JP4007078B2 - 無段変速機の変速制御装置 - Google Patents
無段変速機の変速制御装置 Download PDFInfo
- Publication number
- JP4007078B2 JP4007078B2 JP2002164849A JP2002164849A JP4007078B2 JP 4007078 B2 JP4007078 B2 JP 4007078B2 JP 2002164849 A JP2002164849 A JP 2002164849A JP 2002164849 A JP2002164849 A JP 2002164849A JP 4007078 B2 JP4007078 B2 JP 4007078B2
- Authority
- JP
- Japan
- Prior art keywords
- speed
- trunnion
- displacement
- ratio
- gear ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Control Of Transmission Device (AREA)
Description
【発明の属する技術分野】
本発明は、無段変速機の変速制御装置、特に後進時における変速比制御に関する。
【0002】
【従来の技術】
前進時と後退時とで、異なる変速制御油圧系を有するトロイダル型無段変速機(以下、TCVTと記載する)の後退時制御技術として、特開平8−93873号に記載のものが知られている。この公報には、後退時の変速制御油圧系の故障時や、後退時に間違って前進側の変速制御油圧系を用いた場合に用いられる。このとき、前進時の変速制御を用いて、変速比が増速側に変速するように算出した駆動指令値を、変速アクチュエータに指令する。TCVTは、前進時と後退時とにおいて、トラニオンのオフセットに対する変速方向が異なるため、このときTCVTは減速側に変速する。これにより、減速側の変速比による発進が確保できる。
【0003】
ここで、前後進で異なる変速制御油圧系を用いる理由を述べる。トラニオンのオフセットに対する傾転角度(変速比)の特性は不安定である。このため、TCVTは、変速アクチュエータ変位に応じて前記油圧アクチュエータへ油を供給する変速制御弁と機械的に連結したプリセスカムを備え、傾転角度とトラニオン変位を、プリセスカムを介して変速制御弁にフィードバックして、変速アクチュエータ変位に対する傾転角度の特性を機械的に安定化する変速制御油圧系を有する。但し、前進時と後退時とでは、入出力ディスクの回転方向が異なるため、トラニオンの上下方向オフセットに対する傾転方向も異なる。これに応じて、前進時と後退時とで、極性の異なる変速制御油圧系を設け、前後進で切り換えて用いる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術には、駆動指令値を増速側に大きくすると(後退時、ユニットは減速側に変速する)、これに応じてトラニオンのオフセットも大きくなる。このため、駆動指令値を増速側に大きくしすぎると、トラニオンがオフセット方向のストッパ(具体的には、トラニオンの軸方向変位アクチュエータであるサーボピストンのピストンシリンダ)に接触する可能性がある。これによる影響の1つとして、トラニオンがストッパに強い力で押しつけられながら傾転することにより、トラニオンとストッパとの接触部分(具体的にはピストンやシリンダ)が摩耗する可能性がある。また、複数個のパワーローラを有する場合、オフセットのストッパ位置は、加工精度のバラツキにより一定ではない。このバラツキのため、ストッパに接触している状態では、それぞれのトラニオンのオフセット量が異なり、傾転速度がそれぞれ異なる。これにより、トラニオンが傾転角度のストッパに接触するまでの過渡時において、それぞれの傾転角度が一緒にならず、それぞれのパワーローラ接触点におけるディスクとパワーローラとの滑りが大きくなる。この滑りが、摩耗や発熱を発生させる可能性がある。以上の摩耗や発熱が、トロイダル伝導ユニットの耐久性を落とす可能性がある。
【0005】
また、後退側の変速制御油圧系を持たず、前進側の変速制御油圧系を後退側でも兼用するTCVTの後退時において、従来技術は適用できるが、この場合も上記と同様の問題が発生する虞がある。
【0006】
本発明は、上記問題点に着目してなされたもので、その目的とするところは、無段変速機の耐久性の向上を図りつつ、後退時においても安定した変速制御が可能な無段変速機の変速制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明では、同軸配置した同軸配置した入出力ディスク間で油の剪断力により動力伝達を行うパワーローラを背面支持するトラニオンを備え、該トラニオンを油圧アクチュエータによりトラニオンの傾転軸方向へオフセットさせることでトラニオンを傾転させ、パワーローラと入出力ディスクとの接点を移動させることにより無段変速を行うトロイダル伝導ユニットと、車両の前進時と後退時とで異なる回転方向を前記トロイダル伝導ユニットに出力する前後進切換手段と、前記オフセットに対して前記前後進切換手段から入力される前進時の回転方向と後退時の回転方向とにおける傾転方向の違いを変速アクチュエータにより補正可能であって、前進時において変速アクチュエータに対する変速比の特性が安定となるように前記油圧アクチュエータへ油を供給する変速制御油圧系と、を備えた無段変速機の変速制御装置において、目標変速比を設定する目標変速比設定手段と、変速比を検出または推定する変速比検出手段と、車両の後退時に、検出された変速比を電子的にフィードバックして、前記目標変速比と前記変速比との偏差に応じて、該偏差を補償するように前記変速アクチュエータの駆動指令値を演算する通常時制御手段と、前記変速比検出手段により変速比が検出もしくは推定できなくなったときは、前記目標変速比と前記変速比との偏差を前記通常時制御手段により補償できないと判断する補償判断手段と、該補償判断手段により前記偏差の補償ができないと判断したときは、変速アクチュエータの駆動指令値を、変速比が後退時に減速側に変速すると共に、トラニオンがトラニオンオフセット方向のストッパに当たらない値とする異常時制御手段と、を設けた。
【0008】
【発明の効果】
本発明では、ロー変速比によるリバース発進が可能となると共に、トラニオンやパワーローラ及び入出力ディスクの摩耗や発熱を抑制することが可能となり、無段変速機の耐久性の向上を図ると共に、安定した変速制御を達成することができる。
【0009】
【発明の実施の形態】
(実施の形態1)
図1は本発明の実施の形態1におけるトロイダル型無段変速機10(以下TCVTと記載する)のスケルトン図を示し、図2はTCVT10の断面、および変速制御系の構成を示すものである。
【0010】
図1中左側に設けられる動力源としての図外のエンジン回転が、トルクコンバータ12を介してTCVT10に入力される。このトルクコンバータ12は、一般によく知られるように、ポンプインペラ12a、タービンランナ12bおよびステータ12cを備え、特に本実施の形態1のトルクコンバータ12ではロックアップクラッチ12dが設けられている。また、トルクコンバータ12の出力回転軸14と同軸上に配置されるトルク伝達軸16が設けられ、該トルク伝達軸16に第1トロイダル変速部18と第2トロイダル変速部20とがタンデム配置されている。
【0011】
これら第1,第2トロイダル変速部18,20は、それぞれの対向面がトロイド曲面に形成される一対の第1入力ディスク18a,第1出力ディスク18bおよび第2入力ディスク20a,第2出力ディスク20bと、これら第1入出力ディスク18a,18bおよび第2入出力ディスク20a,20bのそれぞれの対向面間に摩擦接触されるパワーローラ18c,18dおよび20c,20dとによって構成される。
【0012】
第1トロイダル変速部18は、トルク伝達軸16の図中左方に配置されると共に、第2トロイダル変速部20は、トルク伝達軸16の図中右方に配置され、かつ、それぞれの第1入力ディスク18aおよび第2入力ディスク20bは互いに内側に配置されている。
【0013】
一方、第1,第2出力ディスク18b,20bは、トルク伝達軸16に相対回転可能に嵌合された出力ギア28にスプライン嵌合され、第1,第2出力ディスク18b,20bに伝達された回転力は、この出力ギア28及びこれに噛合される入力ギア30aを介してカウンターシャフト30に伝達され、更に、回転力出力経路を介して図外の出力軸に伝達される。
【0014】
第1入力ディスク18aの外側にはローディングカム装置34が設けられている。このローディングカム装置34には、前後進切換装置40を介してトルクコンバータ12の出力回転が入力され、この入力トルクに応じた押付力がローディングカム装置34によって発生されるようになっている。尚、ローディングカム装置34のローディングカム34aは、トルク伝達軸16に相対回転可能に嵌合されると共に、スラストベアリング36を介してトルク伝達軸16に係止される。
【0015】
また、第2入力ディスク20aとトルク伝達軸16の図中右方端部との間に皿ばね38が設けられている。従って、ローディングカム装置34で発生される押圧力は、第1入力ディスク18aに作用すると共に、トルク伝達軸16及び皿ばね38を介して第2入力ディスク20aにも作用し、かつ、皿ばね38によって発生される予圧力は、第2入力ディスク20aに作用すると共に、トルク伝達軸16およびローディングカム装置34を介して第1入力ディスク18aにも作用するようになっている。
【0016】
前後進切換装置40は、ダブルピニオン方式の遊星歯車機構42と、この遊星歯車機構42のキャリア42aを出力回転軸14に締結可能なフォワードクラッチ44と、遊星歯車機構42のリングギア42bをハウジング22に締結可能なリバースブレーキ46とによって構成されている。
【0017】
前後進切換装置40では、フォワードクラッチ44を締結すると共に、リバースブレーキ46を解放することにより、エンジン回転と同方向の回転がTCVT10に入力され、かつ、フォワードクラッチ44を解放してリバースブレーキ46を締結することにより、逆方向の回転が入力されるようになっている。
【0018】
第1トロイダル変速部18および第2トロイダル変速部20に設けられたパワーローラ18c,18d及び20c,20dは、中心軸Cに対称に配置されている。そして、それぞれのパワーローラは変速制御装置としての変速制御弁56及び油圧アクチュエータ50を介して、車両運転条件に応じて傾転され、これにより第1,第2入力ディスク18a,20aの回転を無段階に変速して第1,第2出力ディスク18b,20bに伝達する。
【0019】
図2はTCVT10の変速制御を行う油圧系の機械的構成図である。パワーローラ20cはトラニオン23により背面から支持されている。トラニオン23は油圧サーボ50のサーボピストン51と連結しており、油圧サーボ50内のシリンダ50a内の油と50b内の油の差圧により軸方向に変位する。
【0020】
シリンダ50a,50bは、それぞれシフトコントロールバルブ56のHi側ポート56HiとLow側ポート56Lowに接続されている。このシフトコントロールバルブ56はバルブ内のスプール56Sが変位することにより、ライン圧をHi側ポート56Hi又はLow側ポート56Lowに流し、他方のポートからドレーン56Dへ油を流出させることで油圧サーボ内の差圧を変化させる。スプール56Sは、ステップモータ52及び後述するプリセスカム55とリンク構造で連結している。
【0021】
プリセスカム55は、4体のトラニオンのうち1体に取り付けられており、パワーローラ20aの上下方向変位とパワーローラの傾転角度をリンクの変位に変換する。スプール56Sの変位は、ステップモータ変位とプリセスカム55で伝えられる(フィードバックされる)変位により決定される。
【0022】
TCVT10は、トラニオン23を平衡点から上下に変位させることにより、パワーローラ20cと入出力ディスク20a,20bの回転方向ベクトルに差異が発生し、このベクトル差によって傾転することで変速する。変速の定常時には、パワーローラ20c及びトラニオン23の変位は平衡点に戻り、スプール56Sの変位も中立点でバルブが閉じた状態となっている。また、複数のトラニオン23には、それぞれ傾転角を規制する傾転ストッパ24が設けられている。これにより、パワーローラの過度の傾転を防止している。
【0023】
前進時において、プリセスカム55は、パワーローラ20cの傾転角度をスプール56Sの変位に負帰還し、傾転角度の目標値とのズレを補償する。また、同時にパワーローラ20c及びトラニオン23の平衡点からの変位もスプール56Sの変位に負帰還する。これにより、変速過渡状態においてダンピングの効果を与え、変速のハンチングを抑制している。
【0024】
ここで、変速の到達点はステップモータ52の変位で決まるものであり、その一連の変速過程を以下に示す。ステップモータ変位を変化させることでスプール56Sが変位してバルブが開く。これによりサーボピストン51の差圧が変化することでトラニオン23が平衡点から軸方向に変位することでパワーローラが傾転する。パワーローラの傾転角度がステップモータ変位に対応した時点でスプール56Sは中立点に戻り変速が終了する。
【0025】
一方、後退時においては、パワーローラの上下方向変位に対する傾転方向が、前進時とは異なる。これにより、プリセスカム55は、パワーローラ20cの傾転角度をスプール56Sの変位に正帰還することによるので、後退時において、傾転角度がステップモータ変位に対応した点で平衡せず、ステップモータ変位に対する傾転角度の特性は不安定となる。
【0026】
図3は、後退時制御装置を備えたTCVT10の構成図である。上述したように、実施の形態1の機械的構成では、後退時、ステップモータ変位に対する傾転角度の特性は不安定となる。このため、変速比の電子的フィードバック制御を用いて、変速比を制御する。入力ディスク回転数センサ84は、入力ディスク18a,21aの何れか1つの回転に同期して発生するパルス信号を、周期計測もしくは周波数計測して入力ディスク回転数を検出する。出力ディスク回転数センサ83は、出力ディスク18b,21bの何れか1つの回転に同期して発生するパルス信号を、周期計測もしくは周波数計測して出力ディスク回転数を検出する。
【0027】
パワーローラ回転数センサ82は、パワーローラ18c,18d,20c,20dの何れか1つの回転に同期して発生するパルス信号を、周期計測もしくは周波数計測してパワーローラ回転数を検出する。
【0028】
傾転角度センサ85は、ロータリエンコーダ等を用いて傾転角度を検出する。トラニオン変位センサ86は、変位センサ等を用いて、中立点からのトラニオン変位を検出する。アクセル踏み込み量センサ81は、ロータリエンコーダ等を用いてアクセル踏み込み量を検出する。入力軸トルクセンサ87は、トルクセンサを用いて入力軸トルクを検出する。
【0029】
マイクロコンピュータを主体に構成された後退時制御装置80は、入力ディスク回転数と、出力ディスク回転数と、パワーローラ回転数と、傾転角度と、トラニオン変位と、アクセル踏み込み量と、入力軸トルクとを入力して、ステップモータ52の指令値を演算する。
【0030】
図4は後退時制御装置80において実行される変速制御を表すブロック図である。目標変速比設定手段100では、車速VSPとアクセル踏み込み量APSとから目標変速比G*を演算する。まず、車速VSPとアクセル踏み込み量APSとから、図5に示すマップを用いて、到達エンジン回転数ωteを求める。ここで、車速VSPは、出力ディスク回転数ωodと車速VSPとの関係を示す下記の式1を用いて、出力ディスク回転数ωodから算出する。
(式1)
ここで、kvはファイナルギア比やタイヤ半径から決まる定数である。
【0031】
次に、到達エンジン回転数ωteと出力ディスク回転数ωodとから、式(2)に示す関係を用いて到達CVT変速比Gtを算出する。
(式2)
最後に、到達CVT変速比Gtから、例えば式(3)に示すローパスフィルタを用いて目標変速比G*を算出する。
(式3)
ここで、Crは変速感等を考慮して決める時定数に相当する定数である。
【0032】
変速比検出手段101では、例えば入力ディスク回転数ωidの検出値と出力ディスク回転数ωodの検出値とから算出する方法に限定するものではなく、傾転角度φの検出値や、パワーローラ回転数ωprの検出値からも算出できる。
【0033】
いくつかの例を示すと、まず、傾転角度φと変速比Gとの関係を示す式(5)を用いて、傾転角度φの検出値から演算する方法がある。
(式5)
ここで、η,θはTCVT10の機械的諸元で決まる定数である。
【0034】
また、出力ディスク回転数ωodと入力ディスク回転数ωidとパワーローラ回転数ωprと傾転角度φとには、式(6)と式(7)とで表される関係がある。
(式6)
(式7)
この関係を用いて、パワーローラ回転数ωprの検出値と傾転角度φの検出値とから、出力ディスク回転数ωodと入力ディスク回転数ωidを算出し、式(4)に示す関係を用いて算出しても良い。
【0035】
通常制御手段103では、目標変速比G*と変速比Gとを入力し、変速比が検出または推定可能なときのステップモータの駆動指令値を出力する。ステップモータの変位uを入力とし、トラニオン変位yと傾転角度φとを状態量として、TCVT10の動特性は、式(8)と式(9)とで表される。
(式8)
(式9)
ここで、fはφとωcoとの非線形関数、a1,a2,bはTCVT10の機械的諸元で決まる定数、gは変速制御弁のバルブゲイン,φoは傾転角度の基準角度,uoはステップモータの基準変位,ytsv,ytsbはトラニオンとパワーローラとのガタや,変形によるトラニオン変位のずれである。(y−ytsv)はパワーローラのオフセット量である。fは次式で表される。
(式10)
ここで、fdはTCVT10の形状で決まる定数である。
【0036】
式(8)と式(9)とで表されるTCVTシステムの出力を傾転角度φとすると、このシステムは可制御可観測系である。このため、状態量のフィードバック制御で傾転角度(変速比)を安定化できる。例えば、次式で表されるPID制御器を用いて、目標変速比に対する変速比の特性を安定化する。
(式11)
ここで、kP,kD,kIはPID制御器の制御ゲイン、sはラプラス演算子である。
【0037】
異常時制御手段200では、変速比が検出または推定できないときや、上述の各センサの故障により極低温時等でステップモータ駆動速度が遅いとき、通常制御手段を用いて変速比を安定化できなくなった場合、減速側にTCVT10を変速させ、かつトラニオン23がオフセット方向のストッパに接触しないように、ステップモータ52の駆動指令値を出力する。TCVT10において、前進と後進とでωcoの符号が変わる。これに応じて、式(10)に示すように、fの符号も前進と後退とで変わる。また、前進側に変速しているか、後退側に変速しているかで、式(8)におけるdφ/dtの符号も変わる。これらと式(8)とから、変速する方向に応じた(y−ytsv)の符号が決まる。例えば、後退時、減速側に変速するとき、
(式12)
(式13)
であるとすると、
(式14)
となる。
【0038】
また、式(9)から、トラニオン変位yの定常値ys(dy/dt=0となるときのyの値)は次式で表される。
(式15)
このysが式(14)のyを満たすようにステップモータ変位uの領域を求めると、次式を得る。
(式16)
この式(16)で表される領域が、減速側に発散するステップモータ変位の領域である。
【0039】
式(16)において、トラニオン変位のずれytsv,ytsbをゼロと仮定すると、式(17)を得る。
(式17)
式(17)に示す減速側に発散するステップモータ変位の領域を図6に示す。図6の斜線領域が、式(17)を満たす領域である。図6に示すロー変速境界値は、式(17)の右辺の値であり、パワーローラ18c,18d,20c,20dのオフセットがゼロになるステップモータ変位である。
【0040】
このロー変速境界値を境にして変速方向が変わる。これは、ロー変速境界値を境にしてパワーローラのオフセット方向が変わるためである。
【0041】
また、トラニオンがオフセット方向のストッパに接触しない条件は次式で表される。
(式18)
尚、△yは図2に示すように、サーボピストン51のストローク量である。
【0042】
式(15)に示すysが、式(18)のyを満たすようにステップモータ変位uの領域を求めると、次式を得る。
(式19)
この式(19)で表される領域が、トラニオンがオフセット方向のストッパに接触しないステップモータ変位の領域である。式(19)において、トラニオン変位のずれytsbをゼロと仮定すると、式(20)を得る。
(式20)
式(20)に示すステップモータ変位の領域を図7に示す。図7の斜線領域が式(20)を満たす領域である。図7に示す衝突防止境界値は、式(20)の右辺の値である。
【0043】
式(17)と式(20)との条件を合わせると、次式を得る。
(式21)
式(21)に示すステップモータ変位の領域を図8に示す。ステップモータ変位を、この領域内の値とすることで、減速側に変速し、かつトラニオンがオフセット方向のストッパに接触しない。
【0044】
例えば、駆動指令値として、式(21)に表す条件を満たすようなステップモータ変位を与えても良いが、予め実験等により減速側に変速し、かつトラニオンがオフセット方向のストッパに接触しないステップモータ変位を求めた値としても良い。
【0045】
補償判断手段103では、変速比が検出もしくは推定できなくなった状況を判断し、変速比が検出もしくは推定可能な場合は、通常制御手段102で演算して駆動指令値をステップモータに指令し、変速比が検出もしくは推定できない場合は、異常時制御手段200で演算した駆動指令値をステップモータに指令する。
【0046】
変速比が検出もしくは推定できない状況は、例えば、変速比検出手段101で、変速比の演算に使用している入力ディスク回転数や出力ディスク回転数などを検出するセンサの断線等から判断する。
【0047】
以下、変速制御装置で演算する変速制御装置の一例を、図9のフローチャートに基づいて説明する。この変速制御演算は、ある所定の制御周期、例えば20ms毎に実行される。
【0048】
ステップS1では、入力ディスク回転センサから入力ディスク回転数ωidを検出する。
【0049】
ステップS2では、出力ディスク回転センサから出力ディスク回転数ωodを検出する。
【0050】
ステップS3では、入力ディスク回転数ωidと出力ディスク回転数ωodとから、式(4)を用いて、変速比Gを演算する。
【0051】
ステップS4では、アクセル踏み込み量センサでアクセル踏み込み量APSを読み込む。
【0052】
ステップS5では、出力ディスク回転数ωidから、式(1)を用いて、車速VSPを演算する。
【0053】
ステップS6では、まず、アクセル踏み込み量APSと車速VSPとから、図9の変速マップを用いて、到達エンジン回転数ωteを求める。次に、到達エンジン回転数ωteと出力ディスク回転数tから、式(2)を用いて到達CVT変速比Gtを算出する。そして、到達CVT変速比Gtから、式(3)に示すローパスフィルタを用いて目標変速比G*を算出する。
【0054】
ステップS7では、変速比が検出可能かどうかを判断し、可能ならばステップS8へ、不可能ならステップS9へ進む。
【0055】
ステップS8では、目標変速比G*と変速比Gとから、式(11)で表すPID制御器を用いてステップモータ変位の駆動指令値uを演算する。
【0056】
ステップS9では、予め実験等で求めた減速側に変速し、かつトラニオンがオフセット方向のストッパに接触しないステップモータ変位として駆動指令値uとする。
【0057】
以上の操作により、TCVT10は減速側に変速し、かつトラニオン23はオフセット方向のストッパ(サーボピストン51のシリンダ等)に接触しない。よって、ロー変速比によるリバース発進ができると共に、トラニオン23やパワーローラ及び入出力ディスクの摩耗や発熱を抑制することができる(請求項1に記載の発明に相当)。
【0058】
(実施の形態2)
本発明の実施の形態2について説明する。基本的な構成は実施の形態1と同様であるため異なる点についてのみ説明する。
【0059】
図10は異常時制御手段200の制御系の構成を表すブロック図である。
出力ディスク回転数検出手段201では、変速比が検出できなくなる直前の傾転角度φpから、最も増速側に発散した場合の現時刻の傾転角度φ2を予測する。式(8)から、yの絶対値が大きいほど傾転速度は速い。yの絶対値の最大値は、パワーローラのオフセットがストッパ位置であるときである。パワーローラのオフセットがゼロのところからストッパ位置までの距離を△yとすると、増速側への変速速度の最大値△φhは次式で表される。
(式22)
φpを検出した時刻から現時刻までの時間をTとすると、φ2は次式で表される。(式23)
ロー変速境界値演算手段203では、前記予測変速比であるときの、ロー変速境界値を演算する。ロー変速境界値ulは、式(17)の右辺であるので、次式で表される。
(式24)
図6に示すように、減速側に発散するステップモータ変位の領域は傾転角度φに依存する。更に、図6から、傾転角度が増速側であるほど減速側に発散するステップモータ変位の領域は狭くなる。しかし、現時刻では変速比の検出もしくは推定ができない。そこで、予測変速比算出手段202で算出した予測変速比φ2を用いて、現時刻で最も狭い、減速側に発散するステップモータ変位の領域を求める。式(17)において、φ=φ2とすると次式を得る。
(式25)
このときのロー変速境界値ul2は、式(24)においてφ=φ2として次式で表される。
(式26)
ステップモータ変位を、この式(25)に示す領域とすることで、現時刻に、減速側に確実に変速させるステップモータ変位の領域が、精度良く求められる(請求項2に記載の発明に相当)。
【0060】
衝突防止境界値演算手段204では、衝突防止境界値を算出する。衝突防止境界値udは、式(20)の右辺であるので、次式で表される。
(式27)
式(20)に示すように、トラニオンがオフセット方向のストッパに接触しないステップモータ変位の領域は傾転角度φに依存する。更に、図7から、傾転角度が減速側であるほど、トラニオンがオフセット方向のストッパに接触しないステップモータ変位の領域は狭くなる。そこで、式(20)において、現時刻のφは、傾転角度の最小値φL(傾転角度の減速側ストッパ位置)とすると、次式を得る。
(式28)
このときの衝突防止境界値udLは、φ=φLとして次式で表される。
(式29)
ステップモータ変位を、この式(28)に示す領域とすることで、トラニオンがオフセット方向のストッパに確実に接触しないステップモータ変位の領域が、精度良く求められる(請求項3に記載の発明に相当)。
【0061】
入力軸トルク検出手段204では、TCVT10の入力ディスクに作用するトルクを検出又は推定する。例えば、入力軸に取り付けられたトルクセンサを用いて、検出した値を用いる。
【0062】
トラニオン変位ずれ算出手段205では、入力軸トルクと変速比とから、図11に示すマップを用いてytsvを、図12に示すマップを用いてytsbを算出する。
【0063】
境界値補正手段206では、トラニオン変位ずれytsv,ytsbで、ロー変速境界値と衝突防止境界値を補正する。
【0064】
式(26)に示
すロー変速境界値ul2と、式(29)に示す衝突防止境界値udLとは、トラニオン変位のずれytsv,ytsbをゼロと仮定した場合である。減速側に発散する条件は、トラニオン変位のずれをゼロと仮定する前の式(16)において、φ=φ2として次式で表される。
(式30)
このときのロー変速境界値u'l2は、式(30)の右辺であり、次式で表される。
(式31)
u'l2は式(26)で表すロー変速境界値に、トラニオン変位ずれによる補正項a2(ytsv−ytsb)/bを加えたものである。また、トラニオンがストッパに接触しない条件は、トラニオン変位のずれytsv,ytsbをゼロに仮定する前の式(19)において、φ=φ2として次式で表される。
(式32)
このときの衝突防止境界値udLは、式(32)の右辺であり次式で表される。
(式33)
udLは、式(29)で表す衝突防止境界値にトラニオン変位ずれによる補正項−ytsb/bを加えたものである。
【0065】
この補正により、トルクシフトがあるTCVTユニットにおいても、減速側に変速し、かつトラニオン23がオフセット方向のストッパ(サーボピストンのシリンダ等)に接触しない変速アクチュエータ変位の領域を、精度良く求めることができる(請求項4に記載の発明に相当)。
【0066】
図13は変速制御装置で演算する異常時変速制御を表すフローチャートである。
【0067】
ステップS10では、入力軸トルクセンサから入力軸トルクTinを検出する。
【0068】
ステップS11では、式(22)及び式(23)を用いて、変速比が検出できなくなる直前の傾転角度φpから、最も増速側に発散した場合の現時刻の傾転角度φ2を予測する。
【0069】
ステップS12では、入力軸トルクTinと変速比Gとから、図11に示すマップを用いてytsvを図12に示すマップを用いてytsbを算出する。
【0070】
ステップS13では、式(31)を用いてロー変速境界値u'l2を演算する。
【0071】
ステップS14では、式(33)を用いて衝突防止境界値u'd1を演算する。
【0072】
ステップS15では、ステップモータ変位の駆動指令値uを例えば次式を用いて演算する。
(式34)
以上説明したように、本実施の形態2の構成を用いることで、後退時に減速側に変速するステップモータ変位の領域は、図6で表される。この領域は傾転角度(変速比)に依存する。変速比が検出もしくは推定できなくなった後は、傾転角度は増速側もしくは減速側に発散する。これにより、現時刻で考えられる傾転角度の最も減速側の値をφ1,最も増速側の値をφ2とすると、現時刻での傾転角度は、図6に示すφ1からφ2の間のどこか分からない。これは、減速側に変速するステップモータ変位の境界値も、図6のul1からul2の間のどこか分からないことを示す。このため、減速側に変速するステップモータ変位の領域が最も狭くなる傾転角度φ2の境界値であるul2を、該領域の境界値とする。これにより、現時刻で、減速側に確実に変速させるステップモータ変位の領域を精度良く算出することができる。更に、理論的に減速側に変速させるステップモータ変位の領域を算出できるため、実験や計算機シミュレーションを行って該領域を検出する時間やコストを削減することができる(請求項2に記載の発明に相当)。
【0073】
また、トラニオン23がオフセット方向のストッパに接触しないステップモータ変位の領域は、図7で表される。このように、該領域は傾転角度(変速比)に依存する。よって、現時刻での傾転角度は、図7に示すφ1からφ2の間のどこか分からない。これは、衝突防止境界値も図7に示すud1からud2の間のどこか分からないことを示す。このため、トラニオン23がオフセット方向のストッパに接触しない変速アクチュエータ変位の領域が最も狭くなる傾転角度φ1の境界値であるud1を衝突防止境界値とする。通常変速時、傾転角度は、減速側の傾転角度ストッパの近くに制御されているため、φ1は減速側の傾転角度ストッパ位置とする。これにより、トラニオン23が確実にストッパに接触しないステップモータ変位の領域を精度良く算出することができる。更に、理論的にトラニオン23が確実にストッパに接触しないステップモータ変位の領域を算出することが可能となり、実験や計算機シミュレーションを行って該領域を検出する時間やコストを削減することができる(請求項3に記載の発明に相当)。
【0074】
また、トルクシフトがあるTCVT10においても、減速側に変速し、かつトラニオン23がオフセット方向のストッパに接触しないステップモータ変位の領域を精度良く求めることができる(請求項4に記載の発明に相当)。
【図面の簡単な説明】
【図1】 実施の形態1におけるトロイダル型無段変速機を表すスケルトン図である。
【図2】 実施の形態1におけるトロイダル型無段変速機の断面、および変速制御系の構成を表す概略図である。
【図3】 実施の形態1におけるトロイダル型無段変速機の後退時制御装置を備えた制御系を含む構成図である。
【図4】 実施の形態1におけるトロイダル型無段変速機の後退時制御装置の制御系を表すブロック図である。
【図5】 実施の形態1におけるアクセル開度毎の車速と到達エンジン回転数の関係を表すマップである。
【図6】 実施の形態1におけるトロイダル型無段変速機が減速側に発散する変速アクチュエータ領域を表す図である。
【図7】 実施の形態1におけるトロイダル型無段変速機のトラニオンがストッパに接触しない変速アクチュエータ領域を表す図である。
【図8】 実施の形態1におけるトロイダル型無段変速機が減速側に発散し、かつトラニオンがストッパに接触しない変速アクチュエータ領域を表す図である。
【図9】 実施の形態1におけるトロイダル型無段変速機の変速制御装置の制御内容を表すフローチャートである。
【図10】 実施の形態2におけるトロイダル型無段変速機の後退時制御装置の制御系を表すブロック図である。
【図11】 実施の形態2におけるトラニオン軸方向ズレytsv算出マップである。
【図12】 実施の形態2におけるトラニオン軸方向ズレytsb算出マップである。
【図13】 実施の形態2におけるトロイダル型無断変速機の変速制御装置の異常時変速制御を表すフローチャートである。
【符号の説明】
10 トロイダル型無段変速機(TCVT)
12 トルクコンバータ
12a ポンプインペラ
12b タービンランナ
12c ステータ
12d ロックアップクラッチ
14 出力回転軸
16 トルク伝達軸
18,20 トロイダル変速部
22 ハウジング
23 トラニオン
24 傾転ストッパ
28 出力ギア
30 カウンターシャフト
30a 入力ギア
34 ローディングカム装置
36 スラストベアリング
40 前後進切換装置
42 遊星歯車機構
44 フォワードクラッチ
46 リバースブレーキ
50 油圧サーボ
51 サーボピストン
52 ステップモータ
53,54 リンク
55 プリセスカム
56 シフトコントロールバルブ
56S スプール
56D ドレーン
60 変速制御コントローラ
80 後退時制御装置
81 量センサ
82 パワーローラ回転数センサ
83 出力ディスク回転数センサ
84 入力ディスク回転数センサ
85 傾転角度センサ
86 トラニオン変位センサ
87 入力軸トルクセンサ
Claims (4)
- 同軸配置した入出力ディスク間で油の剪断力により動力伝達を行うパワーローラを背面支持するトラニオンを備え、
該トラニオンを油圧アクチュエータによりトラニオンの傾転軸方向へオフセットさせることでトラニオンを傾転させ、パワーローラと入出力ディスクとの接点を移動させることにより無段変速を行うトロイダル伝導ユニットと、
車両の前進時と後退時とで異なる回転方向を前記トロイダル伝導ユニットに出力する前後進切換手段と、
前記オフセットに対して前記前後進切換手段から入力される前進時の回転方向と後退時の回転方向とにおける傾転方向の違いを変速アクチュエータにより補正可能であって、前進時において変速アクチュエータに対する変速比の特性が安定となるように前記油圧アクチュエータへ油を供給する変速制御油圧系と、
を備えた無段変速機の変速制御装置において、
目標変速比を設定する目標変速比設定手段と、
変速比を検出または推定する変速比検出手段と、
車両の後退時に、検出された変速比を電子的にフィードバックして、前記目標変速比と前記変速比との偏差に応じて、該偏差を補償するように前記変速アクチュエータの駆動指令値を演算する通常時制御手段と、
前記変速比検出手段により変速比が検出もしくは推定できなくなったときは、前記目標変速比と前記変速比との偏差を前記通常時制御手段により補償できないと判断する補償判断手段と、
該補償判断手段により前記偏差の補償ができないと判断したときは、変速アクチュエータの駆動指令値を、変速比が後退時に減速側に変速すると共に、トラニオンがトラニオンオフセット方向のストッパに当たらない値とする異常時制御手段と、
を設けたことを特徴とする無段変速機の変速制御装置。 - 請求項1に記載の無段変速機の変速制御装置において、
前記異常時制御手段に、
前記出力ディスク回転数を検出又は推定する出力ディスク回転数検出手段と、
変速比が検出または推定できない状況が判断される直前の変速比と前記検出された出力ディスク回転数から、変速比が検出又は推定できなくなってから現時刻まで、前記パワーローラのオフセットが後退時に増速側ストッパ位置の状態で増速側に変速したときの変速比である第1予測変速比を算出する第1予測変速比算出手段と、
前記第1予測変速比において減速側に変速する変速アクチュエータ変位であるロー変速境界値を演算するロー変速境界値演算手段と、
を設け、
前記異常時制御手段は、前記補償判断手段により偏差が補償できないと判断され、かつ、前記変速比検出手段により変速比が検出または推定できないときは、前記変速アクチュエータの変位が前記ロー変速境界値よりも大きな変位を得る駆動指令値を出力する手段としたことを特徴とする無段変速機の変速制御装置。 - 請求項1または2に記載の無段変速機の変速制御装置において、
前記異常時制御手段に、
変速比が検出または推定できない状況が判断される直前の変速比と前記検出された出力ディスク回転数から、変速比が検出または推定できなくなってから現時刻まで、前記パワーローラのオフセットが後退時に減速側ストッパ位置の状態で減速側に変速したときの変速比である第2予測変速比を算出する第2予測変速比算出手段と、
前記第2予測変速比においてトラニオン変位が減速側ストッパ位置となるような変速アクチュエータ変位である衝突防止境界値を演算する衝突防止境界値演算手段を設け、
前記異常時制御手段は、前記補償判断手段により偏差が補償できないと判断され、かつ、前記変速比検出手段により変速比が検出または推定できないときは、前記変速アクチュエータの変位が前記衝突防止境界値よりも小さな変位を得る駆動指令値を出力する手段としたことを特徴とする無段変速機の変速制御装置。 - 請求項3に記載の無段変速機の変速制御装置において、
前記異常時制御手段に、前記無段変速機の入力軸トルクを検出または推定する入力軸トルク検出手段と、
検出された入力軸トルクと検出された変速比とから、入力軸トルクが作用することによる変速比のずれであるトルクシフトの原因となるトラニオン変位のずれ量を演算するトラニオン変位ずれ演算手段と、
演算されたトラニオン変位ずれ量で、前記駆動指令値を補正する指令値補正手段と、
を設けたことを特徴とする無段変速機の変速制御装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002164849A JP4007078B2 (ja) | 2002-06-05 | 2002-06-05 | 無段変速機の変速制御装置 |
US10/436,162 US6931316B2 (en) | 2002-06-05 | 2003-05-13 | Toroidal continuously variable transmission control apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002164849A JP4007078B2 (ja) | 2002-06-05 | 2002-06-05 | 無段変速機の変速制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004011727A JP2004011727A (ja) | 2004-01-15 |
JP4007078B2 true JP4007078B2 (ja) | 2007-11-14 |
Family
ID=30432887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002164849A Expired - Fee Related JP4007078B2 (ja) | 2002-06-05 | 2002-06-05 | 無段変速機の変速制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4007078B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4618338B2 (ja) | 2008-06-20 | 2011-01-26 | トヨタ自動車株式会社 | 無段変速機の変速制御装置 |
JP6907960B2 (ja) * | 2018-01-29 | 2021-07-21 | トヨタ自動車株式会社 | 車両用動力伝達装置の制御装置 |
-
2002
- 2002-06-05 JP JP2002164849A patent/JP4007078B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004011727A (ja) | 2004-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6931316B2 (en) | Toroidal continuously variable transmission control apparatus | |
US6909953B2 (en) | Shift control of continuously-variable transmission | |
US7575092B2 (en) | Vehicle steering control device | |
US5225984A (en) | Torque distribution control apparatus for four wheel drive | |
JP4214720B2 (ja) | トロイダル型無段変速機 | |
US5272635A (en) | Torque distribution control apparatus for four wheel drive | |
US20120259521A1 (en) | Control system for belt-type continuously variable transmission | |
JP4007078B2 (ja) | 無段変速機の変速制御装置 | |
US6183390B1 (en) | Speed ratio controller and control method of toroidal continuously variable transmission | |
US7166055B2 (en) | Toroidal type continuously variable transmission | |
JP3960165B2 (ja) | 無段変速機の変速制御装置 | |
US6345226B1 (en) | Speed ratio control device for vehicle | |
US6505139B1 (en) | Speed ratio control device for vehicle | |
JP2001334835A (ja) | 四輪駆動車における前後輪変速装置 | |
JP4967346B2 (ja) | トロイダル型無段変速機の制御装置 | |
US6076031A (en) | Speed ratio controller and control method of toroidal continuously variable transmission | |
JP4564281B2 (ja) | トロイダル式cvtの制御装置 | |
JP3407664B2 (ja) | 無段変速機の変速制御装置 | |
US6347270B1 (en) | Speed ratio control device | |
JP2004011728A (ja) | 無段変速機の変速制御装置 | |
JP4013690B2 (ja) | 無段変速機の変速制御装置 | |
JP2001099304A (ja) | 無段変速機の変速制御装置 | |
JP4003880B2 (ja) | トロイダル型無段変速機の変速制御装置 | |
JP4644788B2 (ja) | トロイダル式cvtの制御装置 | |
JP5195785B2 (ja) | 無段変速装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050526 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20051116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070123 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070625 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070807 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070820 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100907 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100907 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110907 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120907 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130907 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |