[go: up one dir, main page]

JP4010092B2 - In-cylinder internal combustion engine - Google Patents

In-cylinder internal combustion engine Download PDF

Info

Publication number
JP4010092B2
JP4010092B2 JP2000161969A JP2000161969A JP4010092B2 JP 4010092 B2 JP4010092 B2 JP 4010092B2 JP 2000161969 A JP2000161969 A JP 2000161969A JP 2000161969 A JP2000161969 A JP 2000161969A JP 4010092 B2 JP4010092 B2 JP 4010092B2
Authority
JP
Japan
Prior art keywords
engine
fuel
intake
closing timing
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000161969A
Other languages
Japanese (ja)
Other versions
JP2001342858A (en
Inventor
茂雄 山本
一芳 中根
大 田中
純 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000161969A priority Critical patent/JP4010092B2/en
Publication of JP2001342858A publication Critical patent/JP2001342858A/en
Application granted granted Critical
Publication of JP4010092B2 publication Critical patent/JP4010092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス浄化を促進し得る筒内噴射型内燃機関に関する。
【0002】
【従来の技術】
近年、火花点火式の筒内噴射型内燃機関(以下、直噴ガソリンエンジンともいう)が自動車用エンジンとして実用化されている。吸気管噴射ガソリンエンジンでは筒内への燃料供給タイミングが吸気弁の開放時のみに限定されるが、直噴ガソリンエンジンでは自由なタイミングで筒内への燃料供給を行なえる。このため、予混合による均一燃焼に最適なタイミングで燃料噴射を行なってより大きな出力を得ることや、部分負荷時に超希薄成層燃焼を行なうことができ、燃費の低減を実現することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、直噴ガソリンエンジンでは、目視可能なスモークや濃度の高いHCを排出し易いという課題がある。
これらの発生メカニズムをしらべると、次のようなことがわかった。
スモークは、冷態始動直後のレーシング時など、燃焼室の壁面温度が低い条件下で空燃比をリッチにして運転を行なっている際に顕著に発生する。
【0004】
HCは、高速全開走行をはじめとした高速・高負荷条件での運転時に、ノッキング抑制や排ガス浄化用触媒の過昇温抑制のため、空燃比をリッチにして運転を行なっている際に高濃度になる。
燃料は、気化・混合し易い比較的低沸点の成分から気化・混合し難い比較的高沸点の成分まで種々の成分が含まれるが、吸気管噴射ガソリンエンジンの場合、図7に示すように、吸気管101内に噴射弁102から噴射された燃料[図7(a)参照]中の低沸点成分が選択的に直に筒内103に供給され、残った気化・混合し難い(蒸発し難い)成分は吸気管101内に留まり[図7(b)参照]、十分な気化時間をかけて気化した上で次の行程で筒内103に供給される。
【0005】
一方、直噴ガソリンエンジンの場合、図8に示すように、燃料の全ての沸点成分が噴射弁102から直に筒内103に供給されるため[図8(a)参照]、特に、燃焼室の壁面温度が低い冷態時や十分な混合時間を確保できない高速運転時に、蒸発し難い燃料中の高沸点成分のものは、液相のまま燃焼に至り易く[図8(b)参照]、これが、スモークやHCを排出する要因と考えられる。
【0006】
ところで、特開平9−280092号公報には、HCやスモークの発生を抑制するために、燃料噴射終了時期が吸気弁閉時期よりも遅い場合は燃料噴射終了時期を進角補正する技術が開示されている。
しかしながら、直噴ガソリンエンジンの場合、HCやスモークが発生するのは、上述のように燃料の全ての沸点成分が直に筒内に供給され、蒸発し難い燃料中の高沸点成分のものが液相のまま燃焼に至ることも大きな要因であり、このような点を考慮せずに単に燃料噴射時期を補正するだけではHCやスモークの発生を十分に抑制することはできない。
【0007】
本発明はこのような課題に鑑み案出されたもので、筒内噴射型内燃機関において、スモークやHCの排出を抑制することができるようにした、筒内噴射型内燃機関を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目標を達成するため、本発明の筒内噴射型内燃機関は、吸気行程燃料噴射手段によって、機関の吸気行程で燃料を筒内に直接噴射するが、この吸気行程燃料噴射手段の作動時に機関の冷態運転時,機関の空燃比をリッチ又はストイキとした高出力運転時,及び空燃比をリーンとした低燃費運転時の少なくとも何れかである特定の運転状態では、制御手段が、吸気弁の閉時期を遅角させて吸気ポートへの吹き返し混合気が増大するように吸気弁閉時期可変手段の作動を制御する。
【0009】
吸気ポートへ吹き返された混合気中の燃料は、吸気ポート内で十分に時間をかけて蒸発し、次行程の吸入空気と混合して筒内に供給される。したがって、吸気ポートへの吹き返し混合気を増大させると、筒内で蒸発せずに液相のまま燃焼に至る燃料の量を低減させることができ、スモークやHCの排出を抑制することができる。
【0011】
さらに、上記制御手段は、燃料噴射量の加速増量中、及び/又は機関の全開加速時には、上記の吸気弁の閉時期を遅角させる制御を禁止するように構成することが好ましい(請求項)。
また、上記吸気弁閉時期可変手段は、吸気閉弁時期の遅延レベルを調整可能に構成され、上記制御手段は、機関への出力要求に応じて上記遅延を小さくするように上記吸気弁閉時期可変手段を制御することが好ましい(請求項)。
【0012】
【発明の実施の形態】
以下、図面により、本発明の実施の形態について説明する
ず、本実施形態にかかる火花点火式の筒内噴射型内燃機関(以下、直噴ガソリンエンジン又は単にエンジンともいう)の構成について説明する。なお、本エンジンは自動車に搭載されているものとする。
【0013】
図1に示すように、エンジン1のシリンダヘッド2には、各シリンダ3毎に点火プラグ4と燃焼室5内に直接開口する燃料噴射手段としての燃料噴射弁6とが設けられ、点火プラグ4は点火コイル4Aにより燃料噴射弁6はドライバ6Aによりそれぞれ駆動される。シリンダ3内には、クランクシャフト7に連結されたピストン8が装備され、このピストン8の頂面には半球状に窪んだキャビティ9が形成されている。燃料噴射弁6は、機関の吸気行程で燃料を筒内に直接噴射することができ、吸気行程燃料噴射手段としても機能する。
【0014】
シリンダヘッド2には、吸気弁10を介して燃焼室5と連通しうる吸気ポート11と排気弁12を介して燃焼室5と連通しうる排気ポート13とが形成されている。吸気ポート11は燃焼室5上方に略鉛直に配設され、ピストン8の頂面のキャビティ9と協働して燃焼室5内で吸気による逆タンブル流を形成させる。
また、シリンダ3外周のウォータジャケット15には冷却水温を検出する水温センサ16が設けられ、クランクシャフト7には所定のクランク角位置で信号を出力するクランク角センサ17が、吸気弁10,排気弁12を駆動するカムシャフト18,19にはカムシャフト位置に応じた気筒識別信号を出力する気筒識別センサ(カム角センサ)20が、それぞれ付設されている。クランク角信号に基づいてエンジン回転速度を算出できるので、クランク角センサ17はエンジン回転速度検出手段としても機能する。
【0015】
また、カムシャフト18と吸気弁10との間には、可変動弁機構41が装備されている。この可変動弁機構41は吸気弁10の閉時期を変更可能とする吸気弁閉時期可変手段として機能するようになっている。つまり、可変動弁機構41は、吸気弁10の閉時期を通常のタイミングから所定量だけ遅角させることができるようになっている。
【0016】
本実施形態の可変動弁機構41は、カム位相角変更式(カム首振り式)のもので、吸気弁10の開放期間(クランク角対応)は一定であるが開閉タイミングをシフトできるようになっており、吸気弁10の開閉タイミングを通常時に対して遅角させることができるようになっている。
この可変動弁機構41には、公知の種々のものを適用できるので説明は省略するが、ここで、可変動弁機構41に要求されるのは吸気弁10の閉時期を可変にする機能であるから、例えばカムプロフィルの異なる複数のカムを選択的に使用して吸気弁10を駆動できるように構成したもの(カム切換式)など、可変動弁機構41の種類によっては、吸気弁10の開時期は変更しないで閉時期のみを変更できるようにしたものを用いても良い。
【0017】
吸気系は、上流側からエアクリーナ21,吸気管22,スロットルボディ23,サージタンク24,吸気マニホールド25の順に構成され、吸気マニホールド25の下流端部に吸気ポート11が設けられている。スロットルボディ23には、燃焼室5内へ流入する空気量を調整する空気量調整手段としての電子制御式スロットル弁(ETV)30がそなえられ、このETV30の開度制御は、アクセル開度に応じた制御のみならず、アイドルスピード制御や、後述するリーン運転時の大量吸気導入の制御も行なえるようになっている。
【0018】
さらに、エアクリーナ21の直ぐ下流部分には吸入空気流量を検出するエアフローセンサ37が、スロットルボディ23にはETV30のスロットル開度を検出するスロットルポジションセンサ38とETV30の全閉を検出してアイドル信号を出力するアイドルスイッチ39とがそれぞれ設けられている。
排気系は、上流側から排気ポート13を有する排気マニホールド26,排気管27の順に構成され、排気管27には排ガス浄化用の三元触媒29が介装され、排気マニホールド26には、O2センサ40が設けられている。
【0019】
なお、燃料供給系については図示しないが、圧力が所定の高圧力〔数十気圧(例えば2〜7MPa)程度〕に調整された燃料が燃料噴射弁6に導かれ、燃料噴射弁6から高圧燃料が噴射されるようになっている。
さらに、アクセルペダルの踏込量(アクセルポジション)θapを検出するアクセルポジションセンサ(以下、APSという)42が設けられている。
【0020】
そして、点火プラグ4,燃料噴射弁6,ETV30といった各エンジン制御要素の作動を制御するために、内燃機関の制御手段としての機能を有する電子制御ユニット(ECU)60がそなえられている。このECU60には、入出力装置,制御プログラムや制御マップ等の記憶を行なう記憶装置,中央処理装置,タイマやカウンタ等がそなえられており、前述の種々のセンサ類からの検出情報やキースイッチの位置情報等に基づいて、このECU60が、上述の各エンジン制御要素の制御を行なうようになっている。
【0021】
特に、本エンジンは、筒内噴射エンジンであり、燃料噴射を自由なタイミングで実施でき、吸気行程を中心とした燃料噴射によって均一混合させ均一燃焼を行なうほか、圧縮行程を中心とした燃料噴射によって前述の逆タンブル流を利用して層状燃焼を行なうことができる。本エンジンの運転モードとしては、O2センサ40の検出情報に基づいたフィードバック制御により空燃比を理論空燃比近傍に保持するストイキ運転モードと、空燃比を理論空燃比よりもリッチにするエンリッチ運転モードと、空燃比を理論空燃比よりもリーンにして希薄燃焼させるリーン運転モードとが設けられている。
【0022】
ECU60では、図示しないマップに基づいて、エンジン回転速度(以下、エンジン回転数という)Ne及びエンジン負荷状態を示す平均有効圧Peの目標値(目標Pe)に応じていずれかの運転モードを選択するようになっており、エンジン回転数Neが小さく目標Peも小さい状態ではリーン運転モードを選択し、エンジン回転数Neや目標Peが増加していくにつれて、ストイキ,エンリッチの順に運転モードを選択していく。
【0023】
なお、エンジン回転数Neはクランク角センサ17の出力信号から算出され、目標Peはこのエンジン回転数Neとスロットルポジションセンサ38で検出されたスロットル開度とから算出される。
また、ECU60では、エンジンの冷態時及び高速定常運転時には、吸気弁10の閉鎖タイミングを通常時に対して遅角させるよう可変動弁機構41を制御するとともに、吸気行程(ここでは特に吸気行程前半)を中心とした期間に燃料噴射を行なうようにして、吸気ポート11への吹き返し混合気が増大するようにしている。
【0024】
つまり、冷態始動直後のレーシング時など、燃焼室の壁面温度が低い条件下で空燃比をリッチにして運転を行なうとスモークが発生し易い。また、HCは、高速全開走行をはじめとした高速・高負荷条件での運転時に、ノッキング抑制や排ガス浄化用触媒の過昇温抑制のため、空燃比をリッチにして運転を行なっている際に高濃度になる。このようなスモーク発生やHC増大は、直噴ガソリンエンジンの場合、燃料の全ての沸点成分が直に筒内に供給され、蒸発し難い燃料中の高沸点成分のものが液相のまま燃焼に至るためである。
【0025】
これに対して、吸気ポート11へ吹き返された混合気中の燃料は、吸気ポート11内で十分に時間をかけて蒸発し、次行程の吸入空気と混合して筒内に供給されるので、吸気ポート11への吹き返し混合気を増大させると、筒内で蒸発せずに液相のまま燃焼に至る燃料の量を低減させることができ、スモークやHCの排出を抑制できるのである。この場合、吸気ポート11への吹き返し流が、燃料を含んだ混合気であることが前提であり、吸気行程に燃料噴射をした上で吸気弁10の閉鎖タイミングを遅角させることが必要になる。
【0026】
ただし、本実施形態では、吸気弁10の閉鎖タイミングを遅角させる条件を、エンジンの冷態時、又は、高速定常運転時(高速全開走行を除く)としている。このようにスモークやHCの発生条件をそのまま吸気弁10の閉鎖タイミングを遅角条件(吹き返し混合気を増大させる条件)としていないのは、制御の簡素化と、吹き返し混合気を増大させた場合に出力低下等を招く点を考慮したものである。
【0027】
つまり、吸気弁10の閉鎖タイミングを遅角させて吹き返し混合気を増大させると、充填効率と実圧縮比が低下するのでエンジンの出力の低下を招いてしまう。このため、エンジン出力要求の高い場合には吸気弁10の閉鎖タイミングの遅角は行なわないでエンジン出力確保を優先したい。そこで、HCの排出濃度が増大する高速・高負荷条件での運転時のうち、エンジン出力要求の高い加速時や高速全開走行を除いた高速運転時(即ち、高速定常運転時)に限定して吸気弁10の閉鎖タイミングの遅角を実行するようにしているのである。
【0028】
なお、高速定常運転時の具体的な条件として、ここでは、クランク角センサ17の出力信号から算出されるエンジン回転数Ne又は車速Vが予め設定された所定回転数Ne0又はV0以上で、且つ、APS42で検出されたアクセルポジションθapから算出されるアクセル開速度dθap/dtが予め設定された所定開速度Δθ0以下であることとしている。所定回転数Ne0は高速判定の基準値なので相応の高い値が設定され、所定開速度Δθ0は定常走行判定の基準値なので相応の小さい値が設定される。
【0029】
また、エンジンの冷態時には、レーシングなど空燃比をリッチにする運転を行なうとスモークが顕著に発生するが、冷態時には燃料の気化が悪化するので、空燃比をリッチにしない運転でも、顕著ではないがスモークが発生し易い。さらに、レーシング時や冷態時に空燃比をリッチにしない運転時には当然ながらエンジンの出力要求も少ないので、吸気弁10の閉鎖タイミングを遅角させて吹き返し混合気を増大させて不具合はなく、悪影響なくスモークの発生を抑制できる。そこで、エンジンの冷態時には、空燃比がリッチ時にある場合に限らず吸気弁10の閉鎖タイミングを遅角させているのである。
【0030】
また、エンジン冷態時の具体的な条件として、ここでは、水温センサ16で検出された冷却水温Twが予め設定された所定水温Tw0以下であることとしている。水温Tw0はエンジン冷態判定の基準値なので相応の低い値が設定される。
本発明の一実施形態としての筒内噴射型内燃機関は、上述のように構成されているので、図2に示すように、エンジン1の状態に応じて吸気弁の閉鎖タイミング及び燃料噴射タイミングが制御される。
【0031】
つまり、エンジン1が冷態にあるか否かを判定する(ステップS10)。ここでは、冷却水温Twが所定水温Tw0以下であれば、エンジン1が冷態にあるとして、ステップS30に進み、ECU60を通じて吸気弁10の閉鎖タイミングを通常時のものから遅角させるよう可変動弁機構41を制御するとともに、吸気行程前半を中心とした期間に燃料噴射を行なうようにする。
【0032】
一方、冷却水温Twが所定水温Tw0よりも大きければエンジン1が冷態にないとして、ステップS20に進み、エンジン1が高速定常運転時にあるか否かを判定する。ここでは、エンジン回転数Neが所定回転数Ne0以上で且つアクセル開速度dθap/dtが所定開速度Δθ0以下であれば、高速定常運転であるとして、ステップS30に進み、ECU60を通じて吸気弁10の閉鎖タイミングを通常時のものから遅角させるよう可変動弁機構41を制御するとともに、吸気行程前半を中心とした期間に燃料噴射を行なうようにする。
【0033】
ステップS20において、エンジン回転数Neが所定回転数Ne0未満又はアクセル開速度dθap/dtが所定開速度Δθ0よりも大あれば、高速定常運転でない(即ち、エンジン1が冷態でも高速定常運転でもない)として、ステップS40に進み、ECU60を通じて吸気弁10の閉鎖タイミングを通常時のものにするよう可変動弁機構41を制御するとともにするとともに、設定された燃焼モードに応じたタイミングで燃料噴射を行なうようにする。つまり、均一燃焼が選択されれば吸気行程を中心とした燃料噴射を行ない、層状燃焼が選択されれば圧縮行程を中心とした燃料噴射を行なうようにする。
【0034】
このようにエンジン1の冷態時や高速定常運転時に、図3(a)に示すように、吸気行程前半を中心とした期間に燃料噴射を行ない、吸気弁10の閉鎖タイミングを遅角させると、図3(b)に示すように、吸気下死点後の圧縮行程初期(或いは圧縮行程前半)まで吸気弁10が開放しており、圧縮行程前半に気筒内の混合気が吸気管(吸気ポート)11内に逆流する、いわゆる吹き返しが発生する。
【0035】
図4は吸気ポート内の流速をクランク角対応(圧縮上死点を基準0°とする)で示しており、吸気弁の開閉タイミングを通常設定した場合を破線で示し、吸気弁の開閉タイミングを遅角させた場合を実線で示す。実線で示すように、吸気弁の閉タイミングを遅角させると、圧縮行程(特に、クランク角が540〜630°の間)に吸気ポート内流速が負になること、即ち、混合気が吸気ポート11内に逆流することがわかる。
【0036】
図5は吸気ポート内のHC濃度をクランク角対応(圧縮上死点を基準0°とする)で示しており、吸気弁の開閉タイミングを通常設定した場合を破線(標準と付記する)で示し、吸気弁の開閉タイミングを遅角させた場合を実線(遅延と付記する)で示す。実線で示すように、吸気弁の閉タイミングを遅角させると、圧縮行程を中心としてHC濃度が大幅に増加することがわかる。このHC濃度の大幅な増加は混合気の吹き返しの大幅な増加を意味している。
【0037】
このように吸気ポート11内に逆流した混合気は、吸気ポート11内で滞留している間に十分に時間をかけて蒸発することができ、次行程の吸入空気と混合して筒内に供給される。即ち、図3(c)に示すように、燃焼行程で燃焼するのは、直前の吸気行程で筒内噴射された燃料から今回の吹き出し分を差し引いたものに、前行程(前の燃焼サイクル)で吸気ポート11内に吹き返した吹き返し混合気中の燃料が加わったものである。吹き返し混合気中の燃料は、吸気ポート11内に滞留している間に、蒸発し難い高沸点成分までもが十分に蒸発して燃焼に供されるため、吹き返し混合気の割合が増加した分だけ燃料と空気との混合が進み、液相のまま燃焼に至る燃料分を減少させることができ、燃焼によるスモークやHCの発生を抑制することができるのである。
【0038】
図6は、機関速度,体積効率,空燃比を全て同一条件として行なった試験結果を示すもので、吸気弁10の閉弁時期に対する、吹き返し空気量,吹き返し燃料量,燃焼後のHC発生量,燃焼後のスモーク発生量を示している。図6に示すように、吸気弁10の閉弁時期を遅角させていく(圧縮上死点側へ変更していく)と、吹き返し空気量,吹き返し燃料量がともに増加し、HC発生量,スモーク発生量はともに低下することがわかる。
【0039】
これは、吸気弁10の閉弁時期を遅延させていくと、筒内から吸気ポート11への混合気の逆流が増大し、吹き返し空気量,吹き返し燃料量がともに増加して、吹き返し燃料は吸気ポート11内に滞留している間に蒸発し難い高沸点成分までもが十分に蒸発してその後の燃焼に供給されHC発生量,スモーク発生量を低下させるため、吸気弁10の閉弁時期を遅延させるほどHCやスモークの発生を抑えることができるものと考えられる。
【0040】
しかし、吸気弁10の閉弁時期を大きく遅延させてもHCやスモークの低減効果は頭打ちになる。この試験結果では、吹き返し燃料量が燃料噴射量の10%程度に達するように吸気弁10の閉弁時期を遅延させれば、HCやスモークが十分に低減するので、吹き返し燃料量が燃料噴射量の10%程度以上に達するように吸気弁10の閉弁時期を遅延させることが望ましい。また、この試験結果では、吹き返し燃料量が燃料噴射量の10%程度よりも大きくなるように吸気弁10の閉弁時期をそれ以上遅延させてもHCやスモークの低減効果は鈍くなるので、この点を考慮すれば、吹き返し燃料量が燃料噴射量の10%程度に達するだけ吸気弁10の閉弁時期を遅延させることが望ましい。
【0041】
このように、本筒内噴射型内燃機関によれば、直噴ガソリンエンジン(筒内噴射型内燃機関)に吸気弁閉時期可変手段として機能しうる可変動弁機構を組み合わせたものにおいて、燃料を吸気行程噴射として吸気弁10の閉弁時期を遅延させるだけで、HCやスモークの排出を低減することができ、例えば吸気管に燃料をアシスト噴射するシステムの場合のように、アシスト噴射用の燃料配管や燃料噴射弁を追加することなく、簡素なハード構成で低コストにHCやスモークの排出低減を促進することができる。
【0042】
特に、可変動弁機構は、一般に、エンジンの低回転域と高回転域とで吸気弁や排気弁の駆動タイミングをそれぞれに適したものに切り換えるべく装備されている。したがって、エンジンの作動状態に応じて、吸気タイミングや排気タイミングを変更する可変動弁機構をそなえていれば、これを流用して吸気閉弁時期の遅延を実施することができ、ハード構成を追加することなく低コストにHC,スモークの排出低減を促進できるのである。
【0043】
また、吸気閉弁時期を遅延させると体積効率が低下し出力トルクの低下を招くが、本実施形態では、HC濃度が高くなってしまうエンジンの高速高負荷運転時であっても、吸気閉弁時期を遅延させるのは高速定常運転時に限定しており、出力要求の強い加速時等の状況下ではHC濃度の低減よりも出力を優先して吸気閉弁時期の遅延は行なわないので、エンジンの出力の確保とHC濃度の低減とをバランス良く達成することができる。
【0044】
なお、本発明の筒内噴射型内燃機関は、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
例えば上記の実施形態では、エンジン冷態時には、レーシング時などのエンジンの高負荷時に限定せずに、即ち、エンジンの高負荷時にも低負荷時(リーン運転時も含む)にも吸気閉弁時期の遅延を行なっているが、スモークの発生が顕著となるエンジンの高負荷時のみに吸気閉弁時期の遅延を行なうようにしてもよい。
【0045】
また、上記の実施形態ではエンジンの高速運転時に、エンジンの出力の確保とHC濃度の低減とをバランス良く達成するために、HC濃度が高くなってしまうエンジンの高速高負荷運転時であっても、エンジン出力要求の低い高速定常運転時に限り吸気閉弁時期の遅延を行なうようにしているが、例えば、吸気閉弁時期の遅延レベルを調整できる場合などは、出力要求に応じて遅延を小さくするようにしてより広い高速高負荷運転領域で吸気閉弁時期の遅延を行なうようにしてもよい。特に、高速運転時には、燃料の気化時間に余裕がないので、できるだけ広範囲に吸気閉弁時期の遅延を行なってHC濃度の低減を図ることが効果的である。
【0046】
また、エンジン冷態の定義を、冷態始動後時所定時間内或いは始動後時所定時間内としたり、エンジンの高速判定に車速を用いたりすることも考えられる。
また、上記の実施形態では吸気閉弁時期を遅延させる前提として吸気行程で燃料噴射を行なうようにしているが、逆に、吸気行程で燃料噴射を行なう運転モードに限って、上記の所定の条件下で吸気閉弁時期の遅延制御を行なうようにしてもよい。
【0047】
【発明の効果】
以上説明したように、請求項1に係る本発明の筒内噴射型内燃機関によれば、吸気ポートへの吹き返し混合気を増大させることによって、筒内で蒸発せずに液相のまま燃焼に至る燃料の量を低減させることができ、スモークやHCの排出を抑制することができるようになる。特に、吸気弁の閉時期を変更可能な装置が既存の期間にあっては装置を特別に追加することなく、制御内容を追加又は変更するだけで、大きなコスト増を招くことなく上記の効果を得ることができる
求項に係る本発明の筒内噴射型内燃機関によれば、エンジンの出力の確保とHC濃度の低減とをバランス良く達成することができる。
請求項に係る本発明の筒内噴射型内燃機関によれば、より広い高速高負荷運転領域で吸気閉弁時期の遅延を行なうことができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる筒内噴射型内燃機関の全体構成を示す説明図である。
【図2】本発明の一実施形態にかかる筒内噴射型内燃機関における吸気弁制御を示すフローチャートである。
【図3】本発明の一実施形態にかかる筒内噴射型内燃機関の動作を(a)〜(c)の順で説明する模式的な断面図である。
【図4】本発明の一実施形態にかかる筒内噴射型内燃機関における吸気弁制御の効果を説明する図である。
【図5】本発明の一実施形態にかかる筒内噴射型内燃機関における吸気弁制御の効果を説明する図である。
【図6】本発明の一実施形態にかかる筒内噴射型内燃機関における吸気弁制御の効果を説明する図である。
【図7】従来の吸気管噴射による燃料挙動を(a),(b)の順で説明する模式的な断面図である。
【図8】従来の筒内噴射による燃料挙動を(a),(b)の順で説明する模式的な断面図である。
【符号の説明】
1 筒内噴射型内燃機関(直噴ガソリンエンジン)
4 点火プラグ
6 吸気行程燃料噴射手段としての燃料噴射弁
41 吸気弁閉時期可変手段としての可変動弁機構
60 ECU
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct injection internal combustion engine that can promote exhaust gas purification.
[0002]
[Prior art]
In recent years, a spark ignition type cylinder injection internal combustion engine (hereinafter also referred to as a direct injection gasoline engine) has been put into practical use as an automobile engine. In the intake pipe injection gasoline engine, the fuel supply timing into the cylinder is limited only when the intake valve is opened, but in the direct injection gasoline engine, the fuel supply into the cylinder can be performed at any timing. For this reason, fuel injection can be performed at an optimal timing for uniform combustion by premixing to obtain a larger output, or ultra lean stratified combustion can be performed at the time of partial load, and fuel consumption can be reduced.
[0003]
[Problems to be solved by the invention]
However, the direct injection gasoline engine has a problem that it is easy to discharge visible smoke and high-concentration HC.
By examining these generation mechanisms, we found the following.
Smoke is prominently generated when the air-fuel ratio is made rich under the condition that the wall surface temperature of the combustion chamber is low, such as during racing immediately after cold start.
[0004]
HC has a high concentration when operating with a rich air-fuel ratio in order to suppress knocking and excessive temperature rise of the exhaust gas purification catalyst when operating under high speed and high load conditions such as high speed fully open travel. become.
The fuel includes various components from a component having a relatively low boiling point that is easy to vaporize and mix to a component having a relatively high boiling point that is difficult to vaporize and mix, but in the case of an intake pipe injection gasoline engine, as shown in FIG. Low-boiling components in the fuel injected from the injection valve 102 into the intake pipe 101 [see FIG. 7A] are selectively supplied directly into the cylinder 103, and the remaining vaporization / mixing is difficult (evaporation is difficult). ) Component stays in the intake pipe 101 [see FIG. 7B], is vaporized over a sufficient vaporization time, and is supplied to the cylinder 103 in the next stroke.
[0005]
On the other hand, in the case of a direct-injection gasoline engine, as shown in FIG. 8, all the boiling point components of the fuel are supplied directly from the injection valve 102 to the cylinder 103 [see FIG. 8 (a)]. High boiling components in the fuel that are difficult to evaporate easily during combustion in the cold state where the wall surface temperature is low or at high speed operation where sufficient mixing time cannot be ensured are easily burnt in the liquid phase [see FIG. 8B], This is considered to be a factor that emits smoke and HC.
[0006]
By the way, Japanese Patent Laid-Open No. 9-280092 discloses a technique for correcting the advance angle of the fuel injection end timing when the fuel injection end timing is later than the intake valve closing timing in order to suppress the generation of HC and smoke. ing.
However, in the case of a direct injection gasoline engine, HC and smoke are generated because all the boiling point components of the fuel are supplied directly into the cylinder as described above, and the high boiling point components in the fuel that are difficult to evaporate are liquid. Combustion in the same phase is also a major factor, and it is not possible to sufficiently suppress the generation of HC and smoke by simply correcting the fuel injection timing without considering such points.
[0007]
The present invention has been devised in view of such problems, and provides a direct injection internal combustion engine that can suppress smoke and HC emissions in the direct injection internal combustion engine. Objective.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned target, the direct injection internal combustion engine of the present invention directly injects fuel into the cylinder during the intake stroke of the engine by the intake stroke fuel injection means. When the intake stroke fuel injection means is operated , In a specific operating state that is at least one of a cold operation of the engine, a high output operation in which the air-fuel ratio of the engine is rich or stoichiometric, and a low fuel consumption operation in which the air-fuel ratio is lean , the control means The operation of the intake valve closing timing varying means is controlled so that the valve closing timing is retarded and the air-fuel mixture blown back to the intake port increases.
[0009]
The fuel in the air-fuel mixture blown back to the intake port evaporates sufficiently in the intake port, mixes with the intake air in the next stroke, and is supplied into the cylinder. Therefore, if the air-fuel mixture blown back to the intake port is increased, the amount of fuel that does not evaporate in the cylinder and remains in the liquid phase and combusts can be reduced, and smoke and HC emissions can be suppressed.
[0011]
Furthermore, the control means, during the acceleration increase of the fuel injection quantity, and / or when full acceleration of the engine is preferably configured so as to prohibit control to retard the closing timing of the intake valve (claim 2 ).
The intake valve closing timing variable means is configured to be capable of adjusting a delay level of the intake valve closing timing, and the control means is configured to reduce the delay in response to an output request to the engine. It is preferable to control the variable means (Claim 3 ).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings .
Also not a, cylinder injection type internal combustion engine of spark ignition type according to the present embodiment (hereinafter, also referred to as direct injection gasoline engines or simply the engine) configuration will be described. It is assumed that this engine is mounted on an automobile.
[0013]
As shown in FIG. 1, the cylinder head 2 of the engine 1 is provided with an ignition plug 4 for each cylinder 3 and a fuel injection valve 6 as fuel injection means that opens directly into the combustion chamber 5. The fuel injection valve 6 is driven by the ignition coil 4A and the driver 6A by the driver 6A. A piston 8 connected to the crankshaft 7 is provided in the cylinder 3, and a cavity 9 recessed in a hemispherical shape is formed on the top surface of the piston 8. The fuel injection valve 6 can directly inject fuel into the cylinder during the intake stroke of the engine, and also functions as an intake stroke fuel injection means.
[0014]
An intake port 11 that can communicate with the combustion chamber 5 via the intake valve 10 and an exhaust port 13 that can communicate with the combustion chamber 5 via the exhaust valve 12 are formed in the cylinder head 2. The intake port 11 is disposed substantially vertically above the combustion chamber 5 and forms a reverse tumble flow by intake air in the combustion chamber 5 in cooperation with the cavity 9 on the top surface of the piston 8.
A water temperature sensor 16 for detecting the cooling water temperature is provided on the water jacket 15 on the outer periphery of the cylinder 3, and a crank angle sensor 17 for outputting a signal at a predetermined crank angle position is provided on the crankshaft 7 with the intake valve 10 and the exhaust valve. A cylinder identification sensor (cam angle sensor) 20 that outputs a cylinder identification signal corresponding to the camshaft position is attached to each of the camshafts 18 and 19 that drive the cylinder 12. Since the engine speed can be calculated based on the crank angle signal, the crank angle sensor 17 also functions as an engine speed detecting means.
[0015]
A variable valve mechanism 41 is provided between the camshaft 18 and the intake valve 10. The variable valve mechanism 41 functions as intake valve closing timing variable means that can change the closing timing of the intake valve 10. That is, the variable valve mechanism 41 can retard the closing timing of the intake valve 10 by a predetermined amount from the normal timing.
[0016]
The variable valve mechanism 41 of this embodiment is of a cam phase angle change type (cam swing type), and the opening period (corresponding to the crank angle) of the intake valve 10 is constant, but the opening / closing timing can be shifted. The opening / closing timing of the intake valve 10 can be retarded with respect to the normal time.
A description of the variable valve mechanism 41 is omitted since various known ones can be applied. Here, what is required of the variable valve mechanism 41 is a function for making the closing timing of the intake valve 10 variable. Therefore, for example, depending on the type of the variable valve mechanism 41, such as one configured to drive the intake valve 10 by selectively using a plurality of cams having different cam profiles (cam switching type), the intake valve 10 You may use what changed only a closing time, without changing an opening time.
[0017]
The intake system is configured from the upstream side in the order of an air cleaner 21, an intake pipe 22, a throttle body 23, a surge tank 24, and an intake manifold 25, and an intake port 11 is provided at the downstream end of the intake manifold 25. The throttle body 23 is provided with an electronically controlled throttle valve (ETV) 30 as an air amount adjusting means for adjusting the amount of air flowing into the combustion chamber 5, and the opening degree control of the ETV 30 is performed according to the accelerator opening degree. In addition to the above control, idle speed control and control of introducing a large amount of intake air during lean operation, which will be described later, can be performed.
[0018]
Further, an air flow sensor 37 for detecting the intake air flow rate is provided immediately downstream of the air cleaner 21, and a throttle position sensor 38 for detecting the throttle opening of the ETV 30 and a fully closed state of the ETV 30 are detected on the throttle body 23 to generate an idle signal. An idle switch 39 for outputting is provided.
The exhaust system includes an exhaust manifold 26 having an exhaust port 13 and an exhaust pipe 27 in this order from the upstream side. A three-way catalyst 29 for exhaust gas purification is interposed in the exhaust pipe 27, and an O 2 is connected to the exhaust manifold 26. A sensor 40 is provided.
[0019]
Although the fuel supply system is not shown, the fuel whose pressure is adjusted to a predetermined high pressure (several tens of atmospheres (for example, about 2 to 7 MPa)) is guided to the fuel injection valve 6, and the high pressure fuel is supplied from the fuel injection valve 6. Is to be injected.
Further, an accelerator position sensor (hereinafter referred to as APS) 42 for detecting an accelerator pedal depression amount (accelerator position) θap is provided.
[0020]
In order to control the operation of each engine control element such as the spark plug 4, the fuel injection valve 6, and the ETV 30, an electronic control unit (ECU) 60 having a function as control means for the internal combustion engine is provided. The ECU 60 includes an input / output device, a storage device for storing a control program, a control map, etc., a central processing unit, a timer, a counter, and the like. Based on the position information and the like, the ECU 60 controls the engine control elements described above.
[0021]
In particular, this engine is an in-cylinder injection engine. Fuel injection can be performed at any timing, and uniform mixing is performed by fuel injection centered on the intake stroke to perform uniform combustion, and fuel injection centered on the compression stroke. Stratified combustion can be performed using the above-described reverse tumble flow. As an operation mode of this engine, a stoichiometric operation mode in which the air-fuel ratio is maintained in the vicinity of the theoretical air-fuel ratio by feedback control based on detection information of the O 2 sensor 40, and an enrichment operation mode in which the air-fuel ratio is richer than the theoretical air-fuel ratio. And a lean operation mode in which lean combustion is performed with the air-fuel ratio leaner than the stoichiometric air-fuel ratio.
[0022]
The ECU 60 selects one of the operation modes according to an engine rotation speed (hereinafter referred to as engine rotation speed) Ne and a target value (target Pe) of the average effective pressure Pe indicating the engine load state based on a map (not shown). When the engine speed Ne is small and the target Pe is small, the lean operation mode is selected. As the engine speed Ne and the target Pe increase, the operation mode is selected in the order of stoichiometric and enrichment. Go.
[0023]
The engine speed Ne is calculated from the output signal of the crank angle sensor 17, and the target Pe is calculated from the engine speed Ne and the throttle opening detected by the throttle position sensor 38.
In addition, the ECU 60 controls the variable valve mechanism 41 so that the closing timing of the intake valve 10 is retarded with respect to the normal time when the engine is cold and during high-speed steady operation, and the intake stroke (in this case, particularly the first half of the intake stroke). ), The fuel is injected during the period, and the air-fuel mixture blown back to the intake port 11 is increased.
[0024]
That is, smoke is likely to occur when the operation is performed with the air-fuel ratio rich under conditions where the wall surface temperature of the combustion chamber is low, such as during racing immediately after cold start. In addition, when operating under high-speed and high-load conditions such as high-speed full-open running, HC is operating with a rich air-fuel ratio to suppress knocking and excessive temperature rise of the exhaust gas purification catalyst. High concentration. In the case of a direct injection gasoline engine, such smoke generation and HC increase are caused by burning all the boiling point components of the fuel directly into the cylinder and burning the high boiling point components in the fuel that are difficult to evaporate in the liquid phase. It is to reach.
[0025]
On the other hand, the fuel in the air-fuel mixture blown back to the intake port 11 evaporates over a sufficient amount of time in the intake port 11, mixes with the intake air in the next stroke, and is supplied into the cylinder. If the air-fuel mixture blown back to the intake port 11 is increased, the amount of fuel that does not evaporate in the cylinder and remains in the liquid phase and combusts can be reduced, and smoke and HC emissions can be suppressed. In this case, it is assumed that the blow-back flow to the intake port 11 is an air-fuel mixture containing fuel, and it is necessary to retard the closing timing of the intake valve 10 after injecting fuel during the intake stroke. .
[0026]
However, in the present embodiment, the condition for retarding the closing timing of the intake valve 10 is when the engine is cold or during high-speed steady operation (except for high-speed full-open travel). The reason why the smoke and HC generation conditions are not used as they are is that the closing timing of the intake valve 10 is retarded (conditions for increasing the blowback mixture) when the control is simplified and the blowback mixture is increased. This is in consideration of the point that the output is reduced.
[0027]
That is, if the closing timing of the intake valve 10 is retarded to increase the blowback mixture, the charging efficiency and the actual compression ratio are reduced, leading to a reduction in engine output. For this reason, when the engine output request is high, it is desirable to give priority to securing the engine output without delaying the closing timing of the intake valve 10. Therefore, during operation under high-speed and high-load conditions in which the HC emission concentration increases, it is limited to high-speed operation (ie, high-speed steady operation) excluding acceleration with high engine output requirements and high-speed full-open travel. The delay of the closing timing of the intake valve 10 is executed.
[0028]
In addition, as specific conditions at the time of high-speed steady operation, here, the engine speed Ne or the vehicle speed V calculated from the output signal of the crank angle sensor 17 is equal to or higher than a predetermined speed Ne 0 or V 0 set in advance. and, we have a the accelerator opening speed dθap / dt calculated from the detected accelerator position θap is below a predetermined opening speed [Delta] [theta] 0 which is set in advance in APS42. Since the predetermined rotational speed Ne 0 is a reference value for high speed determination, a correspondingly high value is set, and since the predetermined opening speed Δθ 0 is a reference value for steady running determination, a correspondingly small value is set.
[0029]
In addition, when the engine is cold, the operation of making the air-fuel ratio rich, such as racing, causes significant smoke.However, when the engine is cold, the fuel vaporization deteriorates, so even in the operation where the air-fuel ratio is not rich, Although it is not, smoke is likely to occur. Furthermore, since there is less demand for engine output during racing or when the air-fuel ratio is not rich during cooling, there is no problem because the air-fuel mixture is increased by retarding the closing timing of the intake valve 10 and causing no adverse effects. Smoke generation can be suppressed. Therefore, when the engine is cold, the closing timing of the intake valve 10 is retarded not only when the air-fuel ratio is rich.
[0030]
Further, as a specific condition when the engine is cold, here, the cooling water temperature Tw detected by the water temperature sensor 16 is set to be equal to or lower than a predetermined water temperature Tw 0 set in advance. The water temperature Tw 0 is set to a correspondingly low value because it is a reference value for engine cold state determination.
Since the direct injection internal combustion engine as one embodiment of the present invention is configured as described above, the intake valve closing timing and the fuel injection timing are determined according to the state of the engine 1 as shown in FIG. Be controlled.
[0031]
That is, it is determined whether or not the engine 1 is in a cold state (step S10). Here, if the cooling water temperature Tw is equal to or lower than the predetermined water temperature Tw 0, it is assumed that the engine 1 is in a cold state, and the process proceeds to step S30. The valve mechanism 41 is controlled and fuel injection is performed during a period centered on the first half of the intake stroke.
[0032]
On the other hand, if the cooling water temperature Tw is higher than the predetermined water temperature Tw 0, it is determined that the engine 1 is not in the cold state, and the process proceeds to step S20 to determine whether or not the engine 1 is in high-speed steady operation. Here, if the engine rotational speed Ne is equal to or higher than the predetermined rotational speed Ne 0 and the accelerator opening speed dθap / dt is equal to or lower than the predetermined opening speed Δθ 0 , the routine proceeds to step S30, and the intake valve 10 is passed through the ECU 60. The variable valve mechanism 41 is controlled so that the closing timing of the engine is retarded from the normal timing, and fuel injection is performed during a period centered on the first half of the intake stroke.
[0033]
If the engine speed Ne is less than the predetermined engine speed Ne 0 or the accelerator opening speed dθap / dt is larger than the predetermined opening speed Δθ 0 in step S20, the engine is not in high-speed steady operation (that is, even if the engine 1 is cold). However, in step S40, the variable valve mechanism 41 is controlled through the ECU 60 so that the closing timing of the intake valve 10 is normal, and fuel injection is performed at a timing according to the set combustion mode. To do. That is, if uniform combustion is selected, fuel injection is performed centering on the intake stroke, and if stratified combustion is selected, fuel injection is performed centering on the compression stroke.
[0034]
In this way, when the engine 1 is in a cold state or at a high speed steady operation, as shown in FIG. 3A, fuel injection is performed during a period centered on the first half of the intake stroke, and the closing timing of the intake valve 10 is retarded. As shown in FIG. 3B, the intake valve 10 is opened until the initial stage of the compression stroke after the intake bottom dead center (or the first half of the compression stroke), and the air-fuel mixture in the cylinder is introduced into the intake pipe (intake pipe) in the first half of the compression stroke. A so-called blow-back that flows backward in the (port) 11 occurs.
[0035]
FIG. 4 shows the flow velocity in the intake port in correspondence with the crank angle (compression top dead center is set to 0 ° as a reference). The case where the opening / closing timing of the intake valve is normally set is indicated by a broken line, and the opening / closing timing of the intake valve is shown. The solid line shows the case where the angle is retarded. As shown by the solid line, if the closing timing of the intake valve is retarded, the flow velocity in the intake port becomes negative during the compression stroke (particularly between 540 and 630 °), that is, the air-fuel mixture becomes the intake port. It turns out that it flows backward in 11.
[0036]
FIG. 5 shows the HC concentration in the intake port corresponding to the crank angle (compression top dead center is set to 0 ° as a reference), and the case where the opening / closing timing of the intake valve is normally set is indicated by a broken line (supplied as standard). The case where the opening / closing timing of the intake valve is delayed is indicated by a solid line (denoted as a delay). As shown by the solid line, it can be seen that when the closing timing of the intake valve is retarded, the HC concentration significantly increases around the compression stroke. This significant increase in the HC concentration means a significant increase in the air-fuel mixture blowback.
[0037]
The air-fuel mixture that has flowed back into the intake port 11 in this way can evaporate with sufficient time while remaining in the intake port 11, and is mixed with the intake air in the next stroke and supplied into the cylinder. Is done. That is, as shown in FIG. 3 (c), the combustion in the combustion stroke is performed by subtracting the current blow-out amount from the fuel injected in the cylinder in the immediately preceding intake stroke, and the previous stroke (previous combustion cycle). The fuel in the blown-back air-fuel mixture blown back into the intake port 11 is added. While the fuel in the blown-back mixture stays in the intake port 11, even the high boiling point components that are difficult to evaporate are sufficiently evaporated and used for combustion. As a result, the mixing of the fuel and the air proceeds, and the amount of fuel that reaches combustion in the liquid phase can be reduced, so that the generation of smoke and HC due to combustion can be suppressed.
[0038]
FIG. 6 shows the results of tests conducted under the same conditions of engine speed, volumetric efficiency, and air-fuel ratio. The amount of blown air, amount of blown fuel, amount of HC generated after combustion, with respect to the closing timing of the intake valve 10, The amount of smoke generated after combustion is shown. As shown in FIG. 6, when the closing timing of the intake valve 10 is retarded (changed to the compression top dead center side), both the amount of blown air and the amount of blown fuel increase, and the amount of HC generated, It can be seen that the amount of smoke generated decreases.
[0039]
This is because if the closing timing of the intake valve 10 is delayed, the backflow of the air-fuel mixture from the cylinder to the intake port 11 increases, the amount of blown air and the amount of blown fuel both increase, and the blown fuel is taken into the intake air. Even the high boiling point components that are difficult to evaporate while staying in the port 11 are sufficiently evaporated and supplied to the subsequent combustion to reduce the HC generation amount and the smoke generation amount. It is considered that the generation of HC and smoke can be suppressed as the delay is delayed.
[0040]
However, even if the closing timing of the intake valve 10 is greatly delayed, the effect of reducing HC and smoke reaches its peak. In this test result, HC and smoke are sufficiently reduced if the closing timing of the intake valve 10 is delayed so that the amount of blown fuel reaches about 10% of the fuel injection amount. It is desirable to delay the closing timing of the intake valve 10 so as to reach about 10% or more. In addition, in this test result, even if the closing timing of the intake valve 10 is further delayed so that the amount of fuel blown back is larger than about 10% of the fuel injection amount, the effect of reducing HC and smoke becomes dull. Considering this point, it is desirable to delay the closing timing of the intake valve 10 so that the amount of blown fuel reaches about 10% of the fuel injection amount.
[0041]
Thus, according to the direct injection gasoline engine (in-cylinder injection internal combustion engine), the direct injection gasoline engine (cylinder injection internal combustion engine) is combined with a variable valve mechanism that can function as intake valve closing timing variable means. By simply delaying the closing timing of the intake valve 10 as the intake stroke injection, it is possible to reduce the discharge of HC and smoke. For example, as in the case of a system that assists injection of fuel into the intake pipe, the fuel for assist injection Without adding piping or fuel injection valves, it is possible to promote the reduction of HC and smoke emissions at a low cost with a simple hardware configuration.
[0042]
In particular, the variable valve mechanism is generally equipped to switch the drive timings of the intake valve and the exhaust valve to those suitable for the low and high engine speed ranges. Therefore, if a variable valve mechanism that changes the intake timing and exhaust timing according to the operating state of the engine is provided, this can be used to delay the intake valve closing timing, adding a hardware configuration Therefore, it is possible to promote the reduction of HC and smoke emission at low cost.
[0043]
In addition, if the intake valve closing timing is delayed, the volumetric efficiency is reduced and the output torque is reduced. In this embodiment, the intake valve closing is performed even during high-speed and high-load operation of the engine in which the HC concentration increases. The timing is delayed only during high-speed steady operation, and in situations such as acceleration where the output demand is strong, the intake valve closing timing is not delayed in favor of the output over the HC concentration reduction. Ensuring output and reducing HC concentration can be achieved in a well-balanced manner.
[0044]
The in-cylinder injection internal combustion engine of the present invention is not limited to the above embodiment, and can be implemented with various modifications without departing from the spirit of the present invention.
For example, in the above embodiment, when the engine is cold, the intake valve closing timing is not limited to when the engine is heavily loaded, such as during racing, that is, both when the engine is heavily loaded and when the load is low (including lean operation). However, the intake valve closing timing may be delayed only when the engine has a high load where the occurrence of smoke becomes significant.
[0045]
In the above-described embodiment, in order to achieve a good balance between securing the output of the engine and reducing the HC concentration during high-speed operation of the engine, even during high-speed and high-load operation of the engine where the HC concentration increases. The intake valve closing timing is delayed only during high-speed steady operation with low engine output requirements. For example, when the delay level of the intake valve closing timing can be adjusted, the delay is reduced according to the output request. In this way, the intake valve closing timing may be delayed in a wider high speed and high load operation region. In particular, during high-speed operation, there is no allowance for fuel vaporization time, so it is effective to reduce the HC concentration by delaying the intake valve closing timing as wide as possible.
[0046]
It is also conceivable that the engine cold is defined within a predetermined time after the cold start or within a predetermined time after the start, or the vehicle speed is used for high speed determination of the engine.
In the above embodiment, the fuel injection is performed in the intake stroke as a premise for delaying the intake valve closing timing. Conversely, the predetermined condition is limited to the operation mode in which the fuel injection is performed in the intake stroke. The intake valve closing timing may be delayed under control.
[0047]
【The invention's effect】
As described above, according to the in-cylinder injection internal combustion engine of the present invention according to claim 1, by increasing the blown back air-fuel mixture to the intake port, the liquid phase is combusted without being evaporated in the cylinder. It is possible to reduce the amount of fuel that reaches, and to suppress smoke and HC emissions. In particular, if there is a device that can change the closing timing of the intake valve in the existing period, the above effect can be achieved without adding a large cost by simply adding or changing the control content without adding a device specially. Can be obtained .
According to a cylinder injection type internal combustion engine of the present invention according to Motomeko 2 can be achieved with good balance and a reduction in the security and HC concentration of the output of the engine.
According to the cylinder injection type internal combustion engine of the present invention according to claim 3 , the intake valve closing timing can be delayed in a wider high speed and high load operation region.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an overall configuration of a direct injection internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a flowchart showing intake valve control in the direct injection internal combustion engine according to the embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view for explaining the operation of the direct injection internal combustion engine according to the embodiment of the present invention in the order of (a) to (c).
FIG. 4 is a diagram for explaining the effect of intake valve control in the direct injection internal combustion engine according to the embodiment of the present invention.
FIG. 5 is a diagram for explaining the effect of intake valve control in the direct injection internal combustion engine according to the embodiment of the present invention.
FIG. 6 is a diagram for explaining the effect of intake valve control in the direct injection internal combustion engine according to the embodiment of the present invention.
FIG. 7 is a schematic cross-sectional view for explaining fuel behavior by conventional intake pipe injection in the order of (a) and (b).
FIG. 8 is a schematic cross-sectional view for explaining fuel behavior by conventional in-cylinder injection in the order of (a) and (b).
[Explanation of symbols]
1 In-cylinder internal combustion engine (direct injection gasoline engine)
4 Spark plug 6 Fuel injection valve 41 as intake stroke fuel injection means Variable valve mechanism 60 as intake valve closing timing variable means ECU

Claims (3)

機関の吸気行程で燃料を筒内に直接噴射する吸気行程燃料噴射手段と、
吸気ポートを開閉する吸気弁の閉時期を変更可能な吸気弁閉時期可変手段と、
上記吸気行程燃料噴射手段の作動時における、機関の冷態運転時,機関の空燃比をリッチ又はストイキとした高出力運転時,及び空燃比をリーンとした低燃費運転時の少なくとも何れかである特定の運転状態では、上記吸気弁の閉時期を遅角させて上記吸気ポートへの吹き返し混合気が増大するように上記吸気弁閉時期可変手段の作動を制御する制御手段とをそなえた
ことを特徴とする、筒内噴射型内燃機関
An intake stroke fuel injection means for directly injecting fuel into the cylinder during the intake stroke of the engine;
An intake valve closing timing variable means capable of changing the closing timing of the intake valve for opening and closing the intake port;
At least one of a cold operation of the engine, a high output operation in which the air-fuel ratio of the engine is rich or stoichiometric, and a low fuel consumption operation in which the air-fuel ratio is lean is performed during the operation of the intake stroke fuel injection means. And a control means for controlling the operation of the intake valve closing timing varying means so as to retard the closing timing of the intake valve and increase the blowback mixture to the intake port in a specific operating state. A cylinder injection type internal combustion engine characterized by the above .
上記制御手段は、燃料噴射量の加速増量中、及び/又は機関の全開加速時には、上記の特定運転状態であっても上記の吸気弁の閉時期を遅角させる制御を行わないことを特徴とする、請求項記載の筒内噴射型内燃機関。The control means does not perform control for retarding the closing timing of the intake valve even during the specific operation state during acceleration increase of the fuel injection amount and / or when the engine is fully opened. The in-cylinder injection internal combustion engine according to claim 1 . 上記吸気弁閉時期可変手段は、吸気閉弁時期の遅延レベルを調整可能に構成され、上記制御手段は、機関への出力要求に応じて上記遅延を小さくするように上記吸気弁閉時期可変手段を制御することを特徴とする、請求項1又は2記載の筒内噴射型内燃機関。The intake valve closing timing varying means is configured to be able to adjust a delay level of the intake valve closing timing, and the control means is configured to reduce the delay in response to an output request to the engine. The in-cylinder injection internal combustion engine according to claim 1, wherein the internal combustion engine is controlled.
JP2000161969A 2000-05-31 2000-05-31 In-cylinder internal combustion engine Expired - Fee Related JP4010092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000161969A JP4010092B2 (en) 2000-05-31 2000-05-31 In-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000161969A JP4010092B2 (en) 2000-05-31 2000-05-31 In-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001342858A JP2001342858A (en) 2001-12-14
JP4010092B2 true JP4010092B2 (en) 2007-11-21

Family

ID=18665913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000161969A Expired - Fee Related JP4010092B2 (en) 2000-05-31 2000-05-31 In-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4010092B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321354B2 (en) * 2008-10-20 2013-10-23 トヨタ自動車株式会社 Fuel injection device

Also Published As

Publication number Publication date
JP2001342858A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
EP0982489B1 (en) Control device for direct injection engine
EP1019622B1 (en) Control device for direct injection engine
EP0824188B1 (en) Control apparatus for an in-cylinder injection internal combustion engine
US6173690B1 (en) In-cylinder direct-injection spark-ignition engine
JPH1068341A (en) Control device for in-cylinder injection spark ignition internal combustion engine
JP2004150284A (en) Control device for internal combustion engine, control method for internal combustion engine, combustion method for internal combustion engine, in-cylinder injection engine
JPH1144234A (en) Exhaust emission control device for internal combustion engine
US20050166891A1 (en) Controller for direct injection internal combustion engine
JP2007016685A (en) Internal combustion engine control device
JP2019210816A (en) Control device of internal combustion engine and control method of internal combustion engine
JP2003013784A (en) Control device of direct injection spark ignition type internal combustion engine
JP3265997B2 (en) Control device for internal combustion engine
JP2003013785A (en) Control device of direct injection spark ignition type internal combustion engine
JP4010092B2 (en) In-cylinder internal combustion engine
JP3695493B2 (en) In-cylinder injection internal combustion engine control device
JPH10159642A (en) Knocking judging device for internal combustion engine
JP3985419B2 (en) Control device for internal combustion engine
JP4816151B2 (en) Combustion control device for internal combustion engine
JP3899922B2 (en) Internal combustion engine
JP4123974B2 (en) Direct-injection spark ignition internal combustion engine
JP2004176607A (en) engine
JP4147715B2 (en) Intake valve operating state control device for in-cylinder injection type spark ignition internal combustion engine
JP3921884B2 (en) Stratified combustion engine
JP3695056B2 (en) In-cylinder direct fuel injection spark ignition engine
JP2004225674A (en) Internal combustion engine control device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R151 Written notification of patent or utility model registration

Ref document number: 4010092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140914

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees