[go: up one dir, main page]

JP4011704B2 - 画像入力装置 - Google Patents

画像入力装置 Download PDF

Info

Publication number
JP4011704B2
JP4011704B2 JP35956397A JP35956397A JP4011704B2 JP 4011704 B2 JP4011704 B2 JP 4011704B2 JP 35956397 A JP35956397 A JP 35956397A JP 35956397 A JP35956397 A JP 35956397A JP 4011704 B2 JP4011704 B2 JP 4011704B2
Authority
JP
Japan
Prior art keywords
image
optical system
mirror
imaging
image input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35956397A
Other languages
English (en)
Other versions
JPH10257373A (ja
Inventor
宏也 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP35956397A priority Critical patent/JP4011704B2/ja
Priority to US09/005,139 priority patent/US6774944B1/en
Publication of JPH10257373A publication Critical patent/JPH10257373A/ja
Application granted granted Critical
Publication of JP4011704B2 publication Critical patent/JP4011704B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/361Optical details, e.g. image relay to the camera or image sensor

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Image Input (AREA)
  • Studio Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被写体距離の異なる複数の像を撮像することが可能な画像入力装置に関する。
【0002】
【従来の技術】
従来、被写界深度の浅い光学系を用いたとしても3次元被写体の各位置に焦点の合った画像を取り込むことができる、所謂、被写界深度の深い撮像装置について各種の提案がなされている。
【0003】
その提案されものの一例としての長焦点深度顕微鏡は、封入された透明液体の内圧によってレンズ形状を高速変化させる可変焦点レンズを対物レンズとして適用する光学顕微鏡である。この顕微鏡は、上記可変焦点レンズの焦点位置を高速で周期的に変化させることによって、人間の視覚の残像現象を利用し、被写界深度を拡大した像をリアルタイムで表示することを可能としたものである。
【0004】
また、本出願人が先に提案した特開平1−309478号公報に開示の画像入出力装置は、撮影レンズを介して取り込まれる被写体像を撮像素子により電気的撮像信号に変換する装置であるが、上記撮影レンズを合焦点位置制御器により合焦位置を変化させ、所定間隔に位置する被写体に合焦した複数画面の被写体撮像情報を取り込むものである。そして、その複数画面の被写体撮像情報に基づいて、加算処理とフィルタリング処理を行い、上記各位置にある被写体に合焦した被写界深度の深い映像情報を得ることができる。
【0005】
また、特公平5−27084号公報、および、ドイツ国特許公報DT2301800号公報の画像入力装置は、いずれも露出時間中に焦点を移動することで被写界深部を拡大するものであるが、焦点移動の手段として、前者では顕微鏡における試料と鏡筒のいずれかを移動させ、また、後者では振動台上の物体、すなわち、試料をそれぞれ光軸方向に移動させることによって行う。
【0006】
【発明が解決しようとする課題】
しかしながら、上述の従来の長焦点深度顕微鏡においては、使用される可変焦点レンズが封入透明液体を外部から加圧してその焦点位置を変化させるものであり、焦点位置を変化させるためのアクチュエータとして圧電素子を用いるため、その駆動手段として100V程度の出力電圧が得られる高電圧アンプが必要である。また、光学素子として、厚さ10μm程度のガラスダイヤフラムを用いる。このように特殊な構成要素が必要であって、レンズ自体および駆動部のコスト,量産性,信頼性に問題があった。
【0007】
また、上述の特開平1−309478号公報に開示の画像入出力装置は、光学系として通常のレンズを用いた装置である。この通常のレンズの場合、例えば、F2.8の明るさを得るために、4,5枚のレンズを必要とする。このようなレンズは、レンズ自体や鏡枠の重量が重い。従って、モータ駆動により焦点位置を動貸して複数の画像を撮影するには数秒を要する。すなわち、被写界深度の深い1枚の像を得るために数秒の時間を要することになる。これらの動作を高速化して画像をリアルタイム表示することは、上述の重量上の問題により困難であった。
【0008】
また、上述の特公平5−27084号公報、および、ドイツ国特許公報DT2301800号公報の画像入力装置に提案されたの方法ではリアルタイムの表示が制約されるか、あるいは、表示できないという欠点があった。すなわち、被写界深度の深い画像を毎秒60コマ程度で表示するためには、少なくとも30Hzの周波数で焦点移動を振動駆動的に行わなければならない。しかし、顕微鏡の鏡筒をそのように振動駆動することは困難である。また、試料側を振動駆動するとしても、それが可能である場合は、あくまで試料が小さく、軽量である場合に限られる。試料が大きく、重い場合は、そのような駆動は不可能である。
【0009】
本発明は、上述の不具合を解決するためになされたものであって、被写界深度の比較的浅い光学系を用いた場合でも、光軸方向における被写体の様々な像を高速で撮像可能であって、特殊の素子を使用せず、装置の構成も簡単である画像入力装置を提供し、また、被写体としての試料の大きさ,重さ等によらず比較的被写界深度の深い画像を得ることが可能な画像入力装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の請求項1記載の画像入力装置は、観察する被写体近傍に設定した物体面と光学的に共役な位置関係にある中間像面に中間像を結像する第1の光学系と、上記中間像面に向かって上記第1の光学系から到達する光線の光軸に直交して配置され、上記第1の光学系から到達する光線を反射するミラーと、上記第1の光学系の光路中に配置され、上記ミラーが反射した光線を第2の光学系の光軸方向に反射するハーフミラーと、上記ハーフミラーが反射した光線を入射させ、上記中間像面と光学的に共役な位置関係にある最終像面に最終像を結像する上記第2の光学系と、上記最終像面に自己の撮像面に位置するように配置された撮像手段と、上記ミラーの位置を上記第1の光学系の光軸方向に変化させるミラー駆動手段と、を備えてなる。上記画像入力装置においては、上記第1の光学系にて上記ハーフミラーを透過した光線が、各駆動位置にある上記ミラーで反射され、さらに上記ハーフミラーにより反射されて上記第2の光学系に入射し、上記第2の光学系により撮像手段の撮像面上に結像することで、上記ミラーの駆動位置に対応する距離にある複数の被写体物体面に合焦した最終像が取り込まれる。
【0011】
本発明の請求項2記載の画像入力装置は、上記請求項1記載の画像入力装置において、上記第1の光学系、および、第2の光学系のうち、少なくとも一方は、中間像面に対してテレセントリックである。上記画像入力装置においては、上記第1の光学系からの光線が各駆動位置にある上記ミラーで反射され、第2の光学系により撮像手段の撮像面上に結像させ、上記ミラーの駆動位置に対応する距離にある被写体の最終像が取り込まれる。
【0012】
本発明の請求項3記載の画像入力装置は、請求項2記載の画像入力装置において、上記最終像面に結像させる被写体の像倍率を変化させる像倍率変化手段を中間像に対してテレセントリックになっていない方の上記第1の光学系、または、第2の光学系の何れかに有する。上記画像入力装置においては、上記像倍率変化手段によりテレセントリックでない方の光学系の像倍率を変化させ、これによって、最終像倍率を変化させる。
【0038】
【発明の実施の形態】
以下、図を用いて本発明の実施の形態について説明する。
図1は、本発明の第1の実施の形態である画像入力装置のブロック構成図である。本実施形態の画像入力装置は、被写界深度の深い画像を取り込み可能な光学式顕微鏡等に適用可能であって、図1に示すように、主に後述するカメラヘッド1と、CCU(カメラコントロールユニット)2、および、モニタ27で構成される。なお、本装置により撮影される被写体3は、第1の光学系の光軸O1 方向を軸Zとする3次元被写体である。
【0039】
上記カメラヘッド1は、主に被写体光を取り込み、結像させる撮像光学系11と、自己の撮像面上に結像した被写体像を電気信号に変換するCCD( CHARGE COUPLED DEVICE )、または、CMD( CHARGE MODULATED DEVICE )等で構成される撮像手段としての撮像素子12と、可動ミラー20を振動駆動するミラー駆動手段としてのアクチュエータであるVCM(ボイスコイルモータ)13とで構成されている。
【0040】
上記CCU2は、主に全装置の制御を司るCPU等で構成されるコントロール回路21と、上記撮像素子12より出力される電気信号を処理し、可動ミラーの所定の駆動位置に対応した複数の画面の撮像信号を出力する回路であるA/D変換回路22と、上記複数の画面の撮像信号を加算する被写界深度調整要素である加算処理回路23と、上記加算処理された撮像信号から合焦状態の1画面分の撮像信号を取り出す回復処理を行って、その映像信号をモニタ27に出力する被写界深度調整要素である回復処理回路24と、VCM13を駆動するためのVCMドライバ25とで構成されている。
【0041】
以下、上記各構成要素について詳細に説明する。上記撮像光学系11は、上記図1、および、該光学系の光路図である図2に示すように、レンズ群14a,14b,開放固定の絞り開口14cからなる第1結像レンズ鏡枠14と、ハーフミラー15と、フィールドレンズ16と、振動駆動され、順次的に平行移動する平面鏡で構成される可動ミラー20と、平面鏡のミラー17と、レンズ群18a,18b,調整可能な絞り開口18cからなる第2結像レンズ鏡枠18と、平面鏡のミラー19で構成されている。
【0042】
なお、上記第1結像レンズ鏡枠14,ハーフミラー15,フィールドレンズ16で第1の光学11aを構成し、上記フィールドレンズ16,ハーフミラー15,ミラー17,第2結像レンズ鏡枠18,ミラー19で第2の光学系11bを構成する。また、上記撮像光学系11におけるミラーは、反射回数が偶数回になるように構成し、撮像素子12の撮像面上の像を正立像としている。
【0043】
図2の光路図において、ミラー部を展開して示した等価的な光路展開図である図3に示すように第1の光学系11aは、絞り開口14cの中心を通った被写体光の主光線L1 が光軸O1 と平行となり、中間像面PC に対してテレセントリック系となっている。また、第2の光学系11bについても中間像光のうちで、絞り開口18cの中心を通る主光線L2 が光軸O1 と平行である。すなわち、光学系11a,11bは、中間像面PC に対してテレセントリック系となっている。
【0044】
撮影しようとする被写体3近傍に設定した複数の物体面PW からの被写体光線は、光軸O1 上の上記第1の光学系11aを屈折、または、透過し、可動ミラー20反射面上、または、近傍にあって、上記物体面PW と共役な中間像面PC に中間像4として結像される。
【0045】
さらに、上記中間像の光線、または、中間像面に向かう光線は、D0 方向に振動駆動される可動ミラー20で上記光軸O1 に方向に反射され、光軸O2 に沿って上記第2の光学系11bを屈折、または、反射して上記中間像面PC と共役な最終像面である撮像素子12上の撮像面PE に最終像5として結像する。
【0046】
ここで、可動ミラー20の変位に伴う物体面,レンズ,像面の位置の変化を図3において添字1 〜3 を付して示し、各可動ミラー位置に対する結像の状態等を詳細に説明する。
可動ミラー20が基準位置M2 にある場合は、物体面PW2の中間像4/2が第1の光学系11aによって、中間像面PC2上に結像し、さらに、その最終像5/2が第2の光学系11bによって、撮像面PE2上に結像する。
【0047】
次に、可動ミラー20がフィールドレンズ16に接近し、位置M3 に到達すると、第2の光学系としてのフィールドレンズ16,第2結像レンズ鏡枠18は、左方向の16/3,18/3の位置に、さらに、撮像素子12の撮像面も左方向の撮像面PE3の位置にそれぞれ移動した状態と等価になる。従って、物体面PW2よりも左側の物体面PW3の中間像4/3が中間像面PC3上に結像し、さらに、その最終像5/3が撮像面PE3上に結像する。
【0048】
また、可動ミラー20がフィールドレンズ16から離間し、位置M1 に到達すると、第2の光学系としてのフィールドレンズ16,第2結像レンズ鏡枠18は、右方向の16/1,18/1の位置に、さらに、撮像素子12の撮像面も右方向の撮像面PE1の位置にそれぞれ移動した状態と等価になる。従って、物体面PW2よりも右側の物体面PW1の中間像4/1が中間像面PC1上に結像し、さらに、その最終像5/1が撮像面PE1上に結像する。
【0049】
上述のように本実施の形態の装置によると、可動ミラー20のみを移動するだけで第2の光学系11bと撮像素子12の両方を移動することと等価的に機能し、光学系の合焦位置を動かすことができる。
【0050】
ここで、第1の光学系11aが縮小光学系であれば、特に好ましい特性を得ることが可能となるが、以下にその説明を行う。
いま、可動ミラー20の位置M2 から位置M3 に移動した場合を考え、その移動量をΔZM とすると、第2の光学系上のフィールドレンズ16、および、中間像面PC の移動量ΔZC は、上記移動量ΔZM による光路長の変化分に等しく、
ΔZC =2・ΔZM ……(1)
となる。
【0051】
一方、物体面PW2からPW3への移動量をΔZW とすると、第1の光学系11aの横倍率βa によって、上記移動量ZC は、次式で関係付けられる。すなわち、
ΔZC =βa 2・ΔZW ……(2)
となる。式(1),式(2)より、
ΔZW =2・ΔZM /(βa)2 ……(3)
となる。式(3)は、横倍率βa が小さいほど、すなわち、第1の光学系11aが強い縮小系であるほど可動ミラー20の僅かな動きでも物体面PW の大きな移動が得られることを示している。上記の各式は、物体面PW2〜PW3の間について説明した式であるが、物体面PW2〜PW1の間についても同様であることは勿論である。
【0052】
従って、例えば、横倍率βa が0.5であり、移動量ΔZM が1mmである場合、物体面の移動量ΔZW は、8mmとなる。すなわち、可動ミラー20を±1mmだけ移動させれば、物体面PW は、±8mmの範囲で動くことになる。このような特性が可動ミラー駆動系の負担の軽減になることはいうまでもない。
なお、最終像5として拡大像を必要とする画像入力装置に対しては、第2の光学系11bの倍率を大きくとって、第1,第2の光学系11a,11bの全体として拡大光学系になるように設計すればよい。
【0053】
図4は、上記VCM13の構造を示す要部断面図である。本図に示すようにVCM13は、主にモータ本体に固定される永久磁石13aを有するヨーク13bと、コイル13cが巻回された可動ボビン13dと、可動ボビン13dに固着されている支持体13eと、可動ボビン13dに結合され、支持体13eを介してその中央部を支持される平行板バネ13h,13iと、モータ本体に固着され、平行板バネ13h,13iの端部を固定して支持するバネ端支持体13gと、一方の平行板バネ13iの中央部に固定され、可動ミラー20を保持するミラー保持体13fとで構成されている。
【0054】
前記VCMドライバ25より交流駆動電圧Vcがコイル13cに供給されると、可動ボビン13dがD0 方向に振動駆動される。このVCM13の振動周波数は、半周期Tc/2(図6参照)で1画面の画像データが出力されることからモニタ27に出力されるNTSC方式の映像信号のフィールドレートが60Hzであることから、例えば、30Hzとする。また、もし出力信号がインターレース方式ならば、VCM13の振動周期は、フレームレートより決まる。例えば、フレームレートが60Hzならば、振動周波数は30Hzである。
【0055】
なお、上記撮像素子12としては、上記VCMの振動の半周期Tc/2で所定複数画面の画像の高速読み取りが可能なフレームレートを有する高速撮像素子を採用する必要がある。
【0056】
一方、VCM13の振動の振幅Bc(図6参照)は、可動ミラー20が該振幅値で移動することによって、図2に示す被写体3に設定された複数の物体面PW と共役である複数の中間像面PC 上の中間像4を撮像素子12上の固定された最終像面の撮像面PE に結像させることができるに十分な値とする。
【0057】
具体的に説明すると、図3に示すように、例えば、被写体3上に設定された複数の物体面PW をPW1,PW2,PW3とし、また、第1の光学系11aを介して複数の中間像面PC1,PC2,PC3上に中間像4が結像するものとした場合には、次の条件を満足させる必要がある。
【0058】
すなわち、可動ミラー20が上記振幅Bcの中心位置である基準位置M2 にあるとき、中央の中間像面PC2にある中間像4を第2の光学系11bを介して撮像素子12の最終像面である撮像面PE 上に最終像5として結像させる。さらに、可動ミラー20が振幅Bc内の移動位置M1 、または、M3 にあるときは、中間像面PC1,PC3にある中間像4を第2の光学系11bを介して撮像素子12上の撮像面PE に最終像5として結像させる必要がある。
【0059】
上述のように複数の物体面PW1,PW2,PW3が設定された被写体を撮影するためには、VCM13の振動の振幅Bcは、上記基準位置M2 を中心にして振動させた場合、少なくとも上記移動位置M1 、または、M3 を含む範囲の振幅を必要とする。
【0060】
以上のように構成された本実施の形態の画像入力装置における撮影動作について、上記図1〜図3の他に、図5〜図10を用いて説明する。
なお、上記図5は、被写体と撮像光学系と可動ミラーの関係を示す図であり、図6は、可動ミラーの振動波形を示す図である。また、図7〜図9は、各経過時間での被写体像の照度分布をz軸と直交するx軸に対して示した図である。図10は、上記図7〜図9で得られた被写体像の光量を加算したデータを示す図であり、図11は、図10で得られた加算データを回復処理を施して得られた被写体画像データの強度分布を示した図である。
【0061】
なお、以下の画像データの処理動作において、実際には光軸O1 方向と一致するz軸に対して直交する平面と対応する撮像素子の結像平面に関して画像データの処理が行われるが、以下の具体例の説明においては、z軸に直交するx軸のみに沿ったデータ処理として説明する。
【0062】
本実施の形態の画像入力装置においては、撮影する被写体3近傍に複数の物体面PW を設定する。例えば、図3に示すように設定物体面としてPW1 ,PW2(中央位置),PW3 を設定する。
【0063】
なお、被写体3の例として、図5に示すように上記物体面PW1,PW2,PW3上にある点光源の被写体3/1,3/2,3/3を用いる。また、可動ミラー20の振動波形は、図6に示す正弦波であって、その最大振幅Bc内に基準位置M2 および移動位置M1 ,M3 が存在するものとする。以下の撮影状態において、その各位置M1 ,M2 ,M3 は、上記各被写体3/1,3/2,3/3に対する合焦最終像5を得るための可動ミラー駆動位置になる。
【0064】
まず、被写体像の撮影に先立って、可動ミラー20が基準位置M2 にあるとき、中央物体面PW2上の被写体3/2の像が撮像素子12の撮像面PE上で結像するように第1結像レンズ鏡枠14の位置調整を行う。
【0065】
上述の調整を行った後、VCM13を駆動し、可動ミラー20を振動させる。その振動駆動中の半周期TC /2において、可動ミラー20が上記位置M1 ,M2 ,M3 に位置する経過時間t1 ,t2 ,t3 毎に撮像素子12から出力される撮像信号を撮像信号処理22に取り込む。図7〜図9の線図は、撮像素子12にて上記経過時間t1 ,t2 ,t3 で各単位受光面積当たりの所定の電荷蓄積時間に蓄積された電荷から求められる照度It1(x),It2(x),It3(x)の変化をx軸に関して示した線図である。例えば、経過時間t1 においては、可動ミラー20が位置M1 にあることから、撮像素子12の撮像面PE に、物体面PW1にある被写体3/1のみが合焦状態にあり、他の被写体3/2,3/3が非合焦状態にある画像の照度分布It1(x)(図7)が得られる。以下、経過時間t2 ,t3 においても同様に可動ミラー20が位置M2 ,M3 に移動することからそれぞれ被写体3/2のみ、または、被写体3/3のみが合焦状態にある画像の照度分布It2(x),It3(x)(図8,図9)が得られる。
【0066】
続いて、上記各経過時間t1 ,t2 ,t3 における上記照度It1(x),It2(x),It3(x)の変化をもつ画像データが加算処理回路23に出力され、x軸に沿って光量値が加算され、図10に示すような照度分布の加算データΣI(x)で示される画像データが求められる。この照度分布加算データΣI(x)には、非合焦状態の被写体像信号による低周波の空間周波数成分も含まれている。そこで、非合焦状態の被写体像信号成分を取り除き、合焦画像データ成分のみを取り出すために、回復処理回路24にて空間周波数フィルタリングによる回復処理が行われる。図11は、上記回復処理が行われた後の画像データでの強度分布I0 (x)を示す図であって、図5に示した物体面PW の異なる被写体3/1,3/2,3/3のすべてに合焦した被写界深度の深い画像信号が得られることを示している。
なお、上記加算処理回路23による加算処理と上記回復処理回路24による回復処理については、図15〜図21等を用いて後で詳細に説明する。
【0067】
以上、説明したように本実施の形態の画像入力装置によると、被写界深度が浅い撮像光学系を用いたとしても、中間像面近傍に設けた可動ミラー20を振動駆動することによって、レンズを駆動しなくても撮像面に結像する物体面を変化させることができ、被写界深度の深い被写体像を取り込むことができる。
【0068】
例えば、図5に示すように可動ミラー20を振動させない状態にあっては、撮像光学系11の被写界深度が浅い深度ΔZb′であったとしても、可動ミラー20を振動させて撮像信号を取り込み、上述した画像処理を施すことによって被写界深度が深い深度ΔZbの画像データを取り込むことが可能となる。
【0069】
なお、ここでは説明を簡単にするために、被写体3/1,3/2,3/3に合焦した画像を加算することにしたが、Z方向により広い範囲の画像を加算すれば、より望ましい。また、厳密には図10に示すΣI(x)において、被写体3/1,3/3の像は、3/2に比べて、多少ボケの成分が多くなる。したがって、図11に示すI0 (x)において、被写体3/1,3/3の像にはわずかにボケが残ることになる。しかし、これは、実用上、問題ないレベルである。これらの性質は、後述する第3の実施の形態の例でも同様である。
【0070】
また、本実施の形態の装置は、被写体の合焦位置を変化させるために撮像光学系全体の位置を変化させるのではなく、質量の小さい可動ミラー20のみを振動駆動させるように構成しているので、振動の周波数を、例えば、30Hz程度迄高め、回復像をリアルタイムで表示することができる。さらに、光学系駆動用のアクチュエータであるVCM13が小型化できる。
【0071】
そして、上記可動ミラー20の基準位置は、中間像面位置としているので、ミラー20の移動による焦点移動に伴って生じるフィールドレンズ16における収差の増大を最小限に抑えることができる。また、可動ミラー20の有効な反射面を小さくできることからVCM13の駆動負荷質量が小さくなり、さらにVCM13の小型化が可能になる。
【0072】
また、本実施の形態の装置では、光学系にハーフミラー15を適用しているので、第1の光学系と第2の光学系でフィールドレンズ16を共用することができ、さらに、可動ミラー20を第1の光軸O1 上に配設することができるので装置全体を安価に、また、小型にまとめることができる。
【0073】
また、本実施の形態の装置においては、上記第2の光学系11bが中間像面に対してテレセントリック系を形成する撮像光学系を採用しており、合焦度合いの変化により像倍率が変化することを抑えているので、より精度の高い回復処理を可能にしている。
【0074】
但し、必ずしも第1の光学系11aと第2の光学系11bの双方を中間像面に対してテレセントリックに構成する必要はなく、何れか一方の光学系をテレセントリックとすれば、上述の像倍率の変化は抑えられることから、その変形例として上記第1の光学系11aと第2の光学系11bの何れか一方をテレセントリック系とした撮像光学系を採用した画像入力装置でも前記第1実施の形態の画像入力装置と同等に被写界深度の深い被写体像を取り込むことが可能である。
【0075】
但し、非テレセントリック系側の光学系の絞りは、口径が十分に大きく、テレセントリック系側の光学系を通過する光線を蹴らないようにする必要がある。また、第1の光学系を非テレセントリック光学系とし、第2の光学系をテレセントリック光学系とした方が、ズーミングの際には第1の光学系を移動させればよく、撮像素子を移動させる必要がないことからより実用的である。なお、第1の光学系をテレセントリック光学系とし、第2の光学系を非テレセントリック光学系としてもよい。
【0076】
例えば、拡大像を得るために光学倍率を上げたい場合は、第1の光学系に顕微鏡用対物レンズを用いるのが現実的である。顕微鏡対物レンズには絞りが組み込まれているので、この絞りをテレセントリックとして機能するように適切に配置すればよい。後述する第4,第5実施の形態の例は、これらの理由から顕微鏡対物レンズを用いる例として有効である。
【0077】
なお、ミラー駆動手段としてのアクチュエータは、上述の実施の形態に適用したVCM13に限らず、バイモルフ圧電素子型アクチュエータ、あるいは、ステッピングモータ等を適用可能である。また、可動ミラーを振動駆動させずに一方向のみの駆動で複数の物体面上の被写体像を取り込むように構成することも可能であり、この場合、上記アクチュエータとしてソレノイド等を適用すればよく、低価格の画像入力装置を提供できる。
【0078】
また、可動ミラー20の基準位置は、上述の実施の形態の装置のように第1の光学系11aと第2の光学系11bの間の中間像面位置に必ずしも位置させる必要はなく、収差の増大が実用上無視できる範囲ならば、第1,第2の光学系の間のどの位置に配設してもよい。但し、その可動ミラー20が配設される基準位置とその振動による移動位置内にあるとき、撮影時に設定される3次元被写体3の複数の物体面に対して撮像素子12の撮像面PE が共役となるように設定することは勿論である。
【0079】
本実施の形態の画像入力装置では、特に位置センサにより可動ミラーの振動位置の検出は行っておらず、予め設定された各種の駆動条件のもとで振動駆動し、撮像が行われる。しかし、カメラヘッド1の姿勢等により可動ミラーの基準位置M2 やその振幅Bcが変化する可能性のある画像入力装置に適用する場合は、上記カメラヘッドの姿勢検出センサや可動ミラー位置検出センサを設け、可動ミラーの実際の振動駆動位置を検出、または、推定し、それに対応した撮像を行う必要があることは勿論である。
【0080】
また、上記実施の形態の画像入力装置に適用した上記ハーフミラー15に代えてペリクルミラーやビームスプリッターを適用することも可能である。なお、上記ペリクルミラーとしては、膜厚5μm以下のものがよく、ゴースト、および、非点収差が生じにくい。
【0081】
次に、本発明の第2の実施の形態の画像入力装置について説明する。
本実施の形態の画像入力装置は、前記第1の実施の形態の装置の撮像光学系11に対して図12の構成図に示す撮像光学系31を適用するものである。上記撮像光学系31は、可動ミラーとして可動ダハミラー32を用いる光学系であり、この場合、前記ハーフミラー15を用いる必要がなく、光量のロスを少なくすることができる。なお、CCU2やVCM13等、その他の制御部は、前記図1に示した第1の実施の形態の装置と同様の構成を有している。
【0082】
上記撮像光学系31は、主に図12に示すように被写体光を取り込むための第1の光学系31aと、VCM13により振動駆動され、順次的に平行移動する可動ダハミラー32と、撮像素子12に被写体像を結像させるための第2の光学系31bで構成されている。
【0083】
上記第1の光学系31aは、前記第1の実施の形態の装置の場合と同様に開放固定の絞り開口を有する結像レンズ14と、フィールドレンズ16とで構成され、その光軸をO1 とする。また、上記第2の光学系31bも前記第1の実施の形態の装置の場合と同様に調整可能な絞り開口を有する結像レンズ18と、フィールドレンズ16′と、2つの平面鏡のミラー17,19で構成され、その光軸をO2 とする。なお、上記フィールドレンズ16とフィールドレンズ16′間に中間像が形成されるが、その中間像面に対して上記第1の光学系31aと第2の光学系31bは、共にテレセントリック系となっているか、あるいは、第2の光学系31bのみがテレセントリック系になっている。
【0084】
上記可動ダハミラー32は、2つの反射面32a,32bを有するダハミラーであって、VCM13により振動駆動される。そして、各駆動位置にて第1の光学系の光軸O1 からの到達する光線を第2の光学系31bの光軸O2 方向に反射する。ここで、可動ダハミラー32の振動方向と、光軸O1 ,O2 は、互いに平行である。
【0085】
上記撮像光学系31を適用する本実施の形態の画像入力装置においては、前記第1の実施の形態の装置の場合と同様に可動ダハミラー32を振動駆動することによって、被写体3の近傍に設定された複数の物体面にそれぞれ合焦した複数の撮像画像に基づいて、前述の加算処理、および、回復処理を施すことによって、被写界深度の深い被写体像を取り込むことができる。
【0086】
本実施の形態の装置によると、可動ミラーとして可動ダハミラー32を適用したことによって、ハーフミラー15を用いる必要がないことから、光量のロスを少なくすることができ、明るい画像を取り込むことができる。
【0087】
次に、前記第1の実施の形態の画像入力装置の第1の変形例について説明する。前記第1の実施の形態の画像入力装置では、可動ミラーの各駆動位置で得られる複数の撮像データを加算処理回路で加算処理した後、回復処理を施して被写界深度の深い画像データを得るようにしたものであるが、上記加算処理回路を設けることなく、その加算処理を撮像素子上で行い、同様に被写界深度の深い画像データを得ることのできる第1の変形例の画像入力装置を提案できる。
【0088】
図13は、第1の変形例としての画像入力装置のブロック構成図であって、この第1の変形例の装置のCCU(カメラコントロールユニット)5においては、撮像素子であるCCD12′からの撮像信号を処理するA/D変換回路22の出力は、直接、回復処理回路24に入力され、回復処理が行われる。なお、その他の構成は、前記図1に示した第1の実施の形態の装置の構成と同様とする。また、上記CCD12′は、他の形式の撮像素子、例えば、電荷変調素子であるCMDであってもよい。
【0089】
上記CCD12′は、通常の速度のフレームレートを有する撮像素子であり、例えば、1/60秒につき、1フィールド画面の画像データを取り込むものとする。可動ミラー20は、振動周期を1/30秒として、その半周期の間に上記CCD12′の1フィールド画像が取り込まれるように、コントロール回路21によりVCM13の駆動位相が制御される。また、前記実施の形態の場合と同様に被写体3近傍に設定されている物体面に対する共役な中間像面が第1,第2の光学系の間に位置する状態で、最終像面がCCD12′の撮像面に位置するように可動ミラー20は、振動駆動される。
【0090】
そこで、本第1の変形例の装置により撮影を行った場合、可動ミラー20が両振幅の間の半サイクル駆動されている間、CCD12′では、可動ミラー20の移動位置と共に、刻々と変化して行く被写体3の物体面上の像に基づき、各受光素子部にて電荷量として積算され、結果的に加算された撮像信号としてA/D変換回路22に入力される。さらに、その1フィールド分の撮像信号がA/D変換回路22を介して回復処理回路24に出力される。
【0091】
例えば、前記図5に示した被写体3を撮像した場合を考えると、上記 可動ミラー20の半サイクル駆動の間、各移動位置において図7〜図9に示すような光量が順次、CCD12′の撮像面から入射し、積算されて行く。すなわち、撮像面上で加算処理が実行されることになる。そして、上記半サイクルの駆動が終了した時点では、可動ミラー20の半サイクル駆動の間にCCD12′に取り込まれた前記図10に示したような光量の変化を持つ合焦状態および非合焦状態での撮像信号の加算データがA/D変換回路22から回復処理回路24に出力される。上記図10に示す光量データは、前記第1の実施の形態等の装置における加算処理回路23で加算処理を行って得たものと同等のものである。
【0092】
その後、回復処理回路24にて上記撮像信号に基づき回復処理を施し、さらに、NTSC形式等の映像信号に変換することによって、第1の実施の形態の場合と同様に被写界深度の深い1つの撮像画面を得る。
【0093】
本第1の変形例の画像入力装置によれば、前記第1の実施の形態の装置と同様の効果が得られ、同時に、撮像素子として通常のフレームレートのCCD12′を適用可能であり、また、加算処理回路を不要とすることから低価格の画像入力装置を提供することが可能となる。
なお、本変形例の装置には前記第2の実施の形態に適用した撮像光学系31も適用可能であることは勿論である。
【0094】
次に、前記第1の実施の形態の画像入力装置の別の変形例である第2の変形例について説明する。前記第1の実施の形態の画像入力装置では、加算処理回路23と回復処理回路24を必要としたが、上記加算処理回路23および回復処理回路24を必要とせず、同様に被写界深度の深い画像データを得ることが可能な第2の変形例の画像入力装置を提案することも可能である。
【0095】
図14は、上記第2の変形例としての画像入力装置のブロック構成図である。この第2の変形例の装置では、カメラコントロールユニット6に加算処理回路および回復処理回路を設けることなく、撮像素子であるCCD12′からの撮像信号は、モニタ出力回路26でNTSC形式等の映像信号に変換されて、直接、モニタ27に出力される。なお、その他の構成は、前記図1に示した第1の実施の形態の装置の構成と同様とする。
【0096】
上記CCD12′は、前記第1の変形例の場合と同様の通常の速度のフレームレートを有する撮像素子であり、例えば、1/60秒につき、1フィールド画面の画像データを取り込むものとする。可動ミラー20も第1の変形例の場合と同様に振動周期を1/30秒として、その半周期の間に上記CCD12′の1フィールド画像が取り込まれるように、コントロール回路21によりVCM13の駆動位相が制御される。また、可動ミラー20の被写体3に対する振動駆動位置も前記第1の変形例の場合と同様とする。
【0097】
本第2の変形例の装置により撮影を行った場合、可動ミラー20が両振幅の間の半サイクル駆動されている間、CCD12′では、可動ミラー20の駆動位置と共に、刻々と変化して行く被写体3の物体面上の像に基づき、各受光素子部にて電荷量として積算され、加算された1画面分の撮像信号としてモニタ出力回路26において、例えば、NTSC形式の映像信号に変換され、モニタ27に出力される。
【0098】
上述のように可動ミラー20の移動位置で得られた被写体上の各物体面に合焦した撮像信号が積算、すなわち、加算されていた撮像画面が周期的にモニタ27に表示することによって、人間の視覚の残像現象を利用した被写界深度の深い画像を観察することができる。
【0099】
本変形例の画像入力装置によれば、加算処理回路や回復処理回路を必要としないことから被写界深度の深い画像観察が可能な安価で小型の画像入力装置を実現することができる。但し、本変形例の場合は、回復処理による低周波成分の除去を省いているため、回復処理を行う場合に比較して像がフレアのかかったものになる。
なお、上記変形例の装置には前記第2の実施の形態に適用した撮像光学系31も適用可能であることは勿論である。
【0100】
次に、前記第1の実施の形態の画像入力装置やその変形例等の画像入力装置に適用された加算処理回路や回復処理回路における処理動作について詳細に説明する。これらの処理動作については、前記日本国特許公報平成1−309478号の画像入力装置にも記載されているが、以下、図を用いて説明する。
図15は、前記第1の実施の形態等にも適用可能である加算処理回路と回復処理回路とを内蔵し、撮像素子52と一体化したCCU(カメラコントロールユニット)101の例を示すブロック構成図である。
【0101】
上記CCU101には、被写体の像は、例えば、前記図1に示した撮像光学系11によって、CCD、撮像管等で構成される撮像素子52の撮像面に結像される。
【0102】
前記撮像素子52からの出力信号は、アナログ・デジタル変換回路(以下、A/D変換回路と略称する)53によりデジタル信号に変換される。上記ディジタル信号は、加算処理回路54において、メモリ55に記録されている画像信号と加算される。その加算結果は、再びメモり55に記録される。
【0103】
なお、上述の処理動作は、例えば、図1に示したVCM13によって可動ミラー20を移動させながら繰返して行なわれる。すなわち、上記動作は、光学系の合焦点位置を、適当に設定した距離間隔および距離範囲で離散的に変えながら行なわれる。かくして、入力した各々の画像について加算が行われ、その結果が前記メモリ55に記憶される。
【0104】
次に、前記加算された画像データは、回復処理回路57により、適切な回復処理が行なわれる。例えば、空間周波数に対するハイパスフィルタリング処理、あるいは、バンドパスフィルタリング処理が行われる。上記の処理結果は、再び前記メモリ55に格納される。
【0105】
前記メモリ55内に格納されている回復処理を施した画像信号は、デジタル・アナログ変換回路(以下、D/A変換回路と略称する)58によってアナログ信号に変換され、図1に示したモニタ27上に表示される。以上の動作におけるタイミングや信号の流れ等の制御は、コントローラ51によって行われる。
【0106】
図16は、回復処理回路を有し、加算処理回路を用いない、かつ、撮像素子52が一体化したCCU102の例を示すブロック構成図である。
上記CCU102において、前記撮像素子52に蓄積された画像データは、A/D変換回路53により、デジタル信号に変換された後、メモリ55に記録される。このときの画像データは、前記CCU101で加算処理された画像データと同等のものである。次に、回復処理回路57によって適切な回復フィルタリング処理が行われた後、再び、メモり55に記録される。
【0107】
前記回復処理が施されて前記メモリ55に記録された画像データは、D/A変換回路58によりアナログ信号に変換され、モニタ27に表示される。以上の動作におけるタイミングやデータの流れ等の制御はコントローラ51によって行われる。
【0108】
上記構成を有するCCU102によれば、撮像素子52自身の光エネルギーの積算効果を利用し、連続的に焦点を変えた画像を入力すると同時に蓄積していくように処理される。したがって、画像の入力と加算とが撮像素子52自身で同時に行われることになり、構成が非常に簡単化する上、高速に処理できる。また、適当な距離範囲にわたって焦点位置を連続的に変えれば良いことから、焦点位置の制御も簡単となる。
【0109】
次に、上記のCCU101,102の例で用いられる回復処理回路57の具体例について説明する。上記回復処理回路57は、前述したように合焦点位置の異なる画像データを加算した画像データに対し、空間周波数に対する適当なハイパスフィルタ、あるいは、バンドパスフィルタをかけるための処理を行う回路である。
【0110】
図17は、上記回復処理回路57の一つの具体例を示すブロック構成図である。この回復処理回路57において、メモリ55に格納されている合焦焦点位置の異なる画像データが加算された画像データは、回復処理回路57内のFFT演算回路60によって、2次元フーリエ変換が実行され、その結果は、メモリ61に記録される。
【0111】
一方、メモリ62内には空間周波数面上で適当に設計されたフィルタの係数が記録されている。前記メモリ61に記録されている画像の空間周波数スペクトルと、上記メモリ62に記録されているフィルタ係数との乗算が乗算回路63において実行される。その結果は、再び前記メモリ61に記録される。
【0112】
メモリ61に記録されたフィルタリングを施された空間周波数画像データは、前記FFT演算回路60によって2次元逆フーリエ変換が実行され、その結果は前記メモリ55に記録される。
上述のように構成された回復処理回路57によれば、空間周波数面上でフィルタを任意の形状に設計できる。
【0113】
図18は、回復処理回路の他の具体例の回復処理回路57Aを示すブロック構成図である。この例においては、メモリ55に格納されている合焦点位置の異なる画像について加算された画像データのうち、回復処理回路57Aの内部に設けてあるアドレス発生回路70によって指定された画素成分値が、乗算回路72に入力される。
【0114】
同時に前記アドレス発生回路70によって指定されたメモリ71に記録されている係数が、前記乗算回路72に入力され、両者間の乗算が実行される。この乗算回路72における演算結果は、加算回路73においてメモリ74に記録されている値と加算され、その結果は、再びメモり74に記録される。
【0115】
以上の構成により、画像内の3×3ピクセル,5×5ピクセルといった局所領域における「たたみ込み演算」が実行され、その結果は、再びメモり55に記録される。
【0116】
本構成例は、フィルタリングを空間周波数面上で行う代わりに、画像面上で適切に設計されたマスクとの「たたみ込み演算」をすることにより回復処理を行うものであり、簡単な回路構成で処理を実現することができる。特に小さなマスクサイズで効果的なフィルタが設計可能な場合は、演算量も少なくなり有利となる。この他に、画面上でマスク処理を行う構成例としてパイプライン方式のプロセッサを用い、高速に処理を実行することも可能である。
【0117】
つぎに、回復処理回路に適用される回復フィルタの設計の方法について述べる。まず、シミュレーションにより上記回復フィルタを設計する方法について記載すると、一般にインコヒーレント結像光学系の空間周波数特性は、瞳関数の自己相関で表される Optical Transfer Function(以下、OTFと略す)で表現できる。円形開口を仮定した場合、焦点の合った面のOTFは、(4)式で示される瞳関数によって、(5)式の自己相関で表現できる。
【0118】
【数1】
Figure 0004011704
【0119】
但し、(x,y)は、瞳面を直交座標で表した場合の座標軸であり、(r,θ)は、円筒座標で表した場合の動径成分と角度成分である。また、a0 は、瞳の大きさを表し、例えば、レンズの絞りの半径を想定すれば良い。また、円形開口の場合、角度方向に無関係のため、θは、省略できる。
【0120】
次に、焦点はずれのOTFは、(6)式に示す一般化された瞳関数の自己相関で表すことができる。すなわち、
Figure 0004011704
ここで、k=2π/λは、波数、また、W(r;z)は、波面収差であり、ある物体面に焦点が合うような光の波面W1と、焦点はずれの波面W2との瞳面上における差で表される。zは、光軸上の座標であり、焦点が合った位置をz=0とし、どれだけ焦点位置からはずれているかを示す量である。
【0121】
上記波面収差W(r;z)は、近軸領域の近似であれば、略、
W(r;z)=r2・z/(2・f2) ……(7)
で表され、レンズの開口が大きい場合は、
W(r;z)=r2・z/{2(f2+r2)}……(8)
で表される。但し、fは、レンズの焦点距離であり、f>>zと仮定した。
【0122】
図19は、以上の各値の幾何学的関係を示した図である。このようにして、ある焦点はずれ量zに対するOTFを求めることができる。
【0123】
図20、および、図21(A),(B),(C)は、上記の如く求めたOTFに基づいて、回復フィルタを求める操作手順を示す図である。
【0124】
まず、設定条件に基づいてzを変えることにより、図20に示すようなOTFを求める。次に、これらのOTFを加算することにより、図21(A)に示すような合成OTFを求める。そして、この加算された合成OTFが図21(B)に示すように焦点が合っている場合のOTFに回復されるように回復フィルタを設計する。 この回復フィルタは、合成されたOTFをH(u,v)=H(μ,φ)=H(μ)とし、焦点の合っている場合のOTFをH0(μ) とすると、回復フィルタV(μ)は、
V(μ)=H0(μ)/H(μ) ……(9)
で表される。図21(C)は、上記V(μ)を示す。但し、(u,v)は、直交系で表した空間周波数座標であり、(μ,φ)は、円筒系で表した空間周波数座標である。円形開口の場合は角度方向に依存しないため、動径方向の空間周波数μのみで表現した。
【0125】
なお、被写体がある程度限定され、その画像の統計的な性質が予測でき、しかもノイズの性質も解っている場合には、回復フィルタとして次に示すようなウィナーフィルタを用いることができる。すなわち、
Figure 0004011704
但し、Snn(μ)は、ノイズのパワースペクトルであり、Sgg(μ)は、画像のパワースペクトルである。
このウィナーフィルタを用いることにより、ノイズの影響を低減することが可能である。
【0126】
また、擬似的なウィナーフィルタとして、次式に示すように定義したフィルタを設定し、パラメータPを適当に設定してもよい。すなわち、
Figure 0004011704
となる。
【0127】
続いて、実験的に回復フィルタを求める方法を説明する。表面が十分平坦であるテストチャートのようなものを所定位置に置き、この画像を設定した条件で合焦点位置を変えながら入力し、加え合せる。
【0128】
次に、前記テストチャートの表面に焦点の合った画像を入力する。そして、合焦点位置を変えながら入力し、かつ、加え合せた画像に対し、適当な回復フィルタをかけてみて、前記焦点の合った画像と比較する。この比較により画像が同等に見えるように回復フィルタを調整して再び比較する。このような操作を繰返すことにより、所要の回復フィルタを求める。本方法は、実用的に有効である。
【0129】
以上、シミュレーションと実験とによる回復フィルタの求め方について記載した。なお、回復フィルタは必ずしも焦点の合った場合の周波数特性まで戻せばよいというものではなく、例えば、高周波領域をより強調して「メリハリ」の効いた画像にしてもよいし、また、逆に完全には回復させずにソフトフォーカス効果の効いた画像にしてもよい。
【0130】
次に、本発明の第3の実施の形態の画像入力装置について説明する。
図22は、上記画像入力装置のブロック構成図である。図23は、本装置の撮影光学系の光路図であり、図24は、本装置における被写体と撮像光学系と可動ミラーの関係を示す斜視図である。
【0131】
本実施の形態の画像入力装置は、被写界深度の深い画像を取り込み可能なクローズアップ撮像装置等に適用可能であって、主にカメラヘッド106と、カメラコントロールユニット(CCU)2、および、モニタ27で構成される。
【0132】
なお、上記CCU2、および、モニタ27は、前記図1で説明した第1の実施の形態の装置に適用したものと同様のものであり、同一の構成要素は、同一の符号を付して説明する。また、本装置により撮影される被写体3は、光軸O1 方向を軸Zとする3次元被写体とする。
【0133】
上記カメラヘッド106は、主に被写体光を取り込み、結像させる撮影光学系107と、撮像素子12と、可動ミラー20をD0 方向に振動駆動するボイスコイルモータ(VCM)13とで構成されている。
【0134】
以下、上記各構成要素について詳細に説明する。
上記撮影光学系107は、上記図22、および、この光学系の光路図である図23に示すように、結像レンズ108と、開口絞り109と、順次的に平行移動する平面鏡である可動ミラー20と、平面鏡である固定ミラー19とで構成されている。上記可動ミラー20は、入射光光軸O1 に対して角度θMだけ傾斜して配置されている。また、上記撮影光学系107内でのミラー反射回数は偶数回になるように構成されており、撮像素子12上の像を正立像としている。
【0135】
図23の光路図に示すように開口絞り109は、結像レンズ108の物体側焦点F108 に位置しており、撮影光学系107は、像面に対してテレセントリック系となっている。
【0136】
撮影しようとする被写体3の近傍に設定した複数の物体面PW 上の物体103からの被写体光線は、入射光光軸O1 上の結像レンズ108で屈折し、可動ミラー20で反射光光軸O2 方向に反射され、さらに、固定ミラー19で反射されて撮像素子12上に像105として結像する。
【0137】
なお、図23等において、異なる位置にある物体面自体、および、その点像に対応してスラッシュと位置を示す添え字/1〜/3を付し、また、可動ミラー20の各駆動位置M1 〜M3 にあるときの像にはハイフンと添え字-1〜-3を付して以下の説明を行う。
【0138】
可動ミラー20が基準位置M2 にある場合は、物体103/1〜103/3から発した光は、像105/1-2〜105/3-2として結像する。そして、撮像素子12上に合焦するのは、像105/2-2であり、像105/1-2および像105/3-2は、焦点ボケの像となる。
【0139】
次に、可動ミラー20が結像レンズ108に接近し、位置M3 に到達すると、物体103/1〜103/3から発した光は、光軸方向にΔzc だけずれて、像105/1-3〜105/3-3として結像する。撮像素子12上に合焦するのは像105/3-3であり、像105/1-3および像105/2-3は、焦点ボケの像となる。さらに、反射光軸O2-3が、反射光軸O2-2に対して像平面方向にΔxc だけずれるので、像全体105/1,2,3-3 も、像105/1,2,3-2 からΔxc だけずれる。
【0140】
また、可動ミラー20が結像レンズ108から離間し、位置M1 に到達すると、物体103/1〜103/3から発した光は、像105/1-1〜105/3-1として結像する。すなわち、撮像素子12上に合焦するのは像105/1-1で、像105/2-1および像105/3-1は焦点ボケの像となる。さらに、反射光軸O2-1が、反射光軸O2-2に対して像平面方向にΔxc だけずれるので、像全体105/1,2,3-1も像105/1,2,3-2からΔxc だけずれる。
【0141】
上述のように本実施の形態の画像入力装置によると、可動ミラー20のみを移動するだけで、撮像光学系の合焦位置を動かすことができる。その合焦位置の移動により図24に示すように被写界深度の深い(図24ではΔZbで示す)画像を取り込むことができる。
【0142】
上記画像入力装置における像の光軸方向のずれ量Δzc と、像平面方向のずれ量Δxc は、可動ミラーの移動距離ΔZM とすると、
Δxc =2・ΔZM ・sinθM ……(12)
Δzc =2・ΔZM /cosθM ……(13)
となる。
【0143】
一方、物体103/2〜103/3間の距離をΔZW 、撮像光学系107の横倍率β107 とすると、像の光軸方向のずれ量Δzc は、次式で示され、
Δzc =β1072 ・ΔZW ……(14)
となる。
【0144】
従って、式(13),(14)より、上記物体間の距離ΔZW は、
ΔZW =2・ΔZM /(cosθM ・β1072 ) ……(15)
となる。式(15)は、横倍率β107 が小さいほど、可動ミラー20の僅かな動きでも物体側での大きな焦点移動が得られることを示している。この特性は、前記第1実施の形態の画像入力装置の場合と同様である。
【0145】
実際の撮影に際しては、図23において被写体である物体103/1〜103/3の範囲の被写界深度を得るためには、可動ミラー20が位置M1 、M2 、M3 にあるときに、上記各物体103/1,103/2,103/3の像が撮像素子12上に合焦することから、可動ミラー20は、少なくとも位置M2 を中心とする2・ΔZM の両側振幅で振動させる必要がある。望ましくは、2・ΔZM よりも大きな振幅、例えば、位置M2 を中心とする4・ΔZM 以上の両側振幅で振動させるならば、好適である。
【0146】
以上のように構成された本実施の形態の画像入力装置の撮影動作について、上記図22〜24、および、図25〜図32を用いて説明する。なお、図25は、可動ミラーの振動波形を示す図である。また、図26〜30は、各経過時間での被写体像の照度分布および点像の広がりのイメージを示した図である。図31は、上記図26〜30で得られた被写体像の光量を加算した状態を示す図であり、図32は、図31で得られた加算データを回復処理して得られた被写体画像データの照度分布および広がりのイメージを示した図である。
【0147】
本実施の形態の画像入力装置において撮影を行う場合、撮影する被写体である物体103の近傍に複数の物体面PW を設定する。例えば、図24に示すように設定物体面としてPW1,PW2,PW3を設定する。そして、物体103の例として、物体面PW1,PW2,PW3上にある点光源被写体103/1,103/2,103/3を用いる。また、可動ミラー20の振動波形は、図25に示す正弦波であって、その移動位置M1 、M2 、M3 は、それぞれ点光源被写体103/1,103/2,103/3に合焦する位置とする。
【0148】
上述の状態でVCM13を駆動し、可動ミラー20を最大振幅Bc で振動させて、経過時間t0 ,t1 ,t2 ,t3 ,t4 毎に撮像素子12からの出力信号をA/D変換回路22に取り込む。なお、上記経過時間t0 ,t1 ,t2 ,t3 ,t4 にて可動ミラー20は、位置M0 ,M1 ,M2 ,M3 ,M4 に位置する。
【0149】
図26〜30は、それぞれ経過時間t0 〜t4 にて可動ミラー20が上記位置M0 ,M1 ,M2 ,M3 ,M4 にあるときの撮像素子12上の各点像105のボケ具合の変化を示す像と、x軸、および、y軸に沿って示した照度分布Itn(x,y)の経時変化を示したものである。
【0150】
経過時間t=t0 においては、図26に示すように像105/1-0〜105/3-0の全てがぼけていて、かつ、そのx座標は、
x=x0 −2・Δxc
である。
【0151】
経過時間t=t1 においては、図27に示すように像105/1-1が合焦し、像105/2-1、105/3-1はぼけている。また、x座標は、
x=x0 −Δxc
となり、上記経過時間t=t0 のときよりも+方向にずれる。
【0152】
さらに、経過時間t=t2 においては、図28に示すように像105/2-2が合焦し、像105/1-2、105/3-2は、ぼけている。また、x座標は、
x=x0
であり、経過時間t=t1 のときよりもさらに+方向にずれる。
【0153】
経過時間t3 においては、図29に示すように像105/3-3が合焦しており、像105/1-3,105/2-3がぼけている。さらに、経過時間t4 においては、図30に示すようにすべての像105/1-4,105/2-4,105/3-4がぼけている。このようにして、経過時間t0 〜t4 の間に像105は、その結像位置(x座標)とボケ具合が変化していく。
【0154】
続いて、上記照度分布It0(x,y)〜It4(x,y)の変化をもつ画像データが加算処理回路23で加算処理される。図31には、撮像素子12面のx−y平面上において加算された状態での分布と、x,y軸に関する照度分布ΣI(x,y)の画像データが示されている。なお、図31の105/1,105/2,105/3は、加算画像である。この画像には、非合焦状態の被写体像信号による低周波の空間周波数成分も含まれている。
【0155】
次に、回復処理回路24にて回復処理が行われる。図32は、上記回復処理後の画像データのx軸,y軸に関する強度分布I01(x,y)を示しており、被写体である物体103/1 ,103/2 ,103/3 の全てに合焦した被写界深度の深い画像117が得られることを示している。
【0156】
上記回復処理により得られた画像のうち、中心のy=y2 の位置の画像以外の画像117/1 ,117/3 にはボケ像成分117/1 ′,117/3 ′が残存するが、これは軽微であって実際的には支障はない。
なお、上記加算処理回路23による加算処理と、回復処理回路24による回復処理については、図34〜39を用いて後で詳細に説明する。
【0157】
前記第1の実施の形態の画像入力装置の場合、光路中に配設されるハーフミラーによって、光線の透過率が低下することが考えられる。しかし、本実施の形態の画像入力装置の場合は、ハーフミラーを用いないことから結像レンズ108に入射した光線を実質的な損失のない状態で撮像素子12上に結像させることができる。従って、本実施の形態の方式では高感度の画像入力が可能である。
【0158】
また、本実施の形態の画像入力装置においては、中間結像を行わないので、フィールドレンズや第2結像レンズを必要とない。すなわち、結像光学系としては結像レンズ108のみで足りるので、構成部品点数を少なく、低コストで製作できるというメリットがある。
【0159】
次に、本発明の第4実施の形態の画像入力装置について説明する。
図33は、本実施の形態の画像入力装置のカメラヘッド206のブロック構成図である。前記第3の実施の形態の装置の撮影光学系107に対して、本実施の形態の画像入力装置における撮影光学系207では、対物レンズと中間結像レンズの間に開口絞りを配設している点が異なり、対物レンズの作動距離を大きくとることができる。
【0160】
すなわち、本装置のカメラヘッド206に内蔵される撮影光学系207は、結像光学系として上述したように対物レンズ208と、偏心中間結像レンズ209と、最終段の結像レンズ210と、開口絞り211と、さらに、可動ミラー20、および、ミラー17により構成される。なお、カメラヘッド206に内蔵される他の構成要素であるVCM12と撮像素子12、また、本画像入力装置を構成するCCU2とモニタ27等は、前記図1の第1の実施の形態の画像入力装置のものと同一のものとする。
【0161】
本実施の形態の画像入力装置においては、被写体3から発した光線は、対物レンズ208で屈折して略平行光線となり、開口絞り211を透過し、さらに、中間結像レンズ209で可動ミラー20の反射面近傍に中間像を結像する。そして、可動ミラー20の反射面で反射し、中間結像レンズ209で再び略平行光線に屈折され、ミラー17で反射し、結像レンズ210で最終像を撮像素子12上に結像する。ここで、開口絞り211は、中間結像レンズ209の物体側焦点F209 に位置しているので、中間結像レンズ209は、中間結像に対してテレセントリックである。
【0162】
本実施の形態の画像入力装置においても、VCM13を駆動して、焦点を移動した画像を複数枚取り込み、それらの画像を加算処理し、さらに、回復処理を施すことによって、被写界深度の深い画像を得るが、その処理過程は、前記第3の実施の形態の装置の場合と同様である。
【0163】
前記第3実施の形態の装置の場合は、撮影レンズ系として撮影レンズ108のみを用い、かつ、像に対してテレセントリックにするために、開口絞り109を撮影レンズ108と被写体3の間に置かなければならなかった。これに比べて、本実施の形態の装置においては、開口絞り211を対物レンズ208と中間結像レンズ209の間に位置させているので、被写体3に対する作動距離を、より大きくすることができる。
【0164】
なお、上述の第3および第4の実施の形態の画像入力装置における加算処理回路と回復処理回路の処理動作は、既に図15,16,17等を用いて説明した第1の実施の形態の画像入力装置における処理動作と同様である。
そこで、上記第3および第4の実施の形態の実施の形態の装置における回復処理に適用される回復フィルタの設計方法を図34〜39等を用いて述べる。
【0165】
まず、加算像がどのような照度分布とパワースペクトルを有するかについて説明する。図31に示した加算像105/2のボケパターンの拡大図を図34に示す。ただし、ここでは、可動ミラー20の変位が±ΔZM となる範囲の積算画像であるとして説明するが、積算範囲がより大きい場合であっても、以下の手法を同様に適用することができる。
【0166】
加算像105/2は、図34に示すように8の字型になる。ミラーの変位が±ΔZM となる、つまり、円形のボケ径が最大となる場合のボケ半径rc は、結像側開口数をNAとすると、式(13)を用いて次のようになる。すなわち、
Figure 0004011704
となる。
【0167】
ここで、像の中心を原点とする極座標系(r,θimg )を適用すると、ボケ直径が最大になるのはθimg =0の場合で、そのボケ幅の値aは、
Figure 0004011704
となる。
【0168】
また、ボケ直径が最小になるのは角度θimg =π/2の場合で、その最少幅の値bはエアリ・ディスク径となり、波長をλとすると、
b=1.22λ/NA ……(18)
となる。
【0169】
ボケ径が大きく変化する角度θimg の値をθc とすると、角度θc は、
θc =sin-1(NA/(cosθM ・sinθM ))……(19)
となる。なお、θimg =θc におけるボケ直径は、2rc である。
【0170】
ボケ径は、0≦θimg ≦θc の範囲で徐々に減少し、θimg がθc を越えると大幅に減少し、θc <θimg ≦π/2の範囲で再度徐々に減少する。この様子を、r方向の照度分布として表したのが、図35のΣI(r,θimg )である。図35より、角度θimg =0において、ボケが大きく広がり、角度θimg =π/2においてはボケが全くないことがわかる。これらの曲線は、本光学系固有の点像分布関数を表している。
【0171】
これらの点像分布関数をフーリエ変換すると、図36のようなパワースペクトル曲線H(μ,θimg )が得られる。これらは本撮影光学系のコントラスト、すなわち、光学的伝達関数(OTF)を表していることに他ならない。図36より明らかなように、角度θimg =π/2においては理想的な合焦像と同様の伝達関数を有するが、角度範囲0°≦θimg <π/2においては、コントラストが低下している。これらの低下したコントラストを、回復処理によって補えば、角度θimg の値と無関係に理想的なコントラストが得られる。
【0172】
理想的には、回復フィルタのゲイン特性V1(μ,θimg )を、
V1 (μ,θimg )=H(μ,π/2)/H(μ,θimg ) ……(20)
とすれば、回復処理の演算式の、
H01(μ,θimg )=H(μ,θimg )×V1 (μ,θimg )……(21)
によって、理想的に回復されたOTF特性H01(μ,θimg )が得られる。これによって得られる画像の照度分布I01(r,θimg )からはボケが取り除かれ、焦点の合った画像となる。ただし、図32の117/1,117/3に示したように、被写体距離によっては、ボケ117/1′,117/3′は完全に除かれない。これは、図31の105/1,105/2,105/3を比べれば明らかなように、被写体距離によって加算画像上のボケが部分的に大きくなり、その部分が回復フィルターによっても取り除かれないことを示している。しかし、実際上、そのようなボケは、信号レベル自体が極めて低いので、画質への影響は軽微である。
【0173】
ここで、改めて照度分布ΣI(r,θimg )とスペクトルH(μ,θimg )の特性を見ると、角度θimg がθc を越える時には大幅に変化するが、0≦θimg ≦θc およびθc <θimg ≦π/2の範囲では、変化が少ないことがわかる。
【0174】
そこで、回復フィルタのゲイン特性V2 (μ,θimg )を、簡略的に、
V2 (μ,θimg )=1 (θc <θimg ≦π/2の範囲)……(22)
V2 (μ,θimg )=H(μ,π/2)/H(μ,θc )(0≦θimg ≦θc の範囲)……(23)
とすると、そのパワースペクトルは図37のようになる。上記特性V2 を用い、同様の回復処理演算として、
H02(μ,θimg )=H(μ,θimg )×V2 (μ,θimg )……(24)
を行うと、回復されたOTFのH02(μ,θimg )は、図38のようになる。この場合、θimg =π/2,θc においては理想的に回復されるが、それ以外の条件では、僅かにOTFが低下する(図38では、代表値としてθimg =0の場合を示している)。
【0175】
こうして得られる画像の照度分布I02(r,θimg )は、図39のようになる。すなわち、角度θimg =π/2,θc においては、理想的な点像分布となり、それ以外の条件、例えば、角度θimg =0の場合では、若干のボケの成分が残存することになるが、実際的にはこの程度の簡略化した回復フィルターであっても、充分な画質が得られる。
【0176】
上記回復フィルターの設計作業には、加算画像のパワースペクトルH(μ,θimg )のデータが必要である。そのためには、まず、光学系結像シュミレーション・ソフトにより、実際の光学系での点像分布関数ΣI(r,θimg )を求め、これに2次元フーリエ変換処理を施すことで求めることができる。もちろん、このような計算的手法ではなく、実際の装置において、テストチャート等を撮影し、回復処理を試みながら、回復フィルタを求める手法も有効である。
【0177】
次に、本発明の第5実施の形態の画像入力装置について説明する。
本実施の形態の画像入力装置は、前記図1に示す第1実施の形態の装置のカメラヘッド1に対して図40のブロック構成図に示すカメラヘッド306を適用するものであって、VCM13と可動ミラー20を用いず、複数枚の固定ミラー群を用いた撮影光学系を適用するものである。そして、本実施の形態装置では電気回路による加算処理を必要とせず、また、VCMを必要としないことから図1に示したCCU2中の加算処理回路23とVCMドライバ25は不要となる。上述の構成以外は、前記図1に示した第1の実施の形態の装置のものと同一とする。
【0178】
本実施の形態の画像入力装置のカメラヘッド306は、撮影光学系307と撮像素子12で構成される。そして、上記撮影光学系307は、結像光学系として対物レンズ308と、中間結像レンズ309と、最終段の結像レンズ310と、開口絞り311と、ミラー群312と、ハーフミラー15とにより構成される。
【0179】
上記ミラー群312は、最後方部に配設される1枚の全反射ミラーHM1 と、上記HM1 の前に配設される3枚のハーフミラーHM2 ,HM3 ,HM4 よりなる。それらミラーHM1 ,HM2 ,HM3 ,HM4 は、互いに平行、かつ、間隔ΔZHMで撮影光学系307の本体に固定して配置されており、VCM等で振動駆動する必要はない。また、上記開口絞り311は、中間結像レンズ309の物体側焦点F309に位置しているので、中間結像レンズ309は、中間結像に対してテレセントリックである。
【0180】
さらに、本実施の形態の画像入力装置においては、前記第3,4実施の形態の装置のように時系列的な焦点移動画像を取り込むのではなく、ミラー群312により同時的に焦点移動画像が撮像素子12上に結像される。その像はすでに焦点移動がなされ、しかも、加算された像であって、前記図10に示す画像に相当する像である。したがって、図1のCCU2の加算処理回路23が不要となる。
【0181】
本実施の形態の装置においては、上述のようにVCMと加算処理回路を必要としないが、それはミラー群312の働きによる。そのミラー群312の作用について、以下、説明する。
図40のミラー群における光線の反射状態を示す図において、被写体3から発した光線は、対物レンズ308で屈折して略平行光線となり、絞り開口311とハーフミラー15を透過し、さらに、中間結像レンズ309によりミラー群312中のハーフミラーHM2 の近傍に中間像が結像する。そして、ミラー群312の各反射面で反射された光線は、中間結像レンズ309で再び略平行光線となってハーフミラー15で反射し、結像レンズ310により撮像素子12上に最終像が結像される。
【0182】
ミラー群312に入射した光線は、ハーフミラーHM4 ,HM3 ,HM2 では一部の光線が透過し、一部が反射される。全反射ミラーHM1 では全てが反射される。図41は、ミラー群312における光線の反射の様子をより詳細に示した図である。上記各反射光を、反射した面に対応して反射光Lr1 ,Lr2 ,Lr3 ,Lr4 と呼ぶとすると、反射光Lrn と反射光Lrn+1 との間には距離2・ΔZHMの光路差が生じ、反射光Lr1 と反射光Lr4 の間には距離6・ΔZHMの光路差を生じることになる。
【0183】
上記各反射光により得られた最終像は、例えば、前記第1の実施の形態の装置の場合であればVCM13を振幅±3・ΔZHMの範囲だけ振動駆動して得た画像を積算した画像と同様のものになる。従って、撮像素子12からの出力信号をA/D変換し、加算処理することなく回復処理を施せば、被写界深度の深い画像が得られる。
【0184】
なお、本実施の形態の装置においては、ミラー群312の全反射ミラーHM1 およびハーフミラーHM2 ,HM3 ,HM4 の反射率を最適化することと、間隔ΔZHMの値を最適化することが必要である。まず、反射率の最適化について、以下に説明する。
【0185】
図41の本装置のように1枚の全反射ミラーと3枚(あるいは、任意の枚数k枚の場合でも同様)のハーフミラーを重ねた場合、各反射面で反射した光線の強度が互いに等しいことが望ましい。したがって、まずはミラー群312の内部で1回だけ反射して射出する光線の各ミラー面に対応する強度に着目し、各光線の強度を等しくすることが望ましい。すなわち、
Lr1 =Lr2 =Lr3 =…=Lrn =Lrn+1 =…=Lrk ……(25)
を満たすことが望ましい。
【0186】
式(25)を満たすためには、第n反射面の反射率をRn とし、第(n+1)反射面の反射率をRn+1 とすると、次式の関係を満足する必要がある。
【0187】
Rn+1 =(1−Rn+1 )2 ・Rn ……(26)
従って、
【数2】
Figure 0004011704
となる。上記式(27)に基づいて、各ミラーHM1 ,HM2 ,HM3 ,HM4 の反射率および値(1−Rn )で示される透過率を求めた結果を表1に示す。
【0188】
【表1】
Figure 0004011704
【0189】
ところで、ミラー群312からの射出光線の反射回数は、1回とは限らない。図42,43の反射状態図に一例を示すように、3回反射する射出光の反射モードも多数存在する。そのときの反射面は、複数のハーフミラーによるそれぞれの反射面を含んで構成されることによりその位置が同時的に複数異なって設定される。その同時的に複数異なって設定される反射面のうち少なくとも一のものは、上記複数のハーフミラーの当該入射面への入射光線が上記複数のハーフミラー中を透過および反射する過程で順次3回以上反射して結果的に上記入射面から当該射出光線として射出するときの上記入射光線と射出光線との関係から規定される一の実効的な反射面である仮想反射面である
その場合、図42,43に示すように全反射ミラーHM1で1回反射した光路よりもさらに長い光路を経ることになる。この3回反射光の射出光線中の比率を計算し、1回反射光と合わせて示したのが図44である。図中の仮想反射面HM0 ,HM-1,HM-2 は、例えば図42,43に示すような仮想的反射面であり、全反射ミラーHM1 での反射よりもさらに光路が長くなる。
【0190】
上記仮想反射面HM0 での反射率は、図44に示すように1回反射光の6割程度の強度を有し、十分に結像作用に寄与する。したがって、本実施の形態の装置においては、中間像位置として、ミラー群のミラーHM2 位置を中心位置として仮想反射面HM0 からハーフミラーHM4 までの±2ΔZHMの範囲だけミラー駆動させて得られた画像を積算した場合とほぼ同等の加算画像が得られる。この場合、光線Lr0 と光線Lr4 の間には距離8・ΔZHMの光路差を生じることになる。
【0191】
上述のように本実施の形態の装置においては、加算処理回路、VCM、VCMドライバを必要とせず、かつ、機械的な駆動を必要としないので、深い被写界深度で撮影できる画像入力装置の低コスト化と小型化が可能となり、装置として高い信頼性のものを実現できる。
【0192】
また、高倍率の顕微鏡等でこの種の装置を実現するためには、中間結像面において、すでに十分に拡大されていることが、光学的な収差補正上、有利である。しかし、その場合、焦点移動のために中間結像面のミラーに与えるべき変位量が、大きくなってしまう。このような場合は、VCM等でミラーを振動させるよりも、本実施の形態の複数枚のミラーを配置する方式を採用した方が有利となる。本実施の形態の装置の方式ならば、大きな振動変位を与えることなく、ミラー間隔ΔZHMの値を大きくして全反射ミラーおよびハーフミラーを撮影光学系本体に固定するだけでよいので、極めて簡単な構成で実現できる。また、振動による画像ブレも生じない。
【0193】
さらに、本実施の形態の画像入力装置においては、ミラー群312を構成するハーフミラーの数を増減して、被写界深度の拡大幅を任意に選ぶことは容易に可能である。また、前記図33に示した第4実施の形態の画像入力装置におけるVCM13,可動ミラー20、および、VCMドライバ25をミラー群312に置き換えることも有効である。
【0194】
次に、本発明の第6実施の形態の画像入力装置について説明する。
本実施の形態の画像入力装置は、1つの結像光学系を用いるものであって、平面鏡を振動駆動し、その反射面が光軸に対して直交していることを特徴とするものである。
【0195】
図45は、本実施の形態の画像入力装置を構成するカメラヘッド406のブロック構成図を示す。なお、本画像入力装置を構成するカメラヘッド406以外のCCU,モニタ等は、前記第1の実施の形態の装置で適用したものと同一とする。
【0196】
図45に示すように、本画像入力装置のカメラヘッド406は、主に撮影光学系407と、VCM13と、撮像素子12とで構成される。VCM13と、撮像素子12とは、前記第1の実施の形態の装置で適用したものと同一とする。
【0197】
上記カメラヘッド406においては、被写体3から発した光線が撮影光学系407に取り込まれて、対物レンズ408と開口絞り411と結像レンズ409とハーフミラー15とを透過する。その透過光は、VCM13によってD0 方向に振動駆動される平面鏡の可動ミラー20にて反射され、さらに、ハーフミラー15で反射され、撮像素子12上に結像する。
【0198】
上記開口絞り411は、結像レンズ409の焦点F409 に位置すると同時に、対物レンズ408の焦点F408 に位置しているので、撮影光学系407は、物体側と像側の双方に対してテレセントリックである両側テレセントリック光学系を形成している。したがって、開口絞り411の中心を通る主光線L1 は物体側でも光軸Oと平行な光線L0 であり、像側でも光軸Oと平行な光線L2 となる。
【0199】
上記撮像素子12を介して取り込まれた焦点移動した像の加算処理および回復処理は、既に図15,16,17等を用いて説明した第1の実施の形態の画像入力装置における処理動作と同様である。
【0200】
上述したように本実施の形態の画像入力装置は、前記第1の実施の形態の装置では結像光学系として2つの光学系を用いるのに対して1つの結像光学系のみを適用するものであって、中間結像を行わず、1回目の結像を直接撮像素子12上に結像させている。したがって、占有スペ−スも少なくなり、コスト上も有利になる。また、光学的にも光学系の収差を少なく抑えることができる。また、光学系が物体側でもテレセントリックであるので撮影画像により被写体の寸法を測定するような測定器としての応用に適している。
【0201】
なお、用途によっては、光学系が物体側でテレセントリックである必要のない場合もあり、そのような場合は、像側のみのテレセントリック光学系を用いればよい。
【0202】
次に、上記第6の実施の形態の画像入力装置の変形例について説明する。
図46は、上記変形例における撮影光学系507の結像レンズ409以降の構成を示す図である。本変形例の装置の撮影光学系507においては、可動ミラー20に替えてミラー群312を適用する。上記ミラー群312は、前記図40に示した第5実施の形態の装置に適用したミラー群312と同様のミラーであり、1枚の全反射ミラーHM1と、3枚のハーフミラーHM2,HM3,HM4で構成される。
【0203】
以上のように構成された本変形例の画像入力装置によれば、前記第6の実施の形態の画像入力装置の効果に加えて、さらに、ミラーの振動駆動部を必要としないので、振動によるブレをなくすことができる。また、VCM,VCMドライバ,加算処理回路等が不要であり、構造をシンプルにすることができ、装置の信頼性も向上させることができる。
【0204】
【発明の効果】
上述のように本発明の請求項1記載の画像入力装置によれば、光学系が焦点調整手段を持っていなくとも撮像面に結像する物体面を光軸方向に動かすことができ、被写界深度の浅い光学系を用いたとしても、光軸方向における被写体の様々な像を容易に撮像することができる。また、ミラーを移動させることによって、従来のレンズを移動させる構造よりも高速な物体面の移動が可能となる。また、ミラーを往復運動させると連続的に被写体像を取り込むことができ、また、上記往復運動の変位幅の中心を中間像面と同じにすると、光学系の性能を最大限に発揮でき、例えば、収差を抑えることができる。さらに、ハーフミラーを用いることによって、上記ミラーを光軸上に直交する一枚のミラーで構成することができ、装置の低価格化と軽量化が実現できる。
【0205】
本発明の請求項2記載の画像入力装置によれば、請求項1に記載の画像入力装置の効果に加えて、何れかの光学系をテレセントリックにすることによって、最終像の倍率をかえることなく、ミラーの位置の変化に伴い、物体面位置を光軸方向に動かことができ、これにより、各物体面における被写体の高精度に回復処理された像を撮像することができる。
【0206】
本発明の請求項3記載の画像入力装置によれば、請求項2に記載の画像入力装置の効果に加えて、さらに中間像に対するテレセントリック系を保ったまま、最終像面の結像させる被写体の像倍率を変化させることができ、倍率変化が要求される顕微鏡等にも応用することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である画像入力装置のブロック構成図。
【図2】図1の画像入力装置に適用される撮像光学系の光路図。
【図3】図2の光路図において、ミラー部を展開して示した等価的な光路展開図。
【図4】図1の画像入力装置に適用されるVCMの構造を示す要部断面図。
【図5】図1の画像入力装置における被写体と撮像光学系と可動ミラーの関係を示す図。
【図6】図1の画像入力装置に適用される可動ミラーの振動波形を示す図。
【図7】図1の画像入力装置において、ある経過時間での被写体像の照度分布をx軸に対して示した図。
【図8】図1の画像入力装置において、次の経過時間での被写体像の照度分布をx軸に対して示した図。
【図9】図1の画像入力装置において、さらに、次の経過時間での被写体像の照度分布をx軸に対して示した図。
【図10】図7,図8,図9で得られた被写体像の照度分布値を加算したデータを示す図。
【図11】図10で得られた加算データを回復処理を施して得られた被写体画像データを強度分布で示す図。
【図12】本発明の第2の実施の形態の画像入力装置に適用される撮像光学系の構成図。
【図13】上記第1の実施の形態の画像入力装置の第1の変形例のブロック構成図。
【図14】上記第1の実施の形態の画像入力装置の第2の変形例のブロック構成図。
【図15】上記第1の実施の形態の装置等にも適用可能である加算処理回路と回復処理回路とを内蔵したCCUの例を示すブロック構成を示す図。
【図16】上記第1の実施の形態の第1の変形例にも適用可能な回復処理回路を有するCCUの例を示すブロック構成を示す図。
【図17】図15の回復処理回路の一つの具体例を示すブロック構成図。
【図18】図15の回復処理回路の他の具体例を示すブロック構成図。
【図19】図15の回復処理回路における回復フィルタの設計手順を示す図であって、光軸方向距離に対する波面を示す図。
【図20】図15の回復処理回路における回復フィルタの設計手順を示す図であって、空間周波数に対するOTFを示す。
【図21】図15の回復処理回路における回復フィルタの設計手順を示す図であって、(A)は、合成OTFを示し、(B)は、焦点が合っている場合のOTFを示し、(C)は、回復フィルタのOTFを示す。
【図22】本発明の第3の実施の形態の画像入力装置のブロック構成図。
【図23】図22の画像入力装置の撮影光学系の光路図。
【図24】図22の画像入力装置における被写体と撮像光学系と可動ミラーの関係を示す斜視図。
【図25】図22の画像入力装置の可動ミラーの振動波形を示す図。
【図26】図22の画像入力装置における経過時間t0 での被写体像の照度分布および点像の広がりのイメージを示す図。
【図27】図22の画像入力装置における経過時間t1 での被写体像の照度分布および点像の広がりのイメージを示す図。
【図28】図22の画像入力装置における経過時間t2 での被写体像の照度分布および点像の広がりのイメージを示す図。
【図29】図22の画像入力装置における経過時間t3 での被写体像の照度分布および点像の広がりのイメージを示す図。
【図30】図22の画像入力装置における経過時間t4 での被写体像の照度分布および点像の広がりのイメージを示す図。
【図31】図22の画像入力装置において、図26〜30で得られた被写体像の光量を加算した状態での被写体像の照度分布および点像の広がりのイメージを示す図。
【図32】図22の画像入力装置において、図31で得られた加算データを回復処理して得られた被写体画像データの照度分布および広がりのイメージを示す図。
【図33】本発明の第4の実施の形態の画像入力装置におけるカメラヘッドのブロック構成図。
【図34】図22の画像入力装置における図31の加算像のボケパターンの拡大図。
【図35】図22の画像入力装置における図31の加算像のr方向の照度分布を示す図。
【図36】図22の画像入力装置における図31の加算像のパワースペクトル曲線を示す図。
【図37】図22の画像入力装置における回復フィルタのパワースペクトルを示す図。
【図38】図22の画像入力装置において回復処理された回復画像のOTFを示す図。
【図39】図22の画像入力装置において回復処理された回復画像の照度分布を示す図。
【図40】本発明の第5の実施の形態の画像入力装置のカメラヘッドのブロック構成図。
【図41】図40の画像入力装置のミラー群による光線の反射状態を示す図。
【図42】図40の画像入力装置のミラー群による光線の3回反射の一例の反射状態を示す図。
【図43】図40の画像入力装置のミラー群による光線の3回反射の他の一例の反射状態を示す図。
【図44】図40の画像入力装置におけるミラー群の各ミラーの反射光の射出光線中の比率を示す図。
【図45】本発明の第6の実施の形態の画像入力装置のカメラヘッドの構成を示す図。
【図46】図45の画像入力装置の変形例の撮影光学系の結像レンズ以降の構成を示す図。
【符号の説明】
3,3/1〜3/3……被写体
4,4/1〜4/3……中間像
5,5/1〜5/3……最終像,被写体像
11a,31a……第1の光学系
(第1の部分の光学系,光学系)
11b,31b……第2の光学系
(第2の部分の光学系,光学系)
12,12′,52……撮像素子(撮像装置)
13……VCM(ミラー駆動手段)
20……可動ミラー(振動的に変位する平面鏡)
23,54……加算回路
(被写界深度調整要素,加算要素)
24,57……回復処理回路
(被写界深度調整要素,回復処理要素)
32……可動ダハミラー(振動的に変位する平面鏡)
103,103/1〜103/3
……物体(被写体)
105,105/1-1〜105/3-3
……像(最終像,被写体像)
108……結像レンズ(光学系)
208,308,408……対物レンズ(光学系)
209,309……中間結像レンズ(光学系)
210,310,409……結像レンズ(光学系)
312……ミラー群(複数のハーフミラー)
HM2 ,HM3 ,HM4 ……ハーフミラー(複数のハーフミラー)
HM0 ,HM-1,HM-2……仮想反射面

Claims (3)

  1. 観察する被写体近傍に設定した物体面と光学的に共役な位置関係にある中間像面に中間像を結像する第1の光学系と、
    上記中間像面に向かって上記第1の光学系から到達する光線の光軸に直交して配置され、上記第1の光学系から到達する光線を反射するミラーと、
    上記第1の光学系の光路中に配置され、上記ミラーが反射した光線を第2の光学系の光軸方向に反射するハーフミラーと、
    上記ハーフミラーが反射した光線を入射させ、上記中間像面と光学的に共役な位置関係にある最終像面に最終像を結像する上記第2の光学系と、
    上記最終像面に自己の撮像面に位置するように配置された撮像手段と、
    上記ミラーの位置を上記第1の光学系の光軸方向に変化させるミラー駆動手段と、
    を備えてなることを特徴とする画像入力装置。
  2. 上記第1の光学系、および、第2の光学系のうち、少なくとも一方は、中間像面に対してテレセントリックであることを特徴とする請求項1記載の画像入力装置。
  3. 上記最終像面に結像させる被写体の像倍率を変化させる像倍率変化手段を中間像に対してテレセントリックになっていない方の上記第1の光学系、または、第2の光学系の何れかに有することを特徴とする請求項2記載の画像入力装置。
JP35956397A 1997-01-10 1997-12-26 画像入力装置 Expired - Fee Related JP4011704B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP35956397A JP4011704B2 (ja) 1997-01-10 1997-12-26 画像入力装置
US09/005,139 US6774944B1 (en) 1997-01-10 1998-01-09 Image taking apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP328197 1997-01-10
JP9-3281 1997-01-10
JP35956397A JP4011704B2 (ja) 1997-01-10 1997-12-26 画像入力装置

Publications (2)

Publication Number Publication Date
JPH10257373A JPH10257373A (ja) 1998-09-25
JP4011704B2 true JP4011704B2 (ja) 2007-11-21

Family

ID=26336831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35956397A Expired - Fee Related JP4011704B2 (ja) 1997-01-10 1997-12-26 画像入力装置

Country Status (2)

Country Link
US (1) US6774944B1 (ja)
JP (1) JP4011704B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576326B2 (en) 2009-12-07 2013-11-05 Panasonic Corporation Imaging apparatus and method of controlling the image depth of field
WO2014163114A1 (ja) * 2013-04-03 2014-10-09 オリンパス株式会社 結像光学系、照明装置および観察装置
WO2016010096A1 (ja) * 2014-07-16 2016-01-21 オリンパス株式会社 位相変調素子調整システムおよび位相変調素子調整方法
WO2016056147A1 (ja) * 2014-10-08 2016-04-14 オリンパス株式会社 結像光学系、照明装置および観察装置
US10168283B2 (en) 2014-07-25 2019-01-01 Olympus Corporation Observation apparatus and method for sharpening final image
DE112015003920B4 (de) 2014-10-09 2019-06-06 Olympus Corporation Optisches Bilderzeugungssystem, Beleuchtungsvorrichtung, Mikroskopvorrichtung und Phasenmodulationselement
US10422747B2 (en) 2014-07-25 2019-09-24 Olympus Corporation Imaging optical system, illumination apparatus, observation apparatus, and wavefront recovery device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215406A (ja) * 2000-02-02 2001-08-10 Olympus Optical Co Ltd 撮像素子および自動焦点調節装置
JP4565115B2 (ja) * 2006-08-30 2010-10-20 独立行政法人産業技術総合研究所 多焦点撮像装置
JP4538611B2 (ja) * 2006-08-30 2010-09-08 独立行政法人産業技術総合研究所 多焦点画像を撮像する方法及び多焦点撮像装置
JP4816600B2 (ja) * 2007-09-06 2011-11-16 岩崎電気株式会社 油膜検知装置及び方法
JP5254904B2 (ja) * 2009-08-20 2013-08-07 キヤノン株式会社 撮像装置及び方法
TWI525346B (zh) * 2009-09-01 2016-03-11 財團法人工業技術研究院 具有長焦深之光學成像系統及光學系統
JP4875787B2 (ja) * 2010-02-08 2012-02-15 パナソニック株式会社 撮像装置
NL2006556A (en) 2010-05-13 2011-11-15 Asml Holding Nv Optical system, inspection system and manufacturing method.
JP5707792B2 (ja) * 2010-09-08 2015-04-30 富士通株式会社 実時間被写界深度拡張システム及び実時間被写界深度拡張方法
EP2682799B1 (en) * 2011-03-02 2015-12-09 Panasonic Corporation Imaging device, semiconductor integrated circuit, and imaging method
JP5882898B2 (ja) * 2011-03-14 2016-03-09 パナソニック株式会社 撮像装置、撮像方法、集積回路、コンピュータプログラム
JP6469380B2 (ja) * 2014-07-25 2019-02-13 オリンパス株式会社 結像光学系、照明装置および観察装置
DE112015003924T5 (de) * 2014-10-03 2017-05-18 Olympus Corporation Mikroskopvorrichtung zum Scannen in die Richtung der optischen Achse
WO2016056651A1 (ja) * 2014-10-09 2016-04-14 オリンパス株式会社 結像光学系、照明装置および顕微鏡装置
JPWO2016056657A1 (ja) * 2014-10-09 2017-07-27 オリンパス株式会社 結像光学系、照明装置および観察装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3191928B2 (ja) 1988-02-23 2001-07-23 オリンパス光学工業株式会社 画像入出力装置
JP3429755B2 (ja) * 1990-04-27 2003-07-22 株式会社日立製作所 撮像装置の被写界深度制御装置
US5351152A (en) * 1991-07-23 1994-09-27 The Board Of Governers Of Wayne State University Direct-view stereoscopic confocal microscope
JPH0527084A (ja) 1991-07-25 1993-02-05 Toshiba Eng & Constr Co Ltd 燃料集合体のチヤンネルボツクス載置確認装置
US5394268A (en) * 1993-02-05 1995-02-28 Carnegie Mellon University Field synthesis and optical subsectioning for standing wave microscopy
US6201899B1 (en) * 1998-10-09 2001-03-13 Sarnoff Corporation Method and apparatus for extended depth of field imaging

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576326B2 (en) 2009-12-07 2013-11-05 Panasonic Corporation Imaging apparatus and method of controlling the image depth of field
WO2014163114A1 (ja) * 2013-04-03 2014-10-09 オリンパス株式会社 結像光学系、照明装置および観察装置
US10108008B2 (en) 2013-04-03 2018-10-23 Olympus Corporation Image-forming optical system, illumination apparatus, and observation apparatus
WO2016010096A1 (ja) * 2014-07-16 2016-01-21 オリンパス株式会社 位相変調素子調整システムおよび位相変調素子調整方法
JP2016024210A (ja) * 2014-07-16 2016-02-08 オリンパス株式会社 位相変調素子調整システムおよび位相変調素子調整方法
US10437050B2 (en) 2014-07-16 2019-10-08 Olympus Corporation Phase-modulation-element adjustment system and method for decreasing wavefront aberration
US10168283B2 (en) 2014-07-25 2019-01-01 Olympus Corporation Observation apparatus and method for sharpening final image
US10422747B2 (en) 2014-07-25 2019-09-24 Olympus Corporation Imaging optical system, illumination apparatus, observation apparatus, and wavefront recovery device
JPWO2016056252A1 (ja) * 2014-10-08 2017-07-27 オリンパス株式会社 結像光学系、照明装置および観察装置
US10330905B2 (en) 2014-10-08 2019-06-25 Olympus Corporation Pair of phase modulation elements for imaging optical system, imaging optical system, illuminating device, and microscope apparatus
WO2016056252A1 (ja) * 2014-10-08 2016-04-14 オリンパス株式会社 結像光学系、照明装置および観察装置
WO2016056147A1 (ja) * 2014-10-08 2016-04-14 オリンパス株式会社 結像光学系、照明装置および観察装置
DE112015003920B4 (de) 2014-10-09 2019-06-06 Olympus Corporation Optisches Bilderzeugungssystem, Beleuchtungsvorrichtung, Mikroskopvorrichtung und Phasenmodulationselement

Also Published As

Publication number Publication date
US6774944B1 (en) 2004-08-10
JPH10257373A (ja) 1998-09-25

Similar Documents

Publication Publication Date Title
JP4011704B2 (ja) 画像入力装置
JP3791777B2 (ja) 電子内視鏡
JP5134694B2 (ja) 画像処理装置及び画像処理方法
CN102472620B (zh) 图像处理装置及图像处理方法
WO2010053178A1 (ja) 撮像装置および画像処理方法
JP5569132B2 (ja) 測距装置および撮像装置
JP5677366B2 (ja) 撮像装置
JP2012005056A (ja) 画像処理装置、画像処理方法及びプログラム
WO2018211601A1 (ja) 撮像装置および撮像システム
JP5501069B2 (ja) 画像処理装置、撮像装置、画像処理方法およびプログラム
JP5477464B2 (ja) 撮像装置
JP2018195985A (ja) 画像処理装置、撮像装置、画像処理方法、プログラム、および、記憶媒体
JPH1172717A (ja) 顕微鏡デジタル写真撮影システム
JP2019520897A (ja) 拡張された被写界深度を有する口腔内イメージング装置
US20040169922A1 (en) Stereo microscopy
CN115937080A (zh) 一种六边形晶格照明的超分辨显微系统及图像重构方法
JP5765569B2 (ja) 顕微鏡装置
CN115113382B (zh) 用于形成具有扩展景深的显微图像的显微镜和方法
JP3171647B2 (ja) 人工網膜及び人工視覚装置
JP2864561B2 (ja) 走査型撮像装置
JP2025025124A (ja) 光学機器およびその制御方法
JP2019045568A (ja) 撮像装置および撮像システム
KR100433278B1 (ko) 반사형 입체 디스플레이 시스템
JP2023133024A (ja) 撮像装置及びその制御方法とプログラム
JP2007233151A (ja) 立体画像撮像表示システム、立体画像撮像装置および立体画像生成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees