[go: up one dir, main page]

JP4002230B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP4002230B2
JP4002230B2 JP2003376057A JP2003376057A JP4002230B2 JP 4002230 B2 JP4002230 B2 JP 4002230B2 JP 2003376057 A JP2003376057 A JP 2003376057A JP 2003376057 A JP2003376057 A JP 2003376057A JP 4002230 B2 JP4002230 B2 JP 4002230B2
Authority
JP
Japan
Prior art keywords
intake
cylinder
combustion engine
internal combustion
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003376057A
Other languages
Japanese (ja)
Other versions
JP2005139970A (en
Inventor
雄治 岸本
有啓 浜田
亮治 西山
敏 和知
弘道 津上
隆史 松本
敏克 齋藤
浩治 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003376057A priority Critical patent/JP4002230B2/en
Publication of JP2005139970A publication Critical patent/JP2005139970A/en
Application granted granted Critical
Publication of JP4002230B2 publication Critical patent/JP4002230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

この発明は、内燃機関のポンピングロスと燃料消費量との低減を行いながら、排気ガスの浄化と運転性能の向上とを行い得る内燃機関制御装置に関するものである。   The present invention relates to an internal combustion engine control apparatus capable of purifying exhaust gas and improving operating performance while reducing pumping loss and fuel consumption of the internal combustion engine.

車両用内燃機関の吸入空気量を制御するものとして、運転者が操作するアクセルペダルの操作量をアクセルセンサにより検出し、アクセルセンサの出力に基づきスロットル開度を電気的に操作して吸気量制御を行う電子スロットル制御(以下ETVと称す)が用いられている。例えば、車両の加速時などにおいて、運転者がアクセルペダルの操作量を増加したとき、機械的な吸気量制御手段では内燃機関の吸気行程とは非同期な吸気量変動となって空燃比が変動することになるが、ETVではスロットル開度を吸気量制御手段により電子的に制御して吸気通路の断面積を変化させるので、内燃機関の行程と同期をとって吸気量を制御することができ、空燃比の変動を改善することができると共に、必要空気量を演算して吸気通路の断面積を制御するので空気量を精度良く制御できるものである。   Control the amount of intake air in an internal combustion engine for a vehicle by detecting the amount of operation of the accelerator pedal operated by the driver with an accelerator sensor and electrically controlling the throttle opening based on the output of the accelerator sensor to control the amount of intake air Electronic throttle control (hereinafter referred to as ETV) is used. For example, when the driver increases the amount of operation of the accelerator pedal during acceleration of the vehicle, the air intake ratio fluctuates as the intake air amount fluctuation is asynchronous with the intake stroke of the internal combustion engine in the mechanical intake air amount control means. However, in ETV, since the throttle opening is electronically controlled by the intake air amount control means to change the cross-sectional area of the intake passage, the intake air amount can be controlled in synchronization with the stroke of the internal combustion engine, In addition to improving fluctuations in the air-fuel ratio, the required air amount is calculated to control the cross-sectional area of the intake passage, so that the air amount can be accurately controlled.

また、このようなETVにおいて、内燃機関の加速時や減速時などの過渡状態における吸気量を精度良く制御する手法として、特許文献1に開示された技術がある。この公報に開示された技術は、アクセル操作量に基づきスロットル開度の指令値を設定し、この指令値の出力タイミングを所定の時間遅延させると共に、遅延前の開度指令値に基づいてスロットル開度の変化量を予測演算し、この予測値を現在のスロットル開度に加算して予測スロットル開度を求めることにより、吸気行程中に吸入される吸気量を予測するもので、これにより正確な空燃比制御が行えるものとされている。   Further, in such an ETV, there is a technique disclosed in Patent Document 1 as a technique for accurately controlling the intake air amount in a transient state such as during acceleration or deceleration of an internal combustion engine. The technology disclosed in this publication sets a throttle opening command value based on the accelerator operation amount, delays the output timing of this command value for a predetermined time, and opens the throttle opening based on the opening command value before the delay. Predicting the amount of change in the degree, and adding this predicted value to the current throttle opening to obtain the predicted throttle opening, predicting the amount of intake air during the intake stroke. Air-fuel ratio control can be performed.

特開2002−201998号公報(第8〜14頁、第2〜19図)JP 2002-201998 A (pages 8-14, FIGS. 2-19)

しかし、運転者によるアクセル操作、すなわち車速変更の要求は画一的なものでなく、運転条件により様々な要求が生ずるものである。例えば、車速変更の要求は、所定の車速からスロットル開度の加速側、または、減速側への操作が一定時間継続するような状態だけではなく、加減速の状態、または、加減速自体の変化が短時間内に様々に変化するような操作も行われる。このような場合、運転者の意志の予測は困難であり、空燃比を正確に予測制御することはできない。すなわち、運転者が操作するアクセルペダルの操作量のみが情報として入力され、この情報に基づきETVの制御がなされるので、例えば、アクセルの操作に対してETVの操作を遅らせることにより空燃比の変動を抑制せざるを得ず、応答性も遅れることになる。   However, the accelerator operation by the driver, that is, the request for changing the vehicle speed is not uniform, and various requests are generated depending on the driving conditions. For example, the request for changing the vehicle speed is not only a state in which the operation from the predetermined vehicle speed to the acceleration side or the deceleration side of the throttle opening continues for a certain period of time, but also the acceleration / deceleration state or the change of the acceleration / deceleration itself There are also operations that change variously within a short time. In such a case, it is difficult to predict the driver's will, and the air-fuel ratio cannot be accurately predicted and controlled. That is, only the amount of operation of the accelerator pedal operated by the driver is input as information, and the ETV is controlled based on this information. Therefore, for example, by changing the ETV operation with respect to the operation of the accelerator, the fluctuation of the air-fuel ratio Must be suppressed, and responsiveness is also delayed.

また、吸気管の集合部にETVを設けるような従来の一般的な構成では、吸気通路の有効面積の変化(スロットルバルブの開閉)に対してETVの下流側に存在する吸気通路の容積が大きく、これが一次遅れ成分として作用するため、気筒内に吸入される吸気量の変化は運転者の操作に対して遅れを生じ、スロットル開度の指令値の遅延はさらなる遅れを生じることとなり、これらに伴う内燃機関の出力変化の遅れは運転者に不快感を与えるばかりでなく、安全性にも問題を残すものであった。   Further, in the conventional general configuration in which the ETV is provided in the collecting portion of the intake pipe, the volume of the intake passage existing on the downstream side of the ETV is large with respect to the change in the effective area of the intake passage (opening and closing of the throttle valve). Since this acts as a first-order lag component, the change in the intake air amount sucked into the cylinder causes a delay with respect to the driver's operation, and the delay in the command value of the throttle opening causes a further delay. The accompanying delay in the output change of the internal combustion engine not only makes the driver uncomfortable, but also leaves a problem in safety.

一般に、車両の運転状態は自由度が極めて高く、燃料噴射弁が燃料噴射を開始してから燃料噴射期間中にアクセルペダルの踏み込み量が変化することがある。従来のETVではアクセルペダルの踏み込み量に追随制御されるものであったから、それまでの吸入空気充填量に関わりなくスロットル開度を変化させることになり、空燃比が大幅に悪化することになるが、従来装置ではこれを防止するために、加速時などには非同期噴射を行って補正を行っていた。しかし、このような手法では量的やタイミング的に充分な補正ができない場合があり、また、急激な加減速が燃料噴射完了直後に行われた場合には燃料噴射量の変更が不可能であるために補正ができず、特に低回転速度領域においては空燃比が過濃状態や過希薄状態となって不完全燃焼による排気ガスの悪化とドライバビリティの不良が生じていた。   Generally, the driving state of the vehicle has a very high degree of freedom, and the amount of depression of the accelerator pedal may change during the fuel injection period after the fuel injection valve starts fuel injection. In the conventional ETV, the amount of depression of the accelerator pedal is controlled so that the throttle opening is changed regardless of the amount of intake air until then, and the air-fuel ratio is greatly deteriorated. In order to prevent this in the conventional apparatus, correction is performed by performing asynchronous injection during acceleration or the like. However, in such a method, there are cases where sufficient correction cannot be made in terms of quantity and timing, and when rapid acceleration / deceleration is performed immediately after the completion of fuel injection, the fuel injection amount cannot be changed. Therefore, the correction cannot be made, and particularly in the low rotational speed region, the air-fuel ratio becomes excessively rich or excessively lean, and exhaust gas deteriorates due to incomplete combustion and drivability is poor.

この発明は、このような課題を解決するためになされたもので、各気筒の気筒別に分配された独立吸気管にそれぞれ個別吸気量制御手段(ETV)を配し、各ETVが独立して各気筒の吸気量制御を行うと共に、燃料噴射手段が噴射量の補正ができない期間はアクセル操作に対して吸気量が変化しないようにスロットル開度の変更を制限するようにしたものである。   The present invention has been made to solve such a problem, and an individual intake air amount control means (ETV) is arranged in each independent intake pipe distributed for each cylinder of each cylinder so that each ETV can independently In addition to controlling the intake air amount of the cylinder, the change in the throttle opening is restricted so that the intake air amount does not change in response to the accelerator operation during a period when the fuel injection means cannot correct the injection amount.

この発明に係る内燃機関制御装置は、複数の気筒に対して気筒別に吸気を供給する独立吸気管と、独立吸気管に設けられ気筒毎の有効吸気通路断面積を個別に制御する個別吸気量制御手段と、独立吸気管に設けられ気筒別に燃料を供給する燃料噴射弁と、複数の気筒に対する吸気量を気筒別に演算して個別吸気量制御手段を制御すると共に、各気筒に対する燃料供給量を個別に演算して燃料噴射弁を制御する制御手段とを備え、制御手段が、アクセル操作が行われた内燃機関の過渡運転時において、燃料供給量の補正が不可能になる所定の期間は有効吸気通路断面積の変更を制限するようにしたものである。   An internal combustion engine control apparatus according to the present invention includes an independent intake pipe that supplies intake air to a plurality of cylinders for each cylinder, and an individual intake air amount control that individually controls an effective intake passage cross-sectional area provided for each cylinder. Means, a fuel injection valve provided in an independent intake pipe for supplying fuel for each cylinder, and calculating the intake air amount for a plurality of cylinders for each cylinder and controlling the individual intake air amount control means, and individually supplying the fuel supply amount for each cylinder And a control means for controlling the fuel injection valve to calculate the effective intake during a predetermined period when the fuel supply amount cannot be corrected during the transient operation of the internal combustion engine in which the accelerator operation is performed. The change of the passage cross-sectional area is restricted.

この発明の内燃機関制御装置によれば、複数の気筒に対して気筒別に吸気を供給する独立吸気管に、気筒毎の有効吸気通路断面積を個別に制御する個別吸気量制御手段を設けたので、ポンピングロスを低下させ、吸気の応答性を高めるものである。また、内燃機関の過渡運転時において、燃料供給量の補正が不可能になる期間中は有効吸気通路断面積の変更を制限するようにしたので、内燃機関の過渡運転時における空燃比の制御性に優れ、排気ガスの浄化性を向上させながらアクセル操作に対する内燃機関の出力応答性を向上させることができ、燃費効率の優れた内燃機関制御装置を得ることができるものである。   According to the internal combustion engine control apparatus of the present invention, the individual intake air amount control means for individually controlling the effective intake passage cross-sectional area for each cylinder is provided in the independent intake pipe that supplies the intake air for each cylinder to a plurality of cylinders. This reduces the pumping loss and increases the responsiveness of the intake air. Also, during the transient operation of the internal combustion engine, the change of the effective intake passage cross-sectional area is restricted during the period when the fuel supply amount cannot be corrected. Thus, the output response of the internal combustion engine with respect to the accelerator operation can be improved while improving the exhaust gas purification performance, and an internal combustion engine control apparatus with excellent fuel efficiency can be obtained.

実施の形態1.
図1は、内燃機関の給排気通路の構成図で、この発明の実施の形態1による内燃機関制御装置の概要構成を示すものであり、図2と図3とは、この発明の実施の形態1による内燃機関制御装置の動作を説明する説明図である。図1において、内燃機関1は例えば四気筒の場合を一例としたもので、四つの気筒1aないし1dを有している。各気筒1aないし1dに吸入空気を供給する吸気管2は、その上流部がエアクリーナ3を有する吸気管集合部4を形成し、各気筒1aないし1dには吸気管集合部4から分配された独立吸気管5aないし5dが気筒毎に設けられ、各気筒1aないし1dと独立吸気管5aないし5dとの接合部の各気筒1aないし1dには吸気バルブ6aないし6dが設けられている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of an intake / exhaust passage of an internal combustion engine, and shows a schematic configuration of an internal combustion engine control apparatus according to Embodiment 1 of the present invention. FIGS. 2 and 3 are embodiments of the present invention. 2 is an explanatory diagram for explaining the operation of the internal combustion engine control device according to FIG. In FIG. 1, the internal combustion engine 1 is, for example, a case of four cylinders, and has four cylinders 1a to 1d. An intake pipe 2 for supplying intake air to each cylinder 1a to 1d forms an intake pipe assembly portion 4 having an air cleaner 3 at an upstream portion thereof, and each cylinder 1a to 1d is independently distributed from the intake pipe assembly portion 4. An intake pipe 5a to 5d is provided for each cylinder, and an intake valve 6a to 6d is provided in each cylinder 1a to 1d at a joint portion between each cylinder 1a to 1d and the independent intake pipe 5a to 5d.

独立吸気管5aないし5dのそれぞれには下流側より、気筒毎に燃料を供給する燃料噴射弁7aないし7dと、気筒毎に吸気量を検出する吸気圧センサ8aないし8dと、図示しないアクセルペダルの操作量に基づき気筒毎にスロットル開度が制御されるETV9aないし9dとが設けられている。このETV9aないし9dは個別吸気量制御手段として有効吸気通路断面積を気筒毎に個別に制御するものである。また、各気筒1aないし1dは排気バルブ10aないし10dを介して排気管11が接続されており、排気管11の集合部には内燃機関1の空燃比を検出する空燃比センサ12が設けられている。そして、内燃機関1には各気筒の吸気行程などを判別すると共に内燃機関1の回転速度を検出する気筒識別センサ13が設けられている。   Each of the independent intake pipes 5a to 5d has a fuel injection valve 7a to 7d for supplying fuel to each cylinder from the downstream side, an intake pressure sensor 8a to 8d for detecting the intake air amount for each cylinder, and an accelerator pedal (not shown). There are provided ETVs 9a to 9d in which the throttle opening is controlled for each cylinder based on the operation amount. The ETVs 9a to 9d individually control the effective intake passage cross-sectional area for each cylinder as individual intake air amount control means. Each cylinder 1a to 1d is connected to an exhaust pipe 11 via exhaust valves 10a to 10d, and an air-fuel ratio sensor 12 for detecting the air-fuel ratio of the internal combustion engine 1 is provided at a collecting portion of the exhaust pipe 11. Yes. The internal combustion engine 1 is provided with a cylinder identification sensor 13 that discriminates the intake stroke of each cylinder and detects the rotational speed of the internal combustion engine 1.

制御手段14は、気筒識別センサ13から内燃機関1の回転速度などを入力して点火時期を演算し、図示しない点火系を制御すると共に、図示しないアクセルペダルの操作量や吸気圧センサ8aないし8dの出力に基づき気筒別に吸気量を演算し、この演算された気筒別の吸気量と気筒識別センサ13が出力する気筒判別信号とによりETV9aないし9dのスロットル開度を制御する。さらに制御手段14は、この気筒別の吸気量と気筒識別センサ13の出力とから各気筒1aないし1dに対する適切な燃料供給量を演算し、燃料噴射弁7aないし7dを制御する。   The control means 14 inputs the rotational speed of the internal combustion engine 1 from the cylinder identification sensor 13 to calculate the ignition timing, controls an ignition system (not shown), and manipulates an accelerator pedal (not shown) and intake pressure sensors 8a to 8d. Based on the output, the intake air amount is calculated for each cylinder, and the throttle openings of the ETVs 9a to 9d are controlled based on the calculated intake air amount for each cylinder and the cylinder discrimination signal output from the cylinder identification sensor 13. Further, the control means 14 calculates an appropriate fuel supply amount for each cylinder 1a to 1d from the intake amount for each cylinder and the output of the cylinder identification sensor 13, and controls the fuel injection valves 7a to 7d.

エアクリーナ3を経由して独立吸気管5aないし5dに分配された吸気はETV9aないし9dにより制御され、各気筒1aないし1dに供給される吸気の空気圧はETV9aないし9dのスロットル開度と回転速度とにより変化するため、各気筒1aないし1dの吸気量は吸気圧センサ8aないし8dが検知する吸気圧と回転速度とから検出することができる。制御手段14による吸気量と燃料噴射量との制御は、排気管11の集合部に設けられた空燃比センサ12の出力を受けたフィードバック制御であり、これにより高精度に空燃比が制御される。また、制御手段14による図示しない点火系の制御は、内燃機関1の環境に応じたMBTまたはMBT近傍にて点火を行うように制御される。   The intake air distributed to the independent intake pipes 5a to 5d via the air cleaner 3 is controlled by the ETVs 9a to 9d. Therefore, the intake amount of each cylinder 1a to 1d can be detected from the intake pressure and the rotational speed detected by the intake pressure sensors 8a to 8d. The control of the intake air amount and the fuel injection amount by the control means 14 is feedback control that receives the output of the air-fuel ratio sensor 12 provided in the collecting portion of the exhaust pipe 11, and thereby the air-fuel ratio is controlled with high accuracy. . The control of the ignition system (not shown) by the control means 14 is controlled so as to perform ignition in the MBT or in the vicinity of the MBT corresponding to the environment of the internal combustion engine 1.

このように構成され、動作する内燃機関制御装置においてアクセル操作がなされ、内燃機関1が加速または減速の過渡状態で運転されたとき、アクセル操作によるスロットル開度の変化、すなわち、吸気量の変化に対して時間的に制御手段14による燃料供給量の制御が行えない気筒が出現する。例えば、燃料噴射量の演算完了直後にアクセル操作がなされたような場合には次回の燃料噴射量の演算までは吸気量の変化に対する適正な燃料噴射量の補正が不可能になり、空燃比が悪化することになる。このような場合、制御手段14は燃料供給量の補正が行えない期間中においてはETV9aないし9dを制御してスロットル開度の変化を禁止し、燃料供給量の制御が可能な期間になってからスロットル開度の制御を行うことにより、空燃比の変化による排出ガスの悪化を防止する。   When the accelerator operation is performed in the internal combustion engine control apparatus configured and operated as described above and the internal combustion engine 1 is operated in a transient state of acceleration or deceleration, a change in the throttle opening due to the accelerator operation, that is, a change in the intake air amount. On the other hand, a cylinder appears in which the fuel supply amount cannot be controlled by the control means 14 in terms of time. For example, when the accelerator operation is performed immediately after the calculation of the fuel injection amount is completed, it is impossible to correct the fuel injection amount appropriately for the change in the intake air amount until the next calculation of the fuel injection amount, and the air-fuel ratio becomes It will get worse. In such a case, the control means 14 controls the ETVs 9a to 9d during the period in which the fuel supply amount cannot be corrected, prohibits changes in the throttle opening, and after the period during which the fuel supply amount can be controlled. By controlling the throttle opening, exhaust gas deterioration due to changes in the air-fuel ratio is prevented.

この制御の内容を示したのが図2と図3の動作説明図であり、以下にこの発明の特徴である制御内容を説明する。まず図2は、減速時におけるアクセルペダルの動きと、第一気筒および第三気筒の吸気系の動作とを抽出して示したものであり、減速時におけるETVの制御動作を示したものである。第一気筒を例にとって説明すると、図に示すように燃料噴射は独立吸気管における吸気バルブの上流側で行われるが、この燃料噴射は吸気バルブが開路している期間において行われる。例えば、アクセルペダルの操作量が減少する方向に操作された場合、アクセルセンサの出力によりETVのスロットル開度は減少し、吸気流量は減少してゆくが、燃料噴射が開始されると共にETVのスロットル開度は変化を停止し、吸気流量を一定に保つ。   The contents of this control are shown in the operation explanatory diagrams of FIGS. 2 and 3, and the control contents which are the features of this invention will be described below. First, FIG. 2 shows the movement of the accelerator pedal at the time of deceleration and the operation of the intake system of the first cylinder and the third cylinder, and shows the control operation of the ETV at the time of deceleration. . Taking the first cylinder as an example, as shown in the drawing, fuel injection is performed on the upstream side of the intake valve in the independent intake pipe, and this fuel injection is performed during a period in which the intake valve is open. For example, when the operation amount of the accelerator pedal is decreased, the throttle opening of the ETV is decreased by the output of the accelerator sensor and the intake flow rate is decreased, but the fuel injection is started and the ETV throttle is decreased. The opening degree stops changing and the intake flow rate is kept constant.

このスロットル開度の変化停止期間はその気筒の吸気バルブが閉路するまで継続し、吸気バルブの閉路後は変化停止が解除され、次回の燃料噴射開始まではアクセルペダルの操作量に基づき吸気量が変化するように制御される。この制御は他の気筒においても同様である。この制御により、燃料噴射の開始から吸気バルブの閉路までの期間における吸気流量は一定値を保つことになり、制御手段14は吸気圧センサ8aないし8dの内、その気筒に該当する吸気圧センサが検出する対象気筒の吸気圧と、気筒識別センサ13が検出する回転速度とから対象気筒に対する吸入空気充填量を燃料噴射期間までに演算し、この吸入空気充填量に基づき燃料噴射量を決定して燃料噴射を行う。   The change stop period of the throttle opening continues until the intake valve of the cylinder is closed, the change stop is released after the intake valve is closed, and the intake amount is based on the operation amount of the accelerator pedal until the next fuel injection starts. Controlled to change. This control is the same for the other cylinders. With this control, the intake flow rate during the period from the start of fuel injection to the closing of the intake valve is maintained at a constant value, and the control means 14 has the intake pressure sensor corresponding to the cylinder among the intake pressure sensors 8a to 8d. From the detected intake pressure of the target cylinder and the rotational speed detected by the cylinder identification sensor 13, the intake air filling amount for the target cylinder is calculated by the fuel injection period, and the fuel injection amount is determined based on this intake air filling amount. Perform fuel injection.

次に、燃料噴射期間中にアクセル操作が変化した場合における動作について説明する。図3は、内燃機関1が減速状態から急加速するようなアクセル操作が燃料噴射期間中になされた場合におけるETVの制御動作を説明するものであり、便宜上、第一気筒と第三気筒と第四気筒とを図示している。図に示すように、第三気筒の燃料噴射期間にアクセル操作が変化した場合、アクセル操作の過渡時には燃料噴射の開始から吸気バルブが閉路するまでの期間はETVのスロットル開度の変化が禁止されるので、第三気筒に対する吸気量は燃料噴射開始の直前までの値が継続されることになる。   Next, the operation when the accelerator operation changes during the fuel injection period will be described. FIG. 3 illustrates the ETV control operation when the accelerator operation is performed during the fuel injection period so that the internal combustion engine 1 accelerates rapidly from the deceleration state. For convenience, the first cylinder, the third cylinder, 4 cylinders are shown. As shown in the figure, when the accelerator operation changes during the fuel injection period of the third cylinder, the change in the throttle opening of the ETV is prohibited during the period from the start of fuel injection to the closing of the intake valve when the accelerator operation is in transition. Therefore, the value of the intake air amount for the third cylinder continues until just before the start of fuel injection.

内燃機関1の点火順序が図3のように第一気筒、第三気筒、第四気筒、第二気筒の順であるとすると、第三気筒の次期吸気行程となる第四気筒はアクセル操作に遅れることなくアクセル操作に追随してスロットル開度は変化し、続く第二気筒(図示せず)と第一気筒もアクセル操作に追随してスロットル開度を変化させる。当然のことながら吸気バルブが閉路した後は第三気筒もアクセル操作に追随してスロットル開度は変化する。そして吸気量が増加するように制御された気筒に対しては吸気量の増加に対応して燃料噴射量も変化する。従って、アクセル操作に対する加減速の応答性は充分に確保される。   Assuming that the ignition sequence of the internal combustion engine 1 is in the order of the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder as shown in FIG. 3, the fourth cylinder, which is the next intake stroke of the third cylinder, is operated as an accelerator. The throttle opening changes following the accelerator operation without delay, and the subsequent second cylinder (not shown) and the first cylinder also change the throttle opening following the accelerator operation. Naturally, after the intake valve is closed, the third cylinder also follows the accelerator operation and the throttle opening changes. For the cylinders controlled so that the intake air amount increases, the fuel injection amount also changes corresponding to the increase of the intake air amount. Therefore, sufficient acceleration / deceleration response to the accelerator operation is ensured.

上記したスロットル開度変更禁止期間は吸気弁のオーバーラップ期間を含め、各気筒に充填される吸気量に変化を生じさせないことが必要であり、スロットル開度変更禁止期間はこのように設定される。また、スロットル開度変更禁止期間の解除を吸気バルブが略閉路する時期としたのはアクセルペダルの操作に対して追随応答性を高めるためのものである。さらに、スロットル開度変更禁止期間の開始は制御手段14による燃料噴射量演算直後とすることもできる。   The throttle opening change prohibition period described above, including the intake valve overlap period, must not cause a change in the amount of intake air charged in each cylinder, and the throttle opening change prohibition period is set in this way. . Also, the release of the throttle opening change prohibition period is set as the timing when the intake valve is substantially closed in order to improve the follow-up response to the operation of the accelerator pedal. Further, the start of the throttle opening change prohibition period may be immediately after the fuel injection amount calculation by the control means 14.

このように、内燃機関の独立吸気管にETVを設けた場合、各気筒間における吸気の干渉がなくなるため、低負荷領域においてはポンピングロスの低下が図られ、燃費が向上すると共に、スロットルバルブ下流の容積が減少するため吸気の応答性が向上することが知られているが、この発明においてはこれに加えて独立吸気管に設けたETVを個々に制御できるようにし、アクセル操作の速度が変化したときには既に燃料噴射が完了した気筒に対しては吸気通路面積をアクセル操作に追随して変化させ、燃料噴射中の気筒に対しては吸気が完了するまで燃料噴射前の吸気量を維持するようにしたので、適正な燃焼を行って排気ガスの悪化を防止すると共に、運転者の操作に対して応答性の良好な内燃機関の出力が得られるものである。   As described above, when the ETV is provided in the independent intake pipe of the internal combustion engine, the interference of the intake air between the cylinders is eliminated, so that the pumping loss is reduced in the low load region, the fuel consumption is improved, and the throttle valve downstream It is known that the responsiveness of the intake is improved because the volume of the intake air is reduced. In the present invention, however, the ETV provided in the independent intake pipe can be individually controlled to change the speed of the accelerator operation. When the fuel injection has been completed, the intake passage area is changed following the accelerator operation for the cylinders for which fuel injection has already been completed, and the intake air amount before fuel injection is maintained for the cylinders during fuel injection until the intake is completed. As a result, proper combustion is performed to prevent the exhaust gas from deteriorating, and an output of the internal combustion engine having good responsiveness to the operation of the driver can be obtained.

この発明による内燃機関制御装置は、電気点火方式の車両用内燃機関および船舶用内燃機関などに適用できるものである。   The internal combustion engine control apparatus according to the present invention can be applied to an electric ignition type internal combustion engine for a vehicle, a marine internal combustion engine, and the like.

この発明の実施の形態1による内燃機関制御装置を説明する概要構成である。1 is a schematic configuration illustrating an internal combustion engine control apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1による内燃機関制御装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the internal combustion engine control apparatus by Embodiment 1 of this invention. この発明の実施の形態1による内燃機関制御装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the internal combustion engine control apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 内燃機関、1a〜1d 気筒、2 吸気管、3 エアクリーナ、
4 吸気管集合部、5a〜5d 独立吸気管、6a〜6d 吸気バルブ、
7a〜7d 燃料噴射弁、8a〜8d 吸気圧センサ、
9a〜9d ETV(個別吸気量制御手段)、
10a〜10d 排気バルブ、11 排気管、12 空燃比センサ、
13気筒識別センサ、14 制御手段。
1 internal combustion engine, 1a to 1d cylinder, 2 intake pipe, 3 air cleaner,
4 intake pipe assembly, 5a to 5d independent intake pipe, 6a to 6d intake valve,
7a-7d fuel injection valve, 8a-8d intake pressure sensor,
9a to 9d ETV (individual intake air amount control means),
10a to 10d exhaust valve, 11 exhaust pipe, 12 air-fuel ratio sensor,
13 cylinder identification sensor, 14 control means.

Claims (2)

複数の気筒に対して気筒別に吸気を供給する独立吸気管、前記独立吸気管に設けられ気筒毎の有効吸気通路断面積を個別に制御する個別吸気量制御手段、前記独立吸気管に設けられ気筒別に燃料を供給する燃料噴射弁、複数の気筒に対する吸気量を気筒別に演算して前記個別吸気量制御手段を制御すると共に、各気筒に対する燃料供給量を個別に演算して前記燃料噴射弁を制御する制御手段を備え、前記制御手段が、アクセル操作が行われた内燃機関の過渡運転時において、燃料供給量の補正が不可能になる、燃料供給量の演算が終了してからその気筒における吸気バルブが略閉じるまでの期間は有効吸気通路断面積の変更を制限し、吸気バルブが略閉じる時点で有効吸気通路断面積の変更制限を解除することを特徴とする内燃機関制御装置。 An independent intake pipe for supplying intake air to a plurality of cylinders for each cylinder, an individual intake air amount control means for individually controlling an effective intake passage sectional area for each cylinder provided in the independent intake pipe, and a cylinder provided in the independent intake pipe A fuel injection valve that supplies fuel separately, and calculates the intake air amount for a plurality of cylinders for each cylinder to control the individual intake air amount control means, and individually calculates the fuel supply amount for each cylinder to control the fuel injection valve And the control means makes it impossible to correct the fuel supply amount during transient operation of the internal combustion engine in which the accelerator operation is performed. After the calculation of the fuel supply amount is completed, the intake air in the cylinder period until the valve is substantially closed, the effective intake passage to restrict the change of the cross-sectional area, the internal combustion engine control instrumentation, characterized in that to release the change restriction of the effective intake cross-sectional area substantially closed when the intake valve . 複数の気筒に対して気筒別に吸気を供給する独立吸気管、前記独立吸気管に設けられ気筒毎の有効吸気通路断面積を個別に制御する個別吸気量制御手段、前記独立吸気管に設けられ気筒別に燃料を供給する燃料噴射弁、複数の気筒に対する吸気量を気筒別に演算して前記個別吸気量制御手段を制御すると共に、各気筒に対する燃料供給量を個別に演算して前記燃料噴射弁を制御する制御手段を備え、前記制御手段が、アクセル操作が行われた内燃機関の過渡運転時において、燃料供給量の補正が不可能になる、燃料噴射弁による燃料噴射の開始からその気筒における吸気バルブが略閉じるまでの期間は、有効吸気通路断面積の変更を制限し、吸気バルブが略閉じる時点で有効吸気通路断面積の変更制限を解除することを特徴とする内燃機関制御装置。 An independent intake pipe for supplying intake air to a plurality of cylinders for each cylinder, an individual intake air amount control means for individually controlling an effective intake passage sectional area for each cylinder provided in the independent intake pipe, and a cylinder provided in the independent intake pipe A fuel injection valve that supplies fuel separately, and calculates the intake air amount for a plurality of cylinders for each cylinder to control the individual intake air amount control means, and individually calculates the fuel supply amount for each cylinder to control the fuel injection valve And the control means makes it impossible to correct the fuel supply amount during transient operation of the internal combustion engine in which the accelerator operation is performed, and the intake valve in the cylinder from the start of fuel injection by the fuel injection valve internal combustion engine system but substantially closing time to the to limit the change of the effective intake cross-sectional area, and cancels the change restriction of the effective intake cross-sectional area substantially closed when the intake valve Apparatus.
JP2003376057A 2003-11-05 2003-11-05 Internal combustion engine control device Expired - Fee Related JP4002230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003376057A JP4002230B2 (en) 2003-11-05 2003-11-05 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376057A JP4002230B2 (en) 2003-11-05 2003-11-05 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2005139970A JP2005139970A (en) 2005-06-02
JP4002230B2 true JP4002230B2 (en) 2007-10-31

Family

ID=34687245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376057A Expired - Fee Related JP4002230B2 (en) 2003-11-05 2003-11-05 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4002230B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018173187A1 (en) * 2017-03-23 2018-09-27 本田技研工業株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP2005139970A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
EP1832721B1 (en) Internal combustion engine having a variable valve train
JP5209454B2 (en) Device for controlling when ignition is stopped when the internal combustion engine is stopped
EP2345807B1 (en) Internal combustion engine stop control device
US6282889B1 (en) Air/fuel ration control system of internal combustion engine
JP2002322934A (en) Intake control device for internal combustion engine
JPH0347454A (en) Control device for internal combustion engine
JP3641914B2 (en) Control device for internal combustion engine
US6295967B1 (en) Powertrain output monitor
EP2570636A1 (en) Control device for internal combustion engine
EP2410157A1 (en) Control device for engine
JP2007092531A (en) Control device for internal combustion engine
JP4002230B2 (en) Internal combustion engine control device
JP6051793B2 (en) Control device for internal combustion engine
JP2006200466A (en) Output control device for internal combustion engine
KR20020033769A (en) Method for Operating an Internal Combustion Engine in Particular in a Motor Vehicle
JP5402757B2 (en) Control device for internal combustion engine
EP2278140B1 (en) A control apparatus for an internal combustion engine
JP2009002285A (en) Control device for internal combustion engine
JP4514601B2 (en) Idle rotation control method for internal combustion engine
JP2008202524A (en) Internal combustion engine
JP4353089B2 (en) Control device for internal combustion engine
JP2005226479A (en) Control device and control method for diesel engine
JP2001193504A (en) Internal combustion engine having an electromagnetically driven valve
JP2005140120A (en) Exhaust gas purification device for lean combustion internal combustion engine
JP2006118385A (en) Idling operation control method of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4002230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees