[go: up one dir, main page]

JP3998489B2 - Granular explosive composition - Google Patents

Granular explosive composition Download PDF

Info

Publication number
JP3998489B2
JP3998489B2 JP2002039909A JP2002039909A JP3998489B2 JP 3998489 B2 JP3998489 B2 JP 3998489B2 JP 2002039909 A JP2002039909 A JP 2002039909A JP 2002039909 A JP2002039909 A JP 2002039909A JP 3998489 B2 JP3998489 B2 JP 3998489B2
Authority
JP
Japan
Prior art keywords
granular
ammonium nitrate
weight
oil
explosive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002039909A
Other languages
Japanese (ja)
Other versions
JP2003238283A (en
Inventor
淳哉 鴇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002039909A priority Critical patent/JP3998489B2/en
Publication of JP2003238283A publication Critical patent/JP2003238283A/en
Application granted granted Critical
Publication of JP3998489B2 publication Critical patent/JP3998489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Air Bags (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、砕石、採掘、トンネル掘削などの産業発破に用いられる粒状爆薬組成物に関するものである。
【0002】
【従来の技術】
粒状硝安を主成分とする粒状爆薬組成物として、例えば硝安油剤爆薬(以下ANFOと略記)がある。ANFOは、多くは多孔質の粒状硝安と軽油からなる比較的簡便な爆薬であり、比較的容易に製造できること、また流動性に優れているため発破孔へ直接流し込み装薬が可能であること、ANFOローダーによる装填が可能であること、さらに衝撃感度が比較的低く安全であること、安価であること等から広く消費されている。
【0003】
このANFOを高威力化する方法として、吸油率の高い粒状硝安を用いて製造する方法がある。一般に、吸油率が高いということは硝安内部の空隙の容積が大きいということである。このような粒状硝安を用いることにより、爆薬の反応性が高まり、威力が増大することが知られている。吸油率の高い粒状硝安を用いた場合、爆薬の反応性が向上すると同時に衝撃感度も増大し易いという問題があった。例えば、ANFOにおいては日本工業規格K4810に規定されている塩ビ法やカートン法において不合格になるという問題があった。
【0004】
一方、粒状硝安やANFO粒子はしばしば崩れ易く、粉化し易い。爆薬製造時やANFOローダーでの装薬時等に粉化率が高いと、取扱性、作業環境に支障を来たし易い。また、粉化率が高いと嵩比重が増大するため、発破孔への装薬量が増加するという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、前記の問題を解決し、高威力かつ低感度で、ANFOローダーで排出した際でも粉化率が6%以下である粒状爆薬組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、前記課題を解決するために鋭意研究を行った結果、粒状硝安を含む粒状爆薬組成物において、(1)吸油率と硬度を調節した粒状硝安を使用すれば威力が向上し、かつ粉化が生じ難くなる。(2)平均粒径の小さい粒状硝安を使用すると威力が向上する。(3)爆薬100g当たりの酸素バランスを調整すると感度を低下させることができることを見出し、本発明を完成するに至った。
【0007】
すなわち本発明の態様は、次の通りである。
(1)吸油率が18〜23%であり、硬度が5.2〜8.8の粒状硝安と油剤を含み、爆薬100g当たりの酸素バランス値が−5.6〜−8.8gである粒状爆薬組成物。
(2)粒状硝安の平均粒径が0.8〜2.5mmである(1)に記載の粒状爆薬組成物。
以下、本発明について更に詳細に説明する。本発明において粒状硝安の吸油率とは、粒状硝安をガラスフィルターに入れて2号軽油を加えた時の粒状硝安に吸着した軽油の外割重量%のことである。詳しくは、予め重量を測っておいた直径40mmφ、内容量60ccのブフナーロート型ガラスフィルターにフィルター板上面から40mmの高さまで粒状硝安を入れて全体重量をはかる。
【0008】
次いで、ガラスフィルターの先にピンチコックで穴を塞いだゴム管を装着し、粒状硝安が完全に沈むまで2号軽油を加えて5分間放置する。放置後、ゴム管を外して2号軽油を2分間自然落下させ、真空ポンプをつないで5分間吸引する。吸引終了後、真空ポンプから取り外して全体重量を測り、次に示す式より吸油率(外割重量%)を算出する。
吸油率=(W2−(W1−W0)−W0−0.1)/(W1−W0)×100
この式におけるW0はガラスフィルターの重量(g)、W1は粒状硝安を入れた時の全体重量(g)、W2は真空ポンプ吸引後に測った全体重量(g)であり、0.1はガラスフィルターの壁面に付着する2号軽油の補正値である。粒状硝安のより望ましい吸油率は18.2〜20.8%である。更に好ましくは18.5〜19.8%である。
【0009】
本発明において粒状硝安の硬度とは、一定量の試料を硬度測定装置で機械的に圧潰し、篩い分けした時の篩を通った重量%の数値のことである。詳しくは、測定装置として直径200mmφの電気モーターによって0.5/秒の速度で回転するステンレス製の受け皿と直径190mmφの回転しないステンレス製の挽き皿(重量1,715g)を用いる。まず、目開き1.40mmと1.00mmの篩を用いて試料を篩い分ける。篩は目開きが小さな方を下にして重ね、試料を入れて振とう機で5分間振とうする。次いで、目開き1.00mmの篩に残る試料から50g秤量して硬度測定装置の受け皿に均一に広げ、その上に挽き皿を重ねて受け皿を10秒間回転後、受け皿上の試料を目開き1.00mmの篩に入れ、振とう機を使用して1分間振盪させる。篩を通過した試料を秤量し、元の試料50gに対する圧潰量(g)の比率(%)の数値を硬度とする。計算式は、硬度(%)=圧潰量(g)/試料50g×100である。
【0010】
粒状硝安の硬度は、5.5〜8.4であることが更に好ましい。粒状硝安の硬度として、6.6、7.5等は好ましい例である。本発明において粒状硝安の平均粒径とは、メディアン径(50%粒径)のことである。詳しくは、目開き4.00mm、3.35mm、2.80mm、2.36mm、1.70mm、1.18mm、0.85mm、0.425mmの篩で試料100gを篩い分けて、各篩に残った試料重量から累積粒度分布曲線を作成し、累積重量が試料全重量の50%となる粒径のことである。なお、篩は目開きの小さいものから順に重ねて試料を入れ、振とう機を使用して5分間振とうする。
【0011】
硝安粒子の平均粒径は、小さくなる程威力が向上する傾向がある。これは、粒子間の空隙が小さくなり、爆轟反応中のエネルギー伝播効率が向上するためと考えられる。硝安粒子の平均粒径は、1〜2mmであることが更に望ましい。
【0012】
本発明の粒状爆薬組成物に用いられる燃料としては、液状の油剤が望ましい。液状の油剤を用いると、油剤が硝安内部まで含浸し易いため、固体の燃料を用いるよりも粒状硝安との混合性が良くなり、反応性が高くなるためである。粒状硝安と引火点50℃以上の軽油を混合し、起爆感度と爆轟速度の条件を満たせば硝安油剤爆薬として扱われる。液状の油剤としては、軽油、灯油、重油、スピンドル油、パラフィンオイル等の鉱物油や植物油等が使用できるが、低粘度で硝安内部に含浸し易く、安価である軽油が好ましい。
【0013】
爆薬の酸素バランス値(酸素平衡値)とは、例えば、平成11年に日本火薬工業会資料編集部により刊行された「一般火薬学」第9〜12頁に述べられているように、100gの爆薬に含まれている可燃性成分が完全燃焼するための酸素の過不足量を表した数値(g)のことである。本発明では爆薬100g当たりの酸素平衡値は、−5.6〜−8.8gである。−6.4g、−7.2g、−8.0g等は好ましい例である。
【0014】
本発明の粒状爆薬組成物には、爆薬の低比重化のために低比重固体物質を添加することができる。低比重固体物質としては、発泡スチロールなどの有機低比重物質、パーライト、シラスバルーン、バーミキュライト、アタパルジャイトなどの無機低比重物質がある。これらの一種類以上を添加すると良い。無機低比重物質は、安価で入手しやすく、貯蔵時に爆薬成分と反応することがほとんどないので経時安定性に優れている。シラスバルーン、アタパルジャイトは硬度が高く優れている。無機低比重物質の嵩比重は、0.1〜0.65のものが良く、更に0.2〜0.6のものが良い。添加量は0を超えて35未満重量%が良く、更に5〜30重量%が良い。
【0015】
本発明の粒状爆薬組成物には、耐水性を付与するため増粘剤を添加してよい。増粘剤は、グアガムや冷水可溶型のローカストビーンガムが良く、特にグアガムが安価で良い。増粘剤粒子の粒径は、100ミクロン以下のものが良く、0.2重量%水溶液の20℃における粘度は20mPa・s以上のものが良い。粒状爆薬組成物への添加量は0を超えて12未満%が良く、更に2〜10%が良い。本発明の粒状爆薬組成物には、耐ブロッキング剤、及び流動性向上剤として炭酸カルシウム、シリカ、タルク、カーボンブラック、またはグラファイト、金属酸化物等を添加してよい。
【0016】
【発明の実施の形態】
以下、本発明について参考実施例を用いて説明する。本発明は、これらの具体的例によって技術的範囲を限定されるものではない。表1は、以下の参考実施例と参考比較例について実験条件と実験結果を比較してまとめたものである。
【0017】
【実施例1】
粒状硝安92.8重量%と2号軽油7.2重量%を均一に混合し、この粒状爆薬組成物について後述の試験法により評価を行った。
【0018】
【実施例2】
粒状硝安92.8重量%と2号軽油7.2重量%を均一に混合し、この粒状爆薬組成物について後述の試験法により評価を行った。
【0022】
【比較例1】
実施例1、実施例2とは吸油率及び硬度の異なる粒状硝安92.8重量%と2号軽油7.2重量%を均一に混合した。この粒状爆薬組成物について後述の試験法により評価を行った。
【0023】
【比較例2】
実施例1、実施例2とは吸油率又は硬度の異なる粒状硝安92.8重量%と2号軽油7.2重量%を均一に混合した。この粒状爆薬組成物について後述の試験法により評価を行った。
【0024】
【比較例3】
実施例1、実施例2とは吸油率及び硬度の異なる粒状硝安92.8重量%と2号軽油7.2重量%を均一に混合した。この粒状爆薬組成物について後述の試験法により評価を行った。
【0025】
[爆轟速度測定]
爆轟速度の測定は、JISのK4810の火薬類性能試験法に規定されている爆速試験、光ファイバー法に従った。ブースターとして2号榎ダイナマイト30gを使用した。
【0026】
[起爆感度試験]
起爆感度の測定は、JISのK4810の火薬類性能試験法に規定されている硝安油剤爆薬の起爆感度試験方法A(塩ビ法)に従い、6号電気雷管で起爆した。
【0027】
[粉化率測定試験]
粉化率とは、試料ANFOをANFOローダーで排出したときに粉化した量から求めたものである。詳しくは、まず粒状爆薬組成物を目開き0.85mmの篩に入れ、振とう機を用いて1分間振とうさせて篩上に残ったものを試験用試料とした。この試料10kgを加圧式ANFOローダー(旭化成株式会社製AL−250)のタンクに仕込み、エアコンプレッサーによりタンク内圧を2.5kg/cm2にした後、内径19mm、外径25mm、長さ30mのホースからANFO用重袋に全て排出した。次いで、排出した試料を少量ずつ目開き0.85mmの篩に入れて振とう機で1分間振とうさせ、すべて篩分けた。
【0028】
篩を通過した試料の重量を測定し、粉化率(重量%)=W1/W0×100により粉化率を算出した。この式において、W0はANFOローダーのタンクに仕込んだ試料重量(10kg)、W1はANFOローダーから排出した試料の0.85mm篩を通過した試料重量である。
【0029】
【表1】

Figure 0003998489
【0030】
表1より、実施例1、実施例2においては粉化が生じ難く、威力が高いことが分かる。また、感度も低く合格した。実施例3、実施例4、実施例5では、それぞれシラスバルーン、アタパルジャイト、グアガムの添加によって爆轟速度が低下したが、安価な低比重化、耐水性の付与は達成された。比較例1、比較例2、比較例3においては、粉化率が増大したり、爆轟速度が低下したりした。表1の結果は、数回実験を繰り返し行っても再現性のある結果であった。表1において粉化率の大小の傾向は、ANFOローダーの排出条件、またローダーによる排出時のみに限ったものではなく、粒状爆薬組成物としての製造時等においても同様の傾向が見られた。
【0031】
【発明の効果】
本発明は、硝安粒子の粉化と感度増加の問題を解決し、高威力の粒状爆薬組成物を得たものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a granular explosive composition used for industrial blasting such as crushed stone, mining, tunnel excavation and the like.
[0002]
[Prior art]
As a granular explosive composition mainly composed of granular ammonium nitrate, there is, for example, an ammonium explosive explosive (hereinafter abbreviated as ANFO). ANFO is a relatively simple explosive consisting mostly of porous granular ammonium nitrate and light oil, and can be manufactured relatively easily, and since it has excellent fluidity, it can be poured directly into the blasting hole, It is widely consumed because it can be loaded by an ANFO loader, has a relatively low impact sensitivity, is safe, and is inexpensive.
[0003]
As a method of increasing the power of ANFO, there is a method of manufacturing using granular ammonium nitrate having a high oil absorption rate. In general, a high oil absorption rate means that the volume of voids inside the ammonium nitrate is large. It is known that the use of such granular ammonium nitrate increases the reactivity of the explosive and increases its power. When granular ammonium nitrate with a high oil absorption rate is used, there is a problem in that the reactivity of the explosive is improved and the impact sensitivity is easily increased. For example, ANFO has a problem that it fails the PVC method and the carton method defined in Japanese Industrial Standard K4810.
[0004]
On the other hand, granular ammonium and ANFO particles are often easily broken and pulverized. If the powdering rate is high during explosives production or charging with an ANFO loader, the handling and working environment are likely to be hindered. Moreover, since a bulk specific gravity will increase when a powdering rate is high, there exists a problem that the amount of charge to a blasting hole increases.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a granular explosive composition that solves the above-mentioned problems, has high power and low sensitivity, and has a powdering rate of 6% or less even when discharged with an ANFO loader.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that in granular explosive compositions containing granular ammonium nitrate, (1) the use of granular ammonium nitrate with adjusted oil absorption and hardness improves the power, And it becomes difficult to produce powder. (2) Use of granular ammonium nitrate with a small average particle size improves power. (3) It has been found that the sensitivity can be lowered by adjusting the oxygen balance per 100 g of explosive, and the present invention has been completed.
[0007]
That is, the aspect of this invention is as follows.
(1) Granules having an oil absorption rate of 18-23%, a granular ammonium nitrate having a hardness of 5.2-8.8 and an oil agent, and an oxygen balance value per 100 g of explosive of -5.6 to -8.8 g Explosive composition.
(2) The granular explosive composition as described in (1) whose average particle diameter of granular ammonium nitrate is 0.8-2.5 mm.
Hereinafter, the present invention will be described in more detail. In the present invention, the oil absorption rate of granular ammonium is the outer percent by weight of the light oil adsorbed to the granular ammonium when No. 2 gas oil is added to the glass filter. Specifically, granular ammonium nitrate is put into a Buchner funnel type glass filter having a diameter of 40 mmφ and an internal capacity of 60 cc, which has been weighed in advance, to a height of 40 mm from the upper surface of the filter plate to measure the overall weight.
[0008]
Next, a rubber tube whose hole is closed with a pinch cock is attached to the tip of the glass filter, and No. 2 diesel oil is added until the granular ammonium nitrate is completely sunk, and left for 5 minutes. After leaving, the rubber tube is removed and No. 2 diesel oil is allowed to naturally fall for 2 minutes, connected to a vacuum pump and sucked for 5 minutes. After suction, remove from the vacuum pump, measure the total weight, and calculate the oil absorption rate (external weight percent) by the following formula.
Oil absorption rate = (W 2 − (W 1 −W 0 ) −W 0 −0.1) / (W 1 −W 0 ) × 100
In this equation, W 0 is the weight (g) of the glass filter, W 1 is the total weight (g) when granular ammonium nitrate is put, W 2 is the total weight (g) measured after vacuum pump suction, 0.1 Is the correction value of No. 2 diesel oil adhering to the wall of the glass filter. The more desirable oil absorption rate of granular ammonium nitrate is 18.2 to 20.8%. More preferably, it is 18.5 to 19.8%.
[0009]
In the present invention, the hardness of granular ammonium nitrate is a numerical value of weight% that passes through a sieve when a certain amount of sample is mechanically crushed by a hardness measuring device and sieved. Specifically, a stainless steel saucer that rotates at a speed of 0.5 / second by an electric motor having a diameter of 200 mmφ and a non-rotating stainless steel grinding plate that has a diameter of 190 mmφ (weight 1,715 g) are used as a measuring device. First, a sample is sieved using sieves having an opening of 1.40 mm and 1.00 mm. The sieve is overlapped with the smaller mesh opening, put the sample, and shake with a shaker for 5 minutes. Next, 50 g of the sample remaining on the sieve with a mesh opening of 1.00 mm is weighed and spread evenly on the saucer of the hardness measuring apparatus, and after the grinding plate is rotated for 10 seconds with the grinding plate overlaid, the sample on the saucer is opened 1 Place in a 0.00 mm sieve and shake using a shaker for 1 minute. The sample that passed through the sieve is weighed, and the numerical value of the ratio (%) of the crushing amount (g) to 50 g of the original sample is taken as the hardness. The calculation formula is hardness (%) = crush amount (g) / sample 50 g × 100.
[0010]
The hardness of the granular ammonium nitrate is more preferably 5.5 to 8.4. As the hardness of granular ammonium nitrate, 6.6, 7.5, etc. are preferable examples. In the present invention, the average particle diameter of granular ammonium nitrate is the median diameter (50% particle diameter). Specifically, 100 g of the sample is sieved with a sieve having an opening of 4.00 mm, 3.35 mm, 2.80 mm, 2.36 mm, 1.70 mm, 1.18 mm, 0.85 mm, and 0.425 mm, and remains on each sieve. A cumulative particle size distribution curve is created from the sample weight, and the cumulative particle weight is the particle size at which 50% of the total weight of the sample is obtained. In addition, a sieve is put in order from a thing with a small opening | mouth opening, a sample is put, and it shakes for 5 minutes using a shaker.
[0011]
As the average particle size of the ammonium nitrate particles decreases, the power tends to improve. This is presumably because the voids between the particles are reduced and the energy propagation efficiency during the detonation reaction is improved. The average particle diameter of the ammonium nitrate particles is more preferably 1 to 2 mm.
[0012]
As the fuel used in the granular explosive composition of the present invention, a liquid oil is desirable. This is because, when a liquid oil agent is used, the oil agent is easily impregnated into the inside of the ammonium nitrate, so that the mixing with the granular ammonium nitrate is improved and the reactivity is higher than when a solid fuel is used. If granular ammonium nitrate and light oil with a flash point of 50 ° C or higher are mixed and satisfy the conditions of detonation sensitivity and detonation speed, they are treated as an ammonium nitrate explosive. As the liquid oil, mineral oil such as light oil, kerosene, heavy oil, spindle oil, and paraffin oil, vegetable oil, and the like can be used, but light oil that is low in viscosity, easily impregnated into the ammonium nitrate, and inexpensive is preferable.
[0013]
The oxygen balance value (oxygen balance value) of explosives is, for example, as described in “General pyropharmaceuticals” on pages 9-12 published by the Japan Explosives Industry Association material editorial department in 1999. It is the numerical value (g) showing the excess and deficiency of oxygen for the combustible component contained in the explosive to burn completely. In the present invention, the oxygen equilibrium value per 100 g of explosive is −5.6 to −8.8 g. -6.4 g, -7.2 g, -8.0 g and the like are preferable examples.
[0014]
A low specific gravity solid substance can be added to the granular explosive composition of the present invention to reduce the specific gravity of the explosive. Examples of the low specific gravity solid material include organic low specific gravity materials such as polystyrene foam, and inorganic low specific gravity materials such as perlite, shirasu balloon, vermiculite, and attapulgite. One or more of these may be added. Inorganic low specific gravity substances are inexpensive and easy to obtain, and hardly react with explosive components during storage, so that they are excellent in stability over time. Shirasu balloon and attapulgite are excellent in hardness. The bulk specific gravity of the inorganic low specific gravity substance is preferably 0.1 to 0.65, and more preferably 0.2 to 0.6. The addition amount is more than 0 and less than 35% by weight, preferably 5 to 30% by weight.
[0015]
A thickening agent may be added to the granular explosive composition of the present invention to impart water resistance. As the thickener, guar gum or cold water soluble locust bean gum is preferable, and in particular, guar gum is inexpensive. The particle diameter of the thickener particles is preferably 100 microns or less, and the viscosity of a 0.2 wt% aqueous solution at 20 ° C. is preferably 20 mPa · s or more. The amount added to the granular explosive composition exceeds 0 and is preferably less than 12%, more preferably 2 to 10%. To the granular explosive composition of the present invention, calcium carbonate, silica, talc, carbon black, graphite, metal oxide, or the like may be added as an anti-blocking agent and a fluidity improver.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described using reference examples. The technical scope of the present invention is not limited by these specific examples. Table 1 summarizes experimental conditions and experimental results for the following reference examples and reference comparative examples.
[0017]
[Example 1]
92.8% by weight of granular ammonium nitrate and 7.2% by weight of No. 2 gas oil were uniformly mixed, and this granular explosive composition was evaluated by the test method described later.
[0018]
[Example 2]
92.8% by weight of granular ammonium nitrate and 7.2% by weight of No. 2 gas oil were uniformly mixed, and this granular explosive composition was evaluated by the test method described later.
[0022]
[Comparative Example 1]
92.8% by weight of granular ammonium having a different oil absorption and hardness from Example 1 and Example 2 and 7.2% by weight of No. 2 gas oil were uniformly mixed. This granular explosive composition was evaluated by the test method described later.
[0023]
[Comparative Example 2]
92.8% by weight of granular ammonium nitrate and 7.2% by weight of No. 2 gas oil differing in oil absorption and hardness from Example 1 and Example 2 were uniformly mixed. This granular explosive composition was evaluated by the test method described later.
[0024]
[Comparative Example 3]
92.8% by weight of granular ammonium having a different oil absorption and hardness from Example 1 and Example 2 and 7.2% by weight of No. 2 gas oil were uniformly mixed. This granular explosive composition was evaluated by the test method described later.
[0025]
[Detonation speed measurement]
The detonation speed was measured in accordance with the explosive speed test and the optical fiber method specified in the explosives performance test method of JIS K4810. 30g of No. 2 dynamite was used as a booster.
[0026]
[Initialization sensitivity test]
The initiation sensitivity was measured using a No. 6 electric detonator in accordance with the explosion sensitivity test method A (vinyl chloride method) for ammonium nitrate explosives specified in the explosives performance test method of JIS K4810.
[0027]
[Powdering rate measurement test]
The powdering rate is obtained from the amount of powdered when the sample ANFO is discharged by the ANFO loader. Specifically, first, the granular explosive composition was put on a sieve having a mesh opening of 0.85 mm, and was shaken for 1 minute using a shaker, and what remained on the sieve was used as a test sample. 10 kg of this sample was charged into a tank of a pressurized ANFO loader (AL-250 manufactured by Asahi Kasei Corporation), the tank internal pressure was adjusted to 2.5 kg / cm 2 with an air compressor, and then a hose with an inner diameter of 19 mm, an outer diameter of 25 mm, and a length of 30 m. Were all discharged into ANFO heavy bags. Next, the discharged sample was put in a sieve having a mesh opening of 0.85 mm, and shaken with a shaker for 1 minute.
[0028]
The weight of the sample that passed through the sieve was measured, and the powdering rate was calculated from the powdering rate (% by weight) = W 1 / W 0 × 100. In this equation, W 0 is the weight of the sample charged in the tank of the ANFO loader (10 kg), and W 1 is the weight of the sample passing through the 0.85 mm sieve of the sample discharged from the ANFO loader.
[0029]
[Table 1]
Figure 0003998489
[0030]
From Table 1, it can be seen that in Examples 1 and 2, pulverization hardly occurs and the power is high. The sensitivity was also low. In Example 3, Example 4, and Example 5, the detonation speed was reduced by adding shirasu balloon, attapulgite, and guar gum, respectively, but low specific gravity and imparting water resistance were achieved. In Comparative Example 1, Comparative Example 2, and Comparative Example 3, the powdering rate increased or the detonation speed decreased. The results in Table 1 were reproducible even when the experiment was repeated several times. In Table 1, the tendency of the pulverization rate is not limited only to the discharge conditions of the ANFO loader and the discharge by the loader, and the same tendency was observed during the production as a granular explosive composition.
[0031]
【The invention's effect】
The present invention solves the problems of powdering ammonium nitrate and increasing sensitivity, and obtains a highly powerful granular explosive composition.

Claims (2)

吸油率が18〜23%であり、硬度が5.2〜8.8の粒状硝安と油剤を含み、爆薬100g当たりの酸素バランス値が−5.6〜−8.8gである粒状爆薬組成物。A granular explosive composition having an oil absorption of 18 to 23%, a granular ammonium nitrate having a hardness of 5.2 to 8.8 and an oil agent, and an oxygen balance value per 100 g of explosive of -5.6 to -8.8 g . . 粒状硝安の平均粒径が0.8〜2.5mmである請求項1に記載の粒状爆薬組成物。The granular explosive composition according to claim 1, wherein the granular ammonium nitrate has an average particle size of 0.8 to 2.5 mm .
JP2002039909A 2002-02-18 2002-02-18 Granular explosive composition Expired - Fee Related JP3998489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039909A JP3998489B2 (en) 2002-02-18 2002-02-18 Granular explosive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039909A JP3998489B2 (en) 2002-02-18 2002-02-18 Granular explosive composition

Publications (2)

Publication Number Publication Date
JP2003238283A JP2003238283A (en) 2003-08-27
JP3998489B2 true JP3998489B2 (en) 2007-10-24

Family

ID=27780796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039909A Expired - Fee Related JP3998489B2 (en) 2002-02-18 2002-02-18 Granular explosive composition

Country Status (1)

Country Link
JP (1) JP3998489B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677257B2 (en) * 2005-03-18 2011-04-27 中国化薬株式会社 Sodium nitrate explosive
JP2011168458A (en) * 2010-02-22 2011-09-01 Japan Carlit Co Ltd:The Explosive composition
CN103896695B (en) * 2012-12-30 2016-04-20 南京理工大学 Many micropores spherulitic ammonium nitrate and method for making thereof

Also Published As

Publication number Publication date
JP2003238283A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
CN101977878B (en) Method for diamond generation by detonation using detonation recipe with positive to neutral oxygen balance
JP3998489B2 (en) Granular explosive composition
JP2002047088A (en) Granular explosive composition with water resistance
EP0015646B1 (en) Explosive composition and a method for the preparation thereof
JP2003277179A (en) Explosive composition
JP3797826B2 (en) Explosive composition
JP2003183094A (en) Explosive composition
JP3862828B2 (en) Explosive composition
JP2003238282A (en) Explosive composition
JP2011168458A (en) Explosive composition
JP2005132636A (en) Explosive composition
JP2003238281A (en) Explosive composition
JP2004067458A (en) Explosive composition
JP2003176195A (en) Explosive composition
JP2003277180A (en) Explosive composition
JP2003238280A (en) Explosive composition
JP3797840B2 (en) Explosive composition
JP2002338383A (en) Explosive composition
JP3599623B2 (en) Explosive composition
JP2005029447A (en) Membrane oil explosive composition and method for producing the same
JP2004010412A (en) Explosive cartridge
JP2004002169A (en) Explosive composition
JP4009084B2 (en) Sodium nitrate explosive
JP2002348187A (en) Explosive composition
JP2003146787A (en) Ammonium nitrate explosive composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees