JP4009679B2 - A method for decomposing dioxins using a complex microorganism system, a dioxin treatment agent, and a filamentous fungus that enhances the decomposition activity of dioxin-degrading microorganisms - Google Patents
A method for decomposing dioxins using a complex microorganism system, a dioxin treatment agent, and a filamentous fungus that enhances the decomposition activity of dioxin-degrading microorganisms Download PDFInfo
- Publication number
- JP4009679B2 JP4009679B2 JP2001056232A JP2001056232A JP4009679B2 JP 4009679 B2 JP4009679 B2 JP 4009679B2 JP 2001056232 A JP2001056232 A JP 2001056232A JP 2001056232 A JP2001056232 A JP 2001056232A JP 4009679 B2 JP4009679 B2 JP 4009679B2
- Authority
- JP
- Japan
- Prior art keywords
- dioxin
- genus
- degrading
- enhances
- ferm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 241000233866 Fungi Species 0.000 title claims description 88
- 244000005700 microbiome Species 0.000 title claims description 65
- 230000000694 effects Effects 0.000 title claims description 57
- 238000000034 method Methods 0.000 title claims description 24
- 150000002013 dioxins Chemical class 0.000 title claims description 21
- 238000000354 decomposition reaction Methods 0.000 title claims description 19
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 title claims 11
- 230000015556 catabolic process Effects 0.000 claims description 28
- 238000006731 degradation reaction Methods 0.000 claims description 28
- 241000894006 Bacteria Species 0.000 claims description 20
- 241000006364 Torula Species 0.000 claims description 20
- 230000000593 degrading effect Effects 0.000 claims description 19
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 claims description 16
- 241000223218 Fusarium Species 0.000 claims description 16
- 241000228143 Penicillium Species 0.000 claims description 12
- 239000000706 filtrate Substances 0.000 claims description 12
- 241000222385 Phanerochaete Species 0.000 claims description 9
- 241000212917 Phanerochaete sordida Species 0.000 claims description 9
- 241000101515 Staphylotrichum Species 0.000 claims description 9
- 241000767994 Torula sp. Species 0.000 claims description 9
- 241001159294 Staphylotrichum sp. Species 0.000 claims description 8
- 241001149959 Fusarium sp. Species 0.000 claims description 7
- 241000189150 Nigrospora Species 0.000 claims description 7
- 241000395955 Periconia Species 0.000 claims description 7
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 description 73
- 239000003795 chemical substances by application Substances 0.000 description 11
- 239000002609 medium Substances 0.000 description 11
- 241000191940 Staphylococcus Species 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229960004793 sucrose Drugs 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- NBFMTHWVRBOVPE-UHFFFAOYSA-N 2,7-dichlorodibenzo-p-dioxin Chemical compound ClC1=CC=C2OC3=CC(Cl)=CC=C3OC2=C1 NBFMTHWVRBOVPE-UHFFFAOYSA-N 0.000 description 2
- 241000221198 Basidiomycota Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 241001236817 Paecilomyces <Clavicipitaceae> Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000007640 basal medium Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000011437 continuous method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 235000012054 meals Nutrition 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- VGGGRWRBGXENKI-UHFFFAOYSA-N 1-chlorodibenzo-p-dioxin Chemical compound O1C2=CC=CC=C2OC2=C1C=CC=C2Cl VGGGRWRBGXENKI-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 201000004384 Alopecia Diseases 0.000 description 1
- 244000153158 Ammi visnaga Species 0.000 description 1
- 235000010585 Ammi visnaga Nutrition 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000935926 Diplodia Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 206010020112 Hirsutism Diseases 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 108010054320 Lignin peroxidase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000222393 Phanerochaete chrysosporium Species 0.000 description 1
- 208000012641 Pigmentation disease Diseases 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 150000004827 dibenzo-1,4-dioxins Chemical class 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- 235000013681 dietary sucrose Nutrition 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960001031 glucose Drugs 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 208000024963 hair loss Diseases 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229960002160 maltose Drugs 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000013048 microbiological method Methods 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Landscapes
- Fire-Extinguishing Compositions (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Processing Of Solid Wastes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、複合微生物系によるダイオキシンの分解方法およびダイオキシン処理剤に関する。
さらに詳しく言えば、白色腐朽菌類および糸状菌類から選抜されるダイオキシン分解性微生物と、前記ダイオキシン分解性微生物の分解活性を増強する糸状菌とを併用するダイオキシンの分解方法、ダイオキシン処理剤およびダイオキシン分解性微生物の分解活性を増強する糸状菌に関する。
【0002】
【従来技術とその課題】
酸素で架橋された2個のベンゼン核の1乃至8個の水素が塩素により置換されたクロロジベンゾジオキシンには75個の異性体が存在する。これらは毒性が高く、例えば人体に対しては、皮膚の色素沈着、脱毛、多毛、肝機能異常などを引き起こすことが知られ、環境汚染との関わりでダイオキシンと呼ばれている。中でも2,3,7,8−テトラクロロジベンゾ−p−ジオキシンは最も毒性が高く、この化合物自体をダイオキシンと呼ぶ場合もあるが、本発明は前記クロロジベンゾジオキシン類を分解の対象とする。
【0003】
ダイオキシン類は、近年、ごみ焼却施設の焼却灰や集塵灰からも検出されており、焼却によりダイオキシン類を生ずる可能性のある物質の使用を規制する等の対策が採られつつあるが、一旦生成したダイオキシン類についてはこれをいち早く分解して無毒化する必要がある。
【0004】
ダイオキシンを分解する方法としては、従来、Pseudomonas等の細菌を用いた方法(例えば、中宮邦近ら、第10回廃棄物学会研究発表会講演論文集、p.880,1999)や白色腐朽菌を用いた方法(例えば、近藤隆一郎ら、第10回廃棄物学会研究発表会講演論文集、p.877,1999)等の微生物学的な方法が報告されているが、ダイオキシン分解活性は十分満足できるものではない。
本発明の課題は、ダイオキシンを効率よく分解出来る微生物系を見出し、微生物を利用したダイオキシンの分解方法及び分解処理剤を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、ダイオキシン分解活性を有する微生物に着目し、これら微生物を用いたダイオキシンの分解能を向上させるべく鋭意検討を行なった。その結果、ダイオキシン分解性微生物としての白色腐朽菌と併用したときにそのダイオキシン分解活性を増強させる糸状菌が存在することを見出した。ダイオキシン分解性の微生物としては白色腐朽菌以外にも糸状菌類等があることを本出願人は報告しており(特願2000-058915)、ダイオキシン分解活性を増強させる糸状菌は、ダイオキシン分解性の白色腐朽菌以外の糸状菌等の分解活性をも増強することが期待される。
【0006】
以上の知見に基づいて本発明は、以下の複合微生物系によるダイオキシン分解方法、ダイオキシン処理剤および他の微生物の分解活性を増強する新規な糸状菌を提供するものである。
【0007】
(1)白色腐朽菌類および糸状菌類から選抜されるダイオキシン分解性微生物と、前記ダイオキシン分解性微生物の分解活性を増強する糸状菌とを用いてダイオキシンを処理することを特徴とするダイオキシン分解方法であって、ダイオキシン分解性微生物が、ファネロカエテ( Phanerochaete )属、ペリコニア( Periconia )属、ペニシリウム( Penicillium )属、ニグロスポラ( Nigrospora )属またはフザリウム( Fusarium )属に属する菌であり、ダイオキシン分解性微生物の分解活性を増強する糸状菌が、培養ろ液のダイオキシン類の吸着能を指標に選抜された菌であってトルラ( Torula )属またはスタフィロトリクム( Staphylotrichum )属に属する菌であることを特徴とする、ダイオキシンの分解方法。
(2)ダイオキシン分解性微生物が、ファネロカエテ・ソルディダ( Phanerochaete sordida ) YK-624 株( ATCC 90872 )またはフザリウム・エスピー( Fusarium sp. ) No. f 6099 株( FERM P-17746 )である上記(1)に記載のダイオキシン分解方法。
(3)前記ダイオキシン分解性微生物の分解活性を増強する糸状菌が、トルラ・エスピー( Torula sp. ) No.00-290 株( FERM P-18231 )、またはスタフィロトリクム・エスピー( Staphylotrichum sp. ) No.00-297 株( FERM P-18232 )である上記(1)または(2)に記載のダイオキシン分解方法。
(4)白色腐朽菌類および糸状菌類から選抜されるダイオキシン分解性微生物と、前記ダイオキシン分解性微生物の分解活性を増強する糸状菌とを含むダイオキシン処理剤であって、ダイオキシン分解性微生物が、ファネロカエテ( Phanerochaete )属、ペリコニア( Periconia )属、ペニシリウム( Penicillium )属、ニグロスポラ( Nigrospora )属またはフザリウム( Fusarium )属に属する菌であり、ダイオキシン分解性微生物の分解活性を増強する糸状菌が、培養ろ液のダイオキシン類の吸着能を指標に選抜された菌であってトルラ( Torula )属またはスタフィロトリクム( Staphylotrichum )属に属する菌であることを特徴とするダイオキシン処理剤。
(5)ダイオキシン分解性微生物が、ファネロカエテ・ソルディダ( Phanerochaete sordida ) YK-624 株( ATCC 90872 )またはフザリウム・エスピー( Fusarium sp. ) No. f 6099 株( FERM P-17746 )である上記(4)に記載のダイオキシン処理剤。
(6)前記ダイオキシン分解性微生物の分解活性を増強する糸状菌が、トルラ・エスピー( Torula sp. ) No.00-290 株( FERM P-18231 )、またはスタフィロトリクム・エスピー( Staphylotrichum sp. ) No.00-297 株( FERM P-18232 )、である上記(5)に記載のダイオキシン処理剤。
(7)トルラ・エスピー( Torula sp. ) No.00-290 株( FERM P-18231 )、またはスタフィロトリクム・エスピー( Staphylotrichum sp. ) No.00-297 株( FERM P-18232 )からなる、ダイオキシン分解性微生物の分解活性を増強する糸状菌。
【0008】
以下、本発明について詳述する。
(1)本発明のダイオキシン分解方法で使用するダイオキシン分解性微生物は、ダイオキシン分解活性を有するものであり、白色腐朽菌類および糸状菌類に属する属する微生物である。白色腐朽菌類としては、ファネロカエテ(Phanerochaete)属に属する菌類が挙げられ、糸状菌類としては、ペリコニア(Periconia)属、ペニシリウム(Penicillium)属、ニグロスポラ(Nigrospora)属またはフザリウム(Fusarium)属に属する菌類が挙げられる。
【0009】
好ましくは、白色腐朽菌の一種であるファネロカエテ・ソルディダ(Phanerochaete sordida)YK-624株(ATCC 90872)である。
ファネロカエテ・ソルディダ(Phanerochaete sordida)YK-624株(ATCC 90872)は、九州大学林産学科木材化学研究室により屋久島(Yakushima)で採取され単離された一連の菌株の一つであり、アメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection)から入手可能である(寄託番号:ATCC 90872)。
【0010】
また、本発明者らが土壌より分離した糸状菌の一種であるフザリウム・エスピー(Fusarium sp.)No.f6099株(FERM P-17746)も使用可能である。フザリウム・エスピー(Fusarium sp.)No.f6099株(FERM P-17746)は、本発明者らによって、平成12年2月25日付で経済産業省産業技術総合研究所生命工学工業技術研究所に寄託されている。
本発明ではこれらの菌を1種を単独で、または2種以上同時に用いることができる。
【0011】
(2)ダイオキシン分解性微生物の分解活性を増強する糸状菌
本発明者らは、ダイオキシン分解活性を有する微生物と、それ自体ではダイオキシン分解活性を有しないか、その活性が非常に弱い糸状菌とを同時に用いる複合系について、ダイオキシンモデル化合物である2,7−ジクロロジベンゾジオキシンの分解活性を測定した。その結果、ダイオキシン分解活性を有する微生物を単独で用いた場合よりも強い分解活性を示す特定の系が存在することを見出した。
【0012】
本発明者らは、特に分解活性増強作用の強い3株(No.00-290株、No.00-297株およびNo.99-389株)について、後述の実施例2に示すようにトルラ(Torula)、スタフィロトリクム(Staphylotrichum)等に属する糸状菌類であることを確認した。
【0013】
ダイオキシン分解性の糸状菌類等の微生物と、それ自体では活性がないか、活性の弱い特定の糸状菌との複合系によりダイオキシン分解能が向上することは、本発明者らが今回初めて見出したことである。本発明で使用するダイオキシン分解性微生物の分解活性を増強する糸状菌は、白色腐朽菌類および糸状菌類から選抜されるダイオキシン分解活性を増強する糸状菌類である。
【0014】
ダイオキシン分解活性を増強する微生物としては、例えば、トルラ(Torula)、スタフィロトリクム(Staphylotrichum)、ペニシリウム(Penicillium)、ディプロディア(Diplodia)、フザリウム(Fusarium)またはパエシロマイセス(Paecilomyces)等に属する菌が挙げられる。好ましくは、トルラ( Torula )属またはスタフィロトリクム( Staphylotrichum )属に属する菌であり、トルラ(Torula)属に属する菌としてトルラ・エスピー(Torula sp.)No.00-290株(FERM P-18231)、スタフィロトリクム(Staphylotrichum)属に属する菌としてスタフィロトリクム・エスピー(Staphylotrichum sp.)No.00-297株(FERM P-18232)が挙げられ、また、糸状菌 No.99-389 株( Strain No.99-389 )( FERM P-18230 )も好ましい菌であるが、これらのうち、本発明で使用する微生物は、トルラ属及びスタフィロトリクム属に属る微生物である。
【0015】
本発明者らは、上記3種類の菌株をそれぞれトルラ・エスピー(Torula sp.)No.00-290株(FERM P-18231)、スタフィロトリクム・エスピー(Staphylotrich um sp.)No.00-297株(FERM P-18232)、糸状菌No.99-389株(Strain No.99-389)(FERM P-18230)と命名して、平成13年2月23日付で経済産業省産業技術総合研究所生命工学工業技術研究所に寄託している。
【0016】
本発明で使用するダイオキシン分解性微生物の分解活性を増強する糸状菌を選抜する方法としては、その培養ろ液がダイオキシンモデル化合物としての2,7−ジクロロジベンゾジオキシン(以下、2,7−DCDDと略記する。)を吸着する能力を指標として行なうことができる。
ダイオキシン類が前記培養ろ液中の成分に吸着されることによりその分解率が向上する理由は明らかではないが、本来は疎水性であるダイオキシン類が吸着により親水性となり、ダイオキシン分解性微生物による微生物分解を受けやすくなることによるものと考えられる。
以上のことから、優れた分解増強効果を示す糸状菌は、吸着能を指標とする方法によって粗選抜した後、選抜された糸状菌とダイオキシン分解性微生物とを用いてダイオキシン分解活性を測定する方法により、容易に選抜することが可能である。
【0017】
(2)培養条件
本発明においては、白色腐朽菌類や糸状菌類から選抜されるダイオキシン分解性微生物とダイオキシン分解性微生物の分解活性を増強する糸状菌とを好気的または嫌気的条件、好ましくは好気的条件下で培養し増殖することができる。
好気培養は、通常の中温菌の培養に準じ、静置培養でも振盪培養でも良い。培養液のpHは2〜8、好ましくは5〜8である。
【0018】
培養温度は10〜40℃、好ましくは20〜30℃である。培養を継続する時間は、目的とするダイオキシン含有物質中のダイオキシンを分解するのに十分な時間であればよく、通常は1〜20日間、好ましくは2週間程度である。
嫌気培養は、上記の好気培養に準じるが、静置培養を行なう。
培地は、通常の微生物、好ましくは白色腐朽菌や糸状菌の培養に用いるものであれば特に制限されない。例えば、ポテト澱粉−デキストロース培地、コーンミール培地、オートミール培地または後述のKirk基本培地等を用いてもよい。好ましくは、Kirk基本培地である。
【0019】
培地には、セルロースやリグニン等の木質性成分等を添加することができる。さらに必要に応じて各種の炭素源あるいは窒素源を添加することができる。炭素源としては、ブドウ糖、ショ糖、マルトース、サッカロース、上白糖、黒糖、糖蜜、廃糖蜜、マルツエキス等が挙げられる。窒素源としては、肉エキス、ペプトン、グルテンミール、大豆粉、乾燥酵母、酵母エキス、硫酸アンモニウム、酒石酸アンモニウム塩、尿素等が挙げられる。その他、必要に応じて、ナトリウム塩、マグネシウム塩、マンガン塩、鉄塩、カルシウム塩、リン酸塩、亜鉛塩等の無機塩類や、イノシトール、ビタミンB1塩酸塩、L−アスパラギン、ビオチン等のビタミン類を添加してもよい。
【0020】
(3)本発明のダイオキシン分解方法は、上記の白色腐朽菌類および糸状菌類から選抜される、本発明のダイオキシン分解性微生物とダイオキシン分解性微生物の分解活性を増強する糸状菌とを複合した培養物またはその処理物でダイオキシンを処理することにより行なわれる。例えば、上記の培養液にダイオキシン含有物質を添加するか、逆にダイオキシン含有物質に上記の培養液またはその抽出成分を添加して処理する。
【0021】
反応は、バッチ法、連続法、半連続法等のいずれでも行なうことができる。また、本発明のダイオキシン分解活性を有する白色腐朽菌または糸状菌と本発明のダイオキシン分解活性を増強する糸状菌とを含有するものであれば、他のダイオキシン分解菌と共に用いてもよい。培養液にダイオキシン含有物質を添加して処理する場合は、上述の培養条件に準じて行なうことが出来る。
【0022】
(4)ダイオキシン処理剤
本発明によるダイオキシン処理剤は、前記した白色腐朽菌類または糸状菌類から選抜されるダイオキシン分解性微生物とダイオキシン分解性微生物の分解活性を増強する糸状菌を含むものであり、液状であると固形化物であるとを問わない。すなわち、上記のダイオキシン分解活性菌と分解活性増強菌とを有する培養液自体をダイオキシン処理剤として用いることができる。また培養液を乾燥し製造助剤を加えて固形剤としたものを、処理するダイオキシン含有物質自体に、または処理媒体中に添加して使用することもできる。
【0023】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明はこれらの例に限定されるものではない。
【0024】
実施例1:ダイオキシン分解活性増強糸状菌の単離
(1)菌の採取と培養
日本全国の土壌、腐朽材、植物遺体サンプルより微生物を採取した菌株(供試菌数800以上)を、滅菌したKirk基本培地(Tien, M. and T. K. Kirk (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol., 161, 238-249)50mlに接種し、暗所25℃で1週間、静置培養し、培養液をガラスフィルターで濾過した。
【0025】
(2)ダイオキシン吸着能を有する糸状菌の選抜
ダイオキシンモデル化合物として2,7−DCDDを使用し、これを前記ろ液5mlに20μMとなるように添加し、暗所25℃で2日間、静置した。2,7−DCDDをn−ヘキサン5mlで3回抽出し、減圧・濃縮後、GC−MSで定量した。このときn−ヘキサンで回収できなかった2,7−DCDD量を吸着量とした。
その結果、供試菌数800以上の糸状菌の中で、16株の培養液に15〜25%の2,7−DCDD吸着率が認められた。
【0026】
(3)ダイオキシン分解活性増強糸状菌の選抜
2,7−DCDD吸着率の高かった前記16株の培養ろ液(2.5ml)を、白色腐朽菌ファネロカエテ・ソルディダ(Phanerochaete sordida)YK-624株が蔓延したKirk培地(2.5ml)に添加した。これに2,7−DCDDが10μMの濃度となるように添加し、30℃で3週間、静置した後、2,7−DCDD減少率を測定した。2,7−DCDD減少率の測定は、菌体に吸着されている未分解の2,7−DCDDをも回収測定するために、n−ヘキサンで抽出処理する直前に濃硫酸5mlを添加して行なった(Takada, S., M. Nakamura, T. Matsueda, R. Kondo andK. Sakai (1996), Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624, Appl. Environ. Microbiol., 62, 4323-4328)。なお、YK-624株のダイオキシン分解能を発現させるために、酸素供給とグルコース添加(最終濃度1%)を3週間に4回行なった。対照として、糸状菌の培養ろ液を用いずにYK-624株のみで処理したものを使用した。その結果、複合することによってファネロカエテ・ソルディダ(Phanerochaete sordida)YK-624株単独でのダイオキシン分解活性よりも特に優れた分解活性を示した糸状菌3株、すなわち、No.00-290株、No.00-297株およびNo.99-389株を選抜した。これらのうちNo.00-290 株及び No.00-297 株が本発明の菌株であり、以下、 No.00-290 株、及び No.00-297 株を本発明の菌株として、また No.99-389 株を参考菌株として、以降のダイオキシン分解試験及び実施例2の試験結果を示す。
【0027】
ダイオキシン分解活性の結果(2,7−DCDD回収率)を表1に示す。糸状菌の培養ろ液を用いずにYK-624株のみにて処理したもの、およびYK-624株をオートクレーブ滅菌(121℃、20分間)した後、各菌株の培養ろ液を添加したものについて、同様に測定した結果も併せて表1に示す。
【0028】
【表1】
【0029】
表1から明らかなように、YK-624株単独の場合のダイオキシンの分解率は15%であり、糸状菌培養ろ液単独の場合はダイオキシンを全く分解しないが、これらを複合使用することによりダイオキシン分解率が25〜31%と約2倍程度に向上している。このことから、これら糸状菌培養ろ液はそれ自身がダイオキシンの分解に寄与するものではないが、ダイオキシン分解活性を有する微生物と組み合わせて使用することにより、ダイオキシン分解活性が大きく向上することがわかる。
【0030】
実施例2:ダイオキシン分解活性増強糸状菌の形態
実施例1で強い分解増強効果を示したNo.00-290株、No.00-297株およびNo.99-389株について性状を調べ、以下の結果を得た。
【0031】
(1) No.00-290株:
本菌株は小笠原母島の乳房山の土壌から爪楊枝捕捉法により採取したものである。この菌株のPDA培地上での培養菌叢は、黒色、気中菌糸を欠きビロード状、均一でわずかに放射状を呈する。裏面は黒色である。はっきりした分生子柄を欠き、菌糸の側壁または先端に出芽型の分生胞子を連鎖、単純または分岐する。分生胞子は無色、淡褐色または暗褐色、楕円形または亜球形で、長さ8〜15μm、幅6〜8μmである。従って、本菌株はトルラ(Torula)に属する糸状菌であると同定された。
【0032】
(2) No.00-297株:
本菌株は、小笠原母島の南岬の土壌から爪楊枝捕捉法により採取したものである。この本菌株のPDA培地上での培養菌叢は、淡黄褐色、ビロード状、均一でわずかに気中菌糸が全体を覆う。分生子柄は未発達で、アレウロ型胞子をフミコーラ(Humicola)状に形成する。胞子は淡褐色、単細胞、亜球形または卵形、ときには2〜3個を連鎖する。従って、本菌株はスタフィロトリクム(Staphylotrichum )に属する糸状菌であると同定された。
【0033】
(3) No.99-389株:
本菌株は、塩尻市片丘で採取したコウヤクタケ科の担子菌組織から分離したものである。この菌株のPDA培地上での培養菌叢は、白色、気中菌糸を欠きビロード状、均一で中央部がもりあがり2〜3個の欠刻が入っている。周辺部は淡黄褐色であり、裏面は淡黄褐色である。なお、本菌株は胞子が形成されなかったので属種の同定はできなかった。
【0034】
これら菌株は、トルラ・エスピー(Torula sp.)No.00-290株(FERM P-18231)、スタフィロトリクム・エスピー(Staphylotrichum sp.)No.00-297株(FERM P-18232)、および糸状菌No.99-389株(Strain No.99-389)(FERM P-18230)として経済産業省産業技術総合研究所生命工学工業技術研究所に寄託されている。
【0035】
【発明の効果】
本発明は、白色腐朽菌類または糸状菌類から選抜されるダイオキシン分解性微生物とダイオキシン分解活性を増強する糸状菌とを複合した培養物またはその処理物を用いてダイオキシンを分解するダイオキシンの分解方法およびダイオキシン処理剤を提供したものである。
特に本発明者らが見出したダイオキシン分解性増強糸状菌は、ダイオキシン分解性微生物の分解活性を大幅に増強する効果を有し、本菌株とダイオキシン分解性微生物とを複合して用いることによりダイオキシンを効果的に分解することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for decomposing dioxins by a complex microorganism system and a dioxin treatment agent.
More specifically, a dioxin decomposing method, a dioxin decomposing method, and a dioxin decomposing property, using a dioxin degrading microorganism selected from white rot fungi and filamentous fungi together with a filamentous fungus that enhances the decomposing activity of the dioxin decomposing microorganism. The present invention relates to a filamentous fungus that enhances microbial degradation activity.
[0002]
[Prior art and its problems]
There are 75 isomers in chlorodibenzodioxin in which 1 to 8 hydrogens of two benzene nuclei bridged with oxygen are replaced by chlorine. These are highly toxic. For example, they are known to cause skin pigmentation, hair loss, hirsutism, liver function abnormalities, etc., and are called dioxins in relation to environmental pollution. Among these, 2,3,7,8-tetrachlorodibenzo-p-dioxin has the highest toxicity, and this compound itself may be called dioxin, but the present invention targets the chlorodibenzodioxins for decomposition.
[0003]
In recent years, dioxins have also been detected from incineration ash and dust collection ash at waste incineration facilities, and measures such as restricting the use of substances that can generate dioxins by incineration are being taken. The generated dioxins need to be quickly decomposed and detoxified.
[0004]
As a method for degrading dioxins, a conventional method using bacteria such as Pseudomonas (for example, Kunika Nakamiya et al., Proceedings of the 10th Annual Meeting of the Waste Society, p.880, 1999) and white rot fungi are used. Although microbiological methods such as the method used (for example, Ryuichiro Kondo et al., Proceedings of the 10th Annual Meeting of the Waste Society, p.877, 1999) have been reported, the dioxin degrading activity is sufficiently satisfactory. It is not a thing.
An object of the present invention is to find a microorganism system capable of efficiently decomposing dioxins, and to provide a method for decomposing dioxins and a decomposition treatment agent using the microorganisms.
[0005]
[Means for Solving the Problems]
The present inventors paid attention to microorganisms having dioxin degrading activity, and conducted intensive studies to improve the resolution of dioxins using these microorganisms. As a result, the present inventors have found that there are filamentous fungi that enhance the dioxin degrading activity when used in combination with white rot fungi as dioxin degrading microorganisms. The applicant has reported that dioxin-degrading microorganisms include filamentous fungi in addition to white-rot fungi (Japanese Patent Application No. 2000-058915). Filamentous fungi that enhance dioxin-degrading activity are dioxin-degrading microorganisms. It is expected to enhance the decomposition activity of filamentous fungi other than white rot fungi.
[0006]
Based on the above findings, the present invention provides a novel filamentous fungus that enhances the decomposition activity of dioxins by the following complex microorganism system, dioxin treatment agents, and other microorganisms.
[0007]
(1) A dioxin decomposing method characterized in that dioxin is treated using a dioxin degrading microorganism selected from white rot fungi and filamentous fungi and a filamentous fungus that enhances the decomposing activity of the dioxin degrading microorganism. Te, dioxin degradable microorganisms, Phanerochaete (Phanerochaete) genus Perikonia (Periconia) genus Penicillium (Penicillium) genus, a Nigurosupora (Nigrospora) genus or Fusarium (Fusarium) bacteria belonging to the genus degradation activity of dioxin degrading microorganisms filamentous fungi that enhance, characterized in that a bacterium belonging to the adsorption capacity of dioxins a bacterium that has been selected as an index Torla (Torula) genus or Staphylococcus tri Kum (Staphylotrichum) genus culture filtrate Dioxin decomposition method.
(2) dioxin degradable microorganisms, Phanerochaete Sorudida (Phanerochaete sordida) YK-624 strain (ATCC ninety thousand eight hundred and seventy-two) or Fusarium sp (Fusarium sp.) No. f 6099 strain (FERM P-17746) in the above (1) Dioxin decomposition method as described in 2.
(3) a filamentous fungus to enhance the degradation activity of the dioxin decomposition microorganisms, Torula sp (Torula sp.) No.00-290 strain (FERM P-18231), or Staphylococcus tri Kum sp (Staphylotrichum sp. ) The dioxin decomposition method according to (1) or (2) above, which is No. 00-297 strain ( FERM P-18232 ).
(4) A dioxin treating agent comprising a dioxin-degrading microorganism selected from white rot fungi and filamentous fungi, and a filamentous fungus that enhances the degrading activity of the dioxin-degrading microorganism, wherein the dioxin-degrading microorganism comprises Phanerochaete) genus Perikonia (Periconia) genus Penicillium (Penicillium) genus, a Nigurosupora (Nigrospora) genus or Fusarium (Fusarium) bacteria belonging to the genus fungi to enhance the degradation activity of dioxin degradable microorganisms, culture filtrate dioxin treatment agent, wherein the adsorption capacity of dioxins a bacterium that has been selected as an index is a bacterium belonging to the genus Torula (Torula) genus or Staphylococcus tri Kum (Staphylotrichum) of.
(5) dioxin degradable microorganisms, Phanerochaete Sorudida (Phanerochaete sordida) YK-624 strain (ATCC ninety thousand eight hundred and seventy-two) or Fusarium sp (Fusarium sp.) No. f 6099 strain (FERM P-17746) in the above (4) Dioxin treating agent as described in 2.
(6) a filamentous fungus to enhance the degradation activity of the dioxin decomposition microorganisms, Torula sp (Torula sp.) No.00-290 strain (FERM P-18231), or Staphylococcus tri Kum sp (Staphylotrichum sp. ) dioxin treatment agent according to No.00-297 strain (FERM P-18232), a is the (5).
(7) Torla sp (Torula sp.) Consisting No.00-290 strain (FERM P-18231), or Staphylococcus tri Kum sp (Staphylotrichum sp.) No.00-297 strain (FERM P-18232) A filamentous fungus that enhances the degradation activity of dioxin-degrading microorganisms.
[0008]
Hereinafter, the present invention will be described in detail.
(1) The dioxin degrading microorganism used in the dioxin decomposing method of the present invention has a dioxin decomposing activity and belongs to white rot fungi and filamentous fungi. The white rot fungi, include fungi belonging to the file Nerokaete (Phanerochaete) genus, as the filamentous fungi, Bae Rikonia (Periconia) genus Penicillium (Penicillium) genus Nigurosupora (Nigrospora) belonging to the genus or Fusarium (Fusarium) genus Examples include fungi.
[0009]
Phanerochaete sordida YK-624 strain (ATCC 90872), which is a kind of white rot fungus, is preferable.
Phanerochaete Sorudida (Phanerochaete sordida) YK-624 strain (ATCC 90872) is one of a series of strains isolated collected at Yakushima (Yakushima) by the Kyushu University Forest Products Department of Wood Chemistry Laboratory, the American Type Available from the American Type Culture Collection (deposit number: ATCC 90872).
[0010]
Further, Fusarium sp. No. f6099 strain (FERM P-17746), which is a type of filamentous fungus isolated from the soil by the present inventors, can also be used. Fusarium sp. (Fusarium sp.) No.f6099 strain (FERM P-17746) is, by the present inventors, deposited with the Ministry of Economy, Trade and Industry National Institute of Advanced Industrial Science and Technology Life Institute of Advanced Industrial Science and Technology in the February 25 date 2000 Has been.
In the present invention, these bacteria can be used alone or in combination of two or more.
[0011]
(2) Filamentous fungi that enhance the degradation activity of dioxin-degrading microorganisms The present inventors have identified a microorganism having dioxin-degrading activity and a filamentous fungus that does not have dioxin-degrading activity by itself or has very weak activity. About the composite system used simultaneously, the decomposition activity of 2,7-dichlorodibenzodioxin which is a dioxin model compound was measured. As a result, it has been found that there is a specific system that exhibits a stronger decomposing activity than when a microorganism having dioxin decomposing activity is used alone.
[0012]
As described in Example 2 below, Torula (No. 00-290 strain, No. 00-297 strain and No. 99-389 strain) have a particularly strong degradation activity enhancing action. Torula ), Staphylotrichum, and other filamentous fungi.
[0013]
The present inventors have discovered for the first time that dioxin degradability is improved by a complex system of microorganisms such as dioxin-degrading filamentous fungi and specific filamentous fungi that are not active per se or weakly active. is there. The filamentous fungus that enhances the degradation activity of the dioxin-degrading microorganism used in the present invention is a filamentous fungus that enhances the dioxin-degrading activity selected from white rot fungi and filamentous fungi.
[0014]
The microorganisms enhance dioxin decomposition activity, for example, Torula (Torula), Staphylococcus tri Kum (Staphylotrichum), Penicillium (Penicillium), diplotypes Deer (Diplodia), the bacteria belonging to Fusarium (Fusarium) or Paecilomyces (Paecilomyces), etc. Can be mentioned. Preferably, Torula (Torula) a bacterium belonging to the genus or Staphylococcus tri Kum (Staphylotrichum) genus Torula sp as bacteria belonging to Torula (Torula) genus (Torula sp.) No.00-290 strain (FERM P- 18231), Staphylotrichum sp. No. 00-297 strain (FERM P-18232) as a bacterium belonging to the genus Staphylotrichum , and filamentous fungus No. 99- The strain 389 ( Strain No. 99-389 ) ( FERM P-18230 ) is also a preferred bacterium, and among these, the microorganisms used in the present invention are microorganisms belonging to the genus Torula and Staphylotricum.
[0015]
The present inventors have found that the above three strains each Torula sp (Torula sp.) No.00-290 strain (FERM P-18231), Staphylococcus tri Kum sp (Staphylotrich um sp.) No.00- Named 297 strains (FERM P-18232) and filamentous fungi No.99-389 (Strain No.99-389) (FERM P-18230). Deposited at the Research Institute for Biotechnology.
[0016]
As a method for selecting a filamentous fungus that enhances the degradation activity of the dioxin-degrading microorganism used in the present invention, the culture filtrate is 2,7-dichlorodibenzodioxin (hereinafter referred to as 2,7-DCDD) as a dioxin model compound. (Abbreviated) can be used as an index.
The reason why the decomposition rate is improved by adsorbing dioxins to the components in the culture filtrate is not clear, but dioxins that are originally hydrophobic become hydrophilic by adsorption, and microorganisms caused by dioxin-degrading microorganisms This is thought to be due to being susceptible to decomposition.
Based on the above, filamentous fungi exhibiting excellent degradation enhancement effects are roughly selected by a method using adsorption capacity as an index, and then the method for measuring dioxin degrading activity using the selected filamentous fungi and dioxin-degrading microorganisms Therefore, it is possible to select easily.
[0017]
(2) Culture conditions In the present invention, dioxin-degrading microorganisms selected from white rot fungi and filamentous fungi and filamentous fungi that enhance the degrading activity of dioxin-degrading microorganisms are subjected to aerobic or anaerobic conditions, preferably preferred. It can be cultured and grown under atmospheric conditions.
The aerobic culture may be a stationary culture or a shaking culture according to the culture of a normal mesophilic bacterium. The pH of the culture solution is 2-8, preferably 5-8.
[0018]
The culture temperature is 10 to 40 ° C, preferably 20 to 30 ° C. The duration of culturing may be a time sufficient for decomposing dioxin in the target dioxin-containing substance, and is usually 1 to 20 days, preferably about 2 weeks.
Anaerobic culture is in accordance with the above-described aerobic culture, but static culture is performed.
The medium is not particularly limited as long as it is used for culturing ordinary microorganisms, preferably white rot fungi or filamentous fungi. For example, a potato starch-dextrose medium, corn meal medium, oatmeal medium, Kirk basic medium described later, or the like may be used. A Kirk basal medium is preferable.
[0019]
Woody components such as cellulose and lignin can be added to the medium. Furthermore, various carbon sources or nitrogen sources can be added as necessary. Examples of the carbon source include glucose, sucrose, maltose, saccharose, sucrose, brown sugar, molasses, waste molasses, malt extract and the like. Examples of the nitrogen source include meat extract, peptone, gluten meal, soybean flour, dry yeast, yeast extract, ammonium sulfate, ammonium tartrate, urea and the like. In addition, if necessary, inorganic salts such as sodium salt, magnesium salt, manganese salt, iron salt, calcium salt, phosphate, zinc salt, vitamins such as inositol, vitamin B 1 hydrochloride, L-asparagine, biotin, etc. Kinds may be added.
[0020]
(3) The dioxin decomposing method of the present invention is a culture comprising a combination of the dioxin degrading microorganism of the present invention and a filamentous fungus that enhances the decomposing activity of the dioxin degrading microorganism selected from the above-mentioned white rot fungi and filamentous fungi. Alternatively, it is carried out by treating dioxin with the treated product. For example, the dioxin-containing substance is added to the culture medium, or conversely, the culture liquid or an extract component thereof is added to the dioxin-containing substance.
[0021]
The reaction can be carried out by any of batch method, continuous method, semi-continuous method and the like. Moreover, as long as it contains the white rot fungi or filamentous fungi having the dioxin decomposing activity of the present invention and the filamentous fungus enhancing the dioxin decomposing activity of the present invention, they may be used together with other dioxin degrading bacteria. When a dioxin-containing substance is added to the culture solution for treatment, it can be performed according to the above-described culture conditions.
[0022]
(4) Dioxin treatment agent The dioxin treatment agent according to the present invention comprises a dioxin-degrading microorganism selected from the above-mentioned white rot fungi or filamentous fungi and a filamentous fungus that enhances the decomposition activity of the dioxin-degrading microorganism. It does not matter whether it is a solidified product. That is, the culture solution itself having the above-mentioned dioxin decomposing activity bacteria and decomposing activity enhancing bacteria can be used as the dioxin treatment agent. In addition, the culture broth can be dried and a production aid added to form a solid preparation can be added to the dioxin-containing substance to be treated itself or added to a treatment medium.
[0023]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these examples.
[0024]
Example 1: Isolation of dioxin-degrading activity-enhanced filamentous fungi (1) Bacterial collection and culture Strains from which microorganisms were collected from soil, decayed material, and plant remains samples in Japan were sterilized. Inoculate 50 ml of Kirk basal medium (Tien, M. and TK Kirk (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol., 161, 238-249), and leave it in the dark at 25 ° C for 1 week. Was filtered through a glass filter.
[0025]
(2) Selection of filamentous fungi having dioxin adsorption ability 2,7-DCDD was used as a dioxin model compound, and this was added to 5 ml of the filtrate so as to be 20 μM, and allowed to stand at 25 ° C. in the dark for 2 days. did. 2,7-DCDD was extracted three times with 5 ml of n-hexane, decompressed and concentrated, and quantified by GC-MS. At this time, the amount of 2,7-DCDD that could not be recovered with n-hexane was defined as the amount of adsorption.
As a result, 15 to 25% 2,7-DCDD adsorption rate was recognized in the culture solution of 16 strains among filamentous fungi having 800 or more test bacteria.
[0026]
(3) Selection of filamentous fungi with enhanced dioxin degradation activity The culture filtrate (2.5 ml) of the above 16 strains having a high 2,7-DCDD adsorption rate was obtained from the white rot fungus Phanerochaete sordida YK-624. Added to infested Kirk medium (2.5 ml). 2,7-DCDD was added to this so that it might become a density | concentration of 10 micromol, and it left still at 30 degreeC for 3 weeks, Then, 2,7-DCDD reduction | decrease rate was measured. The 2,7-DCDD reduction rate was measured by adding 5 ml of concentrated sulfuric acid just before extraction with n-hexane in order to collect and measure undegraded 2,7-DCDD adsorbed on the cells. (Takada, S., M. Nakamura, T. Matsueda, R. Kondo and K. Sakai (1996), Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624, Appl. Environ. Microbiol., 62, 4323-4328). In order to develop the dioxin resolution of the YK-624 strain, oxygen supply and glucose addition (final concentration 1%) were performed 4 times in 3 weeks. As a control, the one treated only with YK-624 strain without using the filamentous fungus culture filtrate was used. As a result, three fungi strains that showed particularly superior degradation activity compared to the dioxin degradation activity of the Phanerochaete sordida YK-624 strain alone, ie, No. 00-290, No. 00-297 strain and No.99-389 strain were selected. A strain of these Nanba00-290 strain and No.00-297 strains present invention, hereinafter, Nanba00-290 strain and No.00-297 strain as the strain of the present invention, also No. The following dioxin degradation tests and test results of Example 2 are shown using the 99-389 strain as a reference strain.
[0027]
The results of dioxin decomposition activity (2,7-DCDD recovery rate) are shown in Table 1. What was treated with only YK-624 strain without using filamentous fungus culture filtrate, and what was added to each strain after cultivating YK-624 strain by autoclave sterilization (121 ° C, 20 minutes) The results measured in the same manner are also shown in Table 1.
[0028]
[Table 1]
[0029]
As is clear from Table 1, the degradation rate of dioxin in the case of the YK-624 strain alone is 15%, and in the case of the filamentous fungus culture filtrate alone, the dioxin is not degraded at all. The decomposition rate is improved to about 25 to 31%, about twice. This shows that these filamentous fungus culture filtrates themselves do not contribute to the degradation of dioxins, but the dioxin degradation activity is greatly improved when used in combination with microorganisms having dioxin degradation activity.
[0030]
Example 2: Form of filamentous fungus with enhanced dioxin degradation activity The properties of No. 00-290, No. 00-297 and No. 99-389 which showed a strong degradation enhancing effect in Example 1 were examined. The result was obtained.
[0031]
(1) No.00-290 shares:
This strain was collected from the soil of the Mt. The bacterial flora of this strain on PDA medium is black, lacking aerial hyphae, velvety, uniform and slightly radial. The back side is black. It lacks a distinct conidial pattern and links, simple, or branches budding-type conidia on the side wall or tip of the mycelium. Conidia are colorless, light brown or dark brown, oval or subspherical, 8-15 μm long and 6-8 μm wide. Therefore, this strain was identified as a filamentous fungus belonging to Torula.
[0032]
(2) No.00-297 shares:
This strain was collected from the soil of Minamimisaki on Ogasawara Hahajima Island by the toothpick capture method. The bacterial flora of this strain on PDA medium is light yellowish brown, velvety, uniform and slightly covered with aerial hyphae. The conidial pattern is undeveloped, and allelo-type spores are formed in the shape of Humicola. Spores are light brown, unicellular, subspherical or oval, sometimes 2-3 linked. Therefore, this strain was identified as a filamentous fungus belonging to Staphylotrichum.
[0033]
(3) No.99-389 shares:
This strain was isolated from a basidiomycete family basidiomycete tissue collected in Katashioka, Shiojiri City. The bacterial flora of this strain on PDA medium is white, lacks aerial hyphae, is velvety, uniform, has a central portion, and has 2-3 indentations. The periphery is light tan and the back is light tan. In addition, since this spore was not formed, the genus species could not be identified.
[0034]
These strains, Torula sp (Torula sp.) No.00-290 strain (FERM P-18231), Staphylococcus tri Kum sp (Staphylotrichum sp.) No.00-297 strain (FERM P-18232), and The strain No.99-389 (FERM P-18230) is deposited at the Biotechnology Institute of Industrial Technology, Ministry of Economy, Trade and Industry.
[0035]
【The invention's effect】
The present invention relates to a dioxin decomposing method and a dioxin that decomposes dioxins using a culture or a treated product obtained by combining a dioxin degrading microorganism selected from white rot fungi or filamentous fungi and a filamentous fungus that enhances dioxin decomposing activity. A treatment agent is provided.
In particular, the dioxin-degrading enhanced filamentous fungus found by the present inventors has an effect of greatly enhancing the degrading activity of the dioxin-degrading microorganism, and dioxins can be produced by using this strain and the dioxin-degrading microorganism in combination. It can be effectively decomposed.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056232A JP4009679B2 (en) | 2000-03-03 | 2001-03-01 | A method for decomposing dioxins using a complex microorganism system, a dioxin treatment agent, and a filamentous fungus that enhances the decomposition activity of dioxin-degrading microorganisms |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-58916 | 2000-03-03 | ||
JP2000058916 | 2000-03-03 | ||
JP2001056232A JP4009679B2 (en) | 2000-03-03 | 2001-03-01 | A method for decomposing dioxins using a complex microorganism system, a dioxin treatment agent, and a filamentous fungus that enhances the decomposition activity of dioxin-degrading microorganisms |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001314526A JP2001314526A (en) | 2001-11-13 |
JP4009679B2 true JP4009679B2 (en) | 2007-11-21 |
Family
ID=26586742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001056232A Expired - Lifetime JP4009679B2 (en) | 2000-03-03 | 2001-03-01 | A method for decomposing dioxins using a complex microorganism system, a dioxin treatment agent, and a filamentous fungus that enhances the decomposition activity of dioxin-degrading microorganisms |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4009679B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109022295B (en) * | 2018-08-30 | 2021-09-17 | 广州大学 | Method for degrading nitenpyram by using white rot fungi |
CN109541092A (en) * | 2018-12-07 | 2019-03-29 | 江苏省农业科学院 | A kind of garlic whiterot fungi Raw toxin identification method |
CN114699705B (en) * | 2022-05-06 | 2022-12-16 | 广州大学 | A kind of method adopting white rot fungus to degrade chlorothialine |
-
2001
- 2001-03-01 JP JP2001056232A patent/JP4009679B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001314526A (en) | 2001-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Falcon et al. | Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island | |
Winding et al. | Biolog substrate utilisation assay for metabolic fingerprints of soil bacteria: incubation effects | |
AU738738B2 (en) | Novel microorganism | |
JP4009679B2 (en) | A method for decomposing dioxins using a complex microorganism system, a dioxin treatment agent, and a filamentous fungus that enhances the decomposition activity of dioxin-degrading microorganisms | |
EP0666316B1 (en) | Method for obtaining organic solvent-resistant microorganisms and organic solvent-resistant microorganisms obtainable by the method | |
JP5267881B2 (en) | Novel microorganism and method for decomposing dioxane using the same | |
Yin et al. | Mobilization of organic nitrogen and phosphorus and reduction of synthetic fertilizer usage by Ceriporia lacerata HG2011 in pepper cultivation | |
JP4009678B2 (en) | Dioxin decomposition method using filamentous fungus, dioxin treating agent, and dioxin degrading filamentous fungus | |
Bowen | Decomposition of wheat straw by mixed cultures of fungi isolated from arable soils | |
JP3154349B2 (en) | Microorganisms with Skatole Degradability and Microbial Degradation of Skatole | |
JP3154348B2 (en) | Microorganisms with Skatole Degradability and Microbial Degradation of Skatole | |
JP3670694B2 (en) | Method for removing paralytic shellfish poison and microorganism used therefor | |
Forlani et al. | Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia | |
EP0811681A1 (en) | Novel strain belonging to exserohilum monoceras and use of the same | |
JP2008142042A (en) | Method for treating mixed microorganisms, preparations and oil-containing substances | |
JP2001245652A (en) | Dioxin degradation method and decomposition treatment agent by manganese peroxidase | |
Toukam et al. | Pharmaceutically active secondary metabolites of newly isolated actinobacteria from two Cameroonian soils | |
JP2018029506A (en) | Terephthalic acid degrading bacteria | |
JP2005304424A (en) | White-rot fungus culture medium and white-rot fungus culture method | |
RU2083667C1 (en) | Consortium of strains as microorganism-destructors: alcaligenes denitrificans, pseudomonas maltophila, pseudomonas putida, pseudomonas species, bacillus species used for treatment of soil, ground and water from oil, petroleum products and residual mazut | |
JP2000312582A (en) | Cyanide-degrading microorganism | |
KR100355195B1 (en) | Biological Treatment of Organic Complex Wastewater | |
Panicker et al. | Endophytes Producing Proteases from Custard Apple (Annona Squamosa L.) Leaves | |
JP3860597B2 (en) | Novel microorganism having dioxin resolution and dioxin decomposition method | |
Raut et al. | Bacillus amyloliquefaciens subsp. amyloliquefaciens RLS19 as a multifarious source of potent antibiotics and other secondary metabolites for biocontrol of fusarium wilt disease in Bt-cotton |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041215 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20041215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060411 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060808 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061006 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20061115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070622 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070724 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4009679 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |