[go: up one dir, main page]

JP4001260B2 - Solar cell manufacturing method and solar cell - Google Patents

Solar cell manufacturing method and solar cell Download PDF

Info

Publication number
JP4001260B2
JP4001260B2 JP2000270064A JP2000270064A JP4001260B2 JP 4001260 B2 JP4001260 B2 JP 4001260B2 JP 2000270064 A JP2000270064 A JP 2000270064A JP 2000270064 A JP2000270064 A JP 2000270064A JP 4001260 B2 JP4001260 B2 JP 4001260B2
Authority
JP
Japan
Prior art keywords
transparent
layer
conductive
cell
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000270064A
Other languages
Japanese (ja)
Other versions
JP2002083980A (en
Inventor
秀芳 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tech Inc
Original Assignee
Mitsui High Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tech Inc filed Critical Mitsui High Tech Inc
Priority to JP2000270064A priority Critical patent/JP4001260B2/en
Publication of JP2002083980A publication Critical patent/JP2002083980A/en
Application granted granted Critical
Publication of JP4001260B2 publication Critical patent/JP4001260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池の製造方法および太陽電池に係り、特に球体セルを用いた太陽電池の製造方法および太陽電池に関する。
【0002】
【従来の技術】
半導体のpn接合部分には内部電界が生じており、これに光を当て、電子正孔対を生成させると、生成した電子と正孔は内部電界により分離されて、電子はn側に、正孔はp側に集められ、外部に負荷を接続するとp側からn側に向けて電流が流れる。この効果を利用し、光エネルギーを電気エネルギーに変換する素子として太陽電池の実用化が進められている。
【0003】
近年、単結晶、多結晶シリコンなどの直径1mm以下の球状の半導体(Ball Semiconductor)上に回路パターンを形成して半導体素子を製造する技術が開発されている。
【0004】
その1つとして、アルミ箔を用いて多数個の半導体粒子を接続したソーラーアレーの製造方法が提案されている(特開平6-13633号)。この方法では、図6に示すように、n型表皮部とp型内部を有する半導体粒子207をアルミ箔の開口にアルミ箔201の両側から突出するように配置し、片側の表皮部209を除去し、絶縁層221を形成する。次にp型内部211の一部およびその上の絶縁層221を除去し、その除去された領域217に第2アルミ箔219を結合する。その平坦な領域217が導電部としての第2アルミ箔219に対し良好なオーミック接触を提供するようにしたものである。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来の太陽電池(上記ソーラーアレー)では、アルミ箔219にパンチ等により打ち抜いて開口を形成し、半導体粒子207をこのアルミ箔219の開口に埋め込んでいた。このため、半導体粒子207をアルミ箔219の開口に対して正確な位置合わせをしてから埋め込まなければならなかった。また、埋め込み時に開口のエッジと球体セル間に隙間ができてしまうのを防ぐため、球体である半導体粒子207が球形状や直径が一定の真球であることが要求されていた。
よって、上記のような従来の太陽電池の製造方法および太陽電池では製造方法が困難であり、製造コストも高くなってしまうという問題点があった。
【0006】
本発明は、上記の問題点に鑑みて成されたものであり、太陽電池の球体セルが正確な位置合わせや均一な真球でなくても製造できる低コストかつ簡単な太陽電池の製造方法および太陽電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の第1の太陽電池の製造方法は、第1導電型半導体層を有する球体基板表面に、第2導電型半導体層を形成してなる球体セルを用いた太陽電池の製造方法において、平坦な透明部材の上に透明導電層を形成して上下面平坦な透明基板を形成する工程と、前記透明基板の上に、前記球体セルを載置、圧接させた状態で該透明基板と該球体セルとを透明導電接着層で接着させる工程と、電気的絶縁性を持つ透明樹脂を溶融させ、球体セルの一部が液面から露出するまで流し込み、硬化させ、透明絶縁層を形成する工程と、前記透明絶縁層から露出した前記球体セルの第2導電型半導体層のみをエッチングし、内部の前記第1導電型半導体層を露出させる工程と、前記透明絶縁層および前記球体セルの上に、該球体セルの露出した前記第1導電型半導体層の中央の一部が露出したまま残るように、絶縁部材を塗布することにより、絶縁層を形成する工程と、前記透明絶縁層上の前記第1導電型半導体層の露出した側の表面に、透明な導電層を形成する工程と、を含むことを特徴とする。
かかる方法によれば、球体セルの正確な位置決めを必要とせず、球体セルの球形状や直径が一定の真球でなくてもよく、形状や直径にばらつきがあっても製造可能である。また、凝集型の配列方法、格子状の配列方法、千鳥状の配列方法、などの配列方法により任意の形状に配列させることができる。また、導電層をアルミ薄膜で形成することができるため(アルミ薄膜は反射効率が良いため)、反射した太陽光を球体セルに取り込むことができる。
また、外側電極となる透明基板およびその外層の平坦な透明部材、並びに内側電極となる透明導電層が透明であるため、表裏の両面とも受光面となる太陽電池を製造することができる。
【0008】
本発明の第2の太陽電池の製造方法は、第1導電型半導体層を有する球体基板表面に、第2導電型半導体層を形成してなる球体セルを用いた太陽電池の製造方法において、平坦な透明部材の上に透明導電層を形成して上下面平坦な透明基板を形成する工程と、前記透明基板の上に、前記球体セルを載置、圧接させた状態で該透明基板と該球体セルとを透明導電接着層で接着させる工程と、電気的絶縁性を持つ透明樹脂を溶融させ、前記球体セルの全部分が埋まるように流し込み、硬化させ、透明絶縁層を形成する工程と、前記透明絶縁層から球体セル内部の第1導電型半導体層が露出するように、前記透明絶縁層および球体セルの表面を研削し除去する工程と、前記第1導電型半導体層のみに連通する貫通孔を有する絶縁部材を、前記透明絶縁層および前記球体セルの表面に貼り付け、孔付き絶縁層とする工程と、前記絶縁部材の表面を透明導電部材で覆い、かつ、前記貫通孔に前記透明導電部材を充填させ、透明な導電層を形成する工程と、を含むことを特徴とする。
かかる方法によれば、球体セルの正確な位置決めを必要とせず、球体セルの球形状や直径が一定の真球でなくてもよく、形状や直径にばらつきがあっても製造可能である。また、凝集型の配列方法、格子状の配列方法、千鳥状の配列方法、などの配列方法により任意の形状に配列させることができる。また、導電層をアルミ薄膜で形成することができるため(アルミ薄膜は反射効率が良いため)、反射した太陽光を球体セルに取り込むことができる。
さらに、絶縁層を形成する工程は、貫通孔のある絶縁部材を貼り付けることだけであるので、絶縁樹脂の溶融・硬化処理などの工程が必要とせず、製造が容易にできる。
また、外側電極となる透明基板およびその外層の平坦な透明部材、並びに内側電極となる透明導電層が透明であるため、表裏の両面とも受光面となる太陽電池を製造することができる。
【0009】
本発明の第3の太陽電池は、内部が第1導電型半導体層、表面が第2導電型半導体層からなる球体セルが、下層から順に平坦な下側透明導電層、絶縁層、透明絶縁層、平坦な上側透明導電層、平坦な透明部材が積層された上下面平坦な基板に埋め込むように形成され、前記第2導電型半導体層が部分的に切除されて前記球体セルの前記第1導電型半導体層が前記基板の平坦な前記下側透明導電層と電気的に接続されることにより内側電極が形成され、前記球体セルの前記第2導電型半導体層が前記基板の平坦な前記上側透明導電層と電気的に接続されることにより外側電極が形成され、前記絶縁層および前記透明絶縁層によって、前記下側透明導電層と前記上側透明導電層とが電気的に絶縁されてなることを特徴とする。
【0010】
かかる構成によれば、製造が容易で単純な構造であり、内側電極と外側電極の短絡が基本的に発生せず、また、表裏の両面とも受光面となるように、これらの内側、外側電極がともに透明であり、かつ受光面に設けられた透明な絶縁層により受光効率の優れた太陽電池を実現できる。
【0011】
本発明の第4の太陽電池は、請求項3に記載の太陽電池において、前記絶縁層には前記球体セルの第1導電型半導体層にのみ連通する貫通孔が形成され、前記下側透明導電層は前記貫通孔を埋めつくすように前記絶縁層の外面に積層されて外面が平坦な内側電極となっていることを特徴とする
かかる構成によれば、製造が容易で単純な構造であり、内側電極と外側電極の短絡が基本的に発生せず、また、表裏の両面とも受光面となるように、これらの内側、外側電極がともに透明であり、かつ受光面に設けられた透明な絶縁層により受光効率の優れた太陽電池を実現できる。
【0012】
【発明の実施の形態】
以下、本発明に係る太陽電池および太陽電池の製造方法について一実施の形態を挙げ、図面を参照して詳細に説明する。
【0013】
本発明の実施形態に係る太陽電池は、図1に要部斜視図を示すように、この図1に示すように、下から導電層17(例えば、アルミ薄膜、ITO等で形成される)、絶縁層16(例えば、エポキシ樹脂等で形成される)、透明絶縁層15、透明導電層13(例えば、ITO等で形成される)、透明部材14を積層構成された太陽電池基板20内に、太陽電池のセルとなる球体セル10を埋め込むように形成されている。
【0014】
さらに詳しく太陽電池の断面構造を説明する。図1のA−A線の断面を図2に示す。この図2に示すように、内部のp型半導体層11(第1導電型半導体層)とpn接合を形成するn型半導体層12(第2導電型半導体層)を有する球体セル10が、前述のように、下層から順に平坦な導電層17、絶縁層16、透明絶縁層15、平坦な透明導電層13、平坦な透明部材14を積層構成された上下面平坦な太陽電池基板20内に埋め込むように形成されている。
【0015】
上記構成において、導電層17とp型半導体層11が電気的に接続されるように構成されている。これにより、導電層17は太陽電池の内側電極となっている。また、透明導電層13はn型半導体層12と電気的に接続されるように構成されている。これにより、透明導電層13は太陽電池の外側電極となっている。
【0016】
さらに、透明絶縁層15および絶縁層16により導電層17(太陽電池の内側電極)と透明導電層13(太陽電池の外側電極)とが電気的に絶縁されているものである。
【0017】
次に、本発明の実施形態に係る太陽電池の具体的な製造方法の一例を以下、説明する。
まず、本実施の形態で用いる球体セル10の形成方法の一例について説明する。
直径1mmのp型多結晶シリコン粒を真空中で加熱しつつ落下させ、結晶性の良好なp型多結晶シリコン球(p型半導体層)11を形成し、この表面に、フォスフィンを含むシランなどの混合ガスを用いたCVD法により、n型多結晶シリコン層(n型半導体層)12を形成する。ここでCVD工程は細いチューブ内でシリコン球を搬送しながら、所望の反応温度に加熱されたガスを供給排出することにより、薄膜形成を行うものである。
【0018】
なお、この工程は、p型多結晶シリコン粒を真空中で加熱しつつ落下させながら球状化し、p型多結晶シリコン球(p型半導体層)11を形成するとともに、落下途上で所望のガスと接触させることにより、n型多結晶シリコン層(n型半導体層)12を形成する様にすることも可能である。
【0019】
次に、上述の球体セル10を用いた太陽電池の製造方法として、第1の製造方法と第2の製造方法の二例を挙げ、図3〜図6を用いて説明する。
【0020】
(第1の製造方法)
図3は、第1の製造方法における工程(a)〜(d)を説明する概略断面図である。
図4は、第1の製造方法における工程(e)〜(g)を説明する概略断面図である。
まず、図3の(a)に示すように、透明部材14(例えば、ガラス等)の上に、透明導電層13(例えば、ITO等)が形成された透明基板21を用意する。
【0021】
次に、図3の(b)に示すように、透明導電層13上に、球体セル10を載置し、プレス装置等で圧接させた状態で、例えば、ITO等を流し込むことによって接着させる。このときの位置決めは特に必要とせず、また、その配列方法として、例えば、球体セル10同士を隙間無く接触するように配列させる凝集型の配列方法、一定の隙間を空ける格子状の配列方法、または千鳥状に配列させる配列方法、などの配列方法により任意の形状に配列させることが可能である。
【0022】
次に、図3の(c)に示すように、電気的絶縁性を持つ透明樹脂(例えば、ローダミンなどの増感材)を、球体セル10の一部が液面から露出するまで流し込み、硬化させ、透明絶縁層15を形成する。
【0023】
次に、図3の(d)に示すように、透明絶縁層15から露出した球体セル10のn型半導体層12のみをエッチングし、内部のp型半導体層11を露出させる。
【0024】
次に、図4の(e)に示すように、絶縁部材(例えば、エポキシ樹脂)を透明絶縁層15および球体セル10の上に塗布(コーティング)し、絶縁層16を形成する。このとき、上記の図3の(d)における工程で露出したp型半導体層11の中央の一部が露出したまま残るように、塗布(コーティング)する。
【0025】
次に、図4の(f)に示すように、透明絶縁層15上のp型半導体層11の露出した側の表面(p型半導体層11および絶縁層16の表面)を、導電金属膜でコーティングし(例えば、アルミニウム等をスパッタリングする)、これを導電層17(太陽電池の内側電極)とする。
【0026】
最後に、図4の(g)に示すように、上下を逆転することにより(上面から太陽光が照射されるとして)、本実施の形態に係る太陽電池が形成される。
【0027】
(第2の製造方法)
図5は、第2の製造方法における工程(a)〜(d)を説明する概略断面図である。
図6は、第2の製造方法における工程(e)〜(g)を説明する概略断面図である。
まず、図5の(a)に示すように、平坦な透明部材14(例えば、ガラス等)の上に、平坦な透明導電層13(例えば、ITO等)を形成した上下面平坦な透明基板21を用意する。
【0028】
次に、図5の(b)に示すように、透明導電層13上に、球体セル10を載置しプレス装置等で圧接させた状態で、例えば、ITO等を流し込むことによって接着させる。このときの位置決めは特に必要とせず、また、その配列方法として、例えば、球体セル10同士を隙間無く接触するように配列させる凝集型の配列方法、一定の隙間を空ける格子状の配列方法、または千鳥状に配列させる配列方法、などの配列方法により任意の形状に配列させることが可能である。
【0029】
次に、図5の(c)に示すように、電気的絶縁性を持つ透明絶縁層15(例えば、ローダミンなどの増感材)を、球体セル10の全部分が埋まるように流し込み、硬化させる。
【0030】
次に、図5の(d)に示すように、透明絶縁層15から球体セル10内部のp型半導体層11が露出するように、透明絶縁層15および球体セル10の表面をグラインディング等により平坦に研削し除去する。
【0031】
次に、図6の(e)に示すように、表面に貫通孔Hがあるシート状の絶縁部材を、透明絶縁層15および球体セル10の表面に貼り付け、これを孔付き絶縁層16とする。この貫通孔Hは、上記の研削により球体セル10の表面に露出したp型半導体層11のみに連通するように予め空けられている。
【0032】
次に、図6の(f)に示すように、孔付き絶縁層16の表面が、導電部材で覆われ、かつ、貫通孔Hに充填するように、例えば、銀ペーストをスキージング(squeezing)処理を施した後、貫通孔に埋め込み、150℃〜200℃に加熱して、約1時間キュア(硬化)処理を施す。これを導電層17(太陽電池の内側電極)とする。ここで、導電層17は、図示のように、外面が平坦面となっている。
【0033】
最後に、図6の(g)に示すように、上下を逆転することにより(上面から太陽光が照射されるとして)、本実施の形態に係る太陽電池が形成される。
【0034】
上述の実施の形態において、第1導電型をp型、第2導電型をn型として、説明を行ったが、第1導電型をn型、第2導電型をp型としても同様に製造できるものである。
また、p型多結晶を球状基板とする球体セルを用いたが、p型単結晶またはp型アモルファスシリコンなどを用いても良い。
また、導電層17(太陽電池の内側電極)は、ITO等の透明な導電膜で形成することにより、太陽電池の表裏の両面とも受光面として使用することができる。
【0035】
【発明の効果】
以上詳記したように、本発明に係る太陽電池の製造方法および太陽電池によれば、球体セルの正確な位置決めを必要とせず、球体セルの球形状や直径が一定の真球でなくてもよく、形状や直径にばらつきがあっても製造可能である。
また、凝集型の配列方法、格子状の配列方法、千鳥状の配列方法、などの配列方法により任意の形状に配列させることができ、自由な設計が可能である。
また、導電層をアルミ薄膜で形成することができるため(アルミ薄膜は反射効率が良いため)、反射した太陽光を球体セルに取り込むことができ、太陽光の効率的な利用を図ることができる。
または、導電層を透明な導電膜で形成することもでき、この場合は、太陽電池の表裏の両面とも受光面として使用することができるので、さらに効率的な太陽光の利用を図ることができるものである。
または、絶縁層を貫通孔のある絶縁部材を貼り付けることによっても製造できるので、この場合は、絶縁樹脂の溶融・硬化処理などの工程が必要とせず、さらに製造が容易になる。
これらの効果により、低コストかつ簡単な太陽電池の製造方法で、受光効率の優れた太陽電池を提供することができるものである。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る太陽電池の要部斜視図である。
【図2】 本発明の実施形態に係る太陽電池を説明する断面概要図である。
【図3】 本発明の実施形態に係る太陽電池の第1の製造方法における工程(a)〜(d)の概略断面図である。
【図4】 本発明の実施形態に係る太陽電池の第1の製造方法における工程(e)〜(g)の概略断面図である。
【図5】 本発明の実施形態に係る太陽電池の第2の製造方法における工程(a)〜(d)の概略断面図である。
【図6】 本発明の実施形態に係る太陽電池の第2の製造方法における工程(e)〜(g)の概略断面図である。
【図7】 従来の太陽電池を説明する断面概要図である。
【符号の説明】
10 球体セル
11 第1導電型(p型)半導体層
12 第2導電型(n型)半導体層
13 透明導電層
14 透明部材
15 透明絶縁層
16 絶縁層
17 導電層
20 太陽電池基板
21 透明基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell manufacturing method and a solar cell, and more particularly to a solar cell manufacturing method and a solar cell using spherical cells.
[0002]
[Prior art]
An internal electric field is generated at the pn junction portion of the semiconductor. When light is applied to the semiconductor to generate an electron-hole pair, the generated electron and hole are separated by the internal electric field, and the electron is positively connected to the n side. The holes are collected on the p side, and when a load is connected to the outside, a current flows from the p side to the n side. Utilizing this effect, solar cells are being put to practical use as elements that convert light energy into electrical energy.
[0003]
In recent years, a technique for manufacturing a semiconductor element by forming a circuit pattern on a spherical semiconductor (Ball Semiconductor) having a diameter of 1 mm or less such as single crystal or polycrystalline silicon has been developed.
[0004]
As one of them, a method for manufacturing a solar array in which a large number of semiconductor particles are connected using aluminum foil has been proposed (Japanese Patent Laid-Open No. 6-13633). In this method, as shown in FIG. 6, semiconductor particles 207 having an n-type skin portion and a p-type interior are arranged so as to protrude from both sides of the aluminum foil 201 in the opening of the aluminum foil, and the skin portion 209 on one side is removed. Then, the insulating layer 221 is formed. Next, a part of the p-type interior 211 and the insulating layer 221 thereon are removed, and the second aluminum foil 219 is bonded to the removed region 217. The flat region 217 provides good ohmic contact with the second aluminum foil 219 serving as a conductive portion.
[0005]
[Problems to be solved by the invention]
However, in such a conventional solar cell (the above solar array), an opening is formed by punching the aluminum foil 219 with a punch or the like, and the semiconductor particles 207 are embedded in the opening of the aluminum foil 219. For this reason, the semiconductor particles 207 had to be embedded after being accurately aligned with the opening of the aluminum foil 219. Further, in order to prevent a gap from being formed between the edge of the opening and the spherical cell at the time of embedding, it is required that the semiconductor particle 207 which is a sphere is a true sphere having a spherical shape and a constant diameter.
Therefore, the conventional solar cell manufacturing method and the solar cell as described above have a problem that the manufacturing method is difficult and the manufacturing cost increases.
[0006]
The present invention has been made in view of the above problems, and a low-cost and simple method for manufacturing a solar cell that can be manufactured even if the spherical cell of the solar cell is not precisely aligned or a uniform true sphere. An object is to provide a solar cell.
[0007]
[Means for Solving the Problems]
First method of manufacturing a solar cell of the present invention, the spherical surface of the substrate having a first conductivity type semiconductor layer, the manufacturing method of a solar cell using a spherical cell obtained by forming the second conductivity type semiconductor layer, flat Forming a transparent conductive layer on a transparent member to form a transparent substrate having flat upper and lower surfaces; and placing the spherical cell on the transparent substrate and pressing the transparent substrate and the spherical body A step of adhering the cell with a transparent conductive adhesive layer, a step of melting a transparent resin having electrical insulation, pouring until a part of the spherical cell is exposed from the liquid surface, curing, and forming a transparent insulating layer; Etching the second conductive type semiconductor layer of the spherical cell exposed from the transparent insulating layer to expose the first conductive type semiconductor layer inside; and on the transparent insulating layer and the spherical cell ; said first conductive exposed in the sphere cells A step of forming an insulating layer by applying an insulating member so that a part of the center of the type semiconductor layer remains exposed, and an exposed side of the first conductive type semiconductor layer on the transparent insulating layer And a step of forming a transparent conductive layer on the surface.
According to this method, without the need for precise positioning of the spheres cell, spherical shape and the diameter of the sphere cells may not be constant true sphere, even if there are variations in the shape or diameter can be manufactured. Further, it can be arranged in an arbitrary shape by an arrangement method such as an aggregation type arrangement method, a lattice arrangement method, or a staggered arrangement method. Further, since the conductive layer can be formed of an aluminum thin film (since the aluminum thin film has high reflection efficiency), the reflected sunlight can be taken into the spherical cell.
Moreover, since the transparent substrate used as an outer electrode, the flat transparent member of the outer layer, and the transparent conductive layer used as an inner electrode are transparent, a solar cell in which both the front and back surfaces are light receiving surfaces can be manufactured.
[0008]
The method of manufacturing a second solar cell of the present invention, the spherical surface of the substrate having a first conductivity type semiconductor layer, the manufacturing method of a solar cell using a spherical cell obtained by forming the second conductivity type semiconductor layer, flat Forming a transparent conductive layer on a transparent member to form a transparent substrate having flat upper and lower surfaces; and placing the spherical cell on the transparent substrate and pressing the transparent substrate and the spherical body a step of adhering the cells in the transparent conductive adhesive layer, a step of the transparent resin having an electrical insulation is melted, poured so that all portions of the spherical body cell is filled, cured to form a transparent insulating layer, wherein as the first conductive semiconductor layer from the transparent insulating layer inside the sphere cell is exposed, said a step of grinding to remove surface of the transparent insulating layer and sphere cells, through holes communicating only to the first conductive semiconductor layer An insulating member having the transparent insulation. It stuck on the layer and the surface of the spherical body cells, comprising the steps of a perforated insulating layer, covered with a transparent conductive member the surface of the insulating member, and is filled with the transparent conductive member in the through-hole, a transparent conductive layer Forming the step.
According to this method, without the need for precise positioning of the spheres cell, spherical shape and the diameter of the sphere cells may not be constant true sphere, even if there are variations in the shape or diameter can be manufactured. Further, it can be arranged in an arbitrary shape by an arrangement method such as an aggregation type arrangement method, a lattice arrangement method, or a staggered arrangement method. Further, since the conductive layer can be formed of an aluminum thin film (since the aluminum thin film has high reflection efficiency), the reflected sunlight can be taken into the spherical cell.
Furthermore, since the process of forming the insulating layer is only attaching an insulating member having a through hole, a process such as a melting / curing process of the insulating resin is not required, and the manufacturing can be facilitated.
Moreover, since the transparent substrate used as an outer electrode, the flat transparent member of the outer layer, and the transparent conductive layer used as an inner electrode are transparent, a solar cell in which both the front and back surfaces are light receiving surfaces can be manufactured.
[0009]
In the third solar cell of the present invention, a spherical cell having a first conductive type semiconductor layer inside and a second conductive type semiconductor layer on the inside is a flat transparent lower conductive layer, insulating layer, and transparent insulating layer in order from the lower layer. The first conductive layer of the spherical cell is formed by partially cutting away the second conductive type semiconductor layer and embedding it in a flat upper and lower flat substrate on which a flat upper transparent conductive layer and a flat transparent member are laminated. type semiconductor layer is an inner electrode formed by is flat the lower transparent conductive layer electrically connected to the substrate, the flat the upper transparent of said second conductivity type semiconductor layer and the substrate of the spherical cells by being conductive layer electrically connected to the outer electrode is formed by the insulating layer and the transparent insulating layer, in that said lower transparent conductive layer and the upper transparent conductive layer are electrically insulated Features.
[0010]
According to such a configuration, a simple structure is easy to manufacture, does not occur short circuit of the inner electrode and the outer electrode is essentially also as a light-receiving surface with the front and back of the double-sided, these inner, outer Both of the electrodes are transparent, and a solar cell with excellent light receiving efficiency can be realized by the transparent insulating layer provided on the light receiving surface.
[0011]
According to a fourth solar cell of the present invention, in the solar cell according to claim 3, a through-hole communicating only with the first conductive type semiconductor layer of the spherical cell is formed in the insulating layer, and the lower transparent conductive material is formed. The layer is laminated on the outer surface of the insulating layer so as to fill the through hole, and is an inner electrode having a flat outer surface .
According to such a configuration , the inner electrode and the outer electrode have a simple structure that is easy to manufacture, and the short circuit between the inner electrode and the outer electrode does not occur basically. Both are transparent, and a solar cell with excellent light receiving efficiency can be realized by a transparent insulating layer provided on the light receiving surface.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a solar cell and a method for manufacturing a solar cell according to the present invention will be described in detail with reference to the drawings.
[0013]
As shown in FIG. 1, the solar cell according to the embodiment of the present invention has a conductive layer 17 (for example, formed of an aluminum thin film, ITO, or the like) from the bottom, as shown in FIG. Insulating layer 16 (for example, formed of epoxy resin or the like), transparent insulating layer 15, transparent conductive layer 13 (for example, formed of ITO or the like), and transparent member 14 are stacked in solar cell substrate 20. It is formed so as to embed a spherical cell 10 to be a solar battery cell.
[0014]
The cross-sectional structure of the solar cell will be described in more detail. FIG. 2 shows a cross section taken along line AA of FIG. As shown in FIG. 2, a spherical cell 10 having an n-type semiconductor layer 12 (second conductivity type semiconductor layer) that forms a pn junction with an internal p-type semiconductor layer 11 (first conductivity type semiconductor layer) is described above. As shown, the flat conductive layer 17, the insulating layer 16, the transparent insulating layer 15, the flat transparent conductive layer 13, and the flat transparent member 14 are embedded in the stacked solar cell substrate 20 in the upper and lower surfaces in order from the lower layer. It is formed as follows.
[0015]
In the above configuration, the conductive layer 17 and the p-type semiconductor layer 11 are configured to be electrically connected. Thereby, the conductive layer 17 is an inner electrode of the solar cell. The transparent conductive layer 13 is configured to be electrically connected to the n-type semiconductor layer 12. Thereby, the transparent conductive layer 13 is an outer electrode of the solar cell.
[0016]
Further, the conductive layer 17 (inner electrode of the solar cell) and the transparent conductive layer 13 (outer electrode of the solar cell) are electrically insulated by the transparent insulating layer 15 and the insulating layer 16.
[0017]
Next, an example of a specific method for manufacturing a solar cell according to an embodiment of the present invention will be described below.
First, an example of a method for forming the spherical cell 10 used in the present embodiment will be described.
A p-type polycrystalline silicon particle having a diameter of 1 mm is dropped while being heated in a vacuum to form a p-type polycrystalline silicon sphere (p-type semiconductor layer) 11 having good crystallinity, and silane containing phosphine is formed on the surface. An n-type polycrystalline silicon layer (n-type semiconductor layer) 12 is formed by a CVD method using the above mixed gas. Here, in the CVD process, a thin film is formed by supplying and discharging a gas heated to a desired reaction temperature while carrying a silicon sphere in a thin tube.
[0018]
In this step, the p-type polycrystalline silicon grains are spheroidized while being heated and dropped in vacuum to form a p-type polycrystalline silicon sphere (p-type semiconductor layer) 11 and a desired gas in the course of dropping. It is also possible to form an n-type polycrystalline silicon layer (n-type semiconductor layer) 12 by contacting them.
[0019]
Next, two examples of the first manufacturing method and the second manufacturing method will be described as a solar cell manufacturing method using the spherical cell 10 described above, and will be described with reference to FIGS.
[0020]
(First manufacturing method)
FIG. 3 is a schematic cross-sectional view illustrating steps (a) to (d) in the first manufacturing method.
FIG. 4 is a schematic cross-sectional view illustrating steps (e) to (g) in the first manufacturing method.
First, as shown in FIG. 3A, a transparent substrate 21 having a transparent conductive layer 13 (for example, ITO) formed on a transparent member 14 (for example, glass) is prepared.
[0021]
Next, as shown in FIG. 3B, the spherical cell 10 is placed on the transparent conductive layer 13 and bonded thereto by pouring, for example, ITO or the like in a state where the spherical cell 10 is pressed by a press device or the like. Positioning at this time is not particularly required, and as an arrangement method thereof, for example, an aggregation type arrangement method in which spherical cells 10 are arranged so as to contact each other without a gap, a lattice-like arrangement method having a certain gap, or It can be arranged in an arbitrary shape by an arrangement method such as a staggered arrangement method.
[0022]
Next, as shown in FIG. 3C, a transparent resin having an electrical insulation property (for example, a sensitizer such as rhodamine) is poured into the spherical cell 10 until a part of the spherical cell 10 is exposed from the liquid surface and cured. The transparent insulating layer 15 is formed.
[0023]
Next, as shown in FIG. 3D, only the n-type semiconductor layer 12 of the spherical cell 10 exposed from the transparent insulating layer 15 is etched to expose the internal p-type semiconductor layer 11.
[0024]
Next, as shown in FIG. 4E, an insulating member (for example, epoxy resin) is applied (coated) on the transparent insulating layer 15 and the spherical cell 10 to form the insulating layer 16. At this time, coating is performed so that a part of the center of the p-type semiconductor layer 11 exposed in the step in FIG.
[0025]
Next, as shown in FIG. 4F, the exposed surface of the p-type semiconductor layer 11 on the transparent insulating layer 15 (the surface of the p-type semiconductor layer 11 and the insulating layer 16 ) is formed of a conductive metal film. It coats (for example, sputtering aluminum etc.) and makes this the conductive layer 17 (inner electrode of a solar cell).
[0026]
Finally, as shown in FIG. 4G, the solar cell according to the present embodiment is formed by reversing the upper and lower sides (assuming that sunlight is irradiated from the upper surface).
[0027]
(Second manufacturing method)
FIG. 5 is a schematic cross-sectional view illustrating steps (a) to (d) in the second manufacturing method.
FIG. 6 is a schematic cross-sectional view illustrating steps (e) to (g) in the second manufacturing method.
First, as shown in FIG. 5A, the upper and lower flat transparent substrates 21 each having a flat transparent conductive layer 13 (for example, ITO) formed on a flat transparent member 14 (for example, glass). Prepare.
[0028]
Next, as shown in FIG. 5B, the spherical cell 10 is placed on the transparent conductive layer 13 and is adhered by pouring, for example, ITO or the like in a state where the spherical cell 10 is pressed by a press device or the like. Positioning at this time is not particularly required, and as an arrangement method thereof, for example, an aggregation type arrangement method in which spherical cells 10 are arranged so as to contact each other without a gap, a lattice-like arrangement method having a certain gap, or It can be arranged in an arbitrary shape by an arrangement method such as a staggered arrangement method.
[0029]
Next, as shown in FIG. 5C, a transparent insulating layer 15 having electrical insulation (for example, a sensitizing material such as rhodamine) is poured and cured so that the entire part of the spherical cell 10 is buried. .
[0030]
Next, as shown in FIG. 5D, the surface of the transparent insulating layer 15 and the spherical cell 10 are ground by grinding or the like so that the p-type semiconductor layer 11 inside the spherical cell 10 is exposed from the transparent insulating layer 15. Grind flat and remove.
[0031]
Next, as shown in FIG. 6 (e), a sheet-like insulating member having a through-hole H on its surface is attached to the surface of the transparent insulating layer 15 and the spherical cell 10, and this is attached to the insulating layer 16 with a hole. To do. This through hole H is previously opened so as to communicate only with the p-type semiconductor layer 11 exposed on the surface of the spherical cell 10 by the above grinding.
[0032]
Next, as shown in FIG. 6F, for example, silver paste is squeezed so that the surface of the insulating layer 16 with holes is covered with the conductive member and fills the through holes H. After the treatment, it is embedded in the through hole, heated to 150 ° C. to 200 ° C., and subjected to a curing (curing) treatment for about 1 hour. This is defined as a conductive layer 17 (inner electrode of solar cell). Here, as shown, the conductive layer 17 has a flat outer surface.
[0033]
Finally, as shown in FIG. 6G, the solar cell according to the present embodiment is formed by reversing the upper and lower sides (assuming that sunlight is irradiated from the upper surface).
[0034]
In the above-described embodiment, the first conductivity type is p-type and the second conductivity type is n-type. However, the first conductivity type is n-type and the second conductivity type is p-type. It can be done.
Moreover, although the spherical cell which uses a p-type polycrystal as a spherical substrate was used, you may use a p-type single crystal or p-type amorphous silicon.
Moreover, the conductive layer 17 (inner electrode of the solar cell) can be used as a light receiving surface on both the front and back surfaces of the solar cell by forming it with a transparent conductive film such as ITO.
[0035]
【The invention's effect】
As described above in detail, according to the solar cell manufacturing method and solar cell of the present invention, it is not necessary to accurately position the spherical cell, and even if the spherical shape and diameter of the spherical cell are not constant spheres. well, even if there are variations in the shape or diameter can be manufactured.
Moreover, it can arrange in arbitrary shapes by arrangement methods, such as an aggregation type arrangement method, a lattice arrangement method, and a staggered arrangement method, and free design is possible.
In addition, since the conductive layer can be formed of an aluminum thin film (since the aluminum thin film has good reflection efficiency), the reflected sunlight can be taken into the spherical cell, so that the sunlight can be used efficiently. .
Alternatively, the conductive layer can be formed of a transparent conductive film, and in this case, both the front and back surfaces of the solar cell can be used as the light receiving surface, so that more efficient use of sunlight can be achieved. Is.
Alternatively, the insulating layer can be manufactured by attaching an insulating member having a through hole. In this case, a process such as a melting / curing treatment of the insulating resin is not required, and the manufacturing is further facilitated.
With these effects, it is possible to provide a solar cell with excellent light receiving efficiency by a low-cost and simple method for manufacturing a solar cell.
[Brief description of the drawings]
FIG. 1 is a perspective view of a main part of a solar cell according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view illustrating a solar cell according to an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of steps (a) to (d) in the first method for manufacturing a solar cell according to the embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view of steps (e) to (g) in the first method for manufacturing a solar cell according to the embodiment of the present invention.
FIG. 5 is a schematic cross-sectional view of steps (a) to (d) in the second method for manufacturing a solar cell according to the embodiment of the present invention.
FIG. 6 is a schematic cross-sectional view of steps (e) to (g) in the second method for manufacturing a solar cell according to the embodiment of the present invention.
FIG. 7 is a schematic cross-sectional view illustrating a conventional solar cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Spherical cell 11 1st conductivity type (p-type) semiconductor layer 12 2nd conductivity type (n-type) semiconductor layer 13 Transparent conductive layer 14 Transparent member 15 Transparent insulating layer 16 Insulating layer 17 Conductive layer 20 Solar cell substrate 21 Transparent substrate

Claims (4)

第1導電型半導体層を有する球体基板表面に、第2導電型半導体層を形成してなる球体セルを用いた太陽電池の製造方法において、
平坦な透明部材の上に透明導電層を形成して上下面平坦な透明基板を形成する工程と、
前記透明基板の上に、前記球体セルを載置、圧接させた状態で該透明基板と該球体セルとを透明導電接着層で接着させる工程と、
電気的絶縁性を持つ透明樹脂を溶融させ、球体セルの一部が液面から露出するまで流し込み、硬化させ、透明絶縁層を形成する工程と、
前記透明絶縁層から露出した前記球体セルの第2導電型半導体層のみをエッチングし、内部の前記第1導電型半導体層を露出させる工程と、
前記透明絶縁層および前記球体セルの上に、該球体セルの露出した前記第1導電型半導体層の中央の一部が露出したまま残るように、絶縁部材を塗布することにより、絶縁層を形成する工程と、
前記透明絶縁層上の前記第1導電型半導体層の露出した側の表面に、透明な導電層を形成する工程と、を含むことを特徴とする太陽電池の製造方法。
In a method for manufacturing a solar cell using a spherical cell formed by forming a second conductive type semiconductor layer on a spherical substrate surface having a first conductive type semiconductor layer,
Forming a transparent conductive layer on a flat transparent member to form an upper and lower flat transparent substrate;
On the transparent substrate, the step of placing the spherical cell and bonding the transparent substrate and the spherical cell with a transparent conductive adhesive layer in a state where the spherical cell is pressed.
Melting a transparent resin having electrical insulation, pouring until a part of the spherical cell is exposed from the liquid surface, curing, and forming a transparent insulating layer;
Etching only the second conductive semiconductor layer of the spherical cell exposed from the transparent insulating layer to expose the first conductive semiconductor layer inside;
On the transparent insulating layer and the spherical cell, as part of the central of the exposed first conductive type semiconductor layer of the spheres cell remains exposed, by applying an insulating member, an insulating layer And a process of
Forming a transparent conductive layer on the exposed surface of the first conductive semiconductor layer on the transparent insulating layer.
第1導電型半導体層を有する球体基板表面に、第2導電型半導体層を形成してなる球体セルを用いた太陽電池の製造方法において、
平坦な透明部材の上に透明導電層を形成して上下面平坦な透明基板を形成する工程と、
前記透明基板の上に、前記球体セルを載置、圧接させた状態で該透明基板と該球体セルとを透明導電接着層で接着させる工程と、
電気的絶縁性を持つ透明樹脂を溶融させ、前記球体セルの全部分が埋まるように流し込み、硬化させ、透明絶縁層を形成する工程と、
前記透明絶縁層から球体セル内部の第1導電型半導体層が露出するように、前記透明絶縁層および球体セルの表面を研削し除去する工程と、
前記第1導電型半導体層のみに連通する貫通孔を有する絶縁部材を、前記透明絶縁層および前記球体セルの表面に貼り付け、孔付き絶縁層とする工程と、
前記絶縁部材の表面を透明導電部材で覆い、かつ、前記貫通孔に前記透明導電部材を充填させ、透明な導電層を形成する工程と、を含むことを特徴とする太陽電池の製造方法。
In a method for manufacturing a solar cell using a spherical cell formed by forming a second conductive type semiconductor layer on a spherical substrate surface having a first conductive type semiconductor layer,
Forming a transparent conductive layer on a flat transparent member to form an upper and lower flat transparent substrate;
On the transparent substrate, the step of placing the spherical cell and bonding the transparent substrate and the spherical cell with a transparent conductive adhesive layer in a state where the spherical cell is pressed.
Melting a transparent resin having electrical insulating properties, pouring so as to fill the entire part of the spherical cell, curing, and forming a transparent insulating layer;
As the first conductivity type semiconductor layer inside the sphere cells from said transparent insulating layer is exposed, and wherein the step of grinding the surface of the transparent insulating layer and sphere cell removal,
Attaching an insulating member having a through hole communicating only with the first conductive semiconductor layer to the surface of the transparent insulating layer and the spherical cell to form an insulating layer with a hole ;
The covered with transparent conductive member the surface of the insulating member, and a method for manufacturing a solar cell characterized by comprising a step of the is filled with a transparent conductive member in the through hole, to form a transparent conductive layer.
内部が第1導電型半導体層、表面が第2導電型半導体層からなる球体セルが、下層から順に平坦な下側透明導電層、絶縁層、透明絶縁層、平坦な上側透明導電層、平坦な透明部材が積層された上下面平坦な基板に埋め込むように形成され、前記第2導電型半導体層が部分的に切除されて前記球体セルの前記第1導電型半導体層が前記基板の平坦な前記下側透明導電層と電気的に接続されることにより内側電極が形成され、前記球体セルの前記第2導電型半導体層が前記基板の平坦な前記上側透明導電層と電気的に接続されることにより外側電極が形成され、前記絶縁層および前記透明絶縁層によって、前記下側透明導電層と前記上側透明導電層とが電気的に絶縁されてなることを特徴とする太陽電池。A spherical cell having a first conductive type semiconductor layer on the inside and a second conductive type semiconductor layer on the surface is a flat lower transparent conductive layer, an insulating layer, a transparent insulating layer, a flat upper transparent conductive layer, a flat surface in order from the lower layer. transparent member is formed so as to fill the upper and lower surfaces planar substrate that is laminated, flat above the first conductive type semiconductor layer of the spherical cells and the second conductive semiconductor layer is partially ablated said substrate the inner electrode is formed by being electrically connected to the lower transparent conductive layer, wherein said second conductive type semiconductor layer of the spheres cell is flat the upper transparent conductive layer electrically connected to said substrate solar cells are the outer electrode is formed by the insulating layer and the transparent insulating layer, and the lower transparent conductive layer and the upper transparent conductive layer is characterized by comprising electrically insulated by. 前記絶縁層には前記球体セルの第1導電型半導体層にのみ連通する貫通孔が形成され、前記下側透明導電層は前記貫通孔を埋めつくすように前記絶縁層の外面に積層されて外面が平坦な内側電極となっていることを特徴とする請求項3に記載した太陽電池。The insulating layer has a through hole communicating only with the first conductive semiconductor layer of the spherical cell, and the lower transparent conductive layer is laminated on the outer surface of the insulating layer so as to fill the through hole. The solar cell according to claim 3, wherein is a flat inner electrode.
JP2000270064A 2000-09-06 2000-09-06 Solar cell manufacturing method and solar cell Expired - Fee Related JP4001260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000270064A JP4001260B2 (en) 2000-09-06 2000-09-06 Solar cell manufacturing method and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000270064A JP4001260B2 (en) 2000-09-06 2000-09-06 Solar cell manufacturing method and solar cell

Publications (2)

Publication Number Publication Date
JP2002083980A JP2002083980A (en) 2002-03-22
JP4001260B2 true JP4001260B2 (en) 2007-10-31

Family

ID=18756572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000270064A Expired - Fee Related JP4001260B2 (en) 2000-09-06 2000-09-06 Solar cell manufacturing method and solar cell

Country Status (1)

Country Link
JP (1) JP4001260B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079453B2 (en) 2002-07-09 2006-07-18 Casio Computer Co., Ltd. Timepiece and electronic apparatus with bulb-shaped semiconductor element
KR101316943B1 (en) 2010-09-30 2013-10-18 한국에너지기술연구원 A method for manufacturing solar cells having silicon balls and the solar cells manufactured by the same
JP2011205150A (en) * 2011-07-15 2011-10-13 Clean Venture 21 Corp Method of manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
JP2002083980A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
CN100524844C (en) Method for producing photovoltaic device and photovoltaic device
KR101276713B1 (en) Serial circuit of solar cells with integrated semiconductor bodies corresponding method for production and module with serial connection
CN103840024A (en) Interconnected flexible solar cell and fabrication method thereof
JP2020529712A (en) Laminated Battery Structures and Methods for Manufacturing Laminated Battery Structures
JP3992126B2 (en) Manufacturing method of solar cell
JP3939082B2 (en) Manufacturing method of solar cell
JPH0536997A (en) Photovoltaic device
JP3436723B2 (en) Solar cell manufacturing method and solar cell
JP4001260B2 (en) Solar cell manufacturing method and solar cell
CN104145343B (en) There is the semiconductor crystal wafer solaode of the double contact at the back side of surface passivation
JPH06338636A (en) Manufacture of thermoelectric generating element
JP4854105B2 (en) Thin film solar cell module and manufacturing method thereof
JP3964123B2 (en) Manufacturing method of solar cell
JP2001177132A (en) Method of cutting globular body, and solar battery using the globular body and method of manufacturing the same
JP3849907B2 (en) Solar cell and method for manufacturing the same
JP3995134B2 (en) Solar cell manufacturing method and solar cell
JP3925770B2 (en) Manufacturing method of solar cell
JP3976162B2 (en) Manufacturing method of solar cell
JP3995139B2 (en) Solar cell manufacturing method and solar cell
JP2002111021A (en) Manufacturing method of solar battery
JP3995132B2 (en) Solar cell, semiconductor device, method for manufacturing solar cell, and method for manufacturing semiconductor device
JP3922868B2 (en) Solar cell manufacturing method and solar cell
JP4372793B2 (en) Solar cell
JP4493209B2 (en) Photoelectric conversion device
JP2001274427A (en) Photovoltaic power element and producing method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees