[go: up one dir, main page]

JP4006991B2 - Double floor structure - Google Patents

Double floor structure Download PDF

Info

Publication number
JP4006991B2
JP4006991B2 JP2001381592A JP2001381592A JP4006991B2 JP 4006991 B2 JP4006991 B2 JP 4006991B2 JP 2001381592 A JP2001381592 A JP 2001381592A JP 2001381592 A JP2001381592 A JP 2001381592A JP 4006991 B2 JP4006991 B2 JP 4006991B2
Authority
JP
Japan
Prior art keywords
floor
seat plate
peripheral wall
stud bolt
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001381592A
Other languages
Japanese (ja)
Other versions
JP2003184285A (en
Inventor
彰 寺村
充 中村
健二 五十嵐
浩行 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001381592A priority Critical patent/JP4006991B2/en
Publication of JP2003184285A publication Critical patent/JP2003184285A/en
Application granted granted Critical
Publication of JP4006991B2 publication Critical patent/JP4006991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Floor Finish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はある空間を挟んで二重に形成された床を備えた二重床構造に関する。
【0002】
【従来の技術】
一般的な二重床構造としては、OA機器等の信号ケーブルや給電ケーブルの配線スペースを2つの床の間に設けた二重床や、下側の床下に空気調節室を備えプリント基板へのチップの実装等が行われるクリーンルームの二重床構造が知られている。これらの二重床構造は、下側の床面または床下地材上に、適宜間隔を隔てて束材をなす直径9mm程度の複数の丸棒鋼材が立設され、その丸棒鋼材にそれぞれ、下側の床から高さ300mm〜600mmの位置に床材保持具を固定し、これら床材保持具に跨らせて床材を載置している。このとき床材は正方形状をなし、その四隅が床材保持具によって支持されている。
【0003】
【発明が解決しようとする課題】
ところで、プリント基板へのチップの実装は、基板を載置したベッドを所定距離だけ移動させて位置決めし、停止した基板上にチップを載置する作業が実装装置によって繰り返し高速で行われる。このとき、数μmピッチでプリントされた基板上にチップを載置するため高い位置決め精度が要求される。
【0004】
前記実装装置の中には、基板の位置決め、即ちベッドの移動と停止とが0.1sec/cycleという短い周期で繰り返されるものがあり、基板が載置されたベッドが上記周期で高速に移動するため、装置自身が振動源となる。このとき、従来の二重床構造では、束材が細く、かつ束材の高い位置で床材が支持されるので、上下方向および水平方向の剛性が低い。このため、振動が大きく増幅され、かつ振動が減衰するまでに長い時間を要することになり、基板の位置決め精度が低下し装置の性能が保てないという課題がある。
【0005】
他方、高い剛性を備え、かつ高い振動減衰性能が得られるものとしては、重量3.5t〜5t程度の大型定盤がある。この大型定盤は1200mm×3000mmの面積を有し厚さ60mmのステンレス製の鋼板や厚さ200mmのプレキャストコンクリートにステンレス板を巻き付けた板材等がH型鋼などの重量鋼材にボルト締めされたものである。定盤は表面の高い水平面精度が要求されるため、単体での精度はもとより、設置時においても水平面精度の確保に多大な手間がかかるためコストが高騰する。
【0006】
さらに、重量が大きな大型定盤を設置する際には大がかりな機材を必要とするが、設置する場所がクリーンルームの場合にはそれらの機材が導入できない。このため、特殊な三叉やころを用いて作業しなければならず施工性が悪いという課題もあった。
【0007】
本発明は上記従来の課題に鑑みて、高い制振性能が得られ安価で施工性の良い二重床構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
かかる目的を達成するために本発明にかかる二重床構造は、上下2つの床材間に空間を挟んで形成される二重床構造であって、上床として敷きつめられるアルミ製もしくは制振材料で形成された高剛性床材が、床面を形成する床パネル部と、この床パネル部の周縁から垂設され周方向に繋った脚をなす周壁部と、この周壁部に架け渡される補強リブとで一体に構成され、前記周壁部の下端が、前記空間の下部で、下床の床下地材に立設されたスタッドボルトに支持されており、前記周壁部を搭載するための座板が設けられており、前記周壁部の下端側に設けられたテーパーによって間隙が形成されており、前記座板を挿通した前記スタッドボルトの上端部が、前記間隙に突出しており、前記座板を前記スタッドボルトに固定するためのナットが、前記間隙に配置されていることを特徴とする。
【0009】
また、前記座板と前記下床との間に、該座板の曲げ変形を抑制すべく該座板を支持する支持材を設けたことを特徴とする。
【0010】
本発明によれば、高剛性床材は全周にわたって設けられた周壁部と、補強リブとが一体に設けられているので、所定厚さの無垢材を用いることなく、高い剛性および強度を備えることができる。即ち、床材の強度を周壁部と補強リブとで高めることによって、床材を肉抜きされたアルミもしくは制振材料による成型品とすることができ、軽量化された床材を用いることによって、搬入搬出および施工作業を容易に行うことができる。
【0011】
また、高剛性床材は、前記周壁部の下端が上下2つの床材間の空間下部でスタッドボルトに固定されているので、スタッドボルトが立設さている床下地材と近接した低い位置で支持される。したがって、水平方向の振動が作用してもスタッドボルトの下端に作用するモーメントは小さいため、スタッドボルトが変形し難く、床材とともに高剛性化を図ることができ、上床の振動を早期に減衰させることができる。
【0012】
また、床材はアルミ製もしくは制振材料で形成しかつ周壁部と補強リブとを備えた簡単な構造としたので砂型を用いて鋳造することができ、さらに束材として汎用性の高いスタッドボルトを用いたので、この二重床構造を安価に実現することができる。
【0013】
また、座板と下床との間に設けた支持材によって、高剛性床材が載置される座板を強固に剛に支持することができて座板の曲げ変形を抑制でき、またその自由振動を抑止することができて、二重床構造の振動抑制効果ないしは振動減衰性能をさらに向上させることができる。
【0014】
【発明の実施の形態】
以下、本発明の一実施形態として例えば半導体工場などに設けられるクリーンルームの二重床構造を添付図面を参照して説明する。
【0015】
図1は本発明の二重床構造の一実施形態を示す断面図、図2は座板の平面図、図3はレベル調整板の平面図、図4は高剛性床材の平面図、図5は高剛性床材の側断面図である。
【0016】
本実施形態の二重床構造が適用されるクリーンルームは、二重に設けられた床の下側に空調設備室が備えられている。この空調設備室の上部にはこのクリーンルームの架構をなす梁間に床下地材をなす根太52が、約600mmピッチで架け渡されその上に下側の床材50が張られている。この下側の床上には、□150mm、厚さ9mmのベース鋼板22に立設されたスタッドボルト20(直径16mm、長さ90mm)が、根太52の上に配置され、ベース鋼板22が床材50に接着されている。ここで、ベース鋼板22は根太52上に直接接着されていてもよい。
【0017】
本実施形態の二重床構造は、前記スタッドボルト20に、レベル調整板24および座板26を介し高剛性床材30が固定されて形成される。このとき、上記600mmピッチで立設された複数のスタッドボルト20のうち、四隅に設けられた4本のスタッドボルト20の座板26に、一辺が600mmの正方形状をなす高剛性床材30の四隅がそれぞれ載置される。そして各座板26に4つの高剛性床材30の角部が載置されることによって、高剛性床材30が縦横に整列されて上側の床面12が形成される。
【0018】
詳述すると、前記レベル調整板24は、直径50mm、厚さ24mmの円盤状の鋼板でなり、その中央にスタッドボルト20に螺合されるタップ孔24aが設けられている。
【0019】
前記座板26は厚さ22mm、一辺が100mmの正方形状のアルミ板でなり、中央にスタッドボルト20が貫通され、スタッドボルト20の直径より大きな直径をなすルーズホール26aが設けられている。このルーズホール26aと座板26の4つの角部との間にはそれぞれそのほぼ中間位置に高剛性床材30を固定する固定孔26bが設けられている。この固定孔26bにはタップが形成され、高剛性床材30を貫通し、後述する長ボルト32が螺合される。
そして、各スタッドボルト20には、レベル調整板24が螺合され、その上に座板26がそのルーズホール26aにスタッドボルト20が貫通されて載置される。このとき、レベル調整板24を回転させると、スタッドボルト20とレベル調整板24のタップ孔24aによって、座板26とレベル調整板24とが上下に移動する。
【0020】
前記高剛性床材30はアルミ製でなり、正方形状をなし厚さ約40mmの床パネル部30aと、この床パネル部30aの周縁から垂下され周方向に繋って脚をなす周壁部30bと、この周壁部30bに架け渡され格子状をなす補強リブ30cとが一体に形成されている。
【0021】
前記周壁部30bは、高さ約180mm、上端部側の厚さは約50mmでなり、下に向かって細くなるテーパ状をなしている。前記補強リブ30cは、周壁部30bの内側に高さ約200mm、厚さ約40mmでなり、縦横それぞれ2本づつ等ピッチ(約170mm間隔)で設けられている。また、この高剛性床材30の四隅には固定用の長ボルト32が挿通される貫通孔30dが設けられ、床面12側には長ボルト32の頭部が収納される座刳り30eが設けられている。
【0022】
即ち、高剛性床材30は全周にわたって設けられた周壁部30bと、補強リブ30cとを一体に備えることによって、アルミという軽量な素材を肉抜きした形状であっても、高い剛性および強度を備えることができる。よって、従来の大型定盤のように大型機材や特殊な機材を用いることなく、搬入および施工作業を容易に行うことができる。
【0023】
さらに、この高剛性床材30をアルミ製の簡単な構造とし、さらに一辺が600mmの正方形状として小型にしたので、砂型を用いて鋳造により製造することができ、さらに束材として汎用性の高いスタッドボルト20を用いているので、この床構造を極めて安価に実現することができる。
【0024】
前記各座板26上にはそれぞれ異なる4つの高剛性床材30の角部が載置され、座板26の中央で4つの高剛性床材30の角部が突き合わされて床面12が形成される。このとき高剛性床材30の周壁部30bの下端側は周壁部30bのテーパーによって、それぞれ間隙36が形成され、座板26を貫通したスタッドボルト20は、その間隙36に突出している。このスタッドボルト20には、前記ルーズホール26aより十分に大きなワッシャ34が挿通されてその上からナット28が螺合される。即ち、ナット28とレベル調整板24とがダブルナットとなって、座板26をスタッドボルト20に強硬に固定することができる。
【0025】
この二重床のレベル調整は、スタッドボルト20に螺合させて所定の高さに仮固定されたレベル調整板24の上に、座板26と高剛性床材30とを載置し、隣接する高剛性床材30の間で床面12のレベルに差が生じた場合には、レベル調整板24を正転または逆転させて床面12が平坦になるように上下に移動させる。
【0026】
床面12を平坦に調整した後、スタッドボルト20の前記ナット28を締め込んで座板26をレベル調整板24とナット28とで挟み込んで固定する。その後高剛性床材30の四隅を長ボルト32で各座板26に固定する。ここで、スタッドボルト20の長さは90mmであるが、レベル調整板24、座板26、ナット28が貫通されるため、レベル調整板24の下側に突出するスタッドボルト20の長さは15mm程度となる。即ち、高剛性床材30を支持するレベル調整板24および座板26の位置は、上下の床間に形成される空間の高さに対して極めて低い位置に設定される。
【0027】
ところで、レベル調整板24の下側およびナット28の上側に突出するスタッドボルト20の長さは、レベル調整時にレベル調整板24が上下に移動できる長さであり、下側床面の不陸やスタッドボルト20の立設作業や螺合したレベル調整板24の施工による誤差などを吸収できる程度の長さだけ備えていれば構わない。よって、床の制振性能を向上させるためには、レベル調整板24および座板26の固定位置をより低い位置に設定することが望ましい。
【0028】
本実施形態によれば、この高剛性床材30は、周壁部30bの下端が座板26上に載置され、この座板26は上下床材間の空間38の下部でスタッドボルト20に固定されるので、この床に水平方向の振動が作用してもスタッドボルト20の下端に作用するモーメントは小さいため、スタッドボルト20が変形し難く、高剛性床材30とともに床全体の剛性を高めることができ、もって床上に載置された装置の振動を早期に減衰させることができる。
【0029】
図6および図7には、座板26を剛に支持する構造を付加した変形例が示されている。上記実施形態にあっても、十分な振動抑制効果ないしは振動減衰性能を確保できるが、この変形例にあってはさらなる振動抑制効果を確保することができる。上記実施形態の座板26は図2から理解されるように、レベル調整板24にこれより外側へ突出する形態で重ね合わされている。これは、座板26に関し、4枚の高剛性床材30の周壁部30bを安定に載置できかつ長ボルト32の締結も可能な必要最小限の平面寸法で形成するようにして、それ自体の曲げ剛性をできるだけ高く確保するとともに、レベル調整板24についても外径寸法の小さな円盤状として、スタットボルト20周りに等方性の高い曲げ剛性を確保するためである。このような構成を採用した結果、座板26は、レベル調整板24周りにこれより外側に張り出して突出し、この突出部分はカンチレバー形態を呈して曲げ剛性の低下を招いて曲げ変形されやすく、そしてまた自由振動を誘発して、振動抑制効果ないしは振動減衰性能を低下させることが考えられる。
【0030】
図示した変形例では、この突出部分26dを高剛性化しその自由振動を抑制するために、当該突出部分26dをベース鋼板22から支持する支持構造を備えている。具体的には、この支持構造は、高剛性床材30の周壁部30bを載置するための座板26の各突出部分26dにこれを上下方向に貫通して形成されたネジ孔40と、ネジ孔40に一端が螺合されて設けられ、他端をベース鋼板22に当接させるべく座板26からの突出量が調整可能な支持材としてのネジロッド42と、ネジロッド42に螺合され、ベース鋼板22に他端が当接された当該ネジロッド42に対して締め込まれることにより座板26に圧接されて、ネジロッド42をベース鋼板22に強固に圧接固定するナット44とから構成される。
【0031】
そして、この支持構造は、レベル調整板24によるレベル調整後、座板26上からネジ孔40に螺入されて当該座板26下から突出するネジロッド42にナット44を螺入し、その後ベース鋼板22に当接するまでネジロッド42をネジ孔40から繰り出し、そしてネジロッド42をベース鋼板22に当接させた状態でナット44を締め込むことにより、ベース鋼板22と座板26との間に設置される。以上のような変形例にあっては、レベル調整板24の外側に突出する座板26の突出部分26dを強固に剛に支持することができ、当該突出部分26dを高剛性化できて座板26の曲げ変形を抑制でき、またその自由振動を抑止できて、二重床構造の振動抑制効果ないしは振動減衰性能をさらに向上させることができる。
【0032】
上記実施形態にあっては、高剛性床材30としてアルミ製のものを例示して説明したが、高剛性床材30としては、制振鋼材や制振合金などの周知の軽量な制振材料を素材として成形したものであっても良い。これら制振材料であっても、アルミの場合と同様にして、高剛性床材30を作成することができ、さらに良好な振動抑制効果ないしは振動減衰性能を確保することができる。
【0033】
【発明の効果】
以上説明したように、高剛性床材をアルミ製もしくは制振材料で形成し、床パネル部に周壁部と補強リブと設けて強度を高めたので、軽量かつ高剛性な床材が実現され、高剛性床材の搬入および施工作業を容易に行うことができる。
【0034】
また、高剛性床材は、上下2つの床材間の空間下部で、周壁部の下端がスタッドボルトに固定されているので、水平方向の振動が作用してもスタッドボルトの下端に作用するモーメントは小さい。よって、前記床材とともに床全体の剛性を高めることができるため、振動を早期に減衰させることができる。
【0035】
さらに、床材をアルミ製もしくは制振材料で形成しかつ簡単な構造としたので砂型を用いて安価に鋳造することができ、汎用性の高いスタッドボルトの使用と相俟って、安価な二重床構造を実現することができる。
【0036】
また、座板と下床との間に設けた支持材によって、高剛性床材が載置される座板を強固に剛に支持することができて座板の曲げ変形を抑制でき、またその自由振動を抑止することができて、二重床構造の振動抑制効果ないしは振動減衰性能をさらに向上させることができる。
【図面の簡単な説明】
【図1】本発明の二重床構造の一実施形態を示す断面図である。
【図2】座板を示す平面図である。
【図3】レベル調整板を示す平面図である。
【図4】高剛性床材を示す平面図
【図5】高剛性床材を示す側断面図である。
【図6】本発明の二重床構造の実施形態の変形例を示す座板周辺の一部破断側面図である。
【図7】図6に示した変形例の座板周辺の平面図である。
【符号の説明】
20 スタッドボルト
26 座板
30 高剛性床材
30a 床材パネル
30b 周壁部
30c 補強リブ
38 上下床材間の空間
42 ネジロッド
52 根太(床下地材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a double floor structure including a double floor formed across a certain space.
[0002]
[Prior art]
As a general double-floor structure, a chip is mounted on a printed circuit board with a double floor where the wiring space for signal cables and power supply cables for OA equipment, etc. is provided between two floors, and an air conditioning room under the lower floor. The double floor structure of the clean room where etc. are performed is known. In these double floor structures, a plurality of round steel bars having a diameter of about 9 mm, which form bundles at appropriate intervals, are erected on the lower floor surface or floor base material. A floor material holder is fixed at a height of 300 mm to 600 mm from the lower floor, and the floor material is placed across the floor material holder. At this time, the flooring has a square shape, and its four corners are supported by the flooring holder.
[0003]
[Problems to be solved by the invention]
By the way, the mounting of the chip on the printed circuit board is repeatedly performed at a high speed by the mounting apparatus in which the bed on which the substrate is mounted is moved and positioned by a predetermined distance and the chip is mounted on the stopped substrate. At this time, high positioning accuracy is required to place the chip on the substrate printed at a pitch of several μm.
[0004]
In some of the mounting apparatuses, the positioning of the substrate, that is, the movement and stop of the bed is repeated with a short cycle of 0.1 sec / cycle, and the bed on which the substrate is placed moves at a high speed in the above cycle. Therefore, the device itself becomes a vibration source. At this time, in the conventional double floor structure, since the bundle is thin and the floor is supported at a high position of the bundle, the rigidity in the vertical direction and the horizontal direction is low. For this reason, the vibration is greatly amplified and a long time is required until the vibration is attenuated, and there is a problem that the positioning accuracy of the substrate is lowered and the performance of the apparatus cannot be maintained.
[0005]
On the other hand, a large surface plate having a weight of about 3.5 t to 5 t has high rigidity and high vibration damping performance. This large surface plate has an area of 1200 mm × 3000 mm, and is made of a stainless steel plate having a thickness of 60 mm, a plate material in which a stainless steel plate is wound around precast concrete having a thickness of 200 mm, and bolted to a heavy steel material such as H-shaped steel. is there. Since the surface plate is required to have a high horizontal surface accuracy, the cost increases because it takes a lot of time to secure the horizontal surface accuracy as well as the accuracy of the single plate.
[0006]
Furthermore, when installing a large surface plate with a large weight, large-scale equipment is required. However, when the installation place is a clean room, such equipment cannot be introduced. For this reason, there has been a problem that workability is poor because work must be performed using special tridents and rollers.
[0007]
In view of the above-described conventional problems, an object of the present invention is to provide a double floor structure with high vibration damping performance, low cost, and good workability.
[0008]
[Means for Solving the Problems]
In order to achieve such an object, the double floor structure according to the present invention is a double floor structure formed by sandwiching a space between two upper and lower floor materials, and is made of aluminum or a damping material laid as an upper floor. The formed high-rigidity floor material is a floor panel part that forms the floor surface, a peripheral wall part that hangs from the periphery of the floor panel part and forms legs that are connected in the circumferential direction, and a reinforcement that spans the peripheral wall part A seat plate for mounting the peripheral wall portion, the lower end of the peripheral wall portion being supported by a stud bolt standing on the floor base material of the lower floor at the lower portion of the space. A gap is formed by a taper provided on the lower end side of the peripheral wall portion, and an upper end portion of the stud bolt inserted through the seat plate protrudes into the gap, and the seat plate is Nut for fixing to the stud bolt , Characterized in that it is disposed in the gap.
[0009]
Further, a support material for supporting the seat plate is provided between the seat plate and the lower floor so as to suppress bending deformation of the seat plate .
[0010]
According to the present invention, the high-rigidity flooring is provided with high rigidity and strength without using a solid material having a predetermined thickness because the peripheral wall portion provided over the entire circumference and the reinforcing rib are integrally provided. be able to. That is, by increasing the strength of the flooring with the peripheral wall portion and the reinforcing rib, the flooring can be made into a molded product made of aluminum or vibration-damping material, and by using a weight-reduced flooring, Carrying in / out and construction work can be performed easily.
[0011]
In addition, since the lower end of the peripheral wall is fixed to the stud bolt at the lower part of the space between the upper and lower floor materials, the high-rigidity floor material is supported at a low position close to the floor base material on which the stud bolt is erected. Is done. Therefore, since the moment acting on the lower end of the stud bolt is small even when horizontal vibration is applied, the stud bolt is difficult to be deformed, and it is possible to achieve high rigidity together with the flooring material, and to quickly attenuate the vibration of the upper floor. be able to.
[0012]
In addition, the flooring is made of aluminum or vibration-damping material and has a simple structure with a peripheral wall and reinforcing ribs, so it can be cast using sand molds, and is a versatile stud bolt as a bundle. This double floor structure can be realized at low cost.
[0013]
Further, the support material provided between the seat plate and the lower floor can firmly and firmly support the seat plate on which the high-rigidity floor material is placed, and can suppress bending deformation of the seat plate. Free vibration can be suppressed, and the vibration suppression effect or vibration damping performance of the double floor structure can be further improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a double floor structure of a clean room provided in, for example, a semiconductor factory as an embodiment of the present invention will be described with reference to the accompanying drawings.
[0015]
1 is a cross-sectional view showing an embodiment of the double floor structure of the present invention, FIG. 2 is a plan view of a seat plate, FIG. 3 is a plan view of a level adjusting plate, and FIG. 4 is a plan view of a high-rigidity flooring. 5 is a side sectional view of the high-rigidity flooring.
[0016]
The clean room to which the double floor structure of the present embodiment is applied includes an air conditioning equipment room below the double floor. In the upper part of the air-conditioning equipment room, joists 52 as a floor base material are bridged at a pitch of about 600 mm between the beams constituting the clean room frame, and the lower floor material 50 is stretched thereon. On this lower floor, a stud bolt 20 (diameter 16 mm, length 90 mm) erected on a base steel plate 22 of □ 150 mm and thickness 9 mm is disposed on the joist 52, and the base steel plate 22 is the floor material. 50 is adhered. Here, the base steel plate 22 may be directly bonded onto the joist 52.
[0017]
The double floor structure of the present embodiment is formed by fixing a high-rigidity floor material 30 to the stud bolt 20 via a level adjustment plate 24 and a seat plate 26. At this time, among the plurality of stud bolts 20 erected at a pitch of 600 mm, the seat plate 26 of the four stud bolts 20 provided at the four corners of the high-rigidity floor material 30 having a square shape with a side of 600 mm. Four corners are placed. Then, the corners of the four high-rigidity floor materials 30 are placed on each seat plate 26, whereby the high-rigidity floor materials 30 are aligned vertically and horizontally to form the upper floor surface 12.
[0018]
More specifically, the level adjusting plate 24 is a disk-shaped steel plate having a diameter of 50 mm and a thickness of 24 mm, and a tap hole 24 a screwed into the stud bolt 20 is provided at the center thereof.
[0019]
The seat plate 26 is a square aluminum plate having a thickness of 22 mm and a side of 100 mm. A stud bolt 20 is penetrated through the center, and a loose hole 26 a having a diameter larger than the diameter of the stud bolt 20 is provided. Between the loose hole 26a and the four corners of the seat plate 26, fixing holes 26b for fixing the high-rigidity flooring 30 are provided at substantially intermediate positions. A tap is formed in the fixing hole 26b, penetrates the high-rigidity flooring 30, and a long bolt 32 described later is screwed.
Each stud bolt 20 is screwed with a level adjusting plate 24, and a seat plate 26 is placed on the stud bolt 20 through the loose hole 26a. At this time, when the level adjusting plate 24 is rotated, the seat plate 26 and the level adjusting plate 24 are moved up and down by the stud bolt 20 and the tap hole 24a of the level adjusting plate 24.
[0020]
The high-rigidity flooring 30 is made of aluminum, has a square shape and a floor panel portion 30a having a thickness of about 40 mm, and a peripheral wall portion 30b that is suspended from the periphery of the floor panel portion 30a and is connected in the circumferential direction to form legs. The reinforcing ribs 30c are formed integrally with the peripheral wall portion 30b and have a lattice shape.
[0021]
The peripheral wall portion 30b has a height of about 180 mm, a thickness on the upper end side of about 50 mm, and has a tapered shape that narrows downward. The reinforcing ribs 30c have a height of about 200 mm and a thickness of about 40 mm on the inner side of the peripheral wall portion 30b, and are provided at equal pitches (approximately 170 mm intervals), two in each length and width. Further, through holes 30d through which the fixing long bolts 32 are inserted are provided at the four corners of the high-rigidity flooring 30, and seats 30e in which the heads of the long bolts 32 are stored are provided on the floor 12 side. It has been.
[0022]
That is, the high-rigidity flooring 30 is provided with a peripheral wall portion 30b provided over the entire circumference and a reinforcing rib 30c so as to have a high rigidity and strength even if the light-weight material such as aluminum is hollowed out. Can be provided. Therefore, carrying-in and construction work can be easily performed without using large equipment or special equipment as in the conventional large surface plate.
[0023]
Furthermore, since this high-rigidity flooring 30 has a simple structure made of aluminum and is further reduced in size to a square shape with a side of 600 mm, it can be manufactured by casting using a sand mold, and is highly versatile as a bundle. Since the stud bolt 20 is used, this floor structure can be realized at a very low cost.
[0024]
Four different corners of the high-rigidity flooring 30 are placed on each seat plate 26, and the corners of the four high-rigidity flooring 30 are abutted at the center of the seating plate 26 to form the floor surface 12. Is done. At this time, gaps 36 are formed on the lower end side of the peripheral wall portion 30b of the high-rigidity flooring 30 by the taper of the peripheral wall portion 30b, and the stud bolt 20 penetrating the seat plate 26 projects into the gap 36. The stud bolt 20 is inserted with a washer 34 sufficiently larger than the loose hole 26a, and a nut 28 is screwed onto the washer 34. That is, the nut 28 and the level adjusting plate 24 become a double nut, and the seat plate 26 can be firmly fixed to the stud bolt 20.
[0025]
This double floor level adjustment is performed by placing a seat plate 26 and a high-rigidity floor material 30 on a level adjustment plate 24 that is screwed into the stud bolt 20 and temporarily fixed to a predetermined height. When a difference occurs in the level of the floor surface 12 between the high-rigidity floor materials 30 to be moved, the level adjusting plate 24 is rotated forward or backward to move up and down so that the floor surface 12 becomes flat.
[0026]
After the floor 12 is adjusted to be flat, the nut 28 of the stud bolt 20 is tightened, and the seat plate 26 is sandwiched between the level adjusting plate 24 and the nut 28 and fixed. Thereafter, the four corners of the highly rigid flooring 30 are fixed to each seat plate 26 with long bolts 32. Here, although the length of the stud bolt 20 is 90 mm, since the level adjusting plate 24, the seat plate 26 and the nut 28 are penetrated, the length of the stud bolt 20 protruding below the level adjusting plate 24 is 15 mm. It will be about. That is, the positions of the level adjustment plate 24 and the seat plate 26 that support the high-rigidity flooring 30 are set to a position extremely lower than the height of the space formed between the upper and lower floors.
[0027]
By the way, the length of the stud bolt 20 protruding below the level adjustment plate 24 and above the nut 28 is such a length that the level adjustment plate 24 can move up and down during level adjustment. It is only necessary to provide a length that can absorb errors due to the standing work of the stud bolt 20 and the construction of the screwed level adjusting plate 24. Therefore, in order to improve the vibration damping performance of the floor, it is desirable to set the fixed position of the level adjusting plate 24 and the seat plate 26 to a lower position.
[0028]
According to the present embodiment, the high-rigidity flooring 30 has the lower end of the peripheral wall portion 30b placed on the seat plate 26, and the seat plate 26 is fixed to the stud bolt 20 at the lower portion of the space 38 between the upper and lower flooring materials. Therefore, even if horizontal vibration is applied to the floor, the moment acting on the lower end of the stud bolt 20 is small, so that the stud bolt 20 is not easily deformed, and the rigidity of the entire floor together with the high-rigidity flooring 30 is increased. Therefore, the vibration of the device placed on the floor can be attenuated at an early stage.
[0029]
6 and 7 show a modification in which a structure for rigidly supporting the seat plate 26 is added. Even in the above embodiment, a sufficient vibration suppressing effect or vibration damping performance can be ensured, but in this modification, a further vibration suppressing effect can be ensured. As is understood from FIG. 2, the seat plate 26 of the above-described embodiment is superimposed on the level adjusting plate 24 so as to protrude outward. This is because the seat plate 26 is formed with the minimum necessary plane dimensions that allow the peripheral wall portions 30b of the four high-rigidity flooring materials 30 to be stably placed and the long bolts 32 to be fastened. This is because the bending rigidity of the level adjustment plate 24 is secured as high as possible, and the level adjusting plate 24 is also formed in a disk shape having a small outer diameter so as to secure a highly isotropic bending rigidity around the stat bolt 20. As a result of adopting such a configuration, the seat plate 26 protrudes around the level adjusting plate 24 and protrudes outward from the level adjusting plate 24. The projecting portion has a cantilever shape and is easily bent and deformed with a decrease in bending rigidity. It is also conceivable to induce free vibration to reduce the vibration suppression effect or vibration damping performance.
[0030]
In the illustrated modification, a support structure for supporting the protruding portion 26d from the base steel plate 22 is provided in order to increase the rigidity of the protruding portion 26d and suppress its free vibration. Specifically, the support structure includes a screw hole 40 formed through each projecting portion 26d of the seat plate 26 for placing the peripheral wall portion 30b of the high-rigidity flooring 30 in the vertical direction; One end is screwed into the screw hole 40, and the other end is screwed to the screw rod 42 as a support member capable of adjusting the protruding amount from the seat plate 26 so as to abut the base steel plate 22. The nut 44 is configured to include a nut 44 that is pressed against the seat plate 26 by being fastened to the screw rod 42 that is in contact with the base steel plate 22 at the other end, and firmly press-fixes the screw rod 42 to the base steel plate 22.
[0031]
In this support structure, after the level adjustment by the level adjustment plate 24, the nut 44 is screwed into the screw rod 42 which is screwed into the screw hole 40 from above the seat plate 26 and protrudes from below the seat plate 26, and then the base steel plate. The screw rod 42 is extended from the screw hole 40 until it abuts against the base plate 22, and the nut 44 is tightened in a state where the screw rod 42 is in contact with the base steel plate 22, so that it is installed between the base steel plate 22 and the seat plate 26. . In the modified example as described above, the protruding portion 26d of the seat plate 26 protruding outside the level adjusting plate 24 can be supported firmly and rigidly, and the protruding portion 26d can be made highly rigid, so that the seat plate The bending deformation of 26 can be suppressed and the free vibration can be suppressed, and the vibration suppressing effect or vibration damping performance of the double floor structure can be further improved.
[0032]
In the above-described embodiment, the high-rigidity flooring 30 is exemplified by an aluminum one. However, the high-rigidity flooring 30 is a well-known lightweight damping material such as damping steel or damping alloy. May be molded as a material. Even with these damping materials, the high-rigidity flooring 30 can be produced in the same manner as in the case of aluminum, and a better vibration suppressing effect or vibration damping performance can be ensured.
[0033]
【The invention's effect】
As described above, the high-rigidity flooring is made of aluminum or a vibration damping material, and the floor panel part is provided with the peripheral wall and reinforcing ribs to increase the strength, so a lightweight and high-rigidity flooring is realized, Carrying in and installing high-rigidity flooring can be done easily.
[0034]
In addition, the high-rigidity flooring is the lower part of the space between the two upper and lower flooring, and the lower end of the peripheral wall is fixed to the stud bolt, so the moment that acts on the lower end of the stud bolt even when horizontal vibrations are applied Is small. Therefore, since the rigidity of the whole floor can be enhanced together with the floor material, vibration can be attenuated at an early stage.
[0035]
In addition, the flooring is made of aluminum or a vibration-damping material and has a simple structure, so it can be cast at low cost using a sand mold. A heavy floor structure can be realized.
[0036]
Further, the support material provided between the seat plate and the lower floor can firmly and firmly support the seat plate on which the high-rigidity floor material is placed, and can suppress bending deformation of the seat plate. Free vibration can be suppressed, and the vibration suppression effect or vibration damping performance of the double floor structure can be further improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a double floor structure of the present invention.
FIG. 2 is a plan view showing a seat plate.
FIG. 3 is a plan view showing a level adjustment plate.
FIG. 4 is a plan view showing a highly rigid flooring. FIG. 5 is a side sectional view showing the highly rigid flooring.
FIG. 6 is a partially broken side view of the periphery of a seat plate showing a modification of the embodiment of the double floor structure of the present invention.
FIG. 7 is a plan view of the periphery of the seat plate of the modification shown in FIG.
[Explanation of symbols]
20 Stud bolt 26 Seat plate 30 High-rigidity flooring 30a Flooring panel 30b Peripheral wall 30c Reinforcement rib 38 Space between upper and lower flooring 42 Screw rod 52 joist (floor base material)

Claims (3)

上下2つの床材間に空間を挟んで形成される二重床構造であって、
上床として敷きつめられるアルミ製の高剛性床材が、床面を形成する床パネル部と、この床パネル部の周縁から垂設され周方向に繋った脚をなす周壁部と、この周壁部に架け渡される補強リブとで一体に構成され、前記周壁部の下端が、前記空間の下部で、下床の床下地材に立設されたスタッドボルトに支持されており、
前記周壁部を搭載するための座板が設けられており、
前記周壁部の下端側に設けられたテーパーによって間隙が形成されており、
前記座板を挿通した前記スタッドボルトの上端部が、前記間隙に突出しており、
前記座板を前記スタッドボルトに固定するためのナットが、前記間隙に配置されていることを特徴とする二重床構造。
A double floor structure formed by sandwiching a space between two upper and lower floor materials,
The aluminum high-rigidity floor material laid as the upper floor has a floor panel part that forms the floor surface, a peripheral wall part that hangs from the periphery of the floor panel part and forms legs connected in the circumferential direction, and on the peripheral wall part It is configured integrally with a reinforcing rib that is bridged, and the lower end of the peripheral wall portion is supported by a stud bolt that is erected on the floor base material of the lower floor at the lower part of the space ,
A seat plate for mounting the peripheral wall portion is provided,
A gap is formed by a taper provided on the lower end side of the peripheral wall portion,
An upper end portion of the stud bolt inserted through the seat plate protrudes into the gap,
A double floor structure , wherein a nut for fixing the seat plate to the stud bolt is disposed in the gap .
上下2つの床材間に空間を挟んで形成される二重床構造であって、
上床として敷きつめられる、制振材料で形成された高剛性床材が、床面を形成する床パネル部と、この床パネル部の周縁から垂設され周方向に繋った脚をなす周壁部と、この周壁部に架け渡される補強リブとで一体に構成され、前記周壁部の下端が、前記空間の下部で、下床の床下地材に立設されたスタッドボルトに支持されており、
前記周壁部を搭載するための座板が設けられており、
前記周壁部の下端側に設けられたテーパーによって間隙が形成されており、
前記座板を挿通した前記スタッドボルトの上端部が、前記間隙に突出しており、
前記座板を前記スタッドボルトに固定するためのナットが、前記間隙に配置されていることを特徴とする二重床構造。
A double floor structure formed by sandwiching a space between two upper and lower floor materials,
A high-rigidity floor material formed of a damping material that is laid as an upper floor is a floor panel portion that forms a floor surface, and a peripheral wall portion that is suspended from the periphery of the floor panel portion and forms legs that are connected in the circumferential direction. The reinforcing ribs are integrally formed with the peripheral wall portion, and the lower end of the peripheral wall portion is supported by a stud bolt erected on the floor base material of the lower floor at the lower portion of the space .
A seat plate for mounting the peripheral wall portion is provided,
A gap is formed by a taper provided on the lower end side of the peripheral wall portion,
An upper end portion of the stud bolt inserted through the seat plate protrudes into the gap,
A double floor structure , wherein a nut for fixing the seat plate to the stud bolt is disposed in the gap .
前記座板と前記下床との間に、該座板の曲げ変形を抑制すべく該座板を支持する支持材を設けたことを特徴とする請求項1または2に記載の二重床構造。  The double floor structure according to claim 1 or 2, wherein a support member for supporting the seat plate is provided between the seat plate and the lower floor so as to suppress bending deformation of the seat plate. .
JP2001381592A 2001-12-14 2001-12-14 Double floor structure Expired - Fee Related JP4006991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001381592A JP4006991B2 (en) 2001-12-14 2001-12-14 Double floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001381592A JP4006991B2 (en) 2001-12-14 2001-12-14 Double floor structure

Publications (2)

Publication Number Publication Date
JP2003184285A JP2003184285A (en) 2003-07-03
JP4006991B2 true JP4006991B2 (en) 2007-11-14

Family

ID=27592221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001381592A Expired - Fee Related JP4006991B2 (en) 2001-12-14 2001-12-14 Double floor structure

Country Status (1)

Country Link
JP (1) JP4006991B2 (en)

Also Published As

Publication number Publication date
JP2003184285A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
JP4221935B2 (en) Double floor structure
JP5013945B2 (en) Vibration isolation device
KR101658954B1 (en) Light weight lattice shape-retaining double bottom structure of the floor
JP4006991B2 (en) Double floor structure
KR200268196Y1 (en) A supporting block unit for mounting floor panels of clean room
JP2000154932A (en) Mounting mechanism of vertical duct in building
JPS6310013Y2 (en)
JP5341687B2 (en) Free access floor mount
CN215928217U (en) Vibration isolation module suspension mounting structure
JPH1150694A (en) Method for setting base isolation device
JP2013238306A (en) Vibration damping device
JP5042811B2 (en) Free access floor mount
JP2011026892A (en) Floor structure of clean room and method of constructing the same
JP2006016910A (en) Equipment installation structure in a clean room
JPH0821126A (en) Frame device for mounting base isolation device
JP2002309761A (en) Double floor structure
JP4977514B2 (en) Joist structure for clean room
JP7647803B2 (en) Vibration measurement tool, vibration measurement system, and vibration measurement method
JPS588825Y2 (en) flooring equipment
JP3616916B2 (en) Pedestal deck installation structure
CN113202900A (en) Vibration isolation module suspension mounting structure
JP3128888U (en) Hall island structure
JP3700807B2 (en) Anti-vibration double floor and its precast concrete anti-vibration machine foundation
JP2020084518A (en) Sliding bearing support structure and method of constructing sliding bearing support structure
JP3845839B2 (en) Pedestal deck installation structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4006991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140907

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees