[go: up one dir, main page]

JP4013717B2 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
JP4013717B2
JP4013717B2 JP2002277362A JP2002277362A JP4013717B2 JP 4013717 B2 JP4013717 B2 JP 4013717B2 JP 2002277362 A JP2002277362 A JP 2002277362A JP 2002277362 A JP2002277362 A JP 2002277362A JP 4013717 B2 JP4013717 B2 JP 4013717B2
Authority
JP
Japan
Prior art keywords
air
heater
temperature
heat exchanger
tao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002277362A
Other languages
Japanese (ja)
Other versions
JP2004114735A (en
Inventor
誠司 伊藤
圭一 北村
敏伸 穂満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002277362A priority Critical patent/JP4013717B2/en
Priority to DE10343818.1A priority patent/DE10343818B4/en
Publication of JP2004114735A publication Critical patent/JP2004114735A/en
Application granted granted Critical
Publication of JP4013717B2 publication Critical patent/JP4013717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両用空調装置に関するもので、燃料電池を用いた電気自動車、又は内燃機関(エンジン)と電動モータとを組み合わせて走行する、いわゆるハイブリッド自動車等の電気自動車用の空調装置に適用して有効である。
【0002】
【従来の技術】
電気自動車用はエンジンのみで走行する車両に比べて廃熱が少ないため、従来の車両用空調装置では、蒸気圧縮式冷凍機の高圧冷媒又は燃焼機の燃焼ガスを熱源とする加熱器にて室内に吹き出す空気を加熱している(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開平11−20458号公報
【0004】
【発明が解決しようとする課題】
ところで、エンジン廃熱以外を熱源とする車両用空調装置では、通常、室内に吹き出す空気の全量が加熱器を通過するようにした状態で、加熱器を通過した空気、つまり加熱器にて加熱された後の空気の温度が目標吹出空気温度となるように加熱器の加熱能力が制御されるため、加熱器を通過した空気は、ほぼ均一な温度分布を有する。
【0005】
このため、車室内の上方側及び下方側に空気を吹き出すバイレベル吹出モード時において、上方側及び下方側に略同一温度の空気が吹き出されてしまうので、乗員に対して良好な空調感を与えることが難しい。
【0006】
なお、一般的に、上方側に吹き出す空気の温度を下方側に吹き出す空気の温度に比べて低くすると、良好な空調感を与えることができると言われている。
【0007】
本発明は、上記点に鑑み、第1には、従来と異なる新規な車両用空調装置を提供し、第2には、バイレベル吹出モード時において、上方側に吹き出す空気の温度と下方側にに吹き出す空気の温度とを相違させることを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、請求項1に記載の発明では、主に車室内の下方側に空気を吹き出すフット吹出モード、主に車室内の上方側に空気を吹き出すフェイス吹出モード、並びに車室内の上方側及び下方側に空気を吹き出すバイレベル吹出モードを有し、室内に吹き出す空気の調和を図る車両用空調装置であって、
室内に吹き出す空気が流れる空気通路を構成する空調ケーシング(80)と、
空調ケーシング(80)内に配置され、空調ケーシング(80)内を流れる空気を加熱するとともに、加熱能力を制御可能な加熱器(32)と、
空調ケーシング(80)内に設けられ、加熱器(32)を迂回させて下流側に流す空気量と加熱器(32)にて昇温させて下流側に流す空気量との風量割合を調節する風量割合調節手段(81)と、
空調ケーシング(80)における加熱器(32)の下流側部位のうち、加熱器(32)を通過した温風が流れる側の部位に開口して車室内の下方側に空気を吹き出すフット吹出口と、
空調ケーシング(80)における加熱器(32)の下流側部位のうち、加熱器(32)を迂回する冷風が流れる側の部位に開口して車室内の上方側に空気を吹き出すフェイス吹出口と、
フット吹出口及びフェイス吹出口を開閉して、フット吹出モード、フェイス吹出モード及びバイレベル吹出モードを切り換える吹出モード切換装置(84)と、
加熱器(32)の加熱能力を制御する加熱能力制御手段(90)と、
加熱器(32)の加熱能力が大きくなるほど、加熱器(32)を迂回する空気量が増大するように風量割合調節手段(81)の風量割合を決定する風量割合決定手段(S201、S202、S204、S205)とを備え、
空調ケーシング(80)内を流れる空気の全量が加熱器(32)を迂回して流れる状態を風量割合調節手段(81)の開度(SW)が0%であるとし、空調ケーシング(80)内を流れる空気の全量が加熱器(32)を通過する状態を風量割合調節手段(81)の開度(SW)が100%であるとしたとき、空調ケーシング(80)内の空気を加熱器(32)により加熱する暖房時においてバイレベル吹出モードが選定されたときには、風量割合決定手段(S201、S202、S204、S205)により風量割合調節手段(81)の開度(SW)を100%未満、0%超とし、
バイレベル吹出モードでは、加熱器(32)を通過した温風と加熱器(32)を迂回する冷風とが発生し、上方側に吹き出す空気の温度よりも下方側に吹き出す空気の温度が高くなるようになっており、
さらに、加熱能力制御手段(90)は、
暖房時においてフット吹出モード及びフェイス吹出モードが選定されたときに、加熱器(32)を通過した直後の空気温度が車室内に吹き出す空気の目標温度(TAO)に応じた温度(Tgco)となるように加熱器(32)の加熱能力を制御する第1制御手段(S223)と、
暖房時においてバイレベル吹出モードが選定されたときには、加熱器(32)を通過した直後の空気温度が車室内に吹き出す空気の目標温度(TAO)より高く、かつ、第1制御手段(S223)により与えられる温度よりも高い温度となるように加熱器(32)の加熱能力を制御する第2制御手段(S222)とを備えることを特徴とする。
【0009】
これにより、加熱器(32)を迂回する空気量が増大するように風量割合調節手段(81)の風量割合は、100%未満、0%超となるので、加熱器(32)を通過した空気は、加熱器(32)にて加熱された温風と加熱器(32)を迂回した冷風とが発生し、バイレベル吹出モード時において、上方側に吹き出す空気の温度よりも下方側に吹き出す空気の温度を高くすることができる。
【0010】
請求項2に記載の発明では、請求項1に記載の車両用空調装置において、第1制御手段(S223)は、暖房時においてフット吹出モード及びフェイス吹出モードが選定されたときに加熱器(32)を通過した直後の空気温度が車室内に吹き出す空気の目標温度(TAO)と同じ温度(Tgco)となるように加熱器(32)の加熱能力を制御することを特徴とする。
請求項に記載の発明では、請求項1または2に記載の車両用空調装置において、加熱能力制御手段(90)は、暖房時においてバイレベル吹出モードが選定された場合において目標温度(TAO)が所定温度以上となったときには、加熱器(32)を通過した直後の空気温度と目標温度(TAO)との温度差が、目標温度(TAO)が所定温度以下のときの加熱器(32)を通過した直後の空気温度と目標温度(TAO)との温度差より小さくなるように加熱器(32)の加熱能力を制御することを特徴とする。
【0011】
これにより、加熱器(32)の消費エネルギが増大することを抑制でき得る。
【0012】
請求項に記載の発明では、請求項1ないし3のいずれか1つに記載の車両用空調装置において、加熱器(32)は、蒸気圧縮式冷凍機の高圧冷媒を熱源として空気を加熱する加熱用室内熱交換器であって、
加熱能力制御手段(90)は、蒸気圧縮式冷凍機の圧縮機回転数を増減することで加熱器(32)の加熱能力を制御することを特徴とするものである。
【0013】
請求項5に記載の発明では、請求項4に記載の車両用空調装置において、空調ケーシング(80)内において加熱器(32)の上流側に、空調ケーシング(80)内を流れる空気を冷却する冷却用室内熱交換器(31)が配置され、
冷却用室内熱交換器(31)は蒸気圧縮式冷凍機の低圧冷媒により空気を冷却するものであり、
冷却用室内熱交換器(31)にて空調ケーシング(80)内の空気を冷却することにより冷房サイクルを実行し、
一方、空調ケーシング(80)内の空気を、冷却用室内熱交換器(31)にて冷却した後に加熱器(32)にて加熱することにより除湿サイクルを実行することを特徴とする。
請求項に記載の発明では、請求項4または5に記載の車両用空調装置において、蒸気圧縮式冷凍機の高圧側冷媒圧力は、冷媒の臨界圧力以上となる場合があることを特徴とするものである。
【0014】
請求項に記載の発明では、請求項4ないし6のいずれか1つに記載の車両用空調装置において、蒸気圧縮式冷凍機は、二酸化炭素を冷媒とすることを特徴とするものである。
【0015】
因みに、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0016】
【発明の実施の形態】
(第1実施形態)
本実施形態は、本発明に係る車両用空調装置を電気自動車用の空調装置に適用したものであって、図1は本実施形態に係る空調装置の模式図である。
【0017】
圧縮機10は電動モータにより駆動されて冷媒を吸入圧縮するものであり、室外熱交換器20は冷媒と室外空気とを熱交換して冷媒を冷却又は加熱するものであり、第1、2室内熱交換器31、32は室内に吹き出す空気と冷媒とを熱交換させるものである。
【0018】
このとき、第2室内熱交換器32は、空調ケーシング80内において第1室内熱交換器31より空気流れ下流側に設置されているとともに、そのコア面には、第2室内熱交換器32を通過する空気量と第2室内熱交換器32を迂回して下流側に流れる風量との風量割合を調節する風量割合調節手段をなすエアミックスドア81が設けられている。
【0019】
なお、空調ケーシング80とは、室内に吹き出す空気が流れる空気通路を構成する容器であり、コア面とは、第2室内熱交換器32の熱交換部のうち空気の流通方向と交差する仮想の平面である。
【0020】
因みに、本実施形態では、冷媒を二酸化炭素として、高圧側冷媒の圧力、つまり圧縮機10の吐出圧を冷媒の臨界圧力以上まで昇圧している。
【0021】
また、第1室内熱交換器31の空気流れ上流側には、空調ケーシング80内に空気を送風する送風機82、及び送風機82に導入する室内空気量と室外空気量の割合を制御する内外気切換装置83が設けられ、一方、第2室内熱交換器32の空気流れ下流側には、室内に吹き出す空気のモードを切り換える吹出モード切換装置84が設けられている。
【0022】
なお、吹出モードとしては、主に車室内の下方側に空気を吹き出すフット吹出モード、主に車室内の上方側に空気を吹き出すフェイス吹出モード、並びに車室内の上方側及び下方側に空気を吹き出すバイレベル吹出モードの少なくとも3つのモードが有る。
【0023】
第1、2膨脹弁41、42は、圧縮機10にて圧縮された高圧冷媒を等エンタルピ的に減圧膨脹させる減圧手段であり、アキュムレータ50は流入する冷媒を気相冷媒と液相冷媒とに分離して液相冷媒を余剰冷媒として蓄えるとともに、気相冷媒を圧縮機10の吸入側に供給する気液分離手段である。
【0024】
内部熱交換器60は、減圧される前の高圧冷媒と圧縮機10に吸入される低圧冷媒とを熱交換するもので、本実施形態では、高圧冷媒が流れるチューブ61と低圧冷媒が流れるチューブ62とをろう付けすることにより内部熱交換器60を構成している。
【0025】
第1バイパス弁41aは、内部熱交換器60を流出して第1膨脹弁41側に向かって流れる冷媒を第1膨脹弁41を迂回させてアキュムレータ50に導く第1バイパス通路41bを開閉する電磁弁であり、第2バイパス弁42aは、第2膨脹弁42を迂回させて冷媒を流す第2バイパス通路42bを開閉する電磁弁である。
【0026】
なお、圧縮機10、室外熱交換器20、第1、2室内熱交換器31、32、第1、2膨脹弁41、42等により、低温側の熱を高温側に移動させる蒸気圧縮式冷凍機が構成される。
【0027】
また、図2は本実施形態に係る車両用空調装置の制御系を示すブロック図であり、電子制御装置(ECU)90は、第1室内熱交換器31を通過した直後の空気温度を検出する第1温度センサ91の検出温度Te、第2室内熱交換器32を通過した直後の空気温度を検出する第2温度センサ92の検出温度Tgc、外気温度を検出する外気センサ93の検出温度TAM、内気温度を検出する内気センサ94の検出温度Tr、室内に注がれる日射量を検出する日射センサ95の検出値Ts、圧縮機10から吐出する冷媒の圧力を検出する吐出圧センサ96の検出圧力Sp、圧縮機10から吐出する冷媒の温度を検出する吐出温度センサ97の検出温度Td、第2室内熱交換器32から流出した冷媒の温度を検出する室内冷媒温度センサ98の検出温度Tco、及び室外熱交換器20から流出した冷媒の温度を検出する室外冷媒温度センサ99の検出温度Tho等の空調センサの検出値、乗員が希望する室内温度Tsetを設定入力するための温度設定パネル100の設定値等に基づいて、圧縮機10の回転数及びエアミックスドア81の開度、送風機82、内外気切替装置83及び吹出モード切替装置84等を制御する。
【0028】
なお、モータ駆動回路102は、ECU90から指令信号を受けて圧縮機10を駆動する電動モータに駆動電流を供給するものである。
【0029】
次に、本実施形態に係る車両用空調装置の特徴的作動を述べる。
【0030】
図3、4は本実施形態に係る車両用空調装置においてECU90が実行する制御フローを示すフローチャートであり、先ず、センサ91〜99の検出信号及び温度設定パネル100に入力された設定温度等を読み込み(S100、S110)、この読み込んだ値から下記の数式1に基づいて車室内に吹き出す空気の目標温度(目標吹出温度TAO)を決定する(S120)。
【0031】
【数1】
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×Ts+C
但し Kset、Kr、Kam、Ks:制御ゲイン
C:補正用の定数
次に、圧縮機10を起動する必要があるか否かを判定し(S130)、圧縮機10が起動中である場合には、目標吹出温度TAOに基づいて蒸気圧縮式冷凍機を暖房サイクルとして運転させるか、除湿サイクルとして運転させるか、又は冷房サイクルとして運転させるかを決定する(S140、S150、S161〜S163)。
【0032】
具体的には、目標吹出温度TAOが所定温度α(例えば、45℃)以上の場合には蒸気圧縮式冷凍機を暖房サイクルとして運転し(S161)、目標吹出温度TAOが所定温度α未満であって、所定温度αより低い所定温度β(例えば、15℃)より高い場合には蒸気圧縮式冷凍機を除湿サイクルとして運転し(S162)、目標吹出温度TAOが所定温度β以下の場合には蒸気圧縮式冷凍機を冷房サイクルとして運転する(S163)。なお、各運転サイクルの詳細は、後述する。
【0033】
次に、選択された運転サイクルによらず、目標吹出温度TAOに基づいて送風機82の送風量(ブロワレベル)、送風機82に導入する内気量と外気量の割合、及び吹出モードを決定する(S171〜S173、S181〜S183、S191〜S193)。
【0034】
なお、図5は目標吹出温度TAOとブロワレベルとの関係を示すチャートであり、目標吹出温度TAOが上限側の所定値及び下限側の所定値に近づくほどブロワレベルが増大する。
【0035】
図6は目標吹出温度TAOと内気量と外気量の割合を示すチャートであり、目標吹出温度TAOが大きくなるほど外気の割合が大きくなる。
【0036】
図7は目標吹出温度TAOと吹出モードとの関係を示すチャートであり、目標吹出温度TAOが大きくなるに連れて選定される吹出モードがフェイス吹出モード→バイレベル吹出モード→フット吹出モードの順に変化する。
【0037】
そして、暖房サイクルが選定されている場合、除湿サイクルが選定されている場合、又は冷房サイクルが選定されている場合においてバイレベル吹出モードが選定されているときには、下記の数式2によりエアミックスドア81の開度SWを決定し(S201、S202、S203、S204)し、冷房サイクルが選定されている場合においてバイレベル吹出モード以外の吹出モードが選定されているときには、下記の数式3によりエアミックスドア81の開度SWを決定する(S203、S205)。
【0038】
【数2】
SW={TAO−(Te+a)}/{Tgc−(Te+a)}×100
但し a:補正用の定数
【0039】
【数3】
SW={TAO−(Te+a)}/{(Tgc+b)−(Te+a)}×100
a、b:補正用の定数
なお、bは負の数(例えば−15)とすることが望ましい。
【0040】
そして、数式2、3から明らかなように、第2室内熱交換器32の加熱能力、つまり第2温度センサ92の検出温度Tgcが大きくなるほど、第2室内熱交換器32を迂回する空気量が増大するように開度SWが小さくなる。
【0041】
なお、エアミックスドア81の開度SWが0%(全閉)とは、第2室内熱交換器32のコア面が全て閉塞されて空調ケーシング80内を流れる空気の全量が第2室内熱交換器32を迂回して流れる状態であり、開度SWが100%(全開)とは、これとは逆に、空調ケーシング80内を流れる空気の全量が第2室内熱交換器32を通過する状態である。
【0042】
次に、除湿サイクルが選定されている場合には、図8に示すマップに従って外気温度TAMに基づいて第1室内熱交換器31を通過した直後の空気温度の目標値(目標エバ後温度TEO)を決定し(S212)、冷房サイクルが選定されている場合には、S120で算出された目標吹出温度TAOを目標エバ後温度TEOとして目標エバ後温度TEOを決定する(S213)。
【0043】
そして、暖房サイクルが選定されている場合においてバイレベル吹出モードが選定されているときには、目標エバ後温度TEOを決定することなく、下記の数式4に基づいて第2室内熱交換器32を通過した直後の空気温度の目標値(目標放熱器後温度Tgco)を決定し(S221、S222)、暖房サイクルが選定されている場合においてバイレベル吹出モードが以外の吹出モード選定されているときには、S120で算出された目標吹出温度TAOを目標放熱器後温度Tgcoとして目標放熱器後温度Tgcoを決定する(S221、S223)
【0044】
【数4】
Tgco=α×TAO+β×Te+γ
但し、α、β、γは、Tgco>TAOとなるような定数
また、除湿サイクルが選定されている場合においてバイレベル吹出モードが選定されているときには、上記の数式4に基づいて目標放熱器後温度Tgcoを決定し(S224、S225)、除湿サイクルが選定されている場合においてバイレベル吹出モードが以外の吹出モード選定されているときには、S120で算出された目標吹出温度TAOを目標放熱器後温度Tgcoとして目標放熱器後温度Tgcoを決定する(S224、S226)。
【0045】
次に、暖房サイクルが選定されている場合には、第2温度センサ92の検出温度(放熱器温度)Tgcが目標放熱器後温度Tgcoとなるように、ファジー演算法を用いて目標値と現在値との偏差から圧縮機回転数の増減量を算出し(S231)、冷房サイクル及び除湿サイクルが選定されている場合には、第1温度センサ91の検出温度(エバ後温度)Teが目標エバ後温度TEOとなるように、ファジー演算法を用いて目標値と現在値との偏差から圧縮機回転数の増減量を算出する(S232、S233)。
【0046】
そして、暖房サイクルが選定されている場合には、室内冷媒温度センサ98の検出温度(放熱器出口側の冷媒温度)Tcoに基づいて蒸気圧縮式冷凍機の成績係数が略最大となるような目標高圧側冷媒圧力を決定し(S241)、冷房サイクルが選定されている場合には、室外冷媒温度センサ99の検出温度(室外熱交換器出口側の冷媒温度)Thoに基づいて蒸気圧縮式冷凍機の成績係数が略最大となるような目標高圧側冷媒圧力を決定する(S243)。
【0047】
次に、暖房サイクルが選定されている場合には、S241にて決定された目標高圧側冷媒圧力となるような第2膨脹弁42の開度を決定し(S251)、冷房サイクルが選定されている場合には、S243にて決定された目標高圧側冷媒圧力となるような第1膨脹弁41の開度を決定する(S253)。
【0048】
なお、除湿サイクルが選定されている場合には、室内に吹き出す空気の温度が目標吹出温度TAOとなるように、第1、2膨脹弁41、42の開度を制御するする。
【0049】
具体的には、吹出温度を上昇させる際には、第1膨脹弁41の開度を増大させ、かつ、第2膨脹弁42の開度を縮小させることにより、第2室内熱交換器32での放熱量を増大させつつ、室外熱交換器20での放熱量を減少させる又は室外熱交換器20で吸熱させる。
【0050】
一方、吹出温度を低下させる際には、第1膨脹弁41の開度を縮小させ、かつ、第2膨脹弁42の開度を増大させることにより、第2室内熱交換器32での放熱量を減少させつつ、室外熱交換器20での放熱量を増大させる。
【0051】
そして、上記制御ステップに決定された吹出モード、運転サイクル、送風量、回転数及び開度となるように各機器(アクチュエータ)を作動させる(S260)。
【0052】
次に、各運転サイクル及び本実施形態の特徴について述べる。
【0053】
1.暖房サイクル
暖房サイクル運転時には、第1膨脹弁41及び第2バイパス弁42aを閉じ、かつ、第2膨脹弁42及び第1バイパス弁41aを開いて冷媒を圧縮機10→第2室内熱交換器32→第2膨脹弁42→室外熱交換器20→内部熱交換器60(チューブ61)→アキュムレータ50→内部熱交換器60(チューブ62)→圧縮機10の順に循環させる。
【0054】
このとき、バイレベル吹出モード以外の吹出モードが選定されていれば、通常、エアミックスドア81の開度SWは100%となるため、室内に吹き出す空気は、第2室内熱交換器32にて圧縮機10から吐出した高温冷媒に加熱される。
【0055】
また、室外熱交換器20以降は、第2膨脹弁42にて減圧されて温度が低下した冷媒が循環するので、内部熱交換器60で実質的に熱交換は行われない。
【0056】
一方、バイレベル吹出モードが選定されていれば、エアミックスドア81の開度SWは100%未満、0%超となるので、第2室内熱交換器32を通過した空気は、第2室内熱交換器32にて加熱された温風と第2室内熱交換器32を迂回した冷風とが発生し、バイレベル吹出モード時において、上方側に吹き出す空気の温度と下方側にに吹き出す空気の温度とを相違させることができる。
【0057】
因みに、αを2とし、βを−1とし、γを0とすれば、Teが15℃のときにバイレベル吹出モードが選定されると、開度SWは約50%となり、フェイス吹出口側から約25℃の冷風が吹き出され、フット吹出口からは約35℃の温風が吹き出される。
【0058】
2.除湿サイクル
除湿サイクル運転時には、第1、2膨脹弁41、42を開き、かつ、第1、2バイパス弁41a、42aを閉じて冷媒を圧縮機10→第2室内熱交換器32→第2膨脹弁42→室外熱交換器20→内部熱交換器60(チューブ61)→第1膨脹弁41→第1室内熱交換器31→アキュムレータ50→内部熱交換器60(チューブ62)→圧縮機10の順に循環させる。
【0059】
このとき、バイレベル吹出モード以外の吹出モードが選定されていれば、通常、エアミックスドア81の開度SWは100%となるため、室内に吹き出す空気は、第1室内熱交換器31にて冷却除湿された後、第2室内熱交換器32にて圧縮機10から吐出した高温冷媒に加熱される。
【0060】
一方、バイレベル吹出モードが選定されていれば、エアミックスドア81の開度SWは100%未満、0%超となるので、第2室内熱交換器32を通過した空気は、第2室内熱交換器32にて加熱された温風と第2室内熱交換器32を迂回した冷風とが発生し、バイレベル吹出モード時において、上方側に吹き出す空気の温度と下方側にに吹き出す空気の温度とを相違させることができる。
【0061】
3.冷房サイクル
冷房サイクル運転時には、第1膨脹弁41及び第2バイパス弁42aを開き、かつ、第2膨脹弁42及び第1バイパス弁41aを閉じて冷媒を圧縮機10→第2室内熱交換器32→第2膨脹弁42→室外熱交換器20→内部熱交換器60(チューブ61)→第1膨脹弁41→第1室内熱交換器31→アキュムレータ50→内部熱交換器60(チューブ62)→圧縮機10の順に循環させる。
【0062】
このとき、バイレベル吹出モード以外の吹出モードが選定されていれば、通常、エアミックスドア81の開度SWは0%となるため、第1室内熱交換器31にて冷却された空気は、第2室内熱交換器32にて熱交換することなく室内に吹き出す。
【0063】
また、第1室内熱交換器31以降は、第1膨脹弁41にて減圧されて温度が低下した冷媒が循環するので、内部熱交換器60にて高圧冷媒と低圧冷媒とが熱交換されるので、第1室内熱交換器31に流入する冷媒のエンタルピを低下させるこができ、冷凍能力を増大させることができる。
【0064】
一方、仮にバイレベル吹出モードが選定されていれば、エアミックスドア81の開度SWは100%未満、0%超となるので、第2室内熱交換器32を通過した空気は、第2室内熱交換器32にて加熱された温風と第2室内熱交換器32を迂回した冷風とが発生し、バイレベル吹出モード時において、上方側に吹き出す空気の温度と下方側にに吹き出す空気の温度とを相違させることができる。
【0065】
ところで、バイレベル吹出モードが選定された場合には、第2室内熱交換器32を通過した直後の空気温度が目標吹出温度TAOより高い温度となるように第2室内熱交換器32の加熱能力を制御するので、圧縮機10、つまり蒸気圧縮式冷凍機の消費動力が増大するものの、本実施形態では、空調負荷が大きいときには、原則、高圧側の冷媒圧力を臨界圧量以上としているので、比較的高温を生成し易い。したがって、消費動力の増大を抑制しながら、上方側に吹き出す空気の温度と下方側にに吹き出す空気の温度とを相違させることができる。
【0066】
(第2実施形態)
本実施形態は、図9に示すように、バイレベル吹出モードが選定された場合において目標吹出温度TAOが所定温度以上となったときには、第2室内熱交換器32を通過した直後の空気温度と目標吹出温度TAOとの温度差が、目標吹出温度TAOが所定温度以下のときの第2室内熱交換器32を通過した直後の空気温度と目標吹出温度TAOとの温度差より小さくなるように第2室内熱交換器32の加熱能力、つまり目標放熱器後温度Tgcoを決定するものである。
【0067】
次に、本実施形態の作用効果を述べる。
【0068】
前述のごとく、バイレベル吹出モードが選定された場合には、第2室内熱交換器32を通過した直後の空気温度が目標吹出温度TAOより高い温度となるように第2室内熱交換器32の加熱能力を制御するので、蒸気圧縮式冷凍機の消費動力が増大してしまう。
【0069】
これに対して、本実施形態では、目標吹出温度TAOが所定温度以上となったときには、第2室内熱交換器32を通過した直後の空気温度と目標吹出温度TAOとの温度差が、目標吹出温度TAOが所定温度以下のときの第2室内熱交換器32を通過した直後の空気温度と目標吹出温度TAOとの温度差より小さくするので、蒸気圧縮式冷凍機の消費動力が増大することを抑制できる。
【0070】
なお、図9では、目標吹出温度TAOに基づいて目標放熱器後温度Tgcoをの増加量を変化させたが、目標吹出温度TAOは外気温度や内気温度と相関関係があるので、内気温度又は外気温度が所定温度以上となったときには、第2室内熱交換器32を通過した直後の空気温度と目標吹出温度TAOとの温度差が、内気温度又は外気温度が所定温度以下のときの第2室内熱交換器32を通過した直後の空気温度と目標吹出温度TAOとの温度差より小さくなるように第2室内熱交換器32の加熱能力、つまり目標放熱器後温度Tgcoを決定してもよい。
【0071】
(その他の実施形態)
本実施形態では、冷媒を二酸化炭素として、高圧側冷媒の圧力、つまり圧縮機10の吐出圧を冷媒の臨界圧力以上まで昇圧しているが、冷媒をフロン(R134a)等して高圧冷媒の圧力を臨界圧力未満としてよいことは言うまでもない。
【0072】
また、上述の実施形態では、第2室内熱交換器32、つまり加熱器として蒸気圧縮式冷凍機の高圧側熱交換器を利用したが、本発明はこれに限定されるものではなく、例えば図10に示すように、加熱器32として電気ヒータを用いてもよい。
【図面の簡単な説明】
【図1】本発明の実施形態に係る空調装置の模式図である。
【図2】本発明の実施形態に係る空調装置の制御系を示す模式図である。
【図3】本発明の実施形態に係る空調装置の制御フローチャートである。
【図4】本発明の実施形態に係る空調装置の制御フローチャートである。
【図5】目標吹出温度TAOとブロワレベルとの関係を示す特性図である。
【図6】目標吹出温度TAOと内気量と外気量の割合を示す特性図である。
【図7】目標吹出温度TAOと吹出モードとの関係を示す特性図である。
【図8】気温度TAMと目標エバ後温度TEOとの関係を示す特性図である。
【図9】目標放熱器後温度Tgcoと目標吹出温度TAOとの関係を示す特性図である。
【図10】本発明のその他の実施形態に係る空調装置の模式図である。
【符号の説明】
10…圧縮機、20…室外熱交換器、31…第1室内熱交換器、
32…第2室内熱交換器、41…第1膨脹弁、42…第2膨脹弁、
81…エアミックスドア。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner for a vehicle, and is applied to an air conditioner for an electric vehicle using a fuel cell or an electric vehicle such as a so-called hybrid vehicle that travels in combination with an internal combustion engine (engine) and an electric motor. It is valid.
[0002]
[Prior art]
Because the waste heat for electric vehicles is less than that of a vehicle that runs only with an engine, the conventional vehicle air conditioner uses a high-pressure refrigerant in a vapor compression refrigeration machine or a heater that uses combustion gas from the combustion chamber as a heat source. The air blown out is heated (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-20458
[0004]
[Problems to be solved by the invention]
By the way, in a vehicle air conditioner using a heat source other than engine waste heat as a heat source, the entire amount of air blown into the room is usually heated by the air that has passed through the heater, that is, the heater. Since the heating capacity of the heater is controlled so that the temperature of the air after the air reaches the target blown air temperature, the air passing through the heater has a substantially uniform temperature distribution.
[0005]
For this reason, in the bi-level blowing mode in which air is blown upward and downward in the passenger compartment, air having substantially the same temperature is blown upward and downward, giving the passenger a good feeling of air conditioning. It is difficult.
[0006]
In general, it is said that if the temperature of the air blown upward is lower than the temperature of the air blown downward, a good air conditioning feeling can be given.
[0007]
In view of the above points, the present invention firstly provides a new vehicle air conditioner that is different from the conventional one, and secondly, in the bi-level blowing mode, the temperature of the air blown upward and the lower side thereof. The purpose is to make the temperature of the air blown out differently.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, according to the present invention, in the first aspect of the present invention, a foot blowing mode that blows air mainly to the lower side of the vehicle interior, and a face blowing mode that mainly blows air to the upper side of the vehicle interior. And a bi-level blowing mode for blowing air to the upper side and the lower side of the passenger compartment,carA vehicle air conditioner that harmonizes the air blown into the room,
  carAn air conditioning casing (80) constituting an air passage through which air blown into the room flows;
  It arrange | positions in an air conditioning casing (80) and heats the air which flows through the inside of an air conditioning casing (80).At the same time, the heating capacity can be controlledA heater (32);
  It is provided in the air conditioning casing (80) and adjusts the air volume ratio between the amount of air that flows around the heater (32) and flows downstream and the temperature of the air heated by the heater (32) and flows downstream. Air volume ratio adjusting means (81);
  A foot outlet that opens to a portion of the air conditioning casing (80) downstream of the heater (32) on the side where the warm air that has passed through the heater (32) flows and blows air downward in the passenger compartment. ,
  Of the downstream part of the heater (32) in the air-conditioning casing (80), a face outlet that opens to a part on the side through which the cold air that bypasses the heater (32) flows and blows air upward in the vehicle interior,
  A blowing mode switching device (84) that opens and closes the foot blowing port and the face blowing port to switch the foot blowing mode, the face blowing mode, and the bi-level blowing mode;
  Heating capacity control means (90) for controlling the heating capacity of the heater (32);
  The air volume ratio determining means (S201) which determines the air volume ratio of the air volume ratio adjusting means (81) so that the air volume bypassing the heater (32) increases as the heating capacity of the heater (32) increases., S202, S204, S205)
  In the air conditioning casing (80), the opening (SW) of the air volume ratio adjusting means (81) is 0% when the total amount of air flowing in the air conditioning casing (80) flows around the heater (32). When the opening degree (SW) of the air volume ratio adjusting means (81) is 100% in a state where the total amount of air flowing through the heater (32) passes through the heater (32), the air in the air conditioning casing (80) is 32) When the bi-level blowing mode is selected during heating to be heated, the opening degree (SW) of the air volume ratio adjusting means (81) is less than 100% by the air volume ratio determining means (S201, S202, S204, S205), Over 0%,
  In the bi-level blowing mode, hot air that has passed through the heater (32) and cold air that bypasses the heater (32) are generated, and the temperature of the air blown downward is higher than the temperature of the air blown upward. And
  Furthermore, the heating capacity control means (90)
  When the foot blowing mode and the face blowing mode are selected during heating, the air temperature immediately after passing through the heater (32) becomes the temperature (Tgco) corresponding to the target temperature (TAO) of the air blown into the passenger compartment. First control means (S223) for controlling the heating capacity of the heater (32),
  During heatingWhen the bi-level blow mode is selected, the air temperature immediately after passing through the heater (32) is higher than the target temperature (TAO) of the air blown into the passenger compartment.And the temperature given by the first control means (S223)The heating capacity of the heater (32) is controlled so that the temperature becomes high.Second control means (S222).It is characterized by that.
[0009]
  As a result, the air volume ratio of the air volume ratio adjusting means (81) is less than 100% and more than 0% so that the air volume bypassing the heater (32) increases, so the air that has passed through the heater (32). Is the temperature of the air blown upward in the bi-level blowing mode when hot air heated by the heater (32) and cold air bypassing the heater (32) are generated.thanThe temperature of the air blown out downwardIncreasebe able to.
[0010]
  According to a second aspect of the present invention, in the vehicle air conditioner according to the first aspect, the first control means (S223) is configured such that when the foot blowing mode and the face blowing mode are selected during heating, the heater (32 ), The heating capacity of the heater (32) is controlled so that the air temperature immediately after passing through () becomes the same temperature (Tgco) as the target temperature (TAO) of the air blown into the passenger compartment.
  Claim3In the invention described inThe vehicle air conditioner according to claim 1 or 2,The heating capacity control means (90)During heatingIf the target temperature (TAO) is equal to or higher than the predetermined temperature when the bi-level blowing mode is selected, the temperature difference between the air temperature immediately after passing through the heater (32) and the target temperature (TAO) is the target temperature. The heating capacity of the heater (32) is controlled to be smaller than the temperature difference between the air temperature immediately after passing through the heater (32) when the (TAO) is equal to or lower than the predetermined temperature and the target temperature (TAO). Features.
[0011]
Thereby, it can suppress that the energy consumption of a heater (32) increases.
[0012]
  Claim4In the invention described inIn the vehicle air conditioner according to any one of claims 1 to 3,The heater (32) heats air using the high-pressure refrigerant of the vapor compression refrigerator as a heat source.An indoor heat exchanger for heating,
  The heating capacity control means (90) controls the heating capacity of the heater (32) by increasing or decreasing the compressor rotation speed of the vapor compression refrigerator.It is characterized by this.
[0013]
  According to a fifth aspect of the present invention, in the vehicle air conditioner according to the fourth aspect, the air flowing in the air conditioning casing (80) is cooled upstream of the heater (32) in the air conditioning casing (80). A cooling indoor heat exchanger (31) is arranged,
  The cooling indoor heat exchanger (31) cools the air with the low-pressure refrigerant of the vapor compression refrigerator,
  A cooling cycle is performed by cooling the air in the air conditioning casing (80) in the cooling indoor heat exchanger (31),
  On the other hand, the air in the air conditioning casing (80) is cooled by the indoor heat exchanger (31) for cooling and then heated by the heater (32) to execute the dehumidification cycle.
  Claim6In the invention described inThe vehicle air conditioner according to claim 4 or 5,The high pressure side refrigerant pressure of the vapor compression refrigerator may be equal to or higher than the critical pressure of the refrigerant.
[0014]
  Claim7In the invention described inThe vehicle air conditioner according to any one of claims 4 to 6,The vapor compression refrigerator is characterized by using carbon dioxide as a refrigerant.
[0015]
Incidentally, the reference numerals in parentheses of each means described above are an example showing the correspondence with the specific means described in the embodiments described later.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
In the present embodiment, the vehicle air conditioner according to the present invention is applied to an air conditioner for an electric vehicle, and FIG. 1 is a schematic diagram of the air conditioner according to the present embodiment.
[0017]
The compressor 10 is driven by an electric motor to suck and compress the refrigerant, and the outdoor heat exchanger 20 cools or heats the refrigerant by exchanging heat between the refrigerant and the outdoor air. The heat exchangers 31 and 32 exchange heat between the air blown into the room and the refrigerant.
[0018]
At this time, the second indoor heat exchanger 32 is installed in the air conditioning casing 80 on the downstream side of the air flow from the first indoor heat exchanger 31, and the second indoor heat exchanger 32 is provided on the core surface thereof. An air mix door 81 is provided as air volume ratio adjusting means for adjusting the air volume ratio between the amount of air passing therethrough and the volume of air flowing downstream from the second indoor heat exchanger 32.
[0019]
The air conditioning casing 80 is a container that forms an air passage through which air blown into the room flows, and the core surface is a virtual crossing with the air flow direction in the heat exchange section of the second indoor heat exchanger 32. It is a plane.
[0020]
Incidentally, in this embodiment, the refrigerant is carbon dioxide, and the pressure of the high-pressure side refrigerant, that is, the discharge pressure of the compressor 10 is increased to the critical pressure or more of the refrigerant.
[0021]
Further, on the upstream side of the air flow of the first indoor heat exchanger 31, a blower 82 that blows air into the air conditioning casing 80, and an indoor / outdoor air switch that controls the ratio of the indoor air amount and the outdoor air amount introduced into the blower 82. On the other hand, a blow-out mode switching device 84 for switching the mode of the air blown into the room is provided on the downstream side of the second indoor heat exchanger 32 in the air flow.
[0022]
In addition, as the blowing mode, a foot blowing mode that mainly blows air to the lower side of the vehicle interior, a face blowing mode that mainly blows air to the upper side of the vehicle cabin, and air is blown to the upper and lower sides of the vehicle cabin. There are at least three modes of the bi-level blowing mode.
[0023]
The first and second expansion valves 41 and 42 are decompression means for decompressing and expanding the high-pressure refrigerant compressed by the compressor 10 in an enthalpy manner. The accumulator 50 converts the refrigerant flowing into a gas-phase refrigerant and a liquid-phase refrigerant. The gas-liquid separation means separates and stores the liquid-phase refrigerant as an excess refrigerant and supplies the gas-phase refrigerant to the suction side of the compressor 10.
[0024]
  The internal heat exchanger 60 exchanges heat between the high-pressure refrigerant before being decompressed and the low-pressure refrigerant sucked into the compressor 10, and in this embodiment, the tube through which the high-pressure refrigerant flows.61And a tube through which low-pressure refrigerant flows62And the internal heat exchanger 60 is configured.
[0025]
The first bypass valve 41a opens and closes the first bypass passage 41b that guides the refrigerant flowing out of the internal heat exchanger 60 and flowing toward the first expansion valve 41 to the accumulator 50 by bypassing the first expansion valve 41. The second bypass valve 42a is an electromagnetic valve that opens and closes the second bypass passage 42b that bypasses the second expansion valve 42 and flows the refrigerant.
[0026]
In addition, the vapor compression refrigeration that moves the heat on the low temperature side to the high temperature side by the compressor 10, the outdoor heat exchanger 20, the first and second indoor heat exchangers 31, 32, the first and second expansion valves 41, 42, and the like. The machine is configured.
[0027]
FIG. 2 is a block diagram showing a control system of the vehicle air conditioner according to the present embodiment. The electronic control unit (ECU) 90 detects the air temperature immediately after passing through the first indoor heat exchanger 31. A detected temperature Te of the first temperature sensor 91, a detected temperature Tgc of the second temperature sensor 92 that detects the air temperature immediately after passing through the second indoor heat exchanger 32, a detected temperature TAM of the outside air sensor 93 that detects the outside air temperature, The detection temperature Tr of the inside air sensor 94 that detects the inside air temperature, the detection value Ts of the solar radiation sensor 95 that detects the amount of solar radiation poured into the room, and the detection pressure of the discharge pressure sensor 96 that detects the pressure of the refrigerant discharged from the compressor 10 Sp, detection temperature Td of the discharge temperature sensor 97 that detects the temperature of the refrigerant discharged from the compressor 10, detection of the indoor refrigerant temperature sensor 98 that detects the temperature of the refrigerant that has flowed out of the second indoor heat exchanger 32. Temperature setting for inputting the detected value of the air conditioning sensor such as the detected temperature Tho of the outdoor refrigerant temperature sensor 99 for detecting the temperature Tco, the temperature of the refrigerant flowing out of the outdoor heat exchanger 20, and the indoor temperature Tset desired by the passenger Based on the setting value of the panel 100, etc., the rotation speed of the compressor 10, the opening degree of the air mix door 81, the blower 82, the inside / outside air switching device 83, the blowing mode switching device 84, and the like are controlled.
[0028]
The motor drive circuit 102 supplies a drive current to the electric motor that receives the command signal from the ECU 90 and drives the compressor 10.
[0029]
Next, the characteristic operation of the vehicle air conditioner according to this embodiment will be described.
[0030]
3 and 4 are flowcharts showing a control flow executed by the ECU 90 in the vehicle air conditioner according to the present embodiment. First, the detection signals of the sensors 91 to 99, the set temperature input to the temperature setting panel 100, and the like are read. (S100, S110), a target temperature (target blowing temperature TAO) of the air blown into the vehicle interior is determined from the read value based on the following formula 1 (S120).
[0031]
[Expression 1]
TAO = Kset * Tset-Kr * Tr-Kam * Tam-Ks * Ts + C
Where Kset, Kr, Kam, Ks: Control gain
C: Constant for correction
Next, it is determined whether or not the compressor 10 needs to be started (S130). When the compressor 10 is being started, the vapor compression refrigerator is set as a heating cycle based on the target blowing temperature TAO. It is determined whether to operate, operate as a dehumidifying cycle, or operate as a cooling cycle (S140, S150, S161 to S163).
[0032]
Specifically, when the target blowing temperature TAO is equal to or higher than a predetermined temperature α (for example, 45 ° C.), the vapor compression refrigerator is operated as a heating cycle (S161), and the target blowing temperature TAO is less than the predetermined temperature α. When the temperature is higher than a predetermined temperature β (for example, 15 ° C.) lower than the predetermined temperature α, the vapor compression refrigerator is operated as a dehumidification cycle (S162), and when the target blowing temperature TAO is equal to or lower than the predetermined temperature β, steam The compression refrigerator is operated as a cooling cycle (S163). Details of each operation cycle will be described later.
[0033]
Next, regardless of the selected operation cycle, the blower 82 blower amount (blower level), the ratio of the inside air amount and the outside air amount to be introduced into the blower 82, and the blowout mode are determined based on the target blowout temperature TAO (S171). -S173, S181-S183, S191-S193).
[0034]
FIG. 5 is a chart showing the relationship between the target blowing temperature TAO and the blower level, and the blower level increases as the target blowing temperature TAO approaches the upper limit side predetermined value and the lower limit side predetermined value.
[0035]
FIG. 6 is a chart showing the target blowing temperature TAO, the ratio of the inside air amount and the outside air amount, and the ratio of the outside air increases as the target blowing temperature TAO increases.
[0036]
FIG. 7 is a chart showing the relationship between the target blowing temperature TAO and the blowing mode, and the blowing mode selected as the target blowing temperature TAO becomes larger changes in the order of face blowing mode → bi-level blowing mode → foot blowing mode. To do.
[0037]
When the heating cycle is selected, the dehumidification cycle is selected, or the bi-level blowing mode is selected when the cooling cycle is selected, the air mix door 81 is expressed by the following formula 2. When the air-cooling cycle is selected and a blowing mode other than the bi-level blowing mode is selected when the cooling cycle is selected, the air mix door is expressed by the following formula 3. The opening degree SW of 81 is determined (S203, S205).
[0038]
[Expression 2]
SW = {TAO− (Te + a)} / {Tgc− (Te + a)} × 100
A: Constant for correction
[0039]
[Equation 3]
SW = {TAO− (Te + a)} / {(Tgc + b) − (Te + a)} × 100
a, b: constants for correction
Note that b is preferably a negative number (for example, −15).
[0040]
As is clear from Equations 2 and 3, as the heating capacity of the second indoor heat exchanger 32, that is, the detected temperature Tgc of the second temperature sensor 92 increases, the amount of air that bypasses the second indoor heat exchanger 32 increases. The opening degree SW decreases so as to increase.
[0041]
Note that when the opening degree SW of the air mix door 81 is 0% (fully closed), the entire indoor surface of the second indoor heat exchanger 32 is closed and the total amount of air flowing in the air conditioning casing 80 is the second indoor heat exchange. In contrast, when the opening degree SW is 100% (fully open), the entire amount of air flowing in the air conditioning casing 80 passes through the second indoor heat exchanger 32. It is.
[0042]
Next, when the dehumidification cycle is selected, the target value of the air temperature immediately after passing through the first indoor heat exchanger 31 (target post-evaporation temperature TEO) based on the outside air temperature TAM according to the map shown in FIG. Is determined (S212), and when the cooling cycle is selected, the target post-evaporation temperature TEO is determined using the target outlet temperature TAO calculated in S120 as the target post-evaporation temperature TEO (S213).
[0043]
And when the bi-level blowing mode is selected when the heating cycle is selected, the second after-heat exchanger 32 is passed based on the following Equation 4 without determining the target post-evaporation temperature TEO. A target value for the air temperature immediately after (target post-heatsink temperature Tgco) is determined (S221, S222), and when a heating mode is selected, when a blowing mode other than the bi-level blowing mode is selected, in S120 The target post-heat radiator temperature Tgco is determined with the calculated target blowout temperature TAO as the target post-heat radiator temperature Tgco (S221, S223).
[0044]
[Expression 4]
Tgco = α × TAO + β × Te + γ
Where α, β and γ are constants such that Tgco> TAO.
Further, when the dehumidification cycle is selected and the bi-level blowing mode is selected, the target radiator post-heater temperature Tgco is determined based on the above formula 4 (S224, S225), and the dehumidification cycle is selected. When the blow mode other than the bi-level blow mode is selected, the target radiator temperature Tgco is determined using the target radiator temperature TAO calculated in S120 as the target radiator temperature Tgco (S224, S226).
[0045]
Next, when the heating cycle is selected, the target value and the current value are calculated using the fuzzy calculation method so that the detected temperature (heat radiator temperature) Tgc of the second temperature sensor 92 becomes the target heat radiator post-temperature Tgco. The amount of increase / decrease in the compressor speed is calculated from the deviation from the value (S231), and when the cooling cycle and the dehumidification cycle are selected, the detected temperature (post-evaporation temperature) Te of the first temperature sensor 91 is the target The increase / decrease amount of the compressor speed is calculated from the deviation between the target value and the current value by using the fuzzy arithmetic method so that the post-temperature TEO is obtained (S232, S233).
[0046]
When the heating cycle is selected, the target is such that the coefficient of performance of the vapor compression refrigerator is substantially maximized based on the temperature detected by the indoor refrigerant temperature sensor 98 (the refrigerant temperature at the radiator outlet side) Tco. When the high-pressure side refrigerant pressure is determined (S241) and the cooling cycle is selected, the vapor compression refrigerator is based on the temperature detected by the outdoor refrigerant temperature sensor 99 (the refrigerant temperature at the outlet side of the outdoor heat exchanger) Tho. The target high-pressure side refrigerant pressure is determined so that the coefficient of performance is substantially maximum (S243).
[0047]
Next, when the heating cycle is selected, the opening degree of the second expansion valve 42 is determined so as to be the target high-pressure side refrigerant pressure determined in S241 (S251), and the cooling cycle is selected. If so, the opening degree of the first expansion valve 41 is determined so as to be the target high-pressure side refrigerant pressure determined in S243 (S253).
[0048]
When the dehumidifying cycle is selected, the opening degree of the first and second expansion valves 41 and 42 is controlled so that the temperature of the air blown into the room becomes the target blowing temperature TAO.
[0049]
Specifically, when raising the blowing temperature, the opening degree of the first expansion valve 41 is increased and the opening degree of the second expansion valve 42 is reduced, so that the second indoor heat exchanger 32 The heat radiation amount in the outdoor heat exchanger 20 is decreased or the outdoor heat exchanger 20 is made to absorb heat while increasing the heat radiation amount.
[0050]
On the other hand, when lowering the blowing temperature, the amount of heat released from the second indoor heat exchanger 32 is reduced by reducing the opening of the first expansion valve 41 and increasing the opening of the second expansion valve 42. The amount of heat radiation in the outdoor heat exchanger 20 is increased while decreasing
[0051]
And each apparatus (actuator) is operated so that it may become the blowing mode determined by the said control step, an operation cycle, the ventilation volume, the rotation speed, and an opening degree (S260).
[0052]
Next, features of each operation cycle and this embodiment will be described.
[0053]
1. Heating cycle
During the heating cycle operation, the first expansion valve 41 and the second bypass valve 42a are closed, and the second expansion valve 42 and the first bypass valve 41a are opened to supply the refrigerant to the compressor 10 → the second indoor heat exchanger 32 → the second. 2 It circulates in order of the expansion valve 42-> outdoor heat exchanger 20-> internal heat exchanger 60 (tube 61)-> accumulator 50-> internal heat exchanger 60 (tube 62)-> compressor 10.
[0054]
At this time, if a blowing mode other than the bi-level blowing mode is selected, the opening degree SW of the air mix door 81 is normally 100%, so that the air blown into the room is sent by the second indoor heat exchanger 32. Heated by the high-temperature refrigerant discharged from the compressor 10.
[0055]
Further, after the outdoor heat exchanger 20, the refrigerant whose pressure is reduced by the second expansion valve 42 is circulated, so that the internal heat exchanger 60 does not substantially exchange heat.
[0056]
On the other hand, if the bi-level blowing mode is selected, the opening SW of the air mix door 81 is less than 100% and more than 0%, so that the air that has passed through the second indoor heat exchanger 32 becomes the second indoor heat. Hot air heated by the exchanger 32 and cold air that bypasses the second indoor heat exchanger 32 are generated, and in the bi-level blowing mode, the temperature of the air blown upward and the temperature of the air blown downward Can be made different.
[0057]
Incidentally, if α is 2, β is −1, and γ is 0, when the bi-level blowing mode is selected when Te is 15 ° C., the opening degree SW is about 50%, and the face outlet side About 25 ° C. cold air is blown out from the foot, and about 35 ° C. hot air is blown out from the foot outlet.
[0058]
2. Dehumidification cycle
During the dehumidification cycle operation, the first and second expansion valves 41 and 42 are opened, and the first and second bypass valves 41a and 42a are closed to supply the refrigerant to the compressor 10 → the second indoor heat exchanger 32 → the second expansion valve 42. -> Outdoor heat exchanger 20-> internal heat exchanger 60 (tube 61)-> first expansion valve 41-> first indoor heat exchanger 31-> accumulator 50-> internal heat exchanger 60 (tube 62)-> compressor 10 Let
[0059]
At this time, if a blowing mode other than the bi-level blowing mode is selected, the opening degree SW of the air mix door 81 is normally 100%, so that the air blown into the room is sent from the first indoor heat exchanger 31. After being cooled and dehumidified, the second indoor heat exchanger 32 is heated by the high-temperature refrigerant discharged from the compressor 10.
[0060]
On the other hand, if the bi-level blowing mode is selected, the opening SW of the air mix door 81 is less than 100% and more than 0%, so that the air that has passed through the second indoor heat exchanger 32 becomes the second indoor heat. Hot air heated by the exchanger 32 and cold air that bypasses the second indoor heat exchanger 32 are generated, and in the bi-level blowing mode, the temperature of the air blown upward and the temperature of the air blown downward Can be made different.
[0061]
3. Cooling cycle
During the cooling cycle operation, the first expansion valve 41 and the second bypass valve 42a are opened, the second expansion valve 42 and the first bypass valve 41a are closed, and the refrigerant is supplied to the compressor 10 → second indoor heat exchanger 32 → second. 2 expansion valve 42-> outdoor heat exchanger 20-> internal heat exchanger 60 (tube 61)-> first expansion valve 41-> first indoor heat exchanger 31-> accumulator 50-> internal heat exchanger 60 (tube 62)-> compressor Circulate in order of 10.
[0062]
At this time, if a blowing mode other than the bi-level blowing mode is selected, the opening degree SW of the air mix door 81 is normally 0%. Therefore, the air cooled in the first indoor heat exchanger 31 is The air is blown into the room without exchanging heat with the second indoor heat exchanger 32.
[0063]
Further, after the first indoor heat exchanger 31, the refrigerant whose pressure is reduced by the first expansion valve 41 is circulated, so that the internal heat exchanger 60 exchanges heat between the high-pressure refrigerant and the low-pressure refrigerant. Therefore, the enthalpy of the refrigerant flowing into the first indoor heat exchanger 31 can be reduced, and the refrigeration capacity can be increased.
[0064]
On the other hand, if the bi-level blowing mode is selected, the opening SW of the air mix door 81 is less than 100% and more than 0%, so the air that has passed through the second indoor heat exchanger 32 is Hot air heated by the heat exchanger 32 and cold air that bypasses the second indoor heat exchanger 32 are generated, and in the bi-level blowing mode, the temperature of the air blown upward and the air blown downward The temperature can be made different.
[0065]
By the way, when the bi-level blowing mode is selected, the heating capacity of the second indoor heat exchanger 32 so that the air temperature immediately after passing through the second indoor heat exchanger 32 is higher than the target blowing temperature TAO. However, in this embodiment, when the air conditioning load is large, in principle, the refrigerant pressure on the high pressure side is set to be equal to or higher than the critical pressure amount, although the power consumption of the compressor 10, that is, the vapor compression refrigerator is increased. It is easy to generate a relatively high temperature. Therefore, the temperature of the air blown upward can be made different from the temperature of the air blown downward while suppressing an increase in power consumption.
[0066]
(Second Embodiment)
As shown in FIG. 9, in the present embodiment, when the bi-level blowing mode is selected, the air temperature immediately after passing through the second indoor heat exchanger 32 when the target blowing temperature TAO is equal to or higher than a predetermined temperature, The temperature difference from the target blowing temperature TAO is smaller than the temperature difference between the air temperature immediately after passing through the second indoor heat exchanger 32 when the target blowing temperature TAO is equal to or lower than the predetermined temperature and the target blowing temperature TAO. The heating capacity of the two indoor heat exchanger 32, that is, the target radiator post-heater temperature Tgco is determined.
[0067]
Next, the function and effect of this embodiment will be described.
[0068]
As described above, when the bi-level blowing mode is selected, the second indoor heat exchanger 32 is set such that the air temperature immediately after passing through the second indoor heat exchanger 32 is higher than the target blowing temperature TAO. Since the heating capacity is controlled, the power consumption of the vapor compression refrigerator increases.
[0069]
On the other hand, in this embodiment, when the target blowing temperature TAO becomes equal to or higher than the predetermined temperature, the temperature difference between the air temperature immediately after passing through the second indoor heat exchanger 32 and the target blowing temperature TAO is the target blowing temperature. Since the temperature difference between the air temperature immediately after passing through the second indoor heat exchanger 32 when the temperature TAO is equal to or lower than the predetermined temperature and the target blowing temperature TAO is made smaller, the power consumption of the vapor compression refrigerator increases. Can be suppressed.
[0070]
In FIG. 9, the increase amount of the target radiator post-heater temperature Tgco is changed based on the target blowing temperature TAO. However, since the target blowing temperature TAO has a correlation with the outside air temperature and the inside air temperature, the inside air temperature or the outside air When the temperature is equal to or higher than a predetermined temperature, the temperature difference between the air temperature immediately after passing through the second indoor heat exchanger 32 and the target blowing temperature TAO is the second indoor when the internal air temperature or the external air temperature is equal to or lower than the predetermined temperature The heating capacity of the second indoor heat exchanger 32, that is, the target post-radiator temperature Tgco, may be determined so as to be smaller than the temperature difference between the air temperature immediately after passing through the heat exchanger 32 and the target blowing temperature TAO.
[0071]
(Other embodiments)
In this embodiment, the refrigerant is carbon dioxide, and the pressure of the high-pressure side refrigerant, that is, the discharge pressure of the compressor 10 is increased to the critical pressure or more of the refrigerant. Needless to say, may be less than the critical pressure.
[0072]
Further, in the above-described embodiment, the second indoor heat exchanger 32, that is, the high pressure side heat exchanger of the vapor compression refrigerator is used as the heater. However, the present invention is not limited to this, for example, FIG. As shown in FIG. 10, an electric heater may be used as the heater 32.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an air conditioner according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a control system of the air conditioner according to the embodiment of the present invention.
FIG. 3 is a control flowchart of the air conditioner according to the embodiment of the present invention.
FIG. 4 is a control flowchart of the air conditioner according to the embodiment of the present invention.
FIG. 5 is a characteristic diagram showing a relationship between a target blowing temperature TAO and a blower level.
FIG. 6 is a characteristic diagram showing a ratio of a target blowing temperature TAO, an inside air amount, and an outside air amount.
FIG. 7 is a characteristic diagram showing a relationship between a target blowing temperature TAO and a blowing mode.
FIG. 8 is a characteristic diagram showing a relationship between an air temperature TAM and a target post-evaporation temperature TEO.
FIG. 9 is a characteristic diagram showing the relationship between the target radiator temperature Tgco and the target outlet temperature TAO.
FIG. 10 is a schematic view of an air conditioner according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Compressor, 20 ... Outdoor heat exchanger, 31 ... 1st indoor heat exchanger,
32 ... 2nd indoor heat exchanger, 41 ... 1st expansion valve, 42 ... 2nd expansion valve,
81 ... Air mix door.

Claims (7)

主に車室内の下方側に空気を吹き出すフット吹出モード、主に車室内の上方側に空気を吹き出すフェイス吹出モード、並びに車室内の上方側及び下方側に空気を吹き出すバイレベル吹出モードを有し、室内に吹き出す空気の調和を図る車両用空調装置であって、
室内に吹き出す空気が流れる空気通路を構成する空調ケーシング(80)と、
前記空調ケーシング(80)内に配置され、前記空調ケーシング(80)内を流れる空気を加熱するとともに、加熱能力を制御可能な加熱器(32)と、
前記空調ケーシング(80)内に設けられ、前記加熱器(32)を迂回させて下流側に流す空気量と前記加熱器(32)にて昇温させて下流側に流す空気量との風量割合を調節する風量割合調節手段(81)と、
前記空調ケーシング(80)における前記加熱器(32)の下流側部位のうち、前記加熱器(32)を通過した温風が流れる側の部位に開口して車室内の下方側に空気を吹き出すフット吹出口と、
前記空調ケーシング(80)における前記加熱器(32)の下流側部位のうち、前記加熱器(32)を迂回する冷風が流れる側の部位に開口して車室内の上方側に空気を吹き出すフェイス吹出口と、
前記フット吹出口及び前記フェイス吹出口を開閉して、前記フット吹出モード、前記フェイス吹出モード及び前記バイレベル吹出モードを切り換える吹出モード切換装置(84)と、
前記加熱器(32)の加熱能力を制御する加熱能力制御手段(90)と、
前記加熱器(32)の加熱能力が大きくなるほど、前記加熱器(32)を迂回する空気量が増大するように前記風量割合調節手段(81)の風量割合を決定する風量割合決定手段(S201、S202、S204、S205)とを備え、
前記空調ケーシング(80)内を流れる空気の全量が前記加熱器(32)を迂回して流れる状態を前記風量割合調節手段(81)の開度(SW)が0%であるとし、前記空調ケーシング(80)内を流れる空気の全量が前記加熱器(32)を通過する状態を前記風量割合調節手段(81)の開度(SW)が100%であるとしたとき、前記空調ケーシング(80)内の空気を前記加熱器(32)により加熱する暖房時において前記バイレベル吹出モードが選定されたときには、前記風量割合決定手段(S201、S202、S204、S205)により前記風量割合調節手段(81)の開度(SW)を100%未満、0%超とし、
前記バイレベル吹出モードでは、前記加熱器(32)を通過した温風と前記加熱器(32)を迂回する冷風とが発生し、上方側に吹き出す空気の温度よりも下方側に吹き出す空気の温度が高くなるようになっており、
さらに、前記加熱能力制御手段(90)は、
前記暖房時において前記フット吹出モード及び前記フェイス吹出モードが選定されたときに、前記加熱器(32)を通過した直後の空気温度が車室内に吹き出す空気の目標温度(TAO)に応じた温度(Tgco)となるように前記加熱器(32)の加熱能力を制御する第1制御手段(S223)と、
前記暖房時において前記バイレベル吹出モードが選定されたときには、前記加熱器(32)を通過した直後の空気温度が車室内に吹き出す空気の目標温度(TAO)より高く、かつ、前記第1制御手段(S223)により与えられる温度よりも高い温度となるように前記加熱器(32)の加熱能力を制御する第2制御手段(S222)とを備えることを特徴とする車両用空調装置。
It has a foot blow mode that blows air mainly to the lower side of the passenger compartment, a face blow mode that blows air mainly to the upper side of the passenger compartment, and a bi-level blow mode that blows air to the upper and lower sides of the passenger compartment. , An air conditioner for a vehicle that harmonizes the air blown into the passenger compartment,
An air conditioning casing (80) that constitutes an air passage through which air blown into the passenger compartment flows;
A heater (32) disposed in the air conditioning casing (80) for heating the air flowing in the air conditioning casing (80) and capable of controlling the heating capacity ;
Air volume ratio between the amount of air that is provided in the air conditioning casing (80) and bypasses the heater (32) and flows downstream, and the amount of air that is heated by the heater (32) and flows downstream Air volume ratio adjusting means (81) for adjusting
Of the downstream side portion of the heater (32) in the air conditioning casing (80), a foot that opens to a portion on the side through which the warm air that has passed through the heater (32) flows and blows air downward in the passenger compartment. The air outlet,
Of the downstream portion of the heater (32) in the air-conditioning casing (80), a face blower that opens to a portion on the side through which the cold air that bypasses the heater (32) flows and blows air upward in the passenger compartment. Exit,
An air outlet mode switching device (84) for opening and closing the foot air outlet and the face air outlet and switching between the foot air outlet mode, the face air outlet mode and the bi-level air outlet mode;
Heating capacity control means (90) for controlling the heating capacity of the heater (32);
The air volume ratio determining means (S201 , ) for determining the air volume ratio of the air volume ratio adjusting means (81) so that the air volume bypassing the heater (32) increases as the heating capacity of the heater (32) increases . S202, S204, S205 ),
In the state where the total amount of air flowing in the air conditioning casing (80) flows around the heater (32), the opening degree (SW) of the air volume ratio adjusting means (81) is 0%, and the air conditioning casing (80) When the opening degree (SW) of the air volume ratio adjusting means (81) is 100% in a state where the total amount of air flowing through the heater (32) passes, the air conditioning casing (80) When the bi-level blowing mode is selected during heating in which the air inside is heated by the heater (32), the air volume ratio adjusting means (81) is selected by the air volume ratio determining means (S201, S202, S204, S205). The opening degree (SW) is less than 100% and more than 0%,
In the bi-level blowing mode, hot air that has passed through the heater (32) and cold air that bypasses the heater (32) are generated, and the temperature of the air that is blown downward from the temperature of the air that is blown upward. Is becoming higher,
Furthermore, the heating capacity control means (90)
When the foot blowing mode and the face blowing mode are selected during the heating, the air temperature immediately after passing through the heater (32) is a temperature (TAO) corresponding to the target temperature (TAO) of the air blown into the passenger compartment. First control means (S223) for controlling the heating capacity of the heater (32) to be Tgco),
When the bi-level air outlet mode during the heating is selected, the heater (32) high rather than air temperature immediately after passing through the air target temperature to be blown into the passenger compartment (TAO), and wherein the first control A vehicle air conditioner comprising: second control means (S222) for controlling the heating capacity of the heater (32) so that the temperature is higher than the temperature given by the means (S223) .
前記第1制御手段(S223)は、前記暖房時において前記フット吹出モード及び前記フェイス吹出モードが選定されたときに前記加熱器(32)を通過した直後の空気温度が前記車室内に吹き出す空気の目標温度(TAO)と同じ温度(Tgco)となるように前記加熱器(32)の加熱能力を制御することを特徴とする請求項1に記載の車両用空調装置。 The first control means (S223) is configured to control the air temperature immediately after passing through the heater (32) when the foot blowing mode and the face blowing mode are selected during the heating. The vehicle air conditioner according to claim 1 , wherein the heating capacity of the heater (32) is controlled so as to be the same temperature (Tgco) as the target temperature (TAO) . 前記加熱能力制御手段(90)は、前記暖房時において前記バイレベル吹出モードが選定された場合において前記目標温度(TAO)が所定温度以上となったときには、前記加熱器(32)を通過した直後の空気温度と前記目標温度(TAO)との温度差が、前記目標温度(TAO)が所定温度以下のときの前記加熱器(32)を通過した直後の空気温度と前記目標温度(TAO)との温度差より小さくなるように前記加熱器(32)の加熱能力を制御することを特徴とする請求項1または2に記載の車両用空調装置。Immediately after the heating capacity control means (90), said when the when the during heating bilevel air outlet mode is selected target temperature (TAO) is equal to or greater than a predetermined temperature, passing through the heater (32) The temperature difference between the air temperature and the target temperature (TAO) is such that the air temperature immediately after passing through the heater (32) when the target temperature (TAO) is equal to or lower than the predetermined temperature and the target temperature (TAO) The vehicle air conditioner according to claim 1 or 2 , wherein the heating capacity of the heater (32) is controlled so as to be smaller than the temperature difference. 前記加熱器(32)は、蒸気圧縮式冷凍機の高圧冷媒を熱源として空気を加熱する加熱用室内熱交換器であって、
前記加熱能力制御手段(90)は、前記蒸気圧縮式冷凍機の圧縮機回転数を増減することで前記加熱器(32)の加熱能力を制御することを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調装置。
The heater (32) is an indoor heat exchanger for heating that heats air using a high-pressure refrigerant of a vapor compression refrigerator as a heat source ,
The heating capacity control means (90), one of the claims 1 to 3, characterized in that for controlling the heating capacity of the heater (32) by increasing or decreasing the compressor speed of the vapor compression type refrigerator The vehicle air conditioner according to claim 1 .
前記空調ケーシング(80)内において前記加熱器(32)の上流側に、前記空調ケーシング(80)内を流れる空気を冷却する冷却用室内熱交換器(31)が配置され、In the air conditioning casing (80), on the upstream side of the heater (32), a cooling indoor heat exchanger (31) for cooling the air flowing in the air conditioning casing (80) is disposed,
前記冷却用室内熱交換器(31)は前記蒸気圧縮式冷凍機の低圧冷媒により前記空気を冷却するものであり、The cooling indoor heat exchanger (31) cools the air with the low-pressure refrigerant of the vapor compression refrigerator,
前記冷却用室内熱交換器(31)にて前記空調ケーシング(80)内の空気を冷却することにより冷房サイクルを実行し、A cooling cycle is performed by cooling air in the air conditioning casing (80) in the indoor heat exchanger (31) for cooling,
一方、前記空調ケーシング(80)内の空気を、前記冷却用室内熱交換器(31)にて冷却した後に前記加熱器(32)にて加熱することにより除湿サイクルを実行することを特徴とする請求項4に記載の車両用空調装置。Meanwhile, the air in the air conditioning casing (80) is cooled by the cooling indoor heat exchanger (31) and then heated by the heater (32) to execute a dehumidification cycle. The vehicle air conditioner according to claim 4.
前記蒸気圧縮式冷凍機の高圧側冷媒圧力は、冷媒の臨界圧力以上となる場合があることを特徴とする請求項4または5に記載の車両用空調装置。6. The vehicle air conditioner according to claim 4, wherein a high-pressure side refrigerant pressure of the vapor compression refrigerator may be equal to or higher than a critical pressure of the refrigerant. 前記蒸気圧縮式冷凍機は、二酸化炭素を冷媒とすることを特徴とする請求項4ないし6のいずれか1つに記載の車両用空調装置。The vehicle air conditioner according to any one of claims 4 to 6, wherein the vapor compression refrigerator uses carbon dioxide as a refrigerant.
JP2002277362A 2002-09-24 2002-09-24 Air conditioner for vehicles Expired - Fee Related JP4013717B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002277362A JP4013717B2 (en) 2002-09-24 2002-09-24 Air conditioner for vehicles
DE10343818.1A DE10343818B4 (en) 2002-09-24 2003-09-22 Air conditioning system for a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277362A JP4013717B2 (en) 2002-09-24 2002-09-24 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2004114735A JP2004114735A (en) 2004-04-15
JP4013717B2 true JP4013717B2 (en) 2007-11-28

Family

ID=31973245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277362A Expired - Fee Related JP4013717B2 (en) 2002-09-24 2002-09-24 Air conditioner for vehicles

Country Status (2)

Country Link
JP (1) JP4013717B2 (en)
DE (1) DE10343818B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849752B2 (en) 2011-03-03 2017-12-26 Sanden Holdings Corporation Vehicle air conditioning apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010024853B4 (en) * 2009-06-26 2019-05-16 Denso Corporation Air conditioning for vehicle
DE102011109055A1 (en) 2010-09-04 2012-03-08 Volkswagen Ag Aircondition for a vehicle and method for air conditioning a vehicle
KR101342931B1 (en) * 2011-03-09 2013-12-18 한라비스테온공조 주식회사 Heat pump system for vehicle
JP2013154749A (en) * 2012-01-30 2013-08-15 Denso Corp Vehicle air conditioner
KR101450636B1 (en) 2012-06-27 2014-10-14 한라비스테온공조 주식회사 Heat pump system for vehicle
JP6900271B2 (en) * 2017-08-09 2021-07-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
CN108489162A (en) * 2018-06-04 2018-09-04 泰铂(上海)环保科技股份有限公司 A kind of new-energy automobile heat pump system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4237847A1 (en) 1991-12-13 1993-06-17 Iveco Magirus
FR2746711B1 (en) 1996-03-28 1998-05-22 Valeo Climatisation HEATING, VENTILATION AND / OR AIR CONDITIONING SYSTEM WITH TEMPERATURE CONTROL, ESPECIALLY FOR MOTOR VEHICLES
JPH1120458A (en) 1997-07-04 1999-01-26 Denso Corp Air conditioner for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9849752B2 (en) 2011-03-03 2017-12-26 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9855822B2 (en) 2011-03-03 2018-01-02 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9937771B2 (en) 2011-03-03 2018-04-10 Sanden Holdings Corporation Vehicle air conditioning apparatus
US9956847B2 (en) 2011-03-03 2018-05-01 Sanden Holdings Corporation Vehicle air conditioning apparatus
US10183551B2 (en) 2011-03-03 2019-01-22 Sanden Holdings Corporation Vehicle air conditioning apparatus

Also Published As

Publication number Publication date
JP2004114735A (en) 2004-04-15
DE10343818A1 (en) 2004-04-01
DE10343818B4 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP4385678B2 (en) Battery cooling system for vehicles
JP3841039B2 (en) Air conditioner for vehicles
JP3463303B2 (en) Heat pump type air conditioner for vehicles
US8256238B2 (en) Control system for a variable-capacity compressor in air conditioner
CN107020912B (en) Air conditioner for vehicle
JP5831322B2 (en) Vehicle air conditioning system
JP2005059797A (en) Air-conditioner for vehicle
JP3596090B2 (en) Vehicle air conditioner
JPH0692130A (en) Heat pump type room cooling/heating device for vehicle
JP2004155391A (en) Air-conditioner for vehicle
WO2014045528A1 (en) Vehicle air-conditioning device
JP5126173B2 (en) Air conditioner for vehicles
JP2000270401A (en) Air conditioner for hybrid car
JP4013717B2 (en) Air conditioner for vehicles
JP2009166629A (en) Air conditioner for vehicle
JPH05201243A (en) Heat pump type cooling and heating device for vehicle
JP3301209B2 (en) Heat pump type air conditioner for vehicles
JP5526675B2 (en) Air conditioner for vehicles
JP2003267042A (en) Vehicular air conditioner
JPH06135219A (en) Heat pump type air conditioning device for vehicle
JP3336886B2 (en) Vehicle air conditioner
JP4269428B2 (en) Air conditioner for vehicles
JP3351064B2 (en) Heat pump type air conditioner for vehicles
JP2011068153A (en) Air conditioner for vehicle
JP2009143404A (en) Air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4013717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees