[go: up one dir, main page]

JP4009802B2 - Non-aqueous secondary battery and manufacturing method thereof - Google Patents

Non-aqueous secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP4009802B2
JP4009802B2 JP05026599A JP5026599A JP4009802B2 JP 4009802 B2 JP4009802 B2 JP 4009802B2 JP 05026599 A JP05026599 A JP 05026599A JP 5026599 A JP5026599 A JP 5026599A JP 4009802 B2 JP4009802 B2 JP 4009802B2
Authority
JP
Japan
Prior art keywords
battery
secondary battery
less
aqueous secondary
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05026599A
Other languages
Japanese (ja)
Other versions
JP2000251940A (en
Inventor
史朗 加藤
肇 木下
静邦 矢田
治夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP05026599A priority Critical patent/JP4009802B2/en
Publication of JP2000251940A publication Critical patent/JP2000251940A/en
Application granted granted Critical
Publication of JP4009802B2 publication Critical patent/JP4009802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系二次電池及びその製造方法に関し、特に、蓄電システム用非水系二次電池及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、省資源を目指したエネルギーの有効利用及び地球環境問題の観点から、深夜電力貯蔵及び太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システム等が注目を集めている。例えば、特開平6−86463号公報には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池等を組み合わせたトータルシステムが提案されている。このような蓄電システムに用いられる二次電池は、エネルギー容量が10Wh以下の携帯機器用小型二次電池と異なり、容量が大きい大型のものが必要とされる。このため、上記の蓄電システムでは、複数の二次電池を直列に積層し、電圧が例えば50〜400Vの組電池として用いるのが常であり、ほとんどの場合、鉛電池を用いていた。
【0003】
一方、携帯機器用小型二次電池の分野では、小型及び高容量のニーズに応えるべく、新型電池としてニッケル水素電池、リチウム二次電池の開発が進展し、180Wh/l以上の体積エネルギー密度を有する電池が市販されている。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度の可能性を有すること、及び、安全性、サイクル特性等の信頼性が金属リチウムを負極に用いたリチウム二次電池に比べ優れることから、その市場を飛躍的に延ばしている。
【0004】
これを受け、蓄電システム用大型電池の分野においても、高エネルギー密度電池の候補として、リチウムイオン電池をターゲットとし、リチウム電池電力貯蔵技術研究組合(LIBES)等で精力的に開発が進められている。
【0005】
これら大型リチウムイオン電池のエネルギー容量は、100Whから400Wh程度であり、体積エネルギー密度は、200〜300Wh/lと携帯機器用小型二次電池並のレベルに達している。その形状は、直径50mm〜70mm、長さ250mm〜450mmの円筒型、厚さ35mm〜50mmの角形又は長円角形等の扁平角柱形が代表的なものである。
【0006】
また、薄型のリチウム二次電池については、薄型の外装に、例えば、金属とプラスチックをラミネートした厚さ1mm以下のフィルムを収納したフィルム電池(特開平5−159757号公報、特開平7−57788号公報等)、厚さ2mm〜15mm程度の小型角型電池(特開平8−195204号公報、特開平8−138727号公報、特開平9−213286号公報等)が知られている。これらのリチウム二次電池は、いずれも、その目的が携帯機器の小型化及び薄型化に対応するものであり、例えば携帯用パソコンの底面に収納できる厚さ数mmでJIS A4サイズ程度の面積を有する薄型電池も開示されているが(特開平5−283105号公報)、エネルギー容量が10Wh以下であるため、蓄電システム用二次電池としては容量が小さ過ぎる。
【0007】
【発明が解決しようとする課題】
上記のような扁平形状の電池の場合、電池の厚みを薄くするに従い、電池の厚みに対する電池の表裏面の面積が大きくなり、電池内に収納される電極面を押さえ込む力が弱くなる。特に、蓄電システムに用いられる大型リチウム二次電池(エネルギー容量30Wh以上)において扁平形状の電池を作成する場合は、その傾向が強く、例えば、100Wh級の厚さ6mmのリチウムイオン電池の場合、電池の表裏面の大きさは、600cm2(片面)となり、厚さに比べて非常に大きくなる。このことから、扁平形状の大型リチウム二次電池を作成した場合、電池の厚みが設計より厚くなったり、又は、電池の内部抵抗及び容量がばらつくという問題が残されていた。
【0008】
本発明の目的は、30Wh以上の大容量且つ180Wh/l以上の体積エネルギー密度を有し、寸法精度に優れた扁平形状の非水系二次電池を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するため、正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上であり、前記電池容器内の圧力は、大気圧未満であることを特徴とする非水系二次電池を提供するものである。
【0010】
また、本発明の非水系二次電池の製造方法は、前記非水系二次電池の製造方法であって、前記正極、前記負極、前記セパレータ、及び前記非水系電解質を前記電池容器内に収容し、前記電池容器内の圧力を大気圧未満にした状態で前記電池容器の最終封口工程を行うことを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の一実施の形態の非水系二次電池について図面を参照しながら説明する。図1は、本発明の一実施の形態の扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示す図であり、図2は、図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【0012】
図1及び図2に示すように、本実施の形態の非水系二次電池は、上蓋1及び底容器2からなる電池容器と、該電池容器の中に収納されている複数の正極101a、負極101b、101c、及びセパレータ104からなる電極積層体とを備えている。本実施の形態のような扁平型非水系二次電池の場合、正極101a、負極101b(又は積層体の両外側に配置された負極101c)は、例えば、図2に示すように、セパレータ104を介して交互に配置されて積層されるが、本発明は、この配置に特に限定されず、積層数等は、必要とされる容量等に応じて種々の変更が可能である。また、図1及び図2に示す非水系二次電池の形状は、例えば縦300mm×横210mm×厚さ6mmであり、正極101aにLiMn24、負極101b、101cに炭素材料を用いるリチウム二次電池の場合、例えば、蓄電システムに用いることができる。
【0013】
各正極101aの正極集電体105aは、正極端子3に電気的に接続され、同様に、各負極101b、101cの負極集電体105bは、負極端子4に電気的に接続されている。正極端子3及び負極端子4は、電池容器すなわち上蓋1と絶縁された状態で取り付けられている。
【0014】
上蓋1及び底容器2は、図1中の拡大図に示したA点で全周を上蓋を溶かし込み、溶接されている。上蓋1には、電解液の注液口5が開けられており、電解液注液後、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。この場合、封口フィルム6は電池内部の内圧が上昇したときに解放するための安全弁を兼ね備えることができる。封口フィルム6による最終封口工程後の電池容器内の圧力は、大気圧未満であり、好ましくは650Torr以下、更に好ましくは550Torr以下である。この圧力は、使用するセパレータ、電解液の種類、電池容器の材質及び厚み、電池の形状等を加味して決定されるものである。内圧が大気圧以上の場合、電池が設計厚みより大きくなったり、又は、電池の厚みのバラツキが大きくなり、電池の内部抵抗及び容量がばらつく原因となるため好ましくない。
【0015】
正極101aに用いられる正極活物質としては、リチウム系の正極材料であれば、特に限定されず、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、高電圧、高容量の電池が得られることから、好ましい。また、安全性を重視する場合、熱分解温度が高いマンガン酸化物が好ましい。このマンガン酸化物としてはLiMn24に代表されるリチウム複合マンガン酸化物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系、さらにはリチウム、酸素等を量論比よりも過剰にしたLiMn24が挙げられる。
【0016】
負極101b、101cに用いられる負極活物質としては、リチウム系の負極材料であれば、特に限定されず、リチウムをドープ及び脱ドープ可能な材料であることが、安全性、サイクル寿命などの信頼性が向上し好ましい。リチウムをドープ及び脱ドープ可能な材料としては、公知のリチウムイオン電池の負極材として使用されている黒鉛系物質、炭素系物質、錫酸化物系、ケイ素酸化物系等の金属酸化物、或いはポリアセン系有機半導体に代表される導電性高分子等が挙げられる。特に、安全性の観点から、150℃前後の発熱が小さいポリアセン系物質又はこれを含んだ材料が望ましい。
【0017】
セパレータ104の構成は、特に限定されるものではないが、単層又は複層のセパレータを用いることができ、少なくとも1枚は不織布を用いることが好ましく、この場合、サイクル特性が向上する。また、セパレータ104の材質も、特に限定されるものではないが、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス等が挙げられるが、ポリエチレン、ポリプロピレンが、コスト、含水などの観点から好ましい。また、セパレータ104として、ポリエチレン、ポリプロピレンを用いる場合、セパレータの目付量は、好ましくは5g/m2以上30g/m2以下であり、より好ましくは5g/m2以上20g/m2以下であり、さらに好ましくは8g/m2以上20g/m2以下である。セパレータの目付量が30g/m2を越える場合、セパレータが厚くなりすぎたり、又は気孔率が低下し、電池の内部抵抗が高くなるので好ましくなく、5g/m2未満の場合、実用的な強度が得られないので好ましくない。
【0018】
本実施の形態の非水系二次電池の電解質としては、公知のリチウム塩を含む非水系電解質を使用することができ、正極材料、負極材料、充電電圧等の使用条件により適宜決定され、より具体的にはLiPF6、LiBF4、LiClO4等のリチウム塩を、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。また、電解液の濃度は特に限定されるものではないが、一般的に0.5mol/lから2mol/lが実用的であり、該電解液は当然のことながら、水分が100ppm以下のものを用いることが好ましい。なお、本明細書で使用する非水系電解質とは、非水系電解液、有機電解液を含む概念を意味するものであり、また、ゲル状又は固体の電解質も含む概念を意味するものである。
【0019】
上記のように構成された非水系二次電池は、家庭用蓄電システム(夜間電力貯蔵、コージェネレション、太陽光発電等)、電気自動車等の蓄電システム等に用いることができ、大容量且つ高エネルギー密度を有することができる。この場合、エネルギー容量は、好ましくは30Wh以上、より好ましくは50Wh以上であり、且つエネルギー密度は、好ましくは180Wh/l以上、より好ましくは200Wh/lである。エネルギー容量が30Wh未満の場合、或いは、体積エネルギー密度が180Wh/l未満の場合は、蓄電システムに用いるには容量が小さく、充分なシステム容量を得るために電池の直並列数を増やす必要があること、また、コンパクトな設計が困難となることから蓄電システム用としては好ましくない。
【0020】
ところで、一般に、蓄電システム用の大型リチウム二次電池(エネルギー容量30Wh以上)においては、高エネルギー密度が得られるものの、その電池設計が携帯機器用小型電池の延長にあることから、直径又は厚さが携帯機器用小型電池の3倍以上の円筒型、角型等の電池形状とされる。この場合には、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りによって活物質のエントロピーが変化することによる電池の内部発熱により、電池内部に熱が蓄積されやすい。このため、電池内部の温度と電池表面付近の温度差が大きく、これに伴って内部抵抗が異なる。その結果、充電量、電圧のバラツキを生じ易い。また、この種の電池は複数個を組電池にして用いるため、システム内での電池の設置位置によっても蓄熱されやすさが異なって各電池間のバラツキが生じ、組電池全体の正確な制御が困難になる。更には、高率充放電時等に放熱が不十分な為、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解等による寿命の低下、更には電池の熱暴走の誘起など信頼性、特に、安全性に問題が残されていた。
【0021】
本実施の形態の扁平形状の非水系二次電池は、放熱面積が大きくなり、放熱に有利であるため、上記のような問題も解決することができる。すなわち、本実施の形態の非水系二次電池は、扁平形状をしており、その厚さは、好ましくは12mm未満、より好ましくは10mm未満、さらに好ましくは8mm未満である。厚さの下限については電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)を考慮した場合、2mm以上が実用的である。電池の厚さが12mm以上になると、電池内部の発熱を充分に外部に放熱することが難しくなること、或いは電池内部と電池表面付近での温度差が大きくなり、内部抵抗が異なる結果、電池内での充電量、電圧のバラツキが大きくなる。なお、具体的な厚さは、電池容量、エネルギー密度に応じて適宜決定されるが、期待する放熱特性が得られる最大厚さで設計するのが、好ましい。
【0022】
また、本実施の形態の非水系二次電池の形状としては、例えば、扁平形状の表裏面が角形、円形、長円形等の種々の形状とすることができ、角形の場合は、一般に矩形であるが、三角形、六角形等の多角形とすることもできる。さらに、肉厚の薄い円筒等の筒形にすることもできる。筒形の場合は、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点から、電池の扁平形状の表裏面が矩形であり、図1に示すようなノート型の形状が好ましい。
【0023】
電池容器となる上蓋1及び底容器2に用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、鉄、ステンレス鋼、アルミニウム等が一般的であり、実用的である。また、電池容器の厚さも電池の用途、形状或いは電池ケースの材質により適宜決定され、特に限定されるものではない。好ましくは、その電池表面積の80%以上の部分の厚さ(電池容器を構成する一番面積が広い部分の厚さ)が0.2mm以上である。上記厚さが0.2mm未満では、電池の製造に必要な強度が得られないことから望ましくなく、この観点から、より好ましくは0.3mm以上である。また、同部分の厚さは、1mm以下であることが望ましい。この厚さが1mmを超えると、電極面を押さえ込む力は大きくなるが、電池の内容積が減少し充分な容量が得られないこと、或いは、重量が重くなることから望ましくなく、この観点からより好ましくは0.7mm以下である。
【0024】
上記のように、非水系二次電池の厚さを12mm未満に設計することにより、例えば、該電池が30Wh以上の大容量且つ180Wh/lの高エネルギー密度を有する場合、高率充放電時等においても、電池温度の上昇が小さく、優れた放熱特性を有することができる。従って、内部発熱による電池の蓄熱が低減され、結果として電池の熱暴走も抑止することが可能となり信頼性、安全性に優れた非水系二次電池を提供することができる。
【0025】
次に、上記のように構成された非水系二次電池の製造方法のうち最終封口工程について詳細に説明する。従来、電池内を大気圧以下にして封口する手法は、固体電解質又はゲル電解質を用いた厚さ1mm以下の小型フィルム電池に用いられていた。この場合、例えば、図3の(a)及び(b)に示すように、絞り加工された上蓋51及び平板の下蓋52(又は図3の(c)に示す絞り加工された下蓋52)の外周部Sの全部又は一辺を変性ポリプロピレン樹脂などの熱可塑性樹脂53を用いて、減圧下で熱融着して最終封口工程を行っていた。
【0026】
一方、本発明のように、エネルギー容量が30Whを越える大型の電池の場合、最終封口工程において上述のような小型フィルム電池で用いる手法を転用することは、以下の理由から困難である。すなわち、本発明のような扁平形状の大型電池の場合、電池自体の面積が大きく、その融着面積も大きくなり、巨大な熱融着装置が必要になると共に、融着部分の信頼性に欠ける。また、電解液が溶液である場合、電極に電解液を含浸させた後、電解液による接着面の濡れを防止しながら熱融着することが困難である。上記のような理由から、大型の電池の場合、従来の小型フィルム電池のように電池容器の外周部を熱融着することは、従来から行われていなかった。また、上記した本発明の電池厚みに関する問題は、従来の厚さの厚い大型電池の場合、電池缶の厚さ、形状等で充分対応出来るため、特に問題とされていなかった。
【0027】
しかしながら、本実施形態の非水系二次電池では、完成後の電池の内部圧力が大気圧未満になるように、正極101a、負極101b、101c、セパレータ104及び非水系電解質を電池容器内に収容し、電池容器内の圧力を大気圧未満にした状態で電池容器の最終封口工程を行い、上記のような問題を解決している。ここで、電池内部を大気圧未満にする方法は特に限定されないが、具体的には、以下のようにして行うことができる。
【0028】
まず、図2に示すように、正極101a、負極101b、101c及びセパレータ104を積層し、得られた電極積層体等を上蓋1及び底容器2内に収容し、上蓋1及び底容器2の外周部を溶接する。次に、注液口5から電解液を電池容器内に注入する。次に、最終封口工程として、前述のアルミニウム−変性ポリプロピレンラミネートフィルム、アルミニウム−変性ポリエチレンラミネートフィルムに代表される熱融着型で水分透過率の低い封口フィルム6を熱融着する。なお、最終封口工程は、上記の例に特に限定されず、金属板又は箔を溶接したり、若しくは、電池容器にコックを取り付けて電池内を所定の圧力(大気圧未満)に減圧した後、コックを閉じる等してもよい。
【0029】
なお、上記の最終封口工程の圧力は、大気圧未満であり、好ましくは650Torr以下、更に好ましくは550Torr以下である。この圧力は、最終的に完成した電池に要求される内部圧力に応じて決定されるものである。また、最終封口工程を行うために電池容器に設けられる開口部の周長は、電池の外周長の1/10以下にすることが好ましく、1/20以下にすることがより好ましい。開口部の周長が外周長の1/10を越えると、上記したように、融着面積が大きくなり、巨大な熱融着装置が必要になると共に、融着部分の信頼性に欠ける等の問題が発生する。また、該開口部を設ける部分は、電池の外周部分5mmを除く、表裏面にあることが好ましい。電池の外周部分5mm以内に開口部を設けると、十分な強度が得られず、電解液の漏れ等の封口不良が発生し易いため好ましくない。
【0030】
【実施例】
以下、本発明の実施例を示し、本発明をさらに具体的に説明する。
(実施例1)
(1)LiCo24100重量部、アセチレンブラック8重量部、ポリビニリデンフルオライド(PVDF)3重量部をN−メチルピロリドン(NMP)100重量部と混合し正極合材スラリーを得た。該スラリーを集電体となる厚さ20μmのアルミ箔の両面に塗布、乾燥した後、プレスを行い、正極を得た。図4の(a)は正極の説明図である。本実施例において正極101aの塗布面積(W1×W2)は、262.5×192mm2であり、20μmの集電体105aの両面に103μmの厚さで塗布されている。その結果、電極厚さtは226μmとなっている。また、電極の短辺側には電極が塗布されていない正極集電片106aが設けられ、その中央にφ3の穴が開けられている。
【0031】
(2)黒鉛化メソカーボンマイクロビーズ(MCMB、大阪ガスケミカル製、品番6−28)100重量部、PVDF10重量部をNMP90重量部と混合し、負極合材スラリーを得た。該スラリーを集電体となる厚さ14μmの銅箔の両面に塗布、乾燥した後、プレスを行い、負極を得た。図4の(b)は負極の説明図である。負極101bの塗布面積(W1×W2)は、267×195mm2であり、18μmの集電体105bの両面に108μmの厚さで塗布されている。その結果、電極厚さtは234μmとなっている。また、電極の短辺側には電極が塗布されていない負極集電片106bが設けられ、その中央にφ3の穴が開けられている。更に、同様の手法で片面だけに塗布し、それ以外は同様の方法で厚さ126μmの片面電極を作成した。片面電極は(3)項の電極積層体において外側に配置される(図2中101c)。
【0032】
(3)図2に示すように、上記(1)項で得られた正極8枚、負極9枚(内片面2枚)をセパレータ104a(ポリプロピレン不織布:ニッポン高度紙工業、MP1050、目付10g/m2)とセパレータ104b(ポリエチレン製微孔膜;旭化成工業HIPORE6022、目付13.3g/m2)とを張り合わせたセパレータ104を介して交互に積層し、さらに、電池容器との絶縁のために外側の負極101cの更に外側にセパレーター104bを配置し、電極積層体を作成した。なお、セパレータ104は、セパレータ104bが正極側に、セパレータ104aが負極側になるように配置した。
【0033】
(4)図1に示すように、厚さ0.5mmのSUS304製薄板を深さ5mmに絞り、底容器2を作成し、上蓋1も厚さ0.5mmのSUS304製薄板で作成した。次に、図5に示すように、上蓋1に、アルミニウム製の正極端子3及び銅製の負極端子4(頭部6mmφ、先端M3のねじ部)を取り付けた。正極及び負極端子3、4は、ポリプロピレン製ガスケットで上蓋1と絶縁した。
【0034】
(5)上記(3)項で作成した電極積層体の各正極集電片106aの穴を正極端子3に、各負極集電片106bの穴を負極端子4に入れ、それぞれ、アルミニウム製及び銅製のボルトで接続した。接続された電極積層体を絶縁テープで固定し、図1の角部Aを全周に亘りレーザー溶接した。その後、注液口5(6mmφ)から電解液としてエチレンカーボネートとジエチルカーボネートを1:1重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解した溶液を注液した。次に、300Torrの減圧下で、12mmφに打ち抜いた厚さ0.08mmのアルミ箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力1〜3kg/cm2、加圧時間5〜10秒の条件で熱融着することにより、注液口5を封口した。
【0035】
(6)上記のようにして得られた5個の電池の厚みを図6に示す測定点T1〜T5の5点で測定したところ、すべての電池で6.15mm〜6.2mmの間であった。また、1KHzの交流を用いて内部抵抗を測定したところ5mΩ〜6mΩであった。この電池を5Aの電流で4.1Vまで充電し、その後4.1Vの定電圧を印可する定電流定電圧充電を12時間行い、続いて、5Aの定電流で2.5Vまで放電したところ、放電容量は23.1Ahであり、エネルギー容量は、84Whであった。放電終了時の電池温度の上昇は、同容量の箱形(厚み12mm以上)電池を組み立てた場合に比べ少なかった。
(比較例1)
実施例1の(5)項の最終封口工程を大気圧下で行う以外は実施例1と同様に電池を組んだ。得られた電池の厚みは、T1=6.7mm、T2=6.5mm、T3=6.4mm、T4=6.4mm、T5=6.4mmであり、6.4〜6.7mmと大きくばらつき、設計厚み6.00mmに比べ、10%程度厚くなっていた。更に4個の電池を組み立てたが、5個の電池の厚みは6.4〜6.8mmにばらつき、内部抵抗も8mΩ〜12mΩと大きくばらついた。また、実施例1と同様に充放電を行い、放電容量を測定したところ、20Ah〜16Ahと大きくばらついた。
【0036】
【発明の効果】
以上から明らかな通り、本発明によれば、扁平型電池、特に、大容量且つ高体積エネルギー密度を有する扁平型電池において、電池内を大気圧未満にすることにより、厚み精度が高く、内部抵抗及び容量のバラツキが少ない、非水系二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の蓄電システム用非水系二次電池の平面図及び側面図を示す図である。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。
【図3】従来の小型のフィルム電池の封止構造の説明図である。
【図4】本発明の非水系二次電池の実施例に用いた正極、負極、及びセパレータの説明図である。
【図5】本発明の非水系二次電池の実施例に用いた上蓋の説明図である。
【図6】本発明の非水系二次電池の実施例における電池の厚み測定点の説明図である。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104、104a、104b セパレータ
105a 正極集電体
105b 負極集電体
106a 正極集電片
106b 負極集電片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous secondary battery and a manufacturing method thereof, and more particularly to a non-aqueous secondary battery for a power storage system and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, from the viewpoint of effective use of energy aiming at resource saving and global environmental problems, attention has been focused on home-use distributed storage systems for the storage of late-night power storage and solar power generation, storage systems for electric vehicles, etc. Collecting. For example, Japanese Patent Laid-Open No. 6-86463 proposes a total system that combines electricity, gas cogeneration, fuel cells, storage batteries, and the like supplied from a power plant as a system that can supply energy to energy consumers under optimum conditions. ing. A secondary battery used in such a power storage system requires a large battery having a large capacity, unlike a small secondary battery for portable equipment having an energy capacity of 10 Wh or less. For this reason, in the above power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of 50 to 400 V, for example, and in most cases, lead batteries are used.
[0003]
On the other hand, in the field of small secondary batteries for portable devices, the development of nickel-metal hydride batteries and lithium secondary batteries as new batteries has progressed to meet the needs for small size and high capacity, and has a volumetric energy density of 180 Wh / l or more. Batteries are commercially available. In particular, a lithium ion battery has a possibility of a volume energy density exceeding 350 Wh / l, and reliability such as safety and cycle characteristics is superior to a lithium secondary battery using metallic lithium as a negative electrode. , Has dramatically expanded its market.
[0004]
In response, in the field of large-scale batteries for power storage systems, lithium-ion batteries are targeted as candidates for high-energy density batteries, and development is actively underway by the Lithium Battery Power Storage Technology Research Association (LIBES) and others. .
[0005]
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, the same level as a small secondary battery for portable devices. The shape is typically a cylindrical shape having a diameter of 50 mm to 70 mm, a length of 250 mm to 450 mm, and a flat prismatic shape such as a square or oblong square having a thickness of 35 mm to 50 mm.
[0006]
As for a thin lithium secondary battery, for example, a film battery in which a film having a thickness of 1 mm or less obtained by laminating metal and plastic is accommodated in a thin exterior (Japanese Patent Laid-Open Nos. 5-159757 and 7-57788). And a small prismatic battery having a thickness of about 2 mm to 15 mm (Japanese Patent Laid-Open Nos. 8-195204, 8-138727, 9-213286, etc.) are known. Each of these lithium secondary batteries has a purpose corresponding to the miniaturization and thinning of portable devices. For example, the lithium secondary battery has a thickness of several millimeters that can be stored on the bottom of a portable personal computer and has an area of about JIS A4 size. Although the thin battery which has is also disclosed (Unexamined-Japanese-Patent No. 5-283105), since an energy capacity is 10 Wh or less, a capacity | capacitance is too small as a secondary battery for electrical storage systems.
[0007]
[Problems to be solved by the invention]
In the case of a flat battery as described above, as the thickness of the battery is reduced, the area of the front and back surfaces of the battery with respect to the thickness of the battery increases, and the force for pressing the electrode surface accommodated in the battery decreases. In particular, when a flat battery is produced in a large-sized lithium secondary battery (energy capacity 30 Wh or more) used in a power storage system, the tendency is strong. For example, in the case of a lithium ion battery of 100 Wh class thickness 6 mm, the battery The size of the front and back surfaces is 600 cm 2 (one side), which is very large compared to the thickness. Therefore, when a flat large lithium secondary battery is produced, there remains a problem that the thickness of the battery becomes thicker than the design or the internal resistance and capacity of the battery vary.
[0008]
An object of the present invention is to provide a flat non-aqueous secondary battery having a large capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more and excellent in dimensional accuracy.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a nonaqueous secondary battery having a flat shape in which a nonaqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is housed in a battery container, wherein the nonaqueous secondary battery is a non-aqueous secondary battery. Has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more, and the pressure in the battery container is less than atmospheric pressure. A non-aqueous secondary battery is provided.
[0010]
The non-aqueous secondary battery manufacturing method of the present invention is the non-aqueous secondary battery manufacturing method, wherein the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte are accommodated in the battery container. The final sealing step of the battery container is performed in a state where the pressure in the battery container is less than atmospheric pressure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a nonaqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a plan view and a side view of a flat rectangular (note type) non-aqueous secondary battery for an electricity storage system according to an embodiment of the present invention, and FIG. 2 is a diagram of the battery shown in FIG. It is a side view which shows the structure of the electrode laminated body accommodated in an inside.
[0012]
As shown in FIGS. 1 and 2, the non-aqueous secondary battery according to the present embodiment includes a battery container including an upper lid 1 and a bottom container 2, a plurality of positive electrodes 101a and negative electrodes housed in the battery container. 101b, 101c, and an electrode laminate including the separator 104. In the case of a flat type non-aqueous secondary battery as in the present embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrode 101c disposed on both outer sides of the laminate) have separators 104, for example, as shown in FIG. However, the present invention is not particularly limited to this arrangement, and the number of layers and the like can be variously changed according to the required capacity and the like. The shape of the non-aqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm long × 210 mm wide × 6 mm thick. The lithium secondary battery uses LiMn 2 O 4 for the positive electrode 101a and a carbon material for the negative electrodes 101b and 101c. In the case of a secondary battery, for example, it can be used in a power storage system.
[0013]
The positive electrode current collector 105 a of each positive electrode 101 a is electrically connected to the positive electrode terminal 3. Similarly, the negative electrode current collector 105 b of each negative electrode 101 b, 101 c is electrically connected to the negative electrode terminal 4. The positive electrode terminal 3 and the negative electrode terminal 4 are attached in a state of being insulated from the battery container, that is, the upper lid 1.
[0014]
The upper lid 1 and the bottom container 2 are welded by melting the upper lid all around the point A shown in the enlarged view of FIG. The upper lid 1 is provided with an electrolytic solution injection port 5, and after the electrolytic solution injection, is sealed using a sealing film 6 made of an aluminum-modified polypropylene laminate film. In this case, the sealing film 6 can also have a safety valve for releasing when the internal pressure inside the battery rises. The pressure in the battery container after the final sealing step with the sealing film 6 is less than atmospheric pressure, preferably 650 Torr or less, more preferably 550 Torr or less. This pressure is determined in consideration of the separator to be used, the type of electrolytic solution, the material and thickness of the battery container, the shape of the battery, and the like. When the internal pressure is equal to or higher than atmospheric pressure, the battery becomes larger than the design thickness or the variation in battery thickness increases, resulting in variations in the internal resistance and capacity of the battery.
[0015]
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, A system in which one or more different metal elements are added to these composite oxides can be used, and a high voltage and high capacity battery can be obtained, which is preferable. Further, when safety is important, manganese oxide having a high thermal decomposition temperature is preferable. As this manganese oxide, a lithium composite manganese oxide typified by LiMn 2 O 4 , a system in which one or more different metal elements are added to these composite oxides, and further, lithium, oxygen, etc. are in excess of the stoichiometric ratio. LiMn 2 O 4 prepared in the above manner.
[0016]
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and is a material capable of doping and dedoping lithium, such as safety and reliability such as cycle life. Is preferable. Examples of materials that can be doped and dedoped with lithium include graphite-based materials, carbon-based materials, tin oxide-based, silicon oxide-based metal oxides, and polyacene, which are used as negative electrode materials for known lithium ion batteries. Examples thereof include conductive polymers represented by organic organic semiconductors. In particular, from the viewpoint of safety, a polyacene-based substance that generates a small amount of heat at around 150 ° C. or a material containing the same is desirable.
[0017]
Although the structure of the separator 104 is not particularly limited, a single-layer or multi-layer separator can be used, and at least one sheet is preferably a nonwoven fabric. In this case, cycle characteristics are improved. The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamides, kraft paper, and glass. Polyethylene and polypropylene are preferable from the viewpoints of cost, moisture content, and the like. . When polyethylene or polypropylene is used as the separator 104, the weight per unit area of the separator is preferably 5 g / m 2 or more and 30 g / m 2 or less, more preferably 5 g / m 2 or more and 20 g / m 2 or less. still more preferably 8 g / m 2 or more 20 g / m 2 or less. If the basis weight of the separator exceeds 30 g / m 2, the separator is too thick, or the porosity is reduced, it is not preferable because the internal resistance of the battery is high, if it is less than 5 g / m 2, practical strength Is not preferable.
[0018]
As the electrolyte of the non-aqueous secondary battery of this embodiment, a non-aqueous electrolyte containing a known lithium salt can be used, which is appropriately determined depending on the use conditions such as the positive electrode material, the negative electrode material, and the charging voltage, and more specifically. Specifically, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, or these two types The thing etc. which melt | dissolved in organic solvents, such as the above mixed solvents, are illustrated. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical, and naturally the electrolytic solution has a water content of 100 ppm or less. It is preferable to use it. In addition, the non-aqueous electrolyte used in this specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also refers to a concept including a gel-like or solid electrolyte.
[0019]
The non-aqueous secondary battery configured as described above can be used for a household power storage system (night power storage, cogeneration, solar power generation, etc.), a power storage system such as an electric vehicle, and the like. It can have an energy density. In this case, the energy capacity is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 Wh / l. When the energy capacity is less than 30 Wh or when the volumetric energy density is less than 180 Wh / l, the capacity is small for use in the power storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity. In addition, it is not preferable for a power storage system because a compact design becomes difficult.
[0020]
By the way, in general, a large lithium secondary battery (energy capacity of 30 Wh or more) for a power storage system can obtain a high energy density, but its battery design is an extension of a small battery for portable devices. However, the shape of the battery is a cylindrical shape, a rectangular shape or the like that is three times or more that of a small battery for portable devices. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to the internal resistance of the battery during charging and discharging, or internal heat generation of the battery due to change in entropy of the active material due to the entry and exit of lithium ions. For this reason, the temperature difference between the temperature inside the battery and the vicinity of the battery surface is large, and the internal resistance differs accordingly. As a result, variations in charge amount and voltage are likely to occur. In addition, since this type of battery is used as a plurality of assembled batteries, the ease of heat storage differs depending on the installation position of the batteries in the system, resulting in variations among the batteries, and accurate control of the entire assembled battery is possible. It becomes difficult. In addition, because of insufficient heat dissipation during high-rate charging / discharging, etc., the battery temperature rises, leaving the battery unfavorable, resulting in a decrease in life due to decomposition of the electrolyte, and thermal runaway of the battery. Problems such as induction of reliability, particularly safety, remained.
[0021]
The flat non-aqueous secondary battery according to the present embodiment has a large heat radiation area and is advantageous for heat radiation, and thus can solve the above-described problems. That is, the nonaqueous secondary battery of the present embodiment has a flat shape, and the thickness thereof is preferably less than 12 mm, more preferably less than 10 mm, and further preferably less than 8 mm. As for the lower limit of the thickness, 2 mm or more is practical in consideration of the filling factor of the electrode and the battery size (the area becomes larger in order to obtain the same capacity as the thickness is reduced). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the vicinity of the battery surface increases, resulting in different internal resistances. The variation in the amount of charge and voltage in the battery increases. The specific thickness is appropriately determined according to the battery capacity and the energy density, but it is preferable to design with the maximum thickness that provides the expected heat dissipation characteristics.
[0022]
In addition, as the shape of the non-aqueous secondary battery of the present embodiment, for example, the flat front and back surfaces can be various shapes such as a square, a circle, an oval, etc. However, it may be a polygon such as a triangle or a hexagon. Furthermore, it can also be made into cylindrical shapes, such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness referred to here. Further, from the viewpoint of ease of manufacture, the flat front and back surfaces of the battery are rectangular, and a notebook shape as shown in FIG. 1 is preferable.
[0023]
The materials used for the top lid 1 and the bottom container 2 to be the battery container are appropriately selected depending on the use and shape of the battery, and are not particularly limited, and iron, stainless steel, aluminum, etc. are common and practical. is there. Further, the thickness of the battery container is appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of the portion of 80% or more of the battery surface area (the thickness of the portion having the largest area constituting the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, it is not desirable because the strength required for manufacturing the battery cannot be obtained. From this viewpoint, it is more preferably 0.3 mm or more. The thickness of the same part is desirably 1 mm or less. If this thickness exceeds 1 mm, the force to hold down the electrode surface increases, but it is not desirable because the internal volume of the battery is reduced and a sufficient capacity cannot be obtained, or the weight increases. Preferably it is 0.7 mm or less.
[0024]
As described above, by designing the thickness of the non-aqueous secondary battery to be less than 12 mm, for example, when the battery has a large capacity of 30 Wh or more and a high energy density of 180 Wh / l, a high rate charge / discharge, etc. However, the rise in battery temperature is small, and it can have excellent heat dissipation characteristics. Therefore, the heat storage of the battery due to internal heat generation is reduced, and as a result, it is possible to suppress the thermal runaway of the battery, and it is possible to provide a non-aqueous secondary battery excellent in reliability and safety.
[0025]
Next, the final sealing step in the method for manufacturing the non-aqueous secondary battery configured as described above will be described in detail. Conventionally, the method of sealing the inside of the battery at atmospheric pressure or lower has been used for a small film battery having a thickness of 1 mm or less using a solid electrolyte or a gel electrolyte. In this case, for example, as shown in FIGS. 3A and 3B, the drawn upper lid 51 and the flat plate lower lid 52 (or the drawn lower lid 52 shown in FIG. 3C). The final sealing step was performed by heat-sealing all or one side of the outer peripheral portion S of the resin using a thermoplastic resin 53 such as a modified polypropylene resin under reduced pressure.
[0026]
On the other hand, in the case of a large battery having an energy capacity exceeding 30 Wh as in the present invention, it is difficult to divert the technique used in the small film battery as described above in the final sealing step for the following reason. That is, in the case of a flat large battery as in the present invention, the area of the battery itself is large, the fusion area thereof is also large, a huge heat fusion apparatus is required, and the reliability of the fusion part is lacking. . Further, when the electrolytic solution is a solution, it is difficult to heat-seal the electrode after impregnating the electrode with the electrolytic solution while preventing the adhesion surface from being wetted by the electrolytic solution. For the reasons described above, in the case of a large battery, it has not been conventionally performed to heat-seal the outer peripheral portion of the battery container like a conventional small film battery. In addition, the above-described problem relating to the battery thickness of the present invention is not particularly a problem in the case of a conventional large battery having a large thickness because the thickness, shape, etc. of the battery can can be adequately addressed.
[0027]
However, in the non-aqueous secondary battery of this embodiment, the positive electrode 101a, the negative electrodes 101b and 101c, the separator 104, and the non-aqueous electrolyte are accommodated in the battery container so that the internal pressure of the battery after completion is less than atmospheric pressure. The above-described problems are solved by performing the final sealing step of the battery container in a state where the pressure in the battery container is lower than the atmospheric pressure. Here, the method of making the inside of the battery less than atmospheric pressure is not particularly limited, but specifically, it can be performed as follows.
[0028]
First, as shown in FIG. 2, the positive electrode 101a, the negative electrodes 101b and 101c, and the separator 104 are laminated, and the obtained electrode laminate is accommodated in the upper lid 1 and the bottom container 2, and the outer periphery of the upper lid 1 and the bottom container 2 Weld the parts. Next, the electrolytic solution is injected into the battery container from the liquid injection port 5. Next, as a final sealing step, a sealing film 6 having a low water permeability is heat-sealed by a heat-sealing type represented by the above-mentioned aluminum-modified polypropylene laminate film and aluminum-modified polyethylene laminate film. The final sealing step is not particularly limited to the above example, or after welding a metal plate or foil, or by attaching a cock to the battery container and reducing the inside of the battery to a predetermined pressure (less than atmospheric pressure), The cock may be closed.
[0029]
The pressure in the final sealing step is less than atmospheric pressure, preferably 650 Torr or less, more preferably 550 Torr or less. This pressure is determined according to the internal pressure required for the finally completed battery. Further, the peripheral length of the opening provided in the battery container for performing the final sealing step is preferably 1/10 or less, more preferably 1/20 or less, of the outer peripheral length of the battery. If the perimeter of the opening exceeds 1/10 of the perimeter, as described above, the fusion area becomes large, a huge heat fusion device is required, and the reliability of the fusion part is lacking. A problem occurs. Moreover, it is preferable that the part which provides this opening part exists in front and back except the outer peripheral part 5mm of a battery. If the opening is provided within 5 mm of the outer peripheral portion of the battery, sufficient strength cannot be obtained, and sealing failure such as leakage of the electrolyte is likely to occur, which is not preferable.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
(1) 100 parts by weight of LiCo 2 O 4 , 8 parts by weight of acetylene black and 3 parts by weight of polyvinylidene fluoride (PVDF) were mixed with 100 parts by weight of N-methylpyrrolidone (NMP) to obtain a positive electrode mixture slurry. The slurry was applied to both sides of a 20 μm thick aluminum foil serving as a current collector, dried, and then pressed to obtain a positive electrode. (A) of FIG. 4 is explanatory drawing of a positive electrode. In this embodiment, the application area (W1 × W2) of the positive electrode 101a is 262.5 × 192 mm 2 , and is applied to both surfaces of a 20 μm current collector 105a with a thickness of 103 μm. As a result, the electrode thickness t is 226 μm. Moreover, the positive electrode current collection piece 106a with which the electrode is not apply | coated is provided in the short side of an electrode, and the hole of (phi) 3 is made in the center.
[0031]
(2) 100 parts by weight of graphitized mesocarbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., No. 6-28) and 10 parts by weight of PVDF were mixed with 90 parts by weight of NMP to obtain a negative electrode mixture slurry. The slurry was applied to both sides of a 14 μm thick copper foil serving as a current collector, dried, and then pressed to obtain a negative electrode. FIG. 4B is an explanatory diagram of the negative electrode. The application area (W1 × W2) of the negative electrode 101b is 267 × 195 mm 2 , and is applied to both surfaces of the 18 μm current collector 105b with a thickness of 108 μm. As a result, the electrode thickness t is 234 μm. Further, a negative electrode current collecting piece 106b to which no electrode is applied is provided on the short side of the electrode, and a hole of φ3 is formed in the center thereof. Further, a single-sided electrode having a thickness of 126 μm was prepared by the same method except that the coating was applied to only one side. The single-sided electrode is arranged on the outer side in the electrode laminate of item (3) (101c in FIG. 2).
[0032]
(3) As shown in FIG. 2, 8 positive electrodes and 9 negative electrodes (2 inner surfaces) obtained in the above item (1) were used as separators 104a (polypropylene nonwoven fabric: Nippon Advanced Paper Industries, MP1050, basis weight 10 g / m). 2 ) and separators 104b (polyethylene microporous membrane; Asahi Kasei HICORE 6022, basis weight 13.3 g / m 2 ) are alternately stacked via separators 104, and the outer side is insulated for insulation from the battery container. A separator 104b was disposed on the outer side of the negative electrode 101c to prepare an electrode laminate. The separator 104 was arranged so that the separator 104b was on the positive electrode side and the separator 104a was on the negative electrode side.
[0033]
(4) As shown in FIG. 1, a SUS304 thin plate having a thickness of 0.5 mm was squeezed to a depth of 5 mm to form a bottom container 2, and the upper lid 1 was also made of a SUS304 thin plate having a thickness of 0.5 mm. Next, as shown in FIG. 5, the positive electrode terminal 3 made of aluminum and the negative electrode terminal 4 made of copper (head portion 6 mmφ, screw portion of the tip M <b> 3) were attached to the upper lid 1. The positive and negative terminals 3 and 4 were insulated from the upper lid 1 by a polypropylene gasket.
[0034]
(5) The hole of each positive electrode current collecting piece 106a of the electrode laminate prepared in the above item (3) is put into the positive electrode terminal 3, and the hole of each negative electrode current collecting piece 106b is put into the negative electrode terminal 4, respectively. Connected with bolts. The connected electrode laminate was fixed with an insulating tape, and the corner A in FIG. 1 was laser welded over the entire circumference. Thereafter, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l was poured into a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 as an electrolytic solution from the pouring port 5 (6 mmφ). Next, under a reduced pressure of 300 Torr, a sealing film 6 made of an aluminum foil-modified polypropylene laminate film having a thickness of 0.08 mm punched to 12 mmφ was subjected to a temperature of 250 to 350 ° C., a pressure of 1 to 3 kg / cm 2 , and a pressing time. The liquid injection port 5 was sealed by heat-sealing under conditions of 5 to 10 seconds.
[0035]
(6) When the thicknesses of the five batteries obtained as described above were measured at five points T1 to T5 shown in FIG. 6, it was between 6.15 mm and 6.2 mm for all the batteries. It was. Further, when the internal resistance was measured using an alternating current of 1 KHz, it was 5 mΩ to 6 mΩ. The battery was charged to 4.1 V with a current of 5 A, then subjected to constant current and constant voltage charging to apply a constant voltage of 4.1 V for 12 hours, and then discharged to 2.5 V with a constant current of 5 A. The discharge capacity was 23.1 Ah, and the energy capacity was 84 Wh. The rise in battery temperature at the end of discharge was less than when a box-shaped (thickness of 12 mm or more) battery having the same capacity was assembled.
(Comparative Example 1)
A battery was assembled in the same manner as in Example 1 except that the final sealing step in item (5) of Example 1 was performed under atmospheric pressure. The thickness of the obtained battery was T1 = 6.7 mm, T2 = 6.5 mm, T3 = 6.4 mm, T4 = 6.4 mm, T5 = 6.4 mm, and varied greatly from 6.4 to 6.7 mm. The thickness was about 10% thicker than the design thickness of 6.00 mm. Further, four batteries were assembled, but the thickness of the five batteries varied from 6.4 to 6.8 mm, and the internal resistance varied greatly from 8 mΩ to 12 mΩ. Moreover, when charging / discharging was performed in the same manner as in Example 1 and the discharge capacity was measured, it varied greatly from 20 Ah to 16 Ah.
[0036]
【The invention's effect】
As is apparent from the above, according to the present invention, a flat battery, particularly a flat battery having a large capacity and a high volumetric energy density, has a high thickness accuracy and an internal resistance by making the inside of the battery less than atmospheric pressure. In addition, it is possible to provide a non-aqueous secondary battery with little variation in capacity.
[Brief description of the drawings]
1A and 1B are a plan view and a side view of a nonaqueous secondary battery for a power storage system according to an embodiment of the present invention.
2 is a side view showing a configuration of an electrode laminate housed in the battery shown in FIG. 1. FIG.
FIG. 3 is an explanatory view of a sealing structure of a conventional small film battery.
FIG. 4 is an explanatory diagram of a positive electrode, a negative electrode, and a separator used in an example of a nonaqueous secondary battery of the present invention.
FIG. 5 is an explanatory diagram of an upper lid used in an example of a non-aqueous secondary battery of the present invention.
FIG. 6 is an explanatory diagram of battery thickness measurement points in an example of a non-aqueous secondary battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Top cover 2 Bottom container 3 Positive electrode terminal 4 Negative electrode terminal 5 Injection hole 6 Sealing film 101a Positive electrode (both sides)
101b Negative electrode (both sides)
101c Negative electrode (single side)
104, 104a, 104b Separator 105a Positive electrode current collector 105b Negative electrode current collector 106a Positive electrode current collector piece 106b Negative electrode current collector piece

Claims (7)

正極、負極、セパレータ、及びリチウム塩を含む非水系電解質を電池容器内に収容した扁平形状の非水系二次電池であって、
前記非水系二次電池は、その厚さが12mm未満の扁平形状であり、そのエネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上であり、
前記電池容器内の圧力は、大気圧未満であり、
前記電池容器は、扁平形状における表裏面の電池外周から5mm以内を除くいずれかの箇所に電解質注入用の開口部が設けられており、該開口部は、周長が電池の外周長の1/10以下とされ、封口されていることを特徴とする非水系二次電池。
A non-aqueous secondary battery having a flat shape in which a non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and a lithium salt is contained in a battery container,
The non-aqueous secondary battery has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more,
The pressure of the battery container is state, and are less than the atmospheric pressure,
The battery container is provided with an opening for electrolyte injection at any location except within 5 mm from the outer periphery of the battery on the front and back surfaces in a flat shape, and the opening has a circumference of 1 / of the outer circumference of the battery. A non-aqueous secondary battery characterized by being 10 or less and sealed .
前記電池容器の開口部は、封口フィルムを熱溶着して封口されていることを特徴とする請求項1に記載の非水系二次電池。The non-aqueous secondary battery according to claim 1, wherein the opening of the battery container is sealed by thermally welding a sealing film. 前記封口フィルムは、アルミニウム−変性ポリプロピレンラミネートフィルム及びアルミニウム−変性ポリエチレンラミネートフィルムのいずれかからなることを特徴とする請求項1又は2に記載の非水系二次電池。The non-aqueous secondary battery according to claim 1, wherein the sealing film is made of any one of an aluminum-modified polypropylene laminate film and an aluminum-modified polyethylene laminate film. 前記電池容器内の圧力は、650Torr以下であることを特徴とする請求項1から3のいずれかに記載の非水系二次電池。The nonaqueous secondary battery according to any one of claims 1 to 3, wherein the pressure in the battery container is 650 Torr or less. 前記扁平形状の表裏面の形状は、矩形であることを特徴とする請求項1から4のいずれかに記載の非水系二次電池。The non-aqueous secondary battery according to any one of claims 1 to 4, wherein a shape of the front and back surfaces of the flat shape is a rectangle. 前記電池容器の板厚は、0.2mm以上1mm以下であることを特徴とする請求項1からいずれかに記載の非水系二次電池。The nonaqueous secondary battery according to any one of claims 1 to 5 , wherein a thickness of the battery container is 0.2 mm or more and 1 mm or less. 請求項1から6までのいずれかに記載の非水系二次電池の製造方法であって、
前記正極、前記負極、前記セパレータ、及び前記非水系電解質を前記電池容器内に収容し、前記電池容器内の圧力を大気圧未満にした状態で前記電池容器における前記開口部の最終封口工程を行うことを特徴とする非水系二次電池の製造方法。
It is a manufacturing method of the nonaqueous system rechargeable battery in any one of Claim 1-6,
The positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte are accommodated in the battery container, and a final sealing step of the opening in the battery container is performed in a state where the pressure in the battery container is less than atmospheric pressure. A method for producing a non-aqueous secondary battery.
JP05026599A 1999-02-26 1999-02-26 Non-aqueous secondary battery and manufacturing method thereof Expired - Fee Related JP4009802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05026599A JP4009802B2 (en) 1999-02-26 1999-02-26 Non-aqueous secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05026599A JP4009802B2 (en) 1999-02-26 1999-02-26 Non-aqueous secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000251940A JP2000251940A (en) 2000-09-14
JP4009802B2 true JP4009802B2 (en) 2007-11-21

Family

ID=12854146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05026599A Expired - Fee Related JP4009802B2 (en) 1999-02-26 1999-02-26 Non-aqueous secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4009802B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600107B2 (en) * 2000-03-09 2004-12-08 松下電器産業株式会社 Sealed battery and sealing method thereof
JP2002246068A (en) * 2001-02-15 2002-08-30 Osaka Gas Co Ltd Nonaqueous secondary cell
JP2002246067A (en) * 2001-02-15 2002-08-30 Osaka Gas Co Ltd Nonaqueous secondary cell
JP2002298827A (en) * 2001-03-28 2002-10-11 Osaka Gas Co Ltd Nonaqueous secondary battery
JP4859277B2 (en) * 2001-03-28 2012-01-25 株式会社Kri Non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2000251940A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP3997370B2 (en) Non-aqueous secondary battery
JP4173674B2 (en) Electrochemical device module
JP3799463B2 (en) Battery module
WO2005013408A1 (en) Lithium ion secondary cell
JP4562304B2 (en) Method for producing non-aqueous secondary battery
CA2249935C (en) Lithium secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP4053802B2 (en) Electrochemical devices
JP4009803B2 (en) Non-aqueous secondary battery
JP4348492B2 (en) Non-aqueous secondary battery
JP2000277176A (en) Lithium secondary battery and method for using the same
JP2002246068A (en) Nonaqueous secondary cell
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2002298827A (en) Nonaqueous secondary battery
JP4092543B2 (en) Non-aqueous secondary battery
JP4428796B2 (en) Non-aqueous secondary battery
JP4601109B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP4859277B2 (en) Non-aqueous secondary battery
JP4594478B2 (en) Non-aqueous secondary battery
JP2002270240A (en) Nonaqueous secondary cell
JP2002245991A (en) Non-aqueous secondary battery
JP2001266848A (en) Non-aqueous secondary battery
JP4168263B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees