JP4010017B2 - Method for producing martensitic stainless steel pipe with excellent SSC resistance - Google Patents
Method for producing martensitic stainless steel pipe with excellent SSC resistance Download PDFInfo
- Publication number
- JP4010017B2 JP4010017B2 JP32774595A JP32774595A JP4010017B2 JP 4010017 B2 JP4010017 B2 JP 4010017B2 JP 32774595 A JP32774595 A JP 32774595A JP 32774595 A JP32774595 A JP 32774595A JP 4010017 B2 JP4010017 B2 JP 4010017B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- martensitic stainless
- stainless steel
- point
- tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000005496 tempering Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 26
- 229910000831 Steel Inorganic materials 0.000 claims description 23
- 239000010959 steel Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 14
- 238000011282 treatment Methods 0.000 claims description 12
- 229910000734 martensite Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 239000003129 oil well Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 230000000087 stabilizing effect Effects 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910000984 420 stainless steel Inorganic materials 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、耐SSC性に優れたマルテンサイト系ステンレス継目無鋼管の製造方法に関するものである。
【0002】
【従来の技術】
マルテンサイト系ステンレス鋼は、AISI 420鋼に代表されるように、強度、耐CO2 腐食特性に優れることから1980年頃より油井管として適用されてきている。最近では420鋼より優れた耐CO2 腐食特性、さらには耐H2 S性に対する市場要求が高まり、特開平3−120337号公報などに見られるような、低CおよびNi−Mo添加鋼、あるいは、特開平2−247360号公報などに見られるような、低CおよびNi−Cu−Mo添加鋼といった鋼種(いわゆる Modified 13Cr鋼と称される鋼種)が開発されてきている。かかる鋼は、特開平3−120337号公報などに見られるように、▲1▼熱間加工後にAc3 点以上の温度に再度加熱・保定した後Ms点以下まで冷却する焼入処理(もしくは焼準処理)を施すか、▲2▼Ac1 点〜Ac3 点の温度域に再度加熱・保定した後にMs点以下まで冷却する二相域処理を施すか、▲3▼Ac1 点以下の温度に再度加熱・保定した後にMs点以下まで冷却する焼戻処理を施すか、あるいは▲1▼,▲2▼,▲3▼を適宜組み合わせることによって熱処理が施されて製造される。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる熱処理方法は鋼本来が有する機能を最大限に引き出すに十分な条件を与えておらず、その結果、鋼としては優れていても油井管としては必ずしも満足すべきものとはなっていなかった。たとえば、上記▲1▼の方法では焼入マルテンサイト組織であるため降伏強度(YS)は異常に低く引張強度(TS)が異常に高い材料となり構造物形成には全く実用的でない。また、上記▲2▼あるいは▲1▼+▲2▼では焼入マルテンサイトと焼戻マルテンサイトの混合組織となるため、YSは僅かな熱処理条件の変動によって大きく影響され安定的に所定範囲内のYSに造り込むことが困難である。上記▲3▼の方法を用いれば鋼は焼戻マルテンサイトとなるため降伏強度と引張強度のバランスはほど良いものとなり、必要なYSを安定的に得ることができる。このことから、▲1▼+▲3▼,▲2▼+▲3▼,▲1▼+▲2▼+▲3▼の熱処理が実用的である。しかしながら、これら焼戻処理▲3▼を必須とした熱処理を施してもその条件を十分に規定しなければ、耐食性油井管として満足すべき特性、すなわち、十分な耐硫化物応力割れ(SSC)特性が得られないという問題がある。
【0004】
本発明は、かかる問題を解決するものであって、焼戻処理における条件を規制することにより耐食性油井管として必要な耐SSC性を確保するマルテンサイト系ステンレス鋼油井管の製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、種々成分系の素材に対しマンネスマン方式の継目無鋼管圧延を施し、室温まで放冷した後、種々の前履歴を有する素材に対し温度・昇温速度を変化させて焼戻処理を実施し、得られた材料の特性(YS/TSバランスおよび耐SSC性)を評価した。その結果、耐SSC性はYS/TS比(YR)に依存し、同一YSでもYRが高い方が良好な耐SSC性を示すことを知見した。さらに、高いYRを得るための焼戻処理の条件(焼戻温度、昇温速度)を解明した。
【0006】
本発明はこの知見に基づいて構成したものであり、その要旨は、(1)重量%で、
C :≦0.050、 Si:≦0.5、
Mn:≦1.5、 P :≦0.03、
S :≦0.005、 Cr:11.0〜14.0、
Ni:4.0〜7.0、 Mo:1.0〜2.5、
Cu:1.0〜2.5、 Al:≦0.05、
N :0.01〜0.10、
を含み、残部がFeおよび不可避的不純物からなる組成を有するマルテンサイト系ステンレス鋼を熱間加工の後にMs点以下の温度まで冷却し、その後550℃以上Ac1以下の温度Tに、500〜T℃の平均加熱速度が1.0℃/sec以上となるように昇温して焼戻処理を施すことを特徴とするマルテンサイト系ステンレス継目無鋼管の製造方法であり、
(2)重量%で、
C :≦0.050、 Si:≦0.5、
Mn:≦0.5、 P :≦0.03、
S :≦0.005、 Cr:11.0〜14.0、
Ni:4.0〜7.0、 Mo:1.0〜2.5、
Cu:1.0〜2.5、 Al:≦0.05、
N :0.01〜0.10、 Ca:0.001〜0.020、
を含み、残部がFeおよび不可避的不純物からなる組成を有するマルテンサイト系ステンレス鋼を熱間加工の後にMs点以下の温度まで冷却し、その後550℃以上Ac1以下の温度Tに、500〜T℃の平均加熱速度が1.0℃/sec以上となるように昇温して焼戻処理を施すことを特徴とするマルテンサイト系ステンレス継目無鋼管の製造方法であり、
(3)熱間加工の後にMs点以下の温度まで放冷し、その後Ac3点以上の温度に再加熱して焼入処理または焼準処理を施し、さらに550℃以上Ac1以下の温度Tに、500〜T℃の平均加熱速度が1.0℃/sec以上となるように昇温して焼戻処理を施すことを特徴とする前記(1)または(2)項に記載のマルテンサイト系ステンレス継目無鋼管の製造方法であり、(4)熱処理を施した鋼管材の降伏強度と引張強度の比が0.77以上であることを特徴とする前記(1)〜(3)項の何れかに記載のマルテンサイト系ステンレス継目無鋼管の製造方法である。
【0007】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明におけるマルテンサイト系ステンレス鋼の成分限定理由は以下の通りである。
C:CはCr炭化物などを形成し耐食性を劣化させる元素であるため可及的低レベルが好ましい。現時点での工業的精錬技術の到達レベルを考慮して最大値を0.05%とした。
Si:Siは製鋼工程において脱酸剤として添加され残留されるもので、敢えて添加する元素ではなく、0.5%を超えて含有されると靭性や耐SSC性が劣化することから上限を0.5%とした。
【0008】
Mn:Mnはオーステナイト安定化元素であり熱間加工時にδ相の析出を抑制することにより圧延疵防止に有効であるが、1.5%を超えて添加すると粒界強度を低下させSSC抵抗性が劣化するので、1.5%を上限とした。
P:粒界に偏析して粒界強度を低下させ耐SSC性を劣化させるため、上限を0.03%とした。
【0009】
S:熱間加工性を劣化させる上耐CO2 腐食性、耐SSC性を減じるため、上限を0.005%とした。
Cr:耐食性向上の基本元素であり、十分な耐CO2 腐食性を得るには11%以上の添加が必要であるが、フェライト安定化元素でもあり、多すぎると熱間加工時にδ相が析出して熱間加工性劣化を起こすと共に、製品としてもマルテンサイト単相とならず耐SSC性を劣化することになるため、上限を14%とした。
【0010】
Ni:耐CO2 腐食性向上および靭性向上に有効である。また、オーステナイト安定化元素であり圧延疵につながるδ相の形成を抑制する。これら効果は添加量4.0%未満では不十分であり7.0%を超えて添加しても効果が飽和することから、最適添加範囲を4.0〜7.0%とした。
Al:脱酸の目的で添加されるが、0.05%以下の添加で十分な効果が得られる。
【0011】
N:強力なオーステナイト安定化元素であるので高価なNiの代替元素として添加される。しかしながら、添加し過ぎるとマルテンサイト状態での硬さが高くなり遅れ破壊感受性が増大するため最適添加量として0.01〜0.10%とした。
Mo:Crと同様、耐食性向上元素であると共にフェライト形成元素である。耐CO2 腐食性、耐SSC性、熱間加工性の観点から最適添加範囲を1.0〜2.5%とした。
【0012】
Cu:Niと同様に耐CO2 腐食性向上に有効な元素であると共にオーステナイト安定化元素であり圧延疵防止にも有効であるが、1.0%未満ではこれらの効果が十分に得られず2.5%を超えて添加すると熱間加工性が著しく劣化するため最適範囲を1.0〜2.5%とした。
Ca:Sによる熱間加工性劣化を抑制するものであり必要に応じて添加するが、0.001%未満では効果が発現されず0.02%を超えて添加してもその効果は飽和するため、最適添加量を0.001〜0.02%とした。
【0013】
次に、かかる組成の鋼の熱処理方法について述べる。
かかる組成の鋼は、その利用目的からして主に耐食性向上のためCを低減すると共に、それによって生じる耐SSC性に有害なδフェライトの析出を防止するためNiやCuなどの添加を行ったものであるが、かかるγ形成元素の添加はAc1 変態点を大幅に低下させることになる。したがって、必然的にかかる組成の鋼では低温焼戻を余儀なくされるが、低温焼戻を行えば強度が高くなり、結果として十分な耐SSC性が得られない。
【0014】
しかしながら、本発明者らが鋭意研究した結果、かかる組成鋼のAc1 変態点は昇温速度に依存することが明らかとなった。すなわち、図1に示すように、Ac1 変態点は昇温速度が速い程高くなる。この理由は、析出物が高昇温速度ほど析出、凝集、固溶の進行が遅れることによりα→γ変態が遅れるためと考えられる。ここでいう昇温速度とは、析出物の状態変化に関係する550℃からAc1 点以下の焼戻温度Tの温度域での平均昇温速度である。
【0015】
上記の挙動は、前履歴が異なっても同様であり、圧延ままで常温まで冷却したもの(符号:R)、その後Ac3 点以上に再加熱した後常温まで冷却したもの(符号:R−N)、符号Rの処理に引き続きAc1 点以上Ac3 点以下に再加熱した後常温まで冷却したもの(符号:R−L)、符号R−Nの処理に引き続きAc1 点以上Ac3 点以下に再加熱した後常温まで冷却したもの(符号:R−N−L)の4種の供試材(図3)で類似の結果が得られた。通常の炉加熱方式では0.3℃/sec程度の昇温速度しか得られないためAc1 点は630℃程度であるが、1.0℃/sec以上の高速昇温ではAc1 点は650℃以上となる。このことから、高速昇温を行えばAc1 変態点を高め、結果として高温焼戻が可能となり耐SSC性に有害な高強度化を防止することが可能となる。かかる高速昇温を可能とする熱処理方法としては、例えば誘導加熱法、塩浴加熱法などが挙げられる。焼戻保定時間については、長時間保定するとAc1 変態点が低下するため1分以内が望ましい。
【0016】
次に上記の熱処理方法によって得られた鋼材のSSC特性について説明する。上述の熱処理方法によって得られた鋼材を用いてSSC試験を行い、その結果を昇温速度との関係で整理し、図2に示す。SSC試験は、t3.0×10×65mmサイズの短冊状試験片に4点支持法によりYSの100%となる曲げ応力を加えた状態で、H2 Sを分圧0.3atm で飽和させた5%酢酸の溶液中に常温で浸漬して割れ有無を評価した。図2から明らかなように、焼戻前の履歴(符号:R,R−N,R−L,R−N−L、図3参照)によらず、昇温速度1℃/sec以上で優れた耐SSC性が得られる。この理由は、高昇温速度で焼戻すことによりYRが高くなるため同一YSにおいても高昇温速度材ほどTSが低くなることによる。
【0017】
次に、かかる高速昇温による焼戻処理を施した鋼材が満たすべき機械的特性としてYS/TS比(YR)≧0.77を規定すれば望ましい理由について述べる。
上述の熱処理方法によって鋼材のYSを69.1〜75.1kg/mm2 (油井管としての95ksi 級に相当)に調質した材料を用いSSC試験を行い、その結果をYRとの関係で整理した。SSC試験は、t3.0×10×65mmサイズの短冊状試験片に4点支持法によりYSの100%となる曲げ応力を加えた状態で、H2 Sを分圧0.3atm で飽和させた5%酢酸の溶液中に常温で浸漬して割れ有無を評価した。その結果、焼戻前の履歴(符号;R,R−N,R−L,R−N−L、図3参照)によらず、YRが0.77を下回ると耐SSC性がやや低下する。したがって、上述の熱処理方法によって得られる鋼材にYR≧0.77の条件を付加すれば、より優れた耐SSC性が得られる。
【0018】
【実施例】
以下、本発明の実施例について説明する。
表1に示す鋼を用いて試験を行った。矩形断面のブルームを素材としプレスロール穿孔−エロンゲータ圧延方式の継目無鋼管圧延を行い、常温まで冷却した鋼管を素材として表2に示す条件で焼戻処理前の履歴を与え、さらに表3に示す条件で焼戻処理を施した。焼戻保定時間は1分以内とした。この供試材より試験片を採取して引張試験およびSSC試験を行った。SSC特性は、t3.0×10×65mmサイズの短冊状試験片に4点支持法により降伏強度の100%となる曲げ応力を加えた状態で、H2 Sを分圧0.3atm で飽和させた0.5%酢酸の溶液中に常温で浸漬して割れ有無を求めることにより評価した。
【0019】
両試験の結果を表3に併せて示す。表3において、本発明No.1〜4、8〜11は高いYRが得られ優れた耐SSC性を示す。一方、比較例について言えば、No.22,23は供試材の化学成分が本発明の範囲を外れるため耐SSC性は不十分であり、No.15,17,18,19,20,21,22は昇温速度が本発明の範囲を外れるため十分な耐SSC性が得られない。また、No.14は焼戻温度がAc1を超えるため耐SSC性は不十分であり、No.16,23は、昇温速度、焼戻温度共に本発明の範囲を外れ耐SSC性が劣化する。
【0020】
【表1】
【0021】
【表2】
【0022】
【表3】
【0023】
【発明の効果】
以上のように、本発明によれば、耐SSC性に優れたマルテンサイト系ステンレス鋼油井管を得ることが可能となる。
【図面の簡単な説明】
【図1】昇温速度とAc1 変態点の関係を示す。
【図2】焼戻の昇温速度と耐SSC性の関係を示す。なお、プロット横数値は表3におけるNo.を意味する。
【図3】本発明の対象となる焼戻前の熱履歴の概要を示す。
【符号の説明】
R :圧延まま
R−N :圧延まま材をAc3 点以上に再加熱して常温まで冷却
R−L :圧延まま材をAc1 〜Ac3 点の温度域に再加熱して常温まで冷却
R−N−L:R−N材をAc1 〜Ac3 点の温度域に再加熱して常温まで冷却[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a martensitic stainless steel pipe excellent in SSC resistance.
[0002]
[Prior art]
Martensitic stainless steel has been applied as an oil well pipe since about 1980 because it is excellent in strength and CO 2 corrosion resistance, as represented by AISI 420 steel. Recently, the demand for CO 2 corrosion resistance superior to that of 420 steel and further the market demand for H 2 S resistance has increased, and as shown in JP-A-3-120337, low C and Ni—Mo added steel, or As described in JP-A-2-247360, steel types such as low C and Ni—Cu—Mo added steels (so-called modified 13Cr steel) have been developed. Such steel is, as seen in Japanese Patent Application Laid-Open No. 3-120337, etc., (1) A quenching treatment (or quenching) in which after hot working, it is heated and held again at a temperature of Ac 3 point or higher and then cooled to Ms point or lower. Or (2) Ac 1 point to Ac 3 point temperature range, heat and hold again, then cool to Ms point or less, or (3) Ac 1 point temperature or less. Then, it is heated and held again and then subjected to a tempering process for cooling to the Ms point or lower, or a heat treatment is performed by appropriately combining (1), (2), and (3).
[0003]
[Problems to be solved by the invention]
However, such a heat treatment method does not give sufficient conditions for maximizing the functions inherent in steel, and as a result, even though it is excellent as steel, it has not always been satisfactory as an oil well pipe. . For example, in the method (1), since it is a hardened martensite structure, the yield strength (YS) is abnormally low and the tensile strength (TS) is abnormally high, which is not practical for forming a structure. In addition, in the above (2) or (1) + (2), since it becomes a mixed structure of quenched martensite and tempered martensite, YS is greatly influenced by slight fluctuations in heat treatment conditions and is stably within a predetermined range. It is difficult to build in YS. If the method (3) is used, the steel becomes tempered martensite, so that the balance between the yield strength and the tensile strength is moderate, and the necessary YS can be stably obtained. From this, the heat treatment of (1) + (3), (2) + (3), (1) + (2) + (3) is practical. However, if the conditions are not sufficiently defined even after the heat treatment with these tempering treatments (3) as essential, characteristics that should be satisfied as corrosion-resistant oil well pipes, that is, sufficient sulfide stress cracking (SSC) characteristics. There is a problem that cannot be obtained.
[0004]
This invention solves this problem, and provides the manufacturing method of the martensitic stainless steel oil well pipe which ensures the SSC resistance required as a corrosion-resistant oil well pipe by regulating the conditions in a tempering process. With the goal.
[0005]
[Means for Solving the Problems]
The present inventors applied Mannesmann seamless steel pipe rolling to various component materials, allowed to cool to room temperature, and then tempered by changing the temperature and temperature rise rate for materials having various previous histories. The treatment was carried out and the properties of the resulting material (YS / TS balance and SSC resistance) were evaluated. As a result, it was found that the SSC resistance depends on the YS / TS ratio (YR), and the higher the YR, the better the SSC resistance even in the same YS. Furthermore, the conditions (tempering temperature, temperature increase rate) of the tempering process for obtaining high YR were clarified.
[0006]
The present invention is configured based on this finding, the gist of which is (1) wt%,
C: ≦ 0.050, Si: ≦ 0.5,
Mn: ≦ 1.5, P: ≦ 0.03,
S: ≦ 0.005, Cr: 11.0-14.0,
Ni: 4.0-7.0, Mo: 1.0-2.5,
Cu: 1.0 to 2.5, Al: ≦ 0.05,
N: 0.01-0.10
The martensitic stainless steel having a composition consisting of Fe and unavoidable impurities is cooled to a temperature below the Ms point after hot working, and then heated to a temperature T of 550 ° C. or higher and Ac 1 or lower, 500 to T It is a method for producing a martensitic stainless steel seamless pipe characterized by performing a tempering treatment by raising the temperature so that the average heating rate at ℃ is 1.0 ° C / sec or more,
(2) By weight%
C: ≦ 0.050, Si: ≦ 0.5,
Mn: ≦ 0.5, P: ≦ 0.03,
S: ≦ 0.005, Cr: 11.0-14.0,
Ni: 4.0-7.0, Mo: 1.0-2.5,
Cu: 1.0 to 2.5, Al: ≦ 0.05,
N: 0.01-0.10, Ca: 0.001-0.020,
The martensitic stainless steel having a composition consisting of Fe and unavoidable impurities is cooled to a temperature below the Ms point after hot working, and then heated to a temperature T of 550 ° C. or higher and Ac 1 or lower, 500 to T It is a method for producing a martensitic stainless steel seamless pipe characterized by performing a tempering treatment by raising the temperature so that the average heating rate at ℃ is 1.0 ° C / sec or more,
(3) After hot working, it is allowed to cool to a temperature of Ms point or lower, and then reheated to a temperature of Ac 3 point or higher and subjected to quenching treatment or normalizing treatment, and further a temperature T of 550 ° C. or higher and Ac 1 lower than The martensite as described in (1) or (2) above, wherein the tempering treatment is performed by raising the temperature so that the average heating rate of 500 to T ° C is 1.0 ° C / sec or more. a method for producing a system stainless seamless steel pipe, (4) the the ratio of the yield strength and tensile strength of the heat treated alms steel tube material, characterized in that at 0.77 or more (1) to (3) section A method for producing a martensitic stainless steel seamless pipe according to any one of the above.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The reasons for limiting the components of the martensitic stainless steel in the present invention are as follows.
C: Since C is an element that forms Cr carbide and the like and deteriorates corrosion resistance, the lowest possible level is preferable. The maximum value is set to 0.05% in consideration of the current level of industrial refining technology.
Si: Si is added and remains as a deoxidizer in the steelmaking process, and is not an element to be deliberately added. If it exceeds 0.5%, the toughness and SSC resistance deteriorate, so the upper limit is 0. 0.5%.
[0008]
Mn: Mn is an austenite stabilizing element and effective in preventing rolling wrinkles by suppressing the precipitation of δ phase during hot working. However, if added over 1.5%, the grain boundary strength is lowered and the SSC resistance is reduced. Deteriorates, so 1.5% was made the upper limit.
P: The upper limit was made 0.03% in order to segregate at the grain boundary to lower the grain boundary strength and deteriorate the SSC resistance.
[0009]
S: In order to deteriorate hot workability and reduce CO 2 corrosion resistance and SSC resistance, the upper limit was made 0.005%.
Cr: A basic element for improving corrosion resistance. In order to obtain sufficient CO 2 corrosion resistance, addition of 11% or more is necessary, but it is also a ferrite stabilizing element, and if it is too much, a δ phase precipitates during hot working. As a result, the hot workability deteriorates and the product does not become a martensite single phase, and the SSC resistance is deteriorated. Therefore, the upper limit is set to 14%.
[0010]
Ni: Effective for improving CO 2 corrosion resistance and toughness. Moreover, it is an austenite stabilizing element and suppresses the formation of a δ phase that leads to rolling wrinkles. These effects are insufficient if the addition amount is less than 4.0%, and the effect is saturated even if the addition amount exceeds 7.0%. Therefore, the optimum addition range is set to 4.0 to 7.0%.
Al: It is added for the purpose of deoxidation, but a sufficient effect can be obtained with addition of 0.05% or less.
[0011]
N: Since it is a strong austenite stabilizing element, it is added as an alternative element for expensive Ni. However, if added too much, the hardness in the martensite state increases and delayed fracture susceptibility increases, so the optimum addition amount was made 0.01 to 0.10%.
Similar to Mo: Cr, it is an element that improves corrosion resistance and is a ferrite-forming element. From the viewpoint of CO 2 corrosion resistance, SSC resistance, and hot workability, the optimum addition range is set to 1.0 to 2.5%.
[0012]
Cu: Similar to Ni, it is an element effective for improving CO 2 corrosion resistance and an austenite stabilizing element and effective for preventing rolling flaws. However, if it is less than 1.0%, these effects cannot be obtained sufficiently. When adding over 2.5%, the hot workability is remarkably deteriorated, so the optimum range was made 1.0 to 2.5%.
It suppresses hot workability deterioration due to Ca: S, and is added as necessary. However, if it is less than 0.001%, the effect is not manifested, and the effect is saturated even if added over 0.02%. Therefore, the optimum addition amount is set to 0.001 to 0.02%.
[0013]
Next, a heat treatment method for steel having such a composition will be described.
The steel having such a composition was reduced in C mainly for improving the corrosion resistance for the purpose of use, and added with Ni, Cu or the like in order to prevent the precipitation of δ ferrite harmful to the SSC resistance caused thereby. However, the addition of such a γ-forming element greatly reduces the Ac 1 transformation point. Therefore, the steel having such a composition is inevitably subjected to low-temperature tempering. However, if low-temperature tempering is performed, the strength increases, and as a result, sufficient SSC resistance cannot be obtained.
[0014]
However, as a result of intensive studies by the present inventors, it has been clarified that the Ac 1 transformation point of such a composition steel depends on the heating rate. That is, as shown in FIG. 1, the Ac 1 transformation point becomes higher as the heating rate is higher. The reason for this is considered to be that the α → γ transformation is delayed due to the progress of precipitation, aggregation, and solid solution being delayed as the temperature rise rate of the precipitate increases. The heating rate here is an average heating rate in the temperature range of tempering temperature T from 550 ° C. to Ac 1 point or less, which is related to the state change of the precipitate.
[0015]
The above behavior is the same even if the previous history is different, and is the same as rolled (cooled to room temperature (sign: R)), then reheated to Ac 3 point or higher and then cooled to room temperature (sign: RN) ), Reheated to Ac 1 point or more and Ac 3 point or less following the process of symbol R (cooled to room temperature) (symbol: RL), ac 1 point or more and Ac 3 points or less following the process of symbol RN Similar results were obtained with four types of specimens (FIG. 3) that were reheated to room temperature and then cooled to room temperature (sign: R-N-L). In a normal furnace heating method, only a heating rate of about 0.3 ° C./sec can be obtained, so the Ac 1 point is about 630 ° C., but at a high temperature heating of 1.0 ° C./sec or more, the Ac 1 point is 650. ℃ or more. For this reason, if the temperature is raised at a high speed, the Ac 1 transformation point is increased, and as a result, high-temperature tempering is possible, and it is possible to prevent an increase in strength harmful to SSC resistance. Examples of the heat treatment method that enables such rapid temperature increase include an induction heating method and a salt bath heating method. The tempering holding time is preferably within 1 minute because the Ac 1 transformation point decreases when held for a long time.
[0016]
Next, the SSC characteristics of the steel material obtained by the above heat treatment method will be described. An SSC test was performed using the steel material obtained by the above heat treatment method, and the results are organized in relation to the rate of temperature increase and are shown in FIG. In the SSC test, H 2 S was saturated at a partial pressure of 0.3 atm in a state in which a bending stress that is 100% of YS was applied to a strip-shaped test piece of t3.0 × 10 × 65 mm size by a four-point support method. The presence or absence of cracks was evaluated by dipping in a 5% acetic acid solution at room temperature. As is clear from FIG. 2, regardless of the history before tempering (signs: R, RN, RL, RNNL, see FIG. 3), the temperature rise rate is excellent at 1 ° C./sec or more. SSC resistance can be obtained. The reason for this is that YR increases by tempering at a high temperature increase rate, and therefore TS increases as the material has a high temperature increase rate even in the same YS.
[0017]
Next, the reason why it is desirable to define YS / TS ratio (YR) ≧ 0.77 as the mechanical characteristics to be satisfied by the steel material that has been subjected to the tempering process by high-speed temperature rise will be described.
An SSC test was conducted using a material that had been tempered to 69.1-75.1 kg / mm 2 (corresponding to 95 ksi class as an oil well pipe) by the above heat treatment method, and the results were organized in relation to YR. did. In the SSC test, H 2 S was saturated at a partial pressure of 0.3 atm in a state in which a bending stress that is 100% of YS was applied to a strip-shaped test piece of t3.0 × 10 × 65 mm size by a four-point support method. The presence or absence of cracks was evaluated by dipping in a 5% acetic acid solution at room temperature. As a result, regardless of the history before tempering (signs; R, RN, R-L, R-N-L, see FIG. 3), if YR is less than 0.77, the SSC resistance is slightly reduced. . Therefore, if the condition of YR ≧ 0.77 is added to the steel material obtained by the above heat treatment method, more excellent SSC resistance can be obtained.
[0018]
【Example】
Examples of the present invention will be described below.
The test was performed using the steel shown in Table 1. Press roll piercing-elonator rolling method seamless steel pipe rolling using a rectangular cross-section bloom as a raw material, and giving a history before tempering treatment under the conditions shown in Table 2 using a steel pipe cooled to room temperature as shown in Table 3. Tempering treatment was performed under conditions. The tempering holding time was within 1 minute. A test piece was collected from the specimen and subjected to a tensile test and an SSC test. SSC characteristics are obtained by saturating H 2 S at a partial pressure of 0.3 atm with a strip test piece of t3.0 × 10 × 65 mm size subjected to a bending stress of 100% of yield strength by the four-point support method. It was evaluated by immersing it in a 0.5% acetic acid solution at room temperature and determining the presence or absence of cracks.
[0019]
The results of both tests are shown together in Table 3. In Table 3, the present invention No. 1-4 and 8-11 show a high YR and show excellent SSC resistance. On the other hand, as for the comparative example, No. Nos. 22 and 23 have insufficient SSC resistance because the chemical components of the specimens are outside the scope of the present invention. 15, 17, 18, 19, 20, 21, and 22 cannot obtain sufficient SSC resistance because the rate of temperature rise is outside the range of the present invention. No. No. 14 has an insufficient SSC resistance because the tempering temperature exceeds Ac1. Nos. 16 and 23 fall outside the scope of the present invention in terms of both the rate of temperature rise and the tempering temperature, and the SSC resistance deteriorates.
[0020]
[Table 1]
[0021]
[Table 2]
[0022]
[Table 3]
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a martensitic stainless steel oil well pipe having excellent SSC resistance.
[Brief description of the drawings]
FIG. 1 shows the relationship between the rate of temperature rise and the Ac 1 transformation point.
FIG. 2 shows the relationship between the tempering rate and the SSC resistance. Note that the horizontal values of the plots are No. in Table 3. Means.
FIG. 3 shows an outline of a heat history before tempering which is an object of the present invention.
[Explanation of symbols]
R: As-rolled RN: Re-heated as-rolled material to Ac 3 point or higher and cooled to room temperature RL: Re-rolled as-rolled material to temperature range of Ac 1 to Ac 3 point and cooled to room temperature R -N-L: RN material is reheated to a temperature range of Ac 1 to Ac 3 points and cooled to room temperature.
Claims (4)
C :≦0.050、
Si:≦0.5、
Mn:≦1.5、
P :≦0.03、
S :≦0.005、
Cr:11.0〜14.0、
Ni:4.0〜7.0、
Mo:1.0〜2.5、
Cu:1.0〜2.5、
Al:≦0.05、
N :0.01〜0.10、
を含み、残部がFeおよび不可避的不純物からなる組成を有するマルテンサイト系ステンレス鋼を熱間加工の後にMs点以下の温度まで冷却し、その後550℃以上Ac1以下の温度Tに、500〜T℃の平均加熱速度が1.0℃/sec以上となるように昇温して焼戻処理を施すことを特徴とするマルテンサイト系ステンレス継目無鋼管の製造方法。% By weight
C: ≦ 0.050
Si: ≦ 0.5,
Mn: ≦ 1.5,
P: ≦ 0.03
S: ≦ 0.005,
Cr: 11.0-14.0,
Ni: 4.0-7.0,
Mo: 1.0 to 2.5,
Cu: 1.0 to 2.5,
Al: ≦ 0.05,
N: 0.01-0.10
The martensitic stainless steel having a composition consisting of Fe and unavoidable impurities is cooled to a temperature below the Ms point after hot working, and then heated to a temperature T of 550 ° C. or higher and Ac 1 or lower, 500 to T A method for producing a martensitic stainless steel seamless pipe, wherein the temperature is raised so that the average heating rate at 1 ° C. is 1.0 ° C./sec or more and tempering is performed.
C :≦0.050、
Si:≦0.5、
Mn:≦1.5、
P :≦0.03、
S :≦0.005、
Cr:11.0〜14.0、
Ni:4.0〜7.0、
Mo:1.0〜2.5、
Cu:1.0〜2.5、
Al:≦0.05、
N :0.01〜0.10、
Ca:0.001〜0.020、
を含み、残部がFeおよび不可避的不純物からなる組成を有するマルテンサイト系ステンレス鋼を熱間加工の後にMs点以下の温度まで冷却し、その後550℃以上Ac1以下の温度Tに、500〜T℃の平均加熱速度が1.0℃/sec以上となるように昇温して焼戻処理を施すことを特徴とするマルテンサイト系ステンレス継目無鋼管の製造方法。% By weight
C: ≦ 0.050
Si: ≦ 0.5,
Mn: ≦ 1.5,
P: ≦ 0.03
S: ≦ 0.005,
Cr: 11.0-14.0,
Ni: 4.0-7.0,
Mo: 1.0 to 2.5,
Cu: 1.0 to 2.5,
Al: ≦ 0.05,
N: 0.01-0.10
Ca: 0.001 to 0.020,
The martensitic stainless steel having a composition consisting of Fe and unavoidable impurities is cooled to a temperature below the Ms point after hot working, and then heated to a temperature T of 550 ° C. or higher and Ac 1 or lower, 500 to T A method for producing a martensitic stainless steel seamless pipe, wherein the temperature is raised so that the average heating rate at 1 ° C. is 1.0 ° C./sec or more and tempering is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32774595A JP4010017B2 (en) | 1995-12-15 | 1995-12-15 | Method for producing martensitic stainless steel pipe with excellent SSC resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32774595A JP4010017B2 (en) | 1995-12-15 | 1995-12-15 | Method for producing martensitic stainless steel pipe with excellent SSC resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09170019A JPH09170019A (en) | 1997-06-30 |
JP4010017B2 true JP4010017B2 (en) | 2007-11-21 |
Family
ID=18202513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32774595A Expired - Lifetime JP4010017B2 (en) | 1995-12-15 | 1995-12-15 | Method for producing martensitic stainless steel pipe with excellent SSC resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4010017B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7931758B2 (en) | 2008-07-28 | 2011-04-26 | Ati Properties, Inc. | Thermal mechanical treatment of ferrous alloys, and related alloys and articles |
JP5640762B2 (en) * | 2011-01-20 | 2014-12-17 | Jfeスチール株式会社 | High strength martensitic stainless steel seamless pipe for oil wells |
-
1995
- 1995-12-15 JP JP32774595A patent/JP4010017B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH09170019A (en) | 1997-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2553586C (en) | Oil well seamless steel pipe excellent in resistance to sulfide stress cracking and method for production thereof | |
JP5145793B2 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
NO343350B1 (en) | Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells | |
MX2014009157A (en) | Method for producing high-strength steel material having excellent sulfide stress cracking resistance. | |
JPH0967624A (en) | Method for producing high strength steel pipe for oil well having excellent SSCC resistance | |
JP2003129190A (en) | Martensitic stainless steel and method for producing the same | |
JP2861024B2 (en) | Martensitic stainless steel for oil well and its production method | |
JPH01142023A (en) | Manufacture of wear-resistant steel plate having superior bendability | |
JP3733229B2 (en) | Manufacturing method of high strength bolt steel bar with excellent cold workability and delayed fracture resistance | |
JP3328967B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP4010017B2 (en) | Method for producing martensitic stainless steel pipe with excellent SSC resistance | |
JP3921808B2 (en) | High-strength martensitic stainless steel pipe with excellent low-temperature toughness and manufacturing method thereof | |
JPH0625746A (en) | Method for producing high Cr content steel oil country tubular good | |
EP0224591A1 (en) | Process for producing high-strength seamless steel pipes excellent in sulfide stress corrosion cracking resistance | |
JP3921809B2 (en) | Method for producing martensitic stainless steel pipe with excellent low temperature toughness | |
JPH05171361A (en) | Production of martensitic stainless steel | |
JP3620099B2 (en) | Method for producing Cr-Mo steel excellent in strength and toughness | |
JPS6067623A (en) | Preparation of high strength low carbon seamless steel pipe by direct hardening method | |
JPS6137333B2 (en) | ||
JP3687249B2 (en) | 2.25Cr steel softening heat treatment method | |
JP2002348610A (en) | Method for producing martensitic stainless steel pipe | |
JP3804087B2 (en) | Manufacturing method of hot-bending steel pipe | |
JPH07110970B2 (en) | Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking | |
JPH07150251A (en) | Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance | |
JP2000160285A (en) | High-strength and high-toughness non-heat treated steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040213 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040312 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040312 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060801 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070522 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070814 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070827 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |