々の調査を行ったところ、所定の溝深さになる領域、特に板幅方向の分布が鋼帯の破断に大きく影響を及ぼすことをつきとめた。そのため以下の実験にて板破断と溝形状との関係を求めた。
【0010】
Si量を2.5 wt%、3.0 wt%及び 3.5%の3種類、板厚を0.18mm, 0.21mm及び0.30mmの3種類に調製した合計9種類のけい素鋼冷延板にマスキング材(材料:レジストインキ)を片面塗布した後、電解エッチングにて鋼板表面に溝を、圧延方向と直角方向(すなわち、鋼板の幅方向)に溝幅150 μm 、溝間隔5mmに形成させた。溝深さについては、この電解エッチングの際、けい素鋼板の幅方向端部のエッチングを抑制するために、この幅方向端部と電極との間に遮蔽板を配置することによって、この幅方向端部と幅方向中央部で溝深さを種々に変化させた。なお、鋼板の幅方向端部と遮蔽板との重なり代は、片側当たり50mmと一定にした。
【0011】
これらのサンプルについて、曲げ半径5mmの90°曲げ試験を20回行って板の破断状況を調べ、幅方向のエッジ部及び中央部の溝深さとの関係を求めた。これらの結果を図1に示す。図1より上記Si量、板厚の範囲では、板破断に与える支配的な要因は板エッジ部と板中央部との溝深さの比であることが示され、この比を0.7 以下とすることにより板破断がなくなることが明らかとなった。なお、この結果は、Si:2.5 〜4.0 wt%、板厚0.15〜0.35mmの範囲で確かめられている。
【0012】
上記のようにこの発明に従い、電解エッチングの際に鋼帯の幅方向端部のエッチングを抑制して該幅方向端部における溝深さを、幅方向中央部における溝深さの70%以下にすることによって、鋼帯の幅方向端部から一定領域のエッチング量が低減できるようになる。この効果にて板破断が防止できるのである。
【0013】
かかる鋼帯の幅方向端部のエッチングを抑制する具体的手段としては、遮蔽手段すなわち鋼帯幅方向端部のマスキング装置を、鋼帯被エッチング面と電極板の間に介挿して鋼帯と電解板の間を流れる電解電流を鋼板幅方向端部において部分的に遮断することが挙げられる。
【0014】
電極と鋼帯との間における遮蔽手段と鋼帯幅方向端部との重なり代は、一定量望ましくは片側当たり15〜80mmの範囲とする。というのは、この重なり代が15mmに満たないと鋼帯幅方向端部のエッチング量低減効果が不足し、一方、80mmを超えるとエッチング量を低減した領域が鋼帯幅方向に過大となるからである。なお、このエッチング量を低減した領域は、最終的にトリミングされる領域であるため、歩留まり低下や磁気特性の劣化を招くことがない。
【0015】
この重なり代を一定量に制御するためにこの発明では、上記の遮蔽手段を鋼帯幅方向に移動させる駆動装置及びけい素鋼帯の端部位置を検出する検出手段を設けて、この遮蔽手段を、検出手段からの鋼帯端部位置データに基いて鋼帯幅方向に移動させることが有利である。
【0016】
図2にこの発明の電解エッチング装置の1実施例を示す正面図(同図(a) )及びA−A′断面図(同図(b) )を示す。この装置は、電解エッチングを連続的に行う装置であって図中1は被処理物たるけい素鋼帯、2は図示しない電源の+極と接続し、けい素鋼帯1を巻きかけて通電させるコンダクターロール、3は電解槽、4はこの電解槽内に満たした電解液、5は、電解槽3内にて搬送されるけい素鋼帯1に対向配置になる電極であり、この電極5は図示しない電源の−極と接続している。
【0017】
かかる電解エッチング装置において、レジストインキにより表面に選択的にマスキングを形成された鋼帯1は、電源の+極に接続するコンダクターロール2に巻きかけられ、正に帯電され電解液4を満たした電解槽3内に導かれる。一方、電解槽内で鋼帯1に対向配置になる電極5は電源の−極と接続していることから、鋼帯1の表面は線状溝形状に電解エッチングされる。
【0018】
かような電解エッチング装置において、図1(b) に示すように鋼帯1の被エッチング面と電極5の間に遮蔽板6を介挿し、鋼帯1の幅方向端部のエッチングを抑制する。この遮蔽板6は、支持部材7を介して駆動装置8と接続し、駆動装置8の作動により鋼帯幅方向に移動可能になっている。そして、鋼帯の幅方向端部位置の検出手段9例えば電解槽の上流側に設けられたフォトセンサにより、鋼帯1の端部を検出し、この検出データに基づいて駆動装置8にて、遮蔽板と鋼帯との重なり代を常に一定にするような制御を行う。
【0019】
このような制御を行うことにより、鋼帯1の幅方向端部におけるエッチングの抑制を安定して行うことができる。また、鋼帯の蛇行が生じた場合であっても鋼帯の幅方向端部の安定したエッチング抑制、ひいては線状溝を起点とした鋼帯破断を確実に防止できるようになる。さらに、このような制御は、重なり代を変更しようとする場合に、容易に変更が可能という利点を有し、また、幅の異なる複数種類の鋼帯を電解エッチングしようとする場合にも、遮蔽板と鋼帯幅方向端部との望ましい重なり代を確保することができるという効果がある。
【0020】
【実施例】
図2に示した電解エッチング装置を用いて、熱間圧延及び冷延圧延を施して板厚0.20mmとした3%けい素含有方向性電磁鋼板用素材に濃度300g/l、温度50℃のNaCl浴を用いて電解エッチングを行った。エッチング条件は電気量300C/dm2の電解電流一定とした直接通電方式である。なおマスキング材(材質:レジストインキ)の厚みは1μm 、電極−鋼板間距離は20mmとした。
【0021】
図3は遮蔽板と鋼帯との重なり代を50mm及び15mmに設定した場合における鋼帯幅方向の線状溝深さの分布を示す。エッジ部の溝深さは中央部の70%以下に低減された。次工程以降での線状溝を起点とした鋼帯破断状況について調べたところ、表1に示すように鋼帯破断が防止され、良好な結果が得られた。一方、この発明に従う鋼帯幅方向端部のエッチングの抑制を行わなかった場合は板破断が発生した。
【0022】
【表1】
【0023】
【発明の効果】
この発明は、鋼帯の表面の2〜10mmピッチで線状溝を連続的に導入する電解エッチングプロセスにおいて、エッジ部と中央部の溝深さの最適化のため鋼帯の幅方向両側外方に遮蔽手段を配置し、センサを用いた鋼帯エッジ検出制御により遮蔽手段を鋼帯の被エッチング面と電極板との間に一定挿入するようにしたから、鋼帯端部の線状溝深さを中央部の溝深さの70%以下に低減できるようになり、次工程以降での破断を防止することができる。
さらには上記マスキング装置を用いて、遮蔽手段の挿入量を一定量に維持するように制御できるため、板の蛇行がおこっても鋼帯エッジ部は常に所定領域にわたってエッチングが抑制でき、最適溝深さを満足できる。その結果、歩留まり低下を招くことなしに線状溝を起点とした鋼帯破断を防止できるようになった。
【図面の簡単な説明】
【図1】鋼帯幅方向端部及び中央部の溝深さえ板破断に及ぼす影響を示すグラフである。
【図2】この発明の電解エッチング装置の一例を示す図である。
【図3】この発明について遮蔽板と鋼帯との重なり代を15mm、50mmに設定したときの鋼帯幅方向の線状溝深さの分布図である。
【符号の説明】
1 けい素鋼帯
2 コンダクターロール
3 電解槽
4 電解液
5 電極
6 遮蔽板
7 支持部材
8 駆動装置
9 検出手段[0001]
[Industrial application fields]
The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet, and in particular, proposes the results of research and development in the case where magnetic domain subdivision is achieved by performing electrolytic etching on the steel sheet surface to form linear or dotted grooves. It is in.
[0002]
[Prior art]
After hot rolling the silicon-containing steel material, followed by two cold rollings that include one or two intermediate annealings, a local etching process is performed before the final finishing annealing, so that the groove gap A method for subdividing magnetic domains of grain-oriented electrical steel sheets comprising forming grooves of 2 to 10 mm and a groove depth of 5 to 35 μm is known as disclosed in Japanese Patent Laid-Open No. 63-42332. As such an etching method, chemical etching and electrolytic etching are known. However, electrolytic etching is advantageous in that it is easy to control the groove depth by current.
[0003]
In this electrolytic etching, an insulating material such as ink is selectively applied and baked as a masking material (etching mask) on the surface of the steel plate in advance, and then the electrolytic etching is performed to act on the area where the masking material is not formed. In general, the step of forming the groove and then removing the insulating material is performed.
[0004]
[Problems to be solved by the invention]
However, generally oriented silicon steel contains Si: 2.0-4.0%, so it is hard and the plate thickness is relatively thin, 0.15-0.35 mm. In addition, the groove is generally formed over the entire width in the width direction of the steel strip in the form of lines or dots. Therefore, when a necessary amount of linear grooves such as a depth of 5 to 35 μm at a pitch of 2 to 10 mm is introduced on the surface of the steel strip by electrolytic etching, the width direction end portion (hereinafter referred to as an edge portion) of the steel strip in the subsequent process. There is a problem that the steel strip breaks frequently from the linear groove of ( also referred to as) .
[0005]
The present invention advantageously solves the above problems, and a method for producing a directional silicon steel strip in which the etching amount in the width direction of the steel strip is controlled to prevent the steel strip from breaking, and the directional electromagnetic steel. An object of the present invention is to propose an electrolytic etching apparatus suitable for use in the production of a band.
[0006]
[Means for Solving the Problems]
The present invention for solving the above problems
Si: Cold-rolled directional silicon steel material containing 2.0 to 4.0 wt% to finish the final sheet thickness of 0.15 to 0.35 mm, before the final finish annealing, the surface of the steel strip A directional silicon steel sheet is formed by selectively forming an etching mask and then forming a linear or dotted groove on the surface of the steel strip at a groove depth of 5 to 35 μm and a groove pitch of 2 to 10 mm by performing electrolytic etching. In the manufacturing method,
During the electrolytic etching, etching of the width direction end of the steel strip is suppressed, and the groove depth at the width direction end is set to 70% or less of the groove depth at the width direction center. It is a manufacturing method of a directional silicon steel strip.
[0007]
In addition, this invention
An electrolytic etching apparatus having an electrode facing the silicon steel strip in which an etching mask is selectively formed in the internal space of the electrolytic cell, and having a power source that is electrically connected to this electrode and also to the silicon steel strip through an energizing means. Because
An electrolytic etching apparatus characterized in that a shielding means is provided between an electrode and a region up to 15 mm from the width direction end of the silicon steel strip to be subjected to electrolytic etching or a region from the width direction end to 80 mm. .
[0008]
Here, the electrolytic etching apparatus of the present invention has a driving device for moving the shielding means in the width direction of the steel strip and a detection means for detecting the end position of the silicon steel strip. It is more preferable to be able to move in the steel strip width direction based on the steel strip end position data.
[0009]
[Action]
Hereinafter, the elucidation process of the present invention will be described.
The inventors conducted various investigations in order to investigate the cause of the plate breakage, and found that the region where the predetermined groove depth is reached, particularly the distribution in the plate width direction, greatly affects the breakage of the steel strip. It was. Therefore, the relationship between the plate breakage and the groove shape was determined in the following experiment.
[0010]
Masking material (materials: 9 types of silicon steel cold-rolled plates prepared with 3 types of Si content of 2.5 wt%, 3.0 wt% and 3.5% and plate thickness of 3 types of 0.18mm, 0.21mm and 0.30mm) After applying one side of the resist ink), grooves were formed on the surface of the steel sheet by electrolytic etching so that the groove width was 150 μm in the direction perpendicular to the rolling direction (that is, the width direction of the steel sheet) and the groove interval was 5 mm. Regarding the groove depth, in this electrolytic etching, in order to suppress etching of the width direction end portion of the silicon steel plate, by arranging a shielding plate between the width direction end portion and the electrode, this width direction The groove depth was variously changed at the end and the center in the width direction. In addition, the overlap margin of the width direction edge part of a steel plate and a shielding board was made constant with 50 mm per side.
[0011]
With respect to these samples, a 90 ° bending test with a bending radius of 5 mm was performed 20 times to examine the breaking condition of the plate, and the relationship between the edge portion in the width direction and the groove depth at the center portion was obtained. These results are shown in FIG. FIG. 1 shows that in the range of the Si amount and the plate thickness, the dominant factor affecting the plate breakage is the ratio of the groove depth between the plate edge portion and the plate center portion, and this ratio is 0.7 or less. As a result, it became clear that the plate was not broken. This result has been confirmed in the range of Si: 2.5 to 4.0 wt% and plate thickness of 0.15 to 0.35 mm.
[0012]
As described above, according to the present invention, during the electrolytic etching, the etching of the width direction end portion of the steel strip is suppressed, and the groove depth at the width direction end portion is set to 70% or less of the groove depth at the width direction center portion. By doing so, the etching amount of a fixed area | region can be reduced from the width direction edge part of a steel strip. This effect can prevent the plate from breaking.
[0013]
As specific means for suppressing the etching of the steel strip width direction end, a shielding means, that is, a steel strip width direction end masking device, is interposed between the steel strip etching surface and the electrode plate, and between the steel strip and the electrolytic plate. It is possible to partially block the electrolytic current flowing through the steel plate in the width direction end.
[0014]
The overlap allowance between the shielding means and the end portion in the width direction of the steel strip between the electrode and the steel strip is a certain amount, preferably 15 to 80 mm per side. , The overlapping margin is insufficient etching amount reducing effect of less than does the steel strip width
[0015]
In order to control the overlap margin to a constant amount, the present invention provides a driving device for moving the shielding means in the steel strip width direction and a detecting means for detecting the end position of the silicon steel strip, and this shielding means. Is advantageously moved in the width direction of the steel strip based on the steel strip end position data from the detecting means.
[0016]
FIG. 2 shows a front view (FIG. 2 (a)) and an AA 'sectional view (FIG. 2 (b)) showing an embodiment of the electrolytic etching apparatus of the present invention. This apparatus is an apparatus that performs electrolytic etching continuously. In the figure,
[0017]
In such an electrolytic etching apparatus, a
[0018]
In such an electrolytic etching apparatus, as shown in FIG. 1 (b), a
[0019]
By performing such control, it is possible to stably suppress etching at the end in the width direction of the
[0020]
【Example】
Using the electrolytic etching apparatus shown in FIG. 2, a 3% silicon-containing grain-oriented electrical steel sheet having a thickness of 0.20 mm that has been hot-rolled and cold-rolled is supplied with NaCl at a concentration of 300 g / l and a temperature of 50 ° C. Electrolytic etching was performed using a bath. Etching conditions are a direct conduction method in which an electrolyte current constant electrical quantity 300C / dm 2. The thickness of the masking material (material: resist ink) was 1 μm, and the distance between the electrode and the steel plate was 20 mm.
[0021]
FIG. 3 shows the distribution of linear groove depth in the width direction of the steel strip when the overlap margin between the shield plate and the steel strip is set to 50 mm and 15 mm. The groove depth of the edge part was reduced to 70% or less of the central part. As a result of examining the steel strip breakage starting from the linear groove in the subsequent steps, the steel strip breakage was prevented as shown in Table 1, and good results were obtained. On the other hand, in the case where the etching of the end portion in the width direction of the steel strip according to the present invention was not suppressed, plate breakage occurred.
[0022]
[Table 1]
[0023]
【The invention's effect】
In the electrolytic etching process in which linear grooves are continuously introduced at a pitch of 2 to 10 mm on the surface of the steel strip, the present invention is applied to the outer sides of the steel strip in the width direction in order to optimize the groove depth at the edge portion and the central portion. Since the shielding means is arranged between the etched surface of the steel strip and the electrode plate by steel strip edge detection control using a sensor, the linear groove depth at the end of the steel strip is The thickness can be reduced to 70% or less of the groove depth of the central portion, and breakage in the subsequent steps can be prevented.
Further, since the insertion amount of the shielding means can be controlled to be kept constant by using the masking device, the steel strip edge portion can always suppress the etching over a predetermined region even when the plate meanders, and the optimum groove depth can be controlled. Satisfied. As a result, it has become possible to prevent steel strip breakage starting from the linear groove without causing a decrease in yield.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of even the groove depth at the end and center of the steel strip in width on the plate fracture.
FIG. 2 is a diagram showing an example of an electrolytic etching apparatus according to the present invention.
FIG. 3 is a distribution diagram of linear groove depth in the width direction of the steel strip when the overlap margin between the shielding plate and the steel strip is set to 15 mm and 50 mm according to the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
上記電解エッチングの際、鋼帯の幅方向端部のエッチングを抑制して、該幅方向端部における溝深さを、幅方向中央部における溝深さの70%以下にすることを特徴とする方向性けい素鋼帯の製造方法。Si: Cold-rolled directional silicon steel material containing 2.0 to 4.0 wt% to finish the final sheet thickness of 0.15 to 0.35 mm, before the final finish annealing, the surface of the steel strip A directional silicon steel sheet is formed by selectively forming an etching mask and then forming a linear or dotted groove on the surface of the steel strip at a groove depth of 5 to 35 μm and a groove pitch of 2 to 10 mm by performing electrolytic etching. In the manufacturing method,
During the electrolytic etching, etching of the width direction end of the steel strip is suppressed, and the groove depth at the width direction end is set to 70% or less of the groove depth at the width direction center. A method of manufacturing a directional silicon steel strip.
電解エッチングを施すけい素鋼帯の幅方向端部から 15mm までの領域ないしは該幅方向端部から 80mm までの領域と電極との間に遮蔽手段を設けたことを特徴とする電解エッチング装置。An electrolytic etching apparatus having an electrode facing the silicon steel strip in which an etching mask is selectively formed in the internal space of the electrolytic cell, and having a power source that is electrically connected to this electrode and also to the silicon steel strip through an energizing means. Because
An electrolytic etching apparatus characterized in that a shielding means is provided between an electrode and a region up to 15 mm from the width direction end of the silicon steel strip to be subjected to electrolytic etching or a region from the width direction end to 80 mm .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07519895A JP4016431B2 (en) | 1995-03-31 | 1995-03-31 | Directional silicon steel strip manufacturing method and electrolytic etching apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07519895A JP4016431B2 (en) | 1995-03-31 | 1995-03-31 | Directional silicon steel strip manufacturing method and electrolytic etching apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08269563A JPH08269563A (en) | 1996-10-15 |
JP4016431B2 true JP4016431B2 (en) | 2007-12-05 |
Family
ID=13569269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07519895A Expired - Fee Related JP4016431B2 (en) | 1995-03-31 | 1995-03-31 | Directional silicon steel strip manufacturing method and electrolytic etching apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4016431B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6233334B2 (en) | 2015-03-04 | 2017-11-22 | Jfeスチール株式会社 | Continuous electrolytic etching method for directional electrical steel strip and continuous electrolytic etching apparatus for directional electrical steel strip |
CN107208223B (en) | 2015-04-20 | 2019-01-01 | 新日铁住金株式会社 | Grain-oriented magnetic steel sheet |
JP6672818B2 (en) * | 2016-01-15 | 2020-03-25 | 日本製鉄株式会社 | Method for producing grain-oriented electrical steel sheet, apparatus for grain-oriented electrical steel sheet production, and grain-oriented electrical steel sheet |
JP7027923B2 (en) * | 2018-02-05 | 2022-03-02 | 日本製鉄株式会社 | Manufacturing method of grain-oriented electrical steel sheet, rolled iron core, grain-oriented electrical steel sheet, and manufacturing method of rolled iron core |
JP7147810B2 (en) * | 2019-07-31 | 2022-10-05 | Jfeスチール株式会社 | Oriented electrical steel sheet |
-
1995
- 1995-03-31 JP JP07519895A patent/JP4016431B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08269563A (en) | 1996-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2895670B2 (en) | Grain-oriented electrical steel sheet with low iron loss and method of manufacturing the same | |
EP3748019B1 (en) | Method for manufacturing a stress-relief annealing resistant, low iron-loss grain-oriented silicon steel | |
EP1342818B1 (en) | Method and apparatus for indirect-electrification-type continuous electrolytic etching of metal strip | |
JP4016431B2 (en) | Directional silicon steel strip manufacturing method and electrolytic etching apparatus | |
US2037633A (en) | Method of and apparatus for cleaning stainless steel | |
US2197653A (en) | Method of electrically pickling and cleaning stainless steel and other metals | |
JP4157441B2 (en) | Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet | |
JP2011246790A (en) | Continuous electrolytic etching method and continuous electrolytic etching device for metallic strip | |
JPH05320999A (en) | Production of low-iron-loss grain-oriented silicon steel sheet | |
JP4890387B2 (en) | Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet | |
US4484996A (en) | Cathode for use in electrolytic processing solution | |
KR20170123330A (en) | Method for carrying out continuous electrolytic etching on oriented magnetic steel strip, and apparatus for carrying out continuous electrolytic etching on oriented magnetic steel strip | |
JP4157442B2 (en) | Direct conduction type continuous electrolytic etching method and direct conduction type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet | |
JPS59179796A (en) | Method for suppressing strip width warpage | |
JP2787720B2 (en) | Continuous annealing / descaling method | |
KR100360372B1 (en) | Descaling apparatus and method of hot rolled steel | |
JPH0535240B2 (en) | ||
JPH0633501B2 (en) | Surface treatment method for amorphous alloy materials | |
US5370780A (en) | Device for continuous electrodeless electrochemical treating of an electrically conductive web in an electrolyte cell | |
JP2005226135A (en) | Direct current continuous electrolytic etching method and direct current continuous electrolytic etching apparatus for metal strip | |
JP2005226132A (en) | Direct current continuous electrolytic etching method and direct current continuous electrolytic etching apparatus for metal strip | |
JPH06220699A (en) | Electrolytic pickling equipment for steel materials | |
JP2005226133A (en) | Indirect current continuous electrolytic etching method and indirect current continuous electrolytic etching apparatus for metal strip | |
JPS6386892A (en) | Surface treatment equipment for amorphous alloy materials | |
JPH09316698A (en) | Continuous electrolytic etching method for grain oriented silicon steel strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070910 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100928 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110928 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120928 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130928 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |