[go: up one dir, main page]

JP4014067B2 - Capacitor power storage system remaining amount detection device - Google Patents

Capacitor power storage system remaining amount detection device Download PDF

Info

Publication number
JP4014067B2
JP4014067B2 JP20547599A JP20547599A JP4014067B2 JP 4014067 B2 JP4014067 B2 JP 4014067B2 JP 20547599 A JP20547599 A JP 20547599A JP 20547599 A JP20547599 A JP 20547599A JP 4014067 B2 JP4014067 B2 JP 4014067B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
power storage
series
storage system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20547599A
Other languages
Japanese (ja)
Other versions
JP2001037090A (en
Inventor
廸夫 岡村
政章 山岸
Original Assignee
株式会社パワーシステム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パワーシステム filed Critical 株式会社パワーシステム
Priority to JP20547599A priority Critical patent/JP4014067B2/en
Publication of JP2001037090A publication Critical patent/JP2001037090A/en
Application granted granted Critical
Publication of JP4014067B2 publication Critical patent/JP4014067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
本発明は、複数のキャパシタを直並列に接続して蓄電を行うキャパシタ蓄電システムの残量検出装置に関する。
【0002】
【従来の技術】
電気二重層キャパシタを使用したECS(Energy Capacitor System) による電力貯蔵装置は、電気自動車の電源装置や大規模な電力貯蔵装置として注目されている。電気二重層キャパシタは、鉛電池やニッケル・カドミウム電池のような充電に時間がかかる化学電池と比較して、他のキャパシタと同様に物理的な充電であるため急速充電が可能になる。しかも、電気二重層キャパシタは、短時間に大量にエネルギーが放出できるという化学電池にないメリットを有している。しかし、化学電池は、定電圧デバイスであり、正常な動作範囲では負荷に給電しても、その電池に蓄えられたエネルギー量にかかわらず、端子電圧はほぼ一定の定電圧特性を示すのに対して、電気二重層キャパシタは、電力の貯蔵量を多くしてそれを有効に利用しようとすると、Q=CV2 /2の関係に基づいて端子電圧が大きく変動する特性を持っている。すなわち、電気二重層キャパシタの端子電圧は、蓄積されたエネルギーを放電するにしたがって、満充電電圧からゼロまで大きく変化し、負荷に安定した定格電圧を供給するにはECSで大幅な出力電圧の調整が必要になる。
【0003】
ECSは、キャパシタと並列モニタと電流ポンプからなる電力エネルギー貯蔵システムとして既に各種文献(例えば電子技術、1994−12、p1〜3、電学論B、115巻5号、平成7年 p504〜610、岡村廸夫著「電気二重層キャパシタと蓄電システム」日刊工業新聞社1999年3月31日初版第1刷発行 p6〜14、p145〜159など)で紹介されている。ここで、並列モニタは、複数のキャパシタが直並列に接続されたキャパシタバンクの各キャパシタの端子間に接続され、キャパシタバンクの充電電圧が並列モニタの設定値を越えると充電電流をバイパスしたり、満充電を検出したりする装置である。
【0004】
上記並列モニタを備えたキャパシタバンクは、充電する際にキャパシタバンクの充電電圧が設定値以上に上昇しないように充電電流をバイパスして一定に保ち初期化を行うことができるので、キャパシタバンク内のすべてのキャパシタは、設定された電圧まで均等に充電され、キャパシタの蓄積能力をほぼ100パーセント発揮させることができる。したがって、並列モニタは、キャパシタの特性のバラツキや残留電荷の大小がある場合にも、最大電圧の均等化、逆流防止、充電終止電圧の検出と制御などを行い、耐電圧いっぱいまで使えるようにするものとして、きわめて大きな役割を持ち、エネルギー密度の有効利用の手段として不可欠な装置である。
【0005】
【発明が解決しようとする課題】
キャパシタと電子回路を組み合わせた蓄電システム(ECS)の大型化の進行に伴い、そのままでは充放電によっておこる出力電圧の大幅な変化を軽減する手段として、キャパシタの直並列接続切換えなど、キャパシタの接続を切換えて使用する方法が実用化されつつある。しかし、このような電源装置では、電源の蓄積されているエネルギーの残量を正しく表示できないという問題が生じる。すなわち、電気二重層キャパシタ電池では、通常、電圧計を使って端子電圧を検出し残量として表示している。そのため、満充電状態から並列接続でエネルギーを取り出すときと、電圧が低下して並列接続から直列接続に切り換えたときが、ほぼ同じ電圧であってもエネルギーの残量は後者の方が少なくなっているにもかかわらず、電圧計により検出したエネルギーの残量では、同じになってしまう。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、直並列接続切換えを行うキャパシタ蓄電システムを含めて簡単に精度よく残量の計測、表示を行えるようにするものである。
【0007】
そのために本発明は、複数のキャパシタを直並列に接続して蓄電を行うキャパシタ蓄電システムの残量検出装置であって、低電圧では定抵抗を有し予め設定された電圧で定電圧動作する複数の定電圧制限可変抵抗回路と、前記複数の定電圧制限可変抵抗回路と直列接続される負荷抵抗と、電流を検出する電流検出手段とを備え、前記複数の定電圧制限可変抵抗回路と前記負荷抵抗と前記電流検出手段とを直列にして前記複数のキャパシタのうちの1つのキャパシタの端子間に接続し、或いは、低電圧では定抵抗を有し予め設定された電圧で定電圧動作する複数の定電圧制限可変抵抗回路と、前記複数の定電圧制限可変抵抗回路のそれぞれと直列接続される複数の負荷抵抗と、電流を検出する電流検出手段とを備え、それぞれ前記負荷抵抗が直列接続された前記複数の定電圧制限可変抵抗回路を並列接続し、該並列接続した回路と前記電流検出手段とを直列にして前記複数のキャパシタのうちの1つのキャパシタの端子間に接続し、前記電流検出手段によりキャパシタ蓄電システムの全キャパシタの残量を検出することを特徴とするものである。
【0008】
また、前記定電圧制限可変抵抗回路の前段にボルテージフォロアを接続したことを特徴とし、前記複数のキャパシタは、キャパシタ蓄電システムの出力電圧の変動に応じて直並列切り換え接続されるキャパシタであることを特徴とするものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しつつ説明する。図1は本発明に係るキャパシタ蓄電システムの残量検出装置の実施の形態を示す図であり、10は残量計、Cはキャパシタ、R1〜R13は抵抗、X1、X2はシャントレギュレータ、Q1 〜Q4はトランジスタを示す。
【0010】
図1(A)において、キャパシタCは、多数のキャパシタを直並列に接続して構成するキャパシタ蓄電システムにおいて、複数のキャパシタ(セル)を直列に接続してバンク(モジュール)とし、その複数のバンクを直列に接続して電源装置とするとき、そのバンクやバンクを構成する単体のキャパシタであり、キャパシタ蓄電システムの残量を表示するために端子間の電圧を取り出している。残量計10は、キャパシタCの両端に折れ線近似回路と直列に接続されて多数のキャパシタが接続された電源装置の残量を表示する、例えばフルスケールが1mAの電流計である。シャントレギュレータX1、X2は、温度補償されたアクティブ・ツェナーであり、抵抗R1〜R5と共に折れ線近似を行う近似回路を構成するものである。シャントレギュレータX1は、抵抗R1とR2からなる分圧回路を制御入力に接続してコンパレータとして動作し、制御入力の電圧が所定の電圧(折れ曲がり点)に達するとオンになる回路(例えばTI社製のTL431、NEC社製のC1944など)である。したがって、シャントレギュレータX1、抵抗R1、R2からなる回路は、いわゆる低電圧では定抵抗を有し予め設定された電圧で定電圧動作する定電圧制限可変抵抗回路であり、抵抗5は定電圧制限可変抵抗回路に接続される負荷抵抗である。
【0011】
トランジスタQ1、Q2は、抵抗R6〜R8と共に分圧回路を構成する高耐圧のトランジスタである。耐電圧がシャントレギュレータの最大定格を越える場合に、高耐圧のトランジスタQ1、Q2を用いる。これは、トランジスタのβを利用してボルテージフォロア(エミッタフォロア)を構成し、アクティブな消費電力の少ない分圧回路を構成したものであり、例えば満充電電圧10V用の残量計により、ボルテージフォロアの前の分圧抵抗を調節するだけで、しかも、折れ曲がり点の再調整をすることなしに10V以上の任意の電圧用に適用できる。すなわち、折れ線近似回路の前に単純に分圧抵抗をおいたものでは、折れ曲がりポイントが狂ってしまい再計算や大幅な再調整が必要になるが、前にボルテージフォロアを接続すると、出力インピーダンスが低いので、さらに素の前に任意の分圧抵抗を接続しても折れ線近似の特性が狂わず、設計、調整が容易になる。
【0012】
また、βの大きくないトランジスタの場合には、図1(B)に示すようにトランジスタQ3、Q4のダーリントン接続を用いてもよい。つまり、要求する精度、電圧範囲と使用するトランジスタによって、1石のトランジスタ、図1(A)に示すような直列接続のトランジスタ、図1(B)に示すようなダーリントン接続のトランジスタを適宜採用すればよいことはいうまでもない。また、折れ線近似回路は、図1(C)に示すようにシャントレギュレータX1、X2を並列に接続して構成してもよい。
【0013】
図2は高電圧シャントレギュレータの回路構成例を示す図、図3は図2に示す高電圧シャントレギュレータの特性を示す図、図4は図1に示す折れ線近似回路の特性を示す図である。
【0014】
2.5Vの基準電圧を用いて約100Vのシャントレギュレータの構成例を示したのが図2に示す高電圧シャントレギュレータである。図2に示す回路では、分圧点3が抵抗R1〜R3により4分の1に分圧されているので、ダーリントン接続したトランジスタQ1、Q2 のコレクタ側が約100Vの電圧のとき25Vの電圧になり、シャントレギュレータX1の制御入力はさらにその10分の1の2.5Vになる。シャントレギュレータX1は、この電圧が動作点となるので、図3に示すようにトランジスタQ1、Q2 のコレクタ電位(▽、△印)が約100V、トランジスタQ2のエミッタ電位(□、◇印)、つまりシャントレギュレータX1の電圧が25Vに維持される。したがって、キャパシタの残量が多くなりキャパシタ電圧が高くなるのに比例して、抵抗R4に流れる電流(■、◆印)が増加する特性を示す。
【0015】
上記折れ線近似の特性を備えた図2のX1、R1、R2に相当する部分をもう一組直列に加え、折れ曲がりの部分を二つにしたのが図1に示す例であり、簡単な連立方程式による定数の算出と、ツェナー電圧のバラツキに対応する微調整で図4に示すようにキャパシタの特性(□印)に対し極めて良好な折れ線近似特性(■印)が得られる。図1(A)に示す回路では、特性を与える電流供給素子が、折れ曲がり点以後の電流を与える▲1▼R5と、それ以前の電流を定める▲2▼X1、R1、R2のブロック、▲3▼X2、R3、R4のブロックの二つが直列になり、▲1▼と合計して三つのブロックが直列になっている。
【0016】
これらのブロックは、図1(C)に示すように並列接続しても類似の特性が得られる。回路の設計は、並列型の方が相互の干渉が少なくて容易だが、設計値によって負荷となる抵抗R11〜R13のように部品点数がいくらか多くなり消費電流が増える。
【0017】
本発明に係る残量検出装置は、バンク切り換えを行うキャパシタ蓄電システムにおいても同様に適用できる。以下にバンク切り換えを行うキャパシタ蓄電システムに適用した例について説明する。バンク切換えを行うと、キャパシタの端子電圧は、それぞれのバンクが異なった振る舞いをする。従って、一般的には、すべてのキャパシタバンクに残量計を設け、それらを合算すれば蓄電システムの全キャパシタの残量を知ることができる。この手法は既に出願済みである。
【0018】
しかし、バンク切換えのキャパシタ蓄電システムでは、その内の特定のキャパシタ、或いはキャパシタバンクに注目すると、その端子間電圧と蓄電量の間には一定の関係が存在する。その関係を折れ線近似回路でフィットすれば、簡単な残量計が得られる。この方法では、キャパシタ全部の残量を測定せず、対象となったバンクだけから全蓄電量を推算することになるので厳密とはいえないが、電圧から蓄電量を求めるタイプの残量計は、いずれもキャパシタの静電容量が一定であると仮定して計算しているから、各バンクの静電容量を一定だと仮定する本方式も、同様に実用性において全く問題はない。
【0019】
図5は直並列型バンク切り換え式のキャパシタ電源装置の構成例を示す図、図6は図5に示す電源装置の放電特性を示す図、図7は図5に示すキャパシタ電源装置の電圧と蓄電量(残量)との関係を示す図、図8はシフト型バンク切り換え式のキャパシタ電源装置の構成例を示す図、図9は図8に示すキャパシタ電源装置の電圧と蓄電量(残量)との関係を示す図、図10はタップ型バンク切り換え式のキャパシタ電源装置の構成例を示す図、図11は図10に示すキャパシタ電源装置の電圧と蓄電量(残量)との関係を示す図である。
【0020】
図5に示す直並列型バンク切り換え式のキャパシタ電源装置は、例えば満充電時に並列接続スイッチSp1、Sp2、Sp11、Sp12でキャパシタC1、C2及びC11、C12をそれぞれ並列に接続し、キャパシタC1、C11の端子間電圧を監視して、放電に伴って電圧が低下すると順次並列接続に切り換えることにより出力電圧outの変動幅を小さくするものであり、充電の場合にはその逆の制御を行えばよい。直並列の切り換え制御では、例えば図6に示すように満充電時の各キャパシタC1、C2、C11、C12の電圧が30Vの場合、出力端の電圧が60Vから放電を開始し、40Vまで下がると、まず直列接続スイッチSs1でキャパシタC1、C2の並列接続を直列接続に切り換える。これにより出力電圧を満充電時と同じ60Vの電圧まで上げ、さらに放電により40V近傍まで下がると、残りの直列接続スイッチSs11でキャパシタC11、C12の並列接続を直列接続に切り換える。このような制御による出力端(図5の点11)の電圧の変化を図6の□で、キャパシタC1(図5の点3)の電圧の変化を図6の◇で、キャパシタC11(図5の点13と1との間)の電圧の変化を図6の▽で、放電量を■でそれぞれ示している。そこで、図6に示す特性に基づきキャパシタC1(図5の点3)の電圧と蓄電量との関係を示すと、図7の□に示すような特性になる。これを折れ線で近似すると、例えば図7の一点鎖線で示す2つの折れ曲がり点●を有する折れ線により、かなり精度よく設定することができる。
【0021】
図8に示すシフト型バンク切り換え式のキャパシタ電源装置は、スタガー型とも呼び、満充電時には、(b)に示すようにキャパシタC1、C2の直列回路とキャパシタC3、C4の直列回路を並列に接続し、電圧の低下に伴って、(c)に示すようにまずキャパシタC2、C3の並列回路にキャパシタC1、C4を直列接続するように切り換え、次に(d)に示すようにすべてのキャパシタC1、C2、C3、C4を直列接続するように切り換える。この切り換えに伴う出力の電圧の変化を示したのが図9の■印の線であり、キャパシタC1の電圧に対応する蓄電量を示したのが図9の□印の線である。この場合も折れ線で近似すると、例えば図9の一点鎖線で示す2つの折れ曲がり点●を有する折れ線により、かなり精度よく設定することができる。
【0022】
図10に示すタップ型バンク切り換え式のキャパシタ電源装置は、キャパシタC1〜C3をベースとし、キャパシタC4、C5を補助(調整用)として、電圧の低下に伴って、ベースのキャパシタC1〜C3に補助のキャパシタC4、C5を段階的に1つずつ直列に追加接続するものである。この系では、切り換えの行われないベースとなるキャパシタC1〜C3の端子電圧を基準にする正確な残量計測が可能である。キャパシタC1が相対的に小さい場合に非直線性が顕著となるので、キャパシタC2、C3を省き、キャパシタC1、C4、C5の3個のキャパシタを用い、キャパシタC1の端子電圧V(1)をX軸にとって、全キャパシタの蓄電量の和の満充電量に対する比を求めた結果を示したのが図11の□である。この場合も折れ線で近似すると、例えば図11の一点鎖線で示す折れ曲がり点●を有する折れ線により、かなり精度よく設定することができる。
【0023】
なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、典型的な3種類のバンク切換え方式に適用した例を挙げたが、これら各種の例を通じて、バンク切換えの行われる系の中の、特定のキャパシタバンクに注目し、その電圧と系全体のエネルギー貯蔵量との関係を調べ、本発明の回路を用いて折れ線近似すると、簡便で精度の充分ある残量計が得られることは明らかである。折れ線近似回路としてシャントレギュレータを用いたが、ツェナーダイオードその他の定電圧制御回路や素子と置き換えてもよいことはいうまでもない。
【0024】
【発明の効果】
以上の説明から明らかなように、本発明によれば、複数のキャパシタを直並列に接続して蓄電を行うキャパシタ蓄電システムの残量検出装置であって、低電圧では定抵抗を有し予め設定された電圧で定電圧動作する複数の定電圧制限可変抵抗回路と、複数の定電圧制限可変抵抗回路と直列接続される負荷抵抗と、電流を検出する電流検出手段とを備え、複数の定電圧制限可変抵抗回路と負荷抵抗と電流検出手段とを直列にして複数のキャパシタのうちの1つのキャパシタの端子間に接続し、或いは、低電圧では定抵抗を有し予め設定された電圧で定電圧動作する複数の定電圧制限可変抵抗回路と、複数の定電圧制限可変抵抗回路のそれぞれと直列接続される複数の負荷抵抗と、電流を検出する電流検出手段とを備え、それぞれ負荷抵抗が直列接続された複数の定電圧制限可変抵抗回路を並列接続し、該並列接続した回路と電流検出手段とを直列にして複数のキャパシタのうちの1つのキャパシタの端子間に接続し、電流検出手段によりキャパシタ蓄電システムの全キャパシタの残量を検出するので、複数のキャパシタを充放電状態に応じて直並列に切り換え接続する方式のキャパシタ蓄電システムであっても、簡単な回路により残量特性を折れ線近似することができる。しかも1つのキャパシタの端子電圧から精度よく残量を求め表示することができ、残量検出、表示のための構成を簡素化、コンパクト化することができる。
【図面の簡単な説明】
【図1】 本発明に係るキャパシタ蓄電システムの残量検出装置の実施の形態を示す図である。
【図2】 高電圧シャントレギュレータの回路構成例を示す図である。
【図3】 図2に示す高電圧シャントレギュレータの特性を示す図である。
【図4】 図1に示す折れ線近似回路の特性を示す図である。
【図5】 直並列型バンク切り換え式のキャパシタ電源装置の構成例を示す図である。
【図6】 図5に示す電源装置の放電特性を示す図である。
【図7】 図5に示すキャパシタ電源装置の電圧と蓄電量(残量)との関係を示す図である。
【図8】 シフト型バンク切り換え式のキャパシタ電源装置の構成例を示す図である。
【図9】 図8に示すキャパシタ電源装置の電圧と蓄電量(残量)との関係を示す図である。
【図10】 タップ型バンク切り換え式のキャパシタ電源装置の構成例を示す図である。
【図11】 図10に示すキャパシタ電源装置の電圧と蓄電量(残量)との関係を示す図である。
【符号の説明】
10…残量計、C…キャパシタ、R1〜R13…抵抗、X1、X2…シャントレギュレータ、Q1 〜Q4…トランジスタ
[0001]
The present invention relates to a remaining amount detection device for a capacitor power storage system that performs power storage by connecting a plurality of capacitors in series and parallel.
[0002]
[Prior art]
An ECS (Energy Capacitor System) power storage device using an electric double layer capacitor has attracted attention as a power supply device for electric vehicles and a large-scale power storage device. Since the electric double layer capacitor is a physical charge similar to other capacitors compared to a chemical battery such as a lead battery or a nickel-cadmium battery that takes time to charge, it can be rapidly charged. Moreover, the electric double layer capacitor has a merit not found in a chemical battery that a large amount of energy can be released in a short time. However, a chemical battery is a constant voltage device, and even if power is supplied to a load in the normal operating range, the terminal voltage shows a constant voltage characteristic regardless of the amount of energy stored in the battery. Te, an electric double layer capacitor, when by increasing the storage amount of the power to attempt to effectively utilize it, has the characteristic that the terminal voltage varies greatly based on the relationship Q = CV 2/2. In other words, the terminal voltage of the electric double layer capacitor changes greatly from fully charged voltage to zero as the stored energy is discharged, and in order to supply a stable rated voltage to the load, the output voltage is greatly adjusted by ECS. Is required.
[0003]
ECS has already been developed as a power energy storage system consisting of a capacitor, a parallel monitor, and a current pump (for example, electronic technology, 1994-12, p1 to 3, Electrology B, Vol. 115, No. 5, 1995, p504 to 610, Okamura Ikuo, “Electric Double Layer Capacitor and Power Storage System”, published by Nikkan Kogyo Shimbun, March 31, 1999, first edition, first print, p6-14, p145-159, etc.). Here, the parallel monitor is connected between terminals of each capacitor bank in which a plurality of capacitors are connected in series and parallel, and when the charge voltage of the capacitor bank exceeds the set value of the parallel monitor, the charge current is bypassed, It is a device that detects full charge.
[0004]
The capacitor bank with the parallel monitor can be initialized by bypassing the charging current so that the charging voltage of the capacitor bank does not rise above a set value when charging. All the capacitors are charged evenly to a set voltage, and the storage capacity of the capacitors can be exhibited almost 100%. Therefore, the parallel monitor can equalize the maximum voltage, prevent backflow, detect and control the end-of-charge voltage, etc., even when there are variations in capacitor characteristics and residual charge, so that it can be used to the full withstand voltage. As such, it has an extremely important role and is an indispensable device for effective use of energy density.
[0005]
[Problems to be solved by the invention]
As power storage systems (ECS) that combine capacitors and electronic circuits continue to increase in size, as a means to reduce significant changes in output voltage caused by charging / discharging as it is, connection of capacitors such as switching of capacitors in series / parallel connection is possible. The method of switching and using is being put into practical use. However, such a power supply apparatus has a problem that the remaining amount of energy stored in the power supply cannot be displayed correctly. That is, in an electric double layer capacitor battery, a terminal voltage is usually detected using a voltmeter and displayed as a remaining amount. Therefore, when the energy is taken out in parallel connection from the fully charged state and when the voltage drops and switched from parallel connection to series connection, the remaining amount of energy is less in the latter even if the voltage is almost the same. Nevertheless, the remaining amount of energy detected by the voltmeter will be the same.
[0006]
[Means for Solving the Problems]
The present invention solves the above-described problems, and enables the remaining amount to be measured and displayed easily and accurately, including a capacitor power storage system that performs series-parallel connection switching.
[0007]
To this end, the present invention is a remaining capacity detection device for a capacitor power storage system that performs power storage by connecting a plurality of capacitors in series and parallel, and has a constant resistance at a low voltage and a plurality of constant voltage operations at a preset voltage. of the constant voltage limiting variable resistor circuit, and a load resistor on which the plurality of connected constant voltage limiting variable resistor circuit in series, and a current detecting means for detecting a current, the said plurality of constant voltage limiting variable resistor load a resistor and said current detecting means in series connected between the terminals of one capacitor of the plurality of capacitors, or, with the low level of a plurality of operating a constant voltage at a predetermined voltage having a constant resistance a constant voltage limiting variable resistor circuit, said comprising a plurality of load resistors which are respectively connected in series with a plurality of constant voltage limiting variable resistance circuit, and a current detecting means for detecting a current, each said load resistor straight A connected plurality of constant voltage limiting variable resistor circuit connected in parallel, and said current detecting means and circuits said parallel connection in series connected between the terminals of one capacitor of the plurality of capacitors, the The present invention is characterized in that the remaining amount of all capacitors of the capacitor power storage system is detected by the current detection means .
[0008]
In addition, a voltage follower is connected to the previous stage of the constant voltage limiting variable resistance circuit, and the plurality of capacitors are capacitors that are connected in series-parallel switching according to fluctuations in the output voltage of the capacitor power storage system. It is a feature.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a remaining amount detection device for a capacitor power storage system according to the present invention, wherein 10 is a fuel gauge, C is a capacitor, R1 to R13 are resistors, X1 and X2 are shunt regulators, Q1 to Q4 represents a transistor.
[0010]
In FIG. 1A, a capacitor C is a capacitor power storage system configured by connecting a large number of capacitors in series and parallel, and a plurality of capacitors (cells) are connected in series to form a bank (module). Are connected in series to form a power supply device, the bank or a single capacitor constituting the bank, and the voltage between the terminals is taken out to display the remaining amount of the capacitor power storage system. The fuel gauge 10 is an ammeter with a full scale of 1 mA, for example, which displays the remaining capacity of a power supply device connected in series with a polygonal line approximation circuit at both ends of the capacitor C and connected with many capacitors. The shunt regulators X1 and X2 are temperature-compensated active Zeners and constitute an approximation circuit that performs broken line approximation together with the resistors R1 to R5. The shunt regulator X1 operates as a comparator by connecting a voltage dividing circuit composed of resistors R1 and R2 to a control input, and is turned on when the voltage of the control input reaches a predetermined voltage (bending point) (for example, manufactured by TI) TL431, NEC C1944, etc.). Therefore, the circuit composed of the shunt regulator X1 and the resistors R1 and R2 is a constant voltage limiting variable resistance circuit having a constant resistance at a so-called low voltage and operating at a constant voltage at a preset voltage, and the resistor 5 is a constant voltage limiting variable. It is a load resistance connected to a resistance circuit.
[0011]
The transistors Q1 and Q2 are high voltage transistors that form a voltage dividing circuit together with the resistors R6 to R8. When the withstand voltage exceeds the maximum rating of the shunt regulator, high voltage transistors Q1 and Q2 are used. This is a voltage follower (emitter follower) that uses β of the transistor to form a voltage dividing circuit with low active power consumption. For example, a voltage follower is formed by a fuel gauge for a full charge voltage of 10V. It can be applied to an arbitrary voltage of 10 V or more by adjusting the voltage dividing resistance before the first step and without re-adjusting the bending point. In other words, if a voltage dividing resistor is simply placed before the broken line approximation circuit, the bending point will be distorted, requiring recalculation or significant readjustment. However, if a voltage follower is connected before, the output impedance will be low. Therefore, even if an arbitrary voltage dividing resistor is connected before the element, the characteristic of the broken line approximation does not go wrong, and the design and adjustment are facilitated.
[0012]
In the case of a transistor having a small β, a Darlington connection of transistors Q3 and Q4 may be used as shown in FIG. In other words, a single transistor, a serially connected transistor as shown in FIG. 1 (A), or a Darlington-connected transistor as shown in FIG. It goes without saying. Further, the broken line approximation circuit may be configured by connecting shunt regulators X1 and X2 in parallel as shown in FIG.
[0013]
2 is a diagram showing a circuit configuration example of the high-voltage shunt regulator, FIG. 3 is a diagram showing characteristics of the high-voltage shunt regulator shown in FIG. 2, and FIG. 4 is a diagram showing characteristics of the broken line approximation circuit shown in FIG.
[0014]
A configuration example of a shunt regulator of about 100 V using a reference voltage of 2.5 V is a high voltage shunt regulator shown in FIG. In the circuit shown in FIG. 2, the voltage dividing point 3 is divided by a factor of 4 by the resistors R1 to R3. Therefore, when the collector side of the Darlington-connected transistors Q1 and Q2 is about 100V, the voltage is 25V. The control input of the shunt regulator X1 becomes 1/10 of 2.5V. Since this voltage is the operating point of the shunt regulator X1, as shown in FIG. 3, the collector potentials of the transistors Q1 and Q2 (marked with ▽ and Δ) are about 100V, the emitter potential of the transistor Q2 (marked with □ and ◇), The voltage of the shunt regulator X1 is maintained at 25V. Therefore, it shows the characteristic that the current (marked by ■, ◆) flowing through the resistor R4 increases in proportion to the increase in the remaining amount of the capacitor and the increase in the capacitor voltage.
[0015]
The example shown in FIG. 1 is a simple simultaneous equation in which another set of portions corresponding to X1, R1, and R2 in FIG. 2 having the characteristics of the above-mentioned broken line approximation is added in series and two bent portions are formed. As shown in FIG. 4, a very good broken line approximation characteristic (marked with ■) is obtained with respect to the capacitor characteristic (marked with □) as shown in FIG. In the circuit shown in FIG. 1 (A), the current supply element that gives the characteristic gives the current after the bending point {circle around (1)} R5 and the current before that {circle around (2)} blocks X1, R1, and R2, {3} Two of the blocks X2, R3, and R4 are in series, and three blocks are in series in total with (1).
[0016]
Even if these blocks are connected in parallel as shown in FIG. 1C, similar characteristics can be obtained. The design of the circuit is easier with the parallel type with less mutual interference, but the number of components increases somewhat as the resistors R11 to R13, which become loads, depending on the design value, and the current consumption increases.
[0017]
The remaining amount detection device according to the present invention can be similarly applied to a capacitor power storage system that performs bank switching. An example applied to a capacitor power storage system that switches banks will be described below. When bank switching is performed, the capacitor terminal voltage behaves differently in each bank. Therefore, generally, the remaining amount of all the capacitors of the power storage system can be known by providing fuel gauges in all the capacitor banks and adding them together. This method has already been filed.
[0018]
However, in the bank-switched capacitor power storage system, when attention is paid to a specific capacitor or capacitor bank, there is a certain relationship between the voltage between the terminals and the amount of power stored. A simple fuel gauge can be obtained by fitting the relationship with a broken line approximation circuit. This method does not measure the remaining amount of all capacitors, but estimates the total amount of electricity stored only from the target bank. Since the calculation is performed on the assumption that the capacitance of the capacitor is constant, the present method which assumes that the capacitance of each bank is constant has no problem in practical use as well.
[0019]
5 is a diagram showing a configuration example of a series-parallel bank switching type capacitor power supply device, FIG. 6 is a diagram showing discharge characteristics of the power supply device shown in FIG. 5, and FIG. 7 is a voltage and power storage of the capacitor power supply device shown in FIG. FIG. 8 is a diagram showing a configuration example of a shift type bank switching type capacitor power supply device, and FIG. 9 is a voltage and charge amount (remaining amount) of the capacitor power supply device shown in FIG. FIG. 10 is a diagram showing a configuration example of a tap type bank switching type capacitor power supply device. FIG. 11 is a diagram showing the relationship between the voltage of the capacitor power supply device shown in FIG. FIG.
[0020]
The series-parallel bank switching type capacitor power supply device shown in FIG. 5 connects capacitors C1, C2, C11, and C12 in parallel with parallel connection switches Sp1, Sp2, Sp11, and Sp12, for example, at full charge, and capacitors C1, C11. In this case, the fluctuation range of the output voltage out is reduced by sequentially switching to parallel connection when the voltage decreases with discharge, and in the case of charging, the opposite control may be performed. . In the series-parallel switching control, for example, as shown in FIG. 6, when the voltages of the capacitors C1, C2, C11, and C12 at full charge are 30V, the voltage at the output terminal starts discharging from 60V and decreases to 40V. First, the parallel connection of the capacitors C1 and C2 is switched to the series connection by the series connection switch Ss1. As a result, when the output voltage is raised to the same voltage of 60 V as when fully charged and further lowered to around 40 V by discharging, the parallel connection of the capacitors C11 and C12 is switched to the series connection by the remaining series connection switch Ss11. The change in the voltage at the output terminal (point 11 in FIG. 5) by such control is indicated by □ in FIG. 6, the change in the voltage at the capacitor C1 (point 3 in FIG. 5) is indicated by 図 in FIG. 6, and the capacitor C11 (FIG. 5). The change in voltage between points 13 and 1 is indicated by ▽ in FIG. 6 and the discharge amount is indicated by ■. Therefore, when the relationship between the voltage of the capacitor C1 (point 3 in FIG. 5) and the charged amount is shown on the basis of the characteristics shown in FIG. 6, the characteristics are as shown by □ in FIG. If this is approximated by a polygonal line, it can be set with considerably high accuracy, for example, by a polygonal line having two bending points ● shown by a one-dot chain line in FIG.
[0021]
The shift type bank switching type capacitor power supply device shown in FIG. 8 is also called a stagger type, and when fully charged, a series circuit of capacitors C1 and C2 and a series circuit of capacitors C3 and C4 are connected in parallel as shown in FIG. As the voltage decreases, the capacitors C1 and C4 are first switched to be connected in series to the parallel circuit of the capacitors C2 and C3 as shown in (c), and then all the capacitors C1 as shown in (d). , C2, C3, and C4 are switched so as to be connected in series. The change of the output voltage due to this switching is indicated by the solid line in FIG. 9, and the charged amount corresponding to the voltage of the capacitor C1 is indicated by the solid line in FIG. In this case as well, when approximated by a broken line, for example, a broken line having two broken points ● shown by a one-dot chain line in FIG. 9 can be set with considerably high accuracy.
[0022]
The tap type bank switching type capacitor power supply device shown in FIG. 10 is based on the capacitors C1 to C3, and the capacitors C4 and C5 are supplemented (for adjustment), and the base capacitors C1 to C3 are supplemented as the voltage decreases. The capacitors C4 and C5 are additionally connected in series step by step. In this system, it is possible to accurately measure the remaining amount with reference to the terminal voltages of the capacitors C1 to C3 that are the bases that are not switched. Since nonlinearity becomes remarkable when the capacitor C1 is relatively small, the capacitors C2 and C3 are omitted, three capacitors C1, C4, and C5 are used, and the terminal voltage V (1) of the capacitor C1 is expressed as X For the axis, □ in FIG. 11 shows the result of obtaining the ratio of the sum of the charged amounts of all capacitors to the full charge amount. In this case as well, when approximated by a broken line, for example, a broken line having a broken point ● shown by a one-dot chain line in FIG.
[0023]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, an example applied to three typical bank switching methods has been described. Through these various examples, attention is paid to a specific capacitor bank in a system in which bank switching is performed. When the relationship between the voltage and the energy storage amount of the entire system is examined and approximated by a polygonal line using the circuit of the present invention, it is clear that a simple and accurate fuel gauge can be obtained. Although a shunt regulator is used as the broken line approximation circuit, it goes without saying that it may be replaced with a Zener diode or other constant voltage control circuit or element.
[0024]
【The invention's effect】
As is apparent from the above description, according to the present invention, a remaining amount detection device for a capacitor power storage system that performs power storage by connecting a plurality of capacitors in series and parallel, and has a constant resistance at a low voltage and is preset. comprising a plurality of constant voltage limiting variable resistor circuit which operates based on a constant voltage at a voltage that is, a load resistor connected in series and a plurality of constant voltage limiting variable resistance circuit, and a current detecting means for detecting a current, a plurality of constant voltage limiting the variable resistance circuit between the load resistance and the current detecting means in series connected between one of the capacitor terminals of the plurality of capacitors, or a low voltage constant voltage at a preset voltage has a constant resistance a plurality of constant voltage limiting variable resistor circuit operating, comprising a plurality of load resistors connected in series with each of the plurality of constant voltage limiting variable resistance circuit, and a current detecting means for detecting a current, a load resistor each series A plurality of constant voltage limiting variable resistor circuit which is continued in parallel connection, the circuit and the current detecting means and said parallel connection in series connected between the plurality of one capacitor of the capacitor terminal, the current detecting means Since the remaining amount of all capacitors in the capacitor storage system is detected , even if it is a capacitor storage system that switches and connects multiple capacitors in series and parallel depending on the charge / discharge state, the remaining amount characteristics are approximated by a simple line can do. In addition, the remaining amount can be obtained and displayed accurately from the terminal voltage of one capacitor, and the configuration for detecting and displaying the remaining amount can be simplified and made compact.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a remaining amount detection device for a capacitor power storage system according to the present invention.
FIG. 2 is a diagram illustrating a circuit configuration example of a high-voltage shunt regulator.
FIG. 3 is a diagram showing characteristics of the high voltage shunt regulator shown in FIG. 2;
4 is a diagram showing characteristics of the broken line approximation circuit shown in FIG. 1. FIG.
FIG. 5 is a diagram illustrating a configuration example of a series-parallel bank switching type capacitor power supply device;
6 is a diagram showing discharge characteristics of the power supply device shown in FIG. 5. FIG.
7 is a diagram showing the relationship between the voltage of the capacitor power supply device shown in FIG. 5 and the amount of charge (remaining amount).
FIG. 8 is a diagram illustrating a configuration example of a shift type bank switching type capacitor power supply device;
9 is a diagram showing the relationship between the voltage of the capacitor power supply device shown in FIG. 8 and the charged amount (remaining amount).
FIG. 10 is a diagram illustrating a configuration example of a tap type bank switching type capacitor power supply device;
11 is a diagram showing the relationship between the voltage of the capacitor power supply device shown in FIG. 10 and the charged amount (remaining amount).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Fuel gauge, C ... Capacitor, R1-R13 ... Resistor, X1, X2 ... Shunt regulator, Q1-Q4 ... Transistor

Claims (4)

複数のキャパシタを直並列に接続して蓄電を行うキャパシタ蓄電システムの残量検出装置であって、
低電圧では定抵抗を有し予め設定された電圧で定電圧動作する複数の定電圧制限可変抵抗回路と、
前記複数の定電圧制限可変抵抗回路と直列接続される負荷抵抗と、
電流を検出する電流検出手段と
を備え、前記複数の定電圧制限可変抵抗回路と前記負荷抵抗と前記電流検出手段とを直列にして前記複数のキャパシタのうちの1つのキャパシタの端子間に接続し、前記電流検出手段によりキャパシタ蓄電システムの全キャパシタの残量を検出することを特徴とするキャパシタ蓄電システムの残量検出装置。
A remaining capacity detection device for a capacitor power storage system that performs power storage by connecting a plurality of capacitors in series and parallel,
A plurality of constant voltage limiting variable resistance circuits that have a constant resistance at a low voltage and operate at a constant voltage at a preset voltage;
A load resistor connected in series with the plurality of constant voltage limiting variable resistance circuits;
Current detection means for detecting current, and a terminal of one of the plurality of capacitors in which the plurality of constant voltage limiting variable resistance circuits, the load resistance, and the current detection means are connected in series. connected between the remaining amount detecting apparatus of the capacitor power storage system and detects the remaining amount of the total capacitor of the capacitor power storage system by said current detecting means.
複数のキャパシタを直並列に接続して蓄電を行うキャパシタ蓄電システムの残量検出装置であって、
低電圧では定抵抗を有し予め設定された電圧で定電圧動作する複数の定電圧制限可変抵抗回路と、
前記複数の定電圧制限可変抵抗回路のそれぞれと直列接続される複数の負荷抵抗と、
電流を検出する電流検出手段と
を備え、それぞれ前記負荷抵抗が直列接続された前記複数の定電圧制限可変抵抗回路を並列接続し、該並列接続した回路と前記電流検出手段とを直列にして前記複数のキャパシタのうちの1つのキャパシタの端子間に接続し、前記電流検出手段によりキャパシタ蓄電システムの全キャパシタの残量を検出することを特徴とするキャパシタ蓄電システムの残量検出装置。
A remaining capacity detection device for a capacitor power storage system that performs power storage by connecting a plurality of capacitors in series and parallel,
A plurality of constant voltage limiting variable resistance circuits that have a constant resistance at a low voltage and operate at a constant voltage at a preset voltage;
A plurality of load resistors connected in series with each of the plurality of constant voltage limiting variable resistance circuits;
Current detection means for detecting a current , wherein the plurality of constant voltage limiting variable resistance circuits each having the load resistance connected in series are connected in parallel, and the parallel connected circuit and the current detection means are connected to each other. and in series connected between the terminals of one capacitor of the plurality of capacitors, the remaining amount detecting apparatus of the capacitor power storage system and detects the remaining amount of the total capacitor of the capacitor power storage system by said current detecting means .
前記定電圧制限可変抵抗回路の前段にボルテージフォロアを接続したことを特徴とする請求項1又は2記載のキャパシタ蓄電システムの残量検出装置。The remaining amount detecting apparatus according to claim 1 or 2, wherein the capacitor power storage system is characterized in that to connect the voltage follower in front of the constant voltage limiting variable resistor circuit. 前記複数のキャパシタは、キャパシタ蓄電システムの出力電圧の変動に応じて直並列切り換え接続されるキャパシタであることを特徴とする請求項1又は2記載のキャパシタ蓄電システムの残量検出装置。 3. The remaining capacity detection device for a capacitor power storage system according to claim 1, wherein the plurality of capacitors are capacitors that are connected in series-parallel switching according to a change in output voltage of the capacitor power storage system.
JP20547599A 1999-07-21 1999-07-21 Capacitor power storage system remaining amount detection device Expired - Fee Related JP4014067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20547599A JP4014067B2 (en) 1999-07-21 1999-07-21 Capacitor power storage system remaining amount detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20547599A JP4014067B2 (en) 1999-07-21 1999-07-21 Capacitor power storage system remaining amount detection device

Publications (2)

Publication Number Publication Date
JP2001037090A JP2001037090A (en) 2001-02-09
JP4014067B2 true JP4014067B2 (en) 2007-11-28

Family

ID=16507484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20547599A Expired - Fee Related JP4014067B2 (en) 1999-07-21 1999-07-21 Capacitor power storage system remaining amount detection device

Country Status (1)

Country Link
JP (1) JP4014067B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5024420B2 (en) * 2010-04-27 2012-09-12 沖電気工業株式会社 Solar cell power supply
CN103326550A (en) * 2013-06-28 2013-09-25 王达开 Power switching device series circuit capable of achieving automatic voltage limiting
JP2016127770A (en) * 2015-01-08 2016-07-11 トヨタ自動車株式会社 Power supply device

Also Published As

Publication number Publication date
JP2001037090A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
US7602144B2 (en) Battery management system
US7583057B2 (en) Voltage balance circuit, voltage detecting circuit, voltage balancing method, and voltage detecting method
US10520553B2 (en) Methods and system for a battery
EP0505333B1 (en) Estimating the charge of batteries
JP3562633B2 (en) Capacitor uninterruptible power supply
US20220367926A1 (en) BMS and Battery System
JP2002286766A (en) Voltage detection method and voltage detection device
US6661204B2 (en) Battery charge monitor
JP4014067B2 (en) Capacitor power storage system remaining amount detection device
CN215728679U (en) Battery voltage detection circuit
JP4186393B2 (en) Battery voltage detector
JP2016161348A (en) Voltage detection device, voltage detection method, and battery pack system
JPH09113588A (en) Method for detecting pack battery condition
CN1125349C (en) Voltage indicator for indicating that voltage of battery passes given value
JPH09311147A (en) Charge / discharge current measuring device
CN113447833B (en) A battery voltage detection circuit
JP5368283B2 (en) Voltage detection circuit
TWI304480B (en)
JP3963343B2 (en) Variable voltage capacitor power storage device
JP6387372B2 (en) Capacitor control device
JP3396970B2 (en) Leakage detection device for electric vehicles
CN216051811U (en) TVS element detection circuit and detection device
JP3232596B2 (en) Battery level display
JPH05276679A (en) Power source for portable computer
JP2010017053A (en) Power storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees