JP3997171B2 - 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム - Google Patents
動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム Download PDFInfo
- Publication number
- JP3997171B2 JP3997171B2 JP2003088618A JP2003088618A JP3997171B2 JP 3997171 B2 JP3997171 B2 JP 3997171B2 JP 2003088618 A JP2003088618 A JP 2003088618A JP 2003088618 A JP2003088618 A JP 2003088618A JP 3997171 B2 JP3997171 B2 JP 3997171B2
- Authority
- JP
- Japan
- Prior art keywords
- prediction
- image
- complexity
- unit
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/97—Matching pursuit coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/137—Motion inside a coding unit, e.g. average field, frame or block difference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/137—Motion inside a coding unit, e.g. average field, frame or block difference
- H04N19/139—Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/523—Motion estimation or motion compensation with sub-pixel accuracy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/80—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
- H04N19/82—Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Description
【発明の属する技術分野】
本発明は、動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラムに関するものである。
【0002】
【従来の技術】
動画像符号化装置では、一般に、符号化対象フレームが所定サイズの複数のブロックに分割され、各々のブロックと参照フレームの所定領域における予測参照画像との動き補償予測が行われることによって動きベクトルが検出されて、符号化対象フレームの予測画像が生成される。かかる動画像符号化装置では、符号化対象フレームが参照フレームからの動きベクトルによって表現されることによって時間方向に存在する冗長度が削減される。また、符号化対象フレームと予測画像との差による予測残差画像が、DCT(Discrete Cosine Transform)変換され、DCT係数として表現されることによって、空間方向に存在する冗長度が削減される。
【0003】
上記の動画像符号化装置では、かかる時間方向の冗長度を更に削減するため、参照フレームの整数画素間の1/2画素位置、1/4画素位置に補間画素を設けて動き補償予測を高解像度に行うことによって、符号化効率の向上が図られている。補間画素のうち横方向に並ぶ整数画素に挟まれる1/2画素位置の補間画素には、近傍の左右3個の計6個の整数画素に(1,−5,20,20,−5,1)/16の線形フィルタを施してなる画素値が与えられる。補間画素のうち縦方向に並ぶ整数画素に挟まれる1/2画素位置の補間画素には、近傍の上下3個の計6個の整数画素に(1,−5,20,20,−5,1)/16の線形フィルタを施してなる画素値が与えられる。補間画素のうち近傍の4つの整数画素から等距離にある補間画素には、横方向に隣接する1/2画素位置の補間画素の画素値の平均値が画素値として与えられる。また、補間画素のうち1/4画素位置の補間画素には、近傍の整数画素または1/2画素位置の補間画素のうち2つの画素からの直線補間値が画素値として与えられる。すなわち、補間画素には近傍の整数画素に対してフィルタリングを施して得られる画素値が与えられることになり、参照フレームと符号化対象フレームとの差違が大きい場合であっても、フィルタリングによってその差違が減少される結果、効果的に冗長度が削減される。
【0004】
ここで、フィルタリングの効果を更に向上させる為に、補間画素のうち(3/4,3/4)の画素位置に、近傍の4つの整数画素の平均値からなる画素値を与えて動き補償予測を行う動画像符号化装置が知られている(例えば、非特許文献1)。すなわち、かかる動画像符号化装置では、直線補間に相当するフィルタリングより高周波遮断特性の強い低域通過フィルタを用いた補間画素を設けることによって、更にフィルタリングの効果を高めて冗長度の削減が図られている。このように高周波遮断特性の強い低域通過フィルタを用いた画素値が与えられる補間画素はFunny Positionと呼ばれている。
【0005】
【非特許文献1】
G. Bjontegaard, "Clarification of "Funny Position", " ITU-T SG16/Q15, doc. Q15-K-27, Portland, 2000.
【0006】
【発明が解決しようとする課題】
上記の動画像符号化装置では、Funny Positionを設けることによって参照フレームに対して変化が大きい符号化対象フレームのブロックについては冗長度の削減が図られるものの、参照フレームに対して変化が小さい符号化対象フレームのブロックについてはFunny Positionを設けることによって、却って参照フレームとの差違を生じさせることになり、動き補償予測の高解像度化を図った効果が損なわれるという問題点がある。
【0007】
本発明は上記問題点を解決するためになされたもので、動き補償予測の高解像度化による符号化効率の向上とフィルタリングによる符号化効率の向上を同時に実現可能な動画像符号化装置、動画像符号化方法、及び動画像符号化プログラムを提供し、また、かかる動画像符号化装置によって生成される圧縮データから動画像を復元するための動画像復号装置、動画像復号方法、及び動画像復号プログラムを提供することを目的としている。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明の動画像符号化装置は、符号化対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、該複数のブロック各々について該予測参照画像に対する動きベクトルを求めて、符号化対象フレームの予測画像を生成する動き補償予測手段を備える動画像符号化装置であって、上記動き補償予測手段は、上記複数のブロック各々について上記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を上記複雑度の増加に応じて増加させる所定規則を参照し、上記ブロック毎に上記複雑度抽出手段によって抽出される上記複雑度情報によって特定される上記複雑度に応じて上記予測画像に設ける上記フィルタリング画素の数を変更する予測画像生成手段とを有することを特徴としている。
【0009】
また、上記課題を解決するため、本発明の動画像符号化方法は、符号化対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、該複数のブロック各々について該予測参照画像に対する動きベクトルを求めて、符号化対象フレームの予測画像を生成する動き補償予測ステップを備える動画像符号化方法であって、上記動き補償予測ステップにおいて、上記複数のブロック各々について上記参照フレームからの動きの複雑度を示す複雑度情報を抽出し、高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を上記複雑度の増加に応じて増加させる所定規則を参照し、上記ブロック毎に抽出される上記複雑度情報によって特定される上記複雑度に応じて上記予測画像に設ける上記フィルタリング画素の数を変更することを特徴としている。
【0010】
また、上記課題を解決するため、本発明の動画像符号化プログラムにおいては、コンピュータを、符号化対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、該複数のブロック各々について該予測参照画像に対する動きベクトルを求めて、符号化対象フレームの予測画像を生成する動き補償予測手段として機能させる動画像符号化プログラムであって、上記動き補償予測手段は、上記複数のブロック各々について上記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を上記複雑度の増加に応じて増加させる所定規則を参照し、上記ブロック毎に上記複雑度抽出手段によって抽出される上記複雑度情報によって特定される上記複雑度に応じて上記予測画像に設ける上記フィルタリング画素の数を変更する予測画像生成手段とを有することを特徴としている。
【0011】
これらの発明では、符号化対象フレームを複数に分割した複数のブロック各々について、参照フレームに対する動きの複雑度を示す複雑度情報が抽出される。かかる複雑度情報によって特定される動きの複雑度に応じて、予測参照画像において高周波遮断特性の強い低域通過フィルタを整数画素に施してなる画素値を与えるフィルタリング画素の数が増加される。すなわち、参照フレームからの変化が少ない処理対象のブロックについてはフィルタリング画素の数が少なくされた高解像度の予測参照画像に基づいて予測画像が生成され、動き補償予測の精度が向上されるので、冗長度の削減が図られる。一方、参照フレームからの変化が大きい処理対象のブロックについては、フィルタリング画素を増加させた予測参照画像に基づいて予測画像が生成されるので、かかる予測画像と処理対象のブロックとの差違が減少される結果、冗長度の削減が図られる。このように、符号化対象フレームのブロックごとに参照フレームからの変化に応じて柔軟にフィルタリング画素の数が変更される結果、符号化効率の向上が図られる。
【0012】
上記の複雑度情報としては、複雑度情報を抽出すべきブロックの周囲のブロックにおける差分動きベクトルの絶対値を用いることができる。
【0013】
また、符号化対象フレームと予測画像との差演算によって生成される予測残差画像を所定の変換規則に基づいて所定の係数の集合に変換する変換手段によって、予測残差画像を所定の係数の集合に変換し、上記の複雑度情報として複雑度情報を抽出すべきブロックの周囲のブロックにおける所定の係数のうち非零となる係数の数を用いることを特徴としても良い。
【0014】
また、上記の複雑度情報として複雑度情報を抽出すべきブロックの差分動きベクトルの絶対値を用いることを特徴としても良い。
【0015】
また、本発明は別の面においては、上記の動画像符号化装置、または上記の動画像符号化プログラムによって動作するコンピュータによって生成される圧縮データを復号して動画像を復元する動画像復号装置に関するものであり、かかる動画像復号装置は、復号対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、上記複数のブロック各々について符号化装置によって生成される圧縮データに基づいて生成される動きベクトルを用いて、該予測参照画像に基づく動き補償予測を行い予測画像を生成する動き補償予測手段を備える動画像復号装置であって、上記動き補償予測手段は、上記複数のブロック各々について上記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を上記複雑度の増加に応じて増加させる所定規則を参照し、上記ブロック毎に上記複雑度抽出手段によって抽出される上記複雑度情報によって特定される上記複雑度に応じて上記予測画像に設ける上記フィルタリング画素の数を変更する予測画像生成手段とを有することを特徴としている。
【0016】
また、本発明の動画像復号方法は、復号対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から直線補間してなる補間画素を設けてなる予測参照画像を生成し、上記複数のブロック各々について符号化装置によって生成される圧縮データ圧縮データに基づいて生成される動きベクトルを用いて、該予測参照画像に基づく動き補償予測を行い予測画像を生成する動き補償予測ステップを備える動画像復号方法であって、上記動き補償予測ステップにおいて、上記複数のブロック各々について上記参照フレームからの動きの複雑度を示す複雑度情報を抽出し、高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を上記複雑度の増加に応じて増加させる所定規則を参照し、上記ブロック毎に抽出される上記複雑度情報によって特定される上記複雑度に応じて上記予測画像に設ける上記フィルタリング画素の数を変更することを特徴としている。
【0017】
また、本発明の動画像復号プログラムにおいては、コンピュータを、復号対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から直線補間してなる補間画素を設けてなる予測参照画像を生成し、上記複数のブロック各々について符号化装置によって生成される圧縮データに基づいて生成される動きベクトルを用いて、該予測参照画像に基づく動き補償予測を行い予測画像を生成する動き補償予測手段として機能させる動画像復号プログラムであって、上記動き補償予測手段は、上記複数のブロック各々について上記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を上記複雑度の増加に応じて増加させる所定規則を参照し、上記ブロック毎に上記複雑度抽出手段によって抽出される上記複雑度情報によって特定される上記複雑度に応じて上記予測画像に設ける上記フィルタリング画素の数を変更する予測画像生成手段とを有することを特徴としている。
【0018】
これらの発明によれば、上記の動画像符号化装置、または上記の動画像符号化プログラムによって動作するコンピュータによって生成される圧縮データから動きベクトルが復号される。そして、復号対象フレームの複数のブロック各々について、動きベクトルを用いて予測画像が生成される際に、各々のブロックの動きの複雑度を示す複雑度情報が抽出される。かかる複雑度情報によって特定される動きの複雑度に応じて、高周波遮断特性の強い低域通過フィルタを整数画素に施してなる画素値を与えるフィルタリング画素の数が増加された予測参照画像が生成され、この予測参照画像から上記の動きベクトルを用いて予測画像が生成される。したがって、上記の動画像符号化装置、または上記の動画像符号化プログラムによって動作するコンピュータによって生成される圧縮データから動画像を復元することが可能となる。
【0019】
上記の複雑度情報としては、複雑度情報を抽出すべきブロックの周囲のブロックにおける差分動きベクトルの絶対値を用いることができる。
【0020】
また、符号化装置によって生成される圧縮データであって、符号化対象フレームと予測画像との差演算によって生成される予測残差画像が所定の変換規則に基づいて所定の係数の集合に変換され、該所定の係数の集合が圧縮符号化された圧縮符号を含む圧縮データを所定の復号規則に基づいて復号し、上記の複雑度情報として複雑度情報を抽出すべきブロックの周囲のブロックにおける所定の係数のうち非零となる係数の数を用いることを特徴としても良い。
【0021】
また、上記の複雑度情報として複雑度情報を抽出すべきブロックの差分動きベクトルの絶対値を用いることを特徴としても良い。
【0022】
【発明の実施の形態】
以下、本発明の実施形態について説明する。なお、以下の実施形態に関する説明においては、説明の理解を容易にするため、各図面において同一又は相当の部分には同一の符号を附すこととする。
【0023】
(第1実施形態)
まず、本発明の第1実施形態にかかる動画像符号化装置1について説明する。動画像符号化装置1は、物理的にはCPU(中央演算装置)、メモリといった記憶装置、ハードディスクといった格納装置等を備えるコンピュータである。ここでの「コンピュータ」とは、パーソナルコンピュータ等の通常のコンピュータに加えて、移動通信端末といった情報携帯端末も含むものであり、本発明の思想は情報処理可能な機器に広く適用される。
【0024】
次に、動画像符号化装置1の機能的な構成について説明する。図1は、動画像符号化装置1の機能的な構成を示すブロック図である。動画像符号化装置1は、機能的には、動き補償予測部2と、フレームメモリ4と、減算部6と、変換部8と、量子化部10と、符号化部12と、逆量子化部14と、逆変換部16と、加算部18と、MVD記憶部20とを備える。
【0025】
動き補償予測部2は、フレームメモリ4に格納されている参照フレームを用いて動き補償予測を行い、差分動きベクトル(以下、「MVD」という。)を求めると共に、符号化対象フレームの予測画像を生成する。MVDは、あるブロックの動きベクトルと、そのブロックの周囲のブロックにおける動きベクトルの中間値によってなるベクトルとの差分ベクトルである。なお、動き補償予測部2についての詳細は後述する。
【0026】
減算部6は、動き補償予測部2によって生成される予測画像と符号化対象フレームとの差演算を実行し、予測残差画像を生成する。
【0027】
変換部8は、予測残差画像を所定の変換規則に基づいて所定の係数の集合に分解する。この所定の変換規則としては、例えばDCT(Discrete Cosine Transform)を用いることができる。DCTが用いられる場合には、予測残差画像はDCT係数の集合に変換される。また、所定の変換規則としては、DCTの他に、Matching Parsuits法(以下、「MP法」という)を用いることができる。MP法は、予測残差画像を初期の残差成分とし下式(1)を用いて残差成分を基底セットを用いて分解する処理を反復するものである。ここで、式(1)において、fは予測残差画像、Rnfは第n反復処理後の残差成分であり、GknはRnfとの内積値を最大とする基底であり、Rmfは第m反復処理後の残差成分である。すなわち、MP法によれば、基底セットのうちから残差成分との内積値を最大とする基底が選択され、選択された基底とこの基底に乗じる為の係数である最大の内積値とに残差成分が分解される。
【数1】
【0028】
量子化部10は、変換部8によって予測残差画像が分解されてなる係数に量子化操作を施して量子化係数とする。
【0029】
符号化部12は、動き補償予測部2によって生成されるMVDを圧縮符号化してなる圧縮符号を生成する。また、符号化部12は、量子化部10によって量子化されてなる量子化係数を圧縮符号化して、圧縮符号を生成する。符号化部12は、これら圧縮符号を含む圧縮データを生成する。この圧縮符号化処理には、例えば、算術符号化といったエントロピー符号化処理を用いることができる。
【0030】
逆量子化部14、逆変換部16、及び加算部18は、フレームメモリ4に参照フレームを格納するための処理を行う部分である。逆量子化部14は、量子化部10によって量子化されてなる量子化係数を逆量子化する。逆変換部16は、変換部8によって行われる変換処理の逆変換処理を上記の係数を用いて行い、予測残差画像を復元する。加算部18は、参照フレームの予測画像と逆変換部16によって復元された予測残差画像を加算して参照フレームを生成する。かかる参照フレームは、上述したようにフレームメモリ4に格納され、動き補償予測部2によって符号化対象フレームの予測画像を生成する処理に用いられる。
【0031】
MVD記憶部20は、動き補償予測部2によって生成されるMVDを記憶する。MVD記憶部20に記憶されたMVDは、後述する動き補償予測部2による処理に用いられる。
【0032】
以下、動き補償予測部2について詳細に説明する。動き補償予測部2は、符号化対象フレームを所定サイズの複数のブロックに分割する。動き補償予測部2は、複数のブロック各々について、参照フレームへの動きベクトルを検出し、参照フレームを用いて符号化対象フレームの予測画像を生成する。図2は、動き補償予測部2の構成を示すブロック図である。動き補償予測部2は、予測参照領域生成部24と、第1FP生成部26と、第2FP生成部28と、第1予測参照領域格納部30と、第2予測参照領域格納部32と、動きベクトル生成部34と、参照領域セレクタ36と、予測画像生成部38と、予測誤差判定部40とを備えている。
【0033】
予測参照領域生成部24は、フレームメモリ4に格納されている参照フレームRIに基づいて予測参照画像を生成する。予測参照領域生成部24は、1/2画素補間領域生成部42と、1/4画素補間領域生成部44とを有している。
【0034】
1/2画素補間領域生成部42は、参照フレームの整数画素間の1/2画素位置に補間画素を設け、参照フレームを2倍の高解像度の画像とする。補間画素のうち横方向に並ぶ整数画素に挟まれる1/2画素位置の補間画素には、近傍の左右3個の計6個の整数画素に(1,−5,20,20,−5,1)/16の線形フィルタを施してなる画素値が与えられる。補間画素のうち縦方向に並ぶ整数画素に挟まれる1/2画素位置の補間画素には、近傍の上下3個の計6個の整数画素に(1,−5,20,20,−5,1)/16の線形フィルタを施してなる画素値が与えられる。補間画素のうち近傍の4つの整数画素から等距離にある補間画素には、横方向に隣接する1/2画素位置の補間画素の画素値の平均値が画素値として与えられる。
【0035】
1/4画素補間領域生成部44は、1/2画素補間領域生成部42によって生成された2倍の高解像度の画像について画素間に補間画素を更に設けることによって、参照フレームの4倍の高解像度の画像を生成する。かかる補間画素には、近傍の整数画素または1/2画素位置の補間画素のうち2つの画素からの直線補間値が画素値として与えられる。1/2画素補間領域生成部42及び1/4画素補間領域生成部44によって、参照フレームは4倍の高解像度の画像とされ、かかる画像は予測参照画像として、第1FP生成部26と、第2FP生成部28とに出力される。
【0036】
第1FP生成部26は、予測参照画像に高周波遮断特性の強い低域通過フィルタを整数画素に施してなる画素値を(3/4,3/4)画素位置に与えた第1の予測参照画像を生成する。第1FP生成部26は、第1の予測参照画像を第1予測参照領域格納部30に格納する。以下、本明細書においては、高周波遮断特性の強い低域通過フィルタを整数画素に施してなる画素値を与える補間画素を「FP(Funny Position)」という。また、高周波遮断特性の強い低域通過フィルタを「ローパスフィルタ」という。
【0037】
図3は、第1FP生成部26によって生成される第1の予測参照画像の一例を概略的に示す図である。図3において円形の図形は画素を示している。図3において、黒塗りの円は整数画素であり、中抜きの円は補間画素であり、また、格子状のハッチングが施された円はFPである。第1FP生成部26は、このFPに与える画素値を直下近傍の4つの整数画素の画素値それぞれに1/2の係数を乗じた値を加算した画素値を与える。
【0038】
第2FP生成部28は、予測参照画像に第1FP生成部26よりFPを多く設けた第2の予測参照画像を生成する。第2FP生成部28は、第2の予測参照画像を第2予測参照領域格納部32に格納する。図4は、第2FP生成部28によって生成される第2の予測参照画像の一例を概略的に示す図である。図4においても図3と同様に円形の図形は画素を示している。図4において、黒塗りの円は整数画素であり、中抜きの円は補間画素であり、また、ハッチングが施された円はFPである。
【0039】
第2FP生成部28は、FPに以下のように生成される画素値を与える。図4において斜線のハッチングが施された(1/4,1/4)画素位置のFPには、(4/32,24/32,4/32)を係数とする1次元ローパスフィルタを直上の近傍の3つの整数画素に横方向にかけて生成される画素値が与えられる。縦線のハッチングを施した(3/4,1/4)画素位置のFPには、(−2/32,1/32,17/32,17/32,1/32,−2/32)を係数とする1次元ローパスフィルタを直上の近傍の6つの整数画素に横方向にかけて生成される画素値が与えられる。横線のハッチングを施した(1/4,3/4)画素位置のFPには、(2/32,6/32,8/32,8/32,2/32)を係数とする1次元ローパスフィルタを直下の近傍の5つの整数画素に横方向にかけて生成される画素値が与えられる。格子状のハッチングを施した(3/4,3/4)画素位置のFPには、(3/32,13/32,13/32,3/32)を係数とする1次元ローパスフィルタを直下の近傍の4つの整数画素に横方向にかけて生成される画素値が与えられる。
【0040】
動きベクトル生成部34は、動き補償予測を行う処理対象のブロックについて第1または第2の予測参照画像における所定の領域においてブロックマッチングを行う位置への動きベクトルを生成し、かかる動きベクトルを参照領域セレクタ36と予測画像生成部38に出力する。動きベクトル生成部34は、参照フレームにおいて処理対象のブロックと同位置を中心に、例えば(−16、−16)から(16,16)までの動きベクトルを生成する。
【0041】
参照領域セレクタ36は、動き補償予測を行う処理対象のブロックの周囲のブロックにおけるMVDをMVD記憶部20から取得し、かかるMVDの絶対値を処理対象のブロックの動きの複雑度を示す複雑度情報として用いる。MVDは、あるブロックについての動きベクトルとその周囲のブロックの動きベクトルとの差分ベクトルであるから、動きが複雑なブロックの周囲のMVDはその絶対値が大きくなり、動きが平坦なブロックの周囲のMVDはその絶対値が小さくなる。したがって、MVDの絶対値によってそのブロックの参照フレームからの動きの複雑さを表すことができる。
【0042】
参照領域セレクタ36は、処理対象のブロックの周囲のブロックにおけるMVDの絶対値が所定の基準値より小さい場合には、処理対象のブロックにおける動きが複雑でないものとして、動き補償予測に用いる予測参照画像として第1予測参照領域格納部30に格納された第1の予測参照画像を選択すべきであると判断する。一方、参照領域セレクタ36は、処理対象のブロックの周囲のブロックにおけるMVDの絶対値が所定の基準値以上の場合には、処理対象のブロックにおける動きが複雑であるとして、動き補償予測に用いる予測参照画像として第2予測参照領域格納部32に格納された第2の予測参照画像を選択すべきであると判断する。参照領域セレクタ36はかかる判断結果を予測画像生成部38に出力する。
【0043】
予測画像生成部38は、参照領域セレクタ36からの判断結果に基づいて、第1の予測参照画像、または第2の予測参照画像のいずれかを選択する。予測画像生成部38は、選択した画像から動きベクトル生成部34によって出力された動きベクトルによって特定される部分のブロックの画像を予測画像の候補とし、かかる候補と上記の動きベクトルを対応付ける。予測画像の候補は、動きベクトル生成部34によって生成される複数の動きベクトル全てについて求められ、予測画像の候補とこれに対応する動きベクトルの組が複数生成される。
【0044】
予測誤差判定部40は、予測画像生成部38によって生成される複数の予測画像の候補のうち、符号化対象フレームEIにおいて動き補償予測を行う対象のブロックとの誤差が最も少ない予測画像の候補を選択して、かかるブロックの予測画像PIとする。また、予測誤差判定部40は、この予測画像の候補に対応付けられている動きベクトルをかかるブロックの参照フレームに対する動きベクトルとする。予測画像PIは、符号化対象フレームEIの全てのブロックについて求められて符号化対象フレームの予測画像とされ、かかる予測画像は上記のように減算部6によって処理される。また、動きベクトルも符号化対象フレームEIの全てのブロックについて求められ、動きベクトルは予測誤差判定部40によってMVDとされる。かかるMVDは予測誤差判定部40によって符号化部12に出力される。
【0045】
次に、動画像符号化装置1の動作について説明する。併せて、本発明の第1実施形態にかかる動画像符号化方法について説明する。図5は第1実施形態にかかる動画像符号化方法のフローチャートである。また、図6は、かかる動画像符号化方法における動き補償予測に関するフローチャートである。
【0046】
図5に示すように、第1実施形態にかかる動画像符号化方法においては、まず、動き補償予測部2によって動き補償予測が行われる(ステップS01)。動き補償予測においては、図6に示すように、まず、予測参照領域生成部24によって予測参照画像が生成される(ステップS02)。予測参照画像は、参照フレームに基づいて生成されるものである。参照フレームが、1/2画素補間領域生成部42及び1/4画素補間領域生成部44によって4倍の高解像度の画像とされ、かかる4倍の高解像度の画像が予測参照画像とされる。
【0047】
予測参照画像は上述したように、第1のFP生成部26によって第1の予測参照画像とされて第1の予測参照領域格納部30に格納される。また、予測参照画像は、第2のFP生成部28によって第2の予測参照画像生成とされ第2の予測参照領域格納部32に格納される(ステップS03)。
【0048】
次に、参照領域セレクタ36によって、処理対象のブロックの周囲のブロックにおけるMVDが用いられて、処理対象のブロックの複雑度が求められる。参照領域セレクタ36によって、かかる複雑度が所定の基準値と比較され、その比較結果に基づいて、第1の予測参照画像と第2の予測参照画像とのうちいずれかを選択する判断がなされる(ステップS04)。
【0049】
次に、動きベクトル生成部34によって、動きベクトルが生成され、かかる動きベクトルが予測画像生成部38と出力される(ステップS05)。そして、上述したように抽出される処理対象のブロックの動きの複雑度に基づいて、参照領域セレクタ36によって第1または第2の予測参照画像が選択される。第1または第2の予測参照画像のうち参照領域セレクタ36によって選択された画像において、上記の動きベクトルに対応する部分のブロックの画像が、予測画像生成部38によって抽出されて、予測画像の候補とされる。かかる予測画像の候補は、動きベクトルと対応付けられる(ステップS06)。
【0050】
ステップS05及びステップS06の処理は、処理対象のブロックについて予め定められている予測参照画像の所定の領域において繰り返され、生成される複数の予測画像の候補のうち最も処理対象のブロックとの誤差の少ない候補が処理対象のブロックの予測画像として予測誤差判定部40によって抽出される。また、抽出された予測画像の候補に対応付けられている動きベクトルが処理対象のブロックの動きベクトルとして予測誤差判定部40によって抽出される(ステップS07)。ステップS02〜ステップS07の処理が、符号化対象フレームの全てのブロックについて繰り返された後、符号化対象フレームの予測画像が生成され減算部6に出力されると共に、全てのブロックに関する動きベクトルはMVDとされ、かかるMVDが符号化部12に出力される。
【0051】
図5に戻り、動き補償予測部2によって出力される予測画像と符号化対象フレームとの差演算が減算部6によって実行されて予測残差画像が生成される(ステップS08)。予測残差画像は変換部8によって係数の集合に分解される(ステップS09)。かかる集合に含まれる係数はそれぞれ、量子化部10によって量子化されて量子化係数とされる(ステップS10)。そして、上記のMVDと量子化係数が符号化部12によって圧縮符号化されて、圧縮データが生成される(ステップS11)。
【0052】
次に、コンピュータを動画像符号化装置1として機能させる動画像符号化プログラム50について説明する。図7は動画像符号化プログラム50の構成を説明するブロック図である。動画像符号化プログラム50は、処理を統括するメインモジュール51と、動き補償予測モジュール52と、減算モジュール54と、変換モジュール56と、量子化モジュール58と、符号化モジュール60と、逆量子化モジュール62と、逆変換モジュール64と、加算モジュール66と、MVD記憶モジュール68とを備える。動き補償予測モジュール52は、その構成を示す図である図8に示すように、予測参照領域生成サブモジュール70と、第1FP生成サブモジュール72と、第2FP生成サブモジュール74と、動きベクトル生成サブモジュール76と、参照領域セレクトサブモジュール78と、予測画像生成サブモジュール80と、予測誤差判定サブモジュール82とを有する。予測参照領域生成サブモジュール70は、1/2画素補間領域生成サブモジュール84と、1/4画素補間領域生成サブモジュール86とを有する。
【0053】
動き補償予測モジュール52、減算モジュール54、変換モジュール56、量子化モジュール58、符号化モジュール60、逆量子化モジュール62、逆変換モジュール64、減算モジュール66、MVD記憶モジュール68、予測参照領域生成サブモジュール70、第1FP生成サブモジュール72、第2FP生成サブモジュール74、動きベクトル生成サブモジュール76、参照領域セレクトサブモジュール78、予測画像生成サブモジュール80、予測誤差判定サブモジュール82、1/2画素補間領域生成サブモジュール84、1/4画素補間領域生成サブモジュール86がコンピュータに実現させる機能はそれぞれ、動き補償予測部2、減算部6、変換部8、量子化部10、符号化部12、逆量子化部14、逆変換部16、加算部18、MVD記憶部20、予測参照領域生成部24、第1FP生成部26、第2FP生成部28、動きベクトル生成部34、参照領域セレクタ36、予測画像生成部38、予測誤差判定部40、1/2画素補間領域生成部42、1/4画素補間領域生成部44と同様である。
【0054】
以下、第1実施形態にかかる動画像符号化装置1の作用及び効果について説明する。動画像符号化装置1では、符号化対象フレームを分割した複数のブロック各々について、周囲のブロックにおけるMVDの絶対値が抽出される。かかるMVDの絶対値は、処理対象のブロックについての参照フレームからの動きの複雑度を表す。動画像符号化装置1では、処理対象のブロックの周囲におけるMVDの絶対値が所定の基準値をより小さい場合に、第1FP生成部26によって生成された第1の予測参照画像が用いられることによって、予測画像が生成される。すなわち、処理対象のブロックの参照フレームからの動きが複雑でない場合には、FPの数が少ない第1の予測参照画像から予測画像が抽出される。したがって、参照フレームからの動きが複雑でない処理対象のブロックについては、高解像度化による符号化効率の向上が図られる。一方、処理対象のブロックの周囲におけるMVDの絶対値が所定の基準値以上の場合に、第2FP生成部28によって生成された第2の予測参照画像が用いられることによって、予測画像が生成される。すなわち、処理対象のブロックの参照フレームからの動きが複雑な場合には、FPの数が多い第2の予測参照画像から予測画像が抽出される。したがって、参照フレームからの動きが複雑な処理対象のブロックについては、FPを多数設けた第2の予測参照画像から予測画像が抽出される結果、予測画像と処理対象のブロックの画像との差違が減少されるので、冗長度が削減される。このように、処理対象のブロックの参照フレームからの変化に応じて、柔軟にFPの数の異なる第1の予測参照画像と第2の予測参照画像が用いられて予測画像が生成される結果、符号化効率の向上が図られる。
【0055】
なお、上記の動き補償予測部2においては、動き補償予測を行うときに参照フレーム全体に対する予測参照画像が生成されていたが、処理対象のブロックの位置に応じて参照フレームの所定の領域、すなわち動きベクトルを検出するためにブロックマッチングを行うべき領域についてのみ予測参照画像を生成してもよい。この場合には、処理対象のブロックを切り替える毎に新たに予測参照画像が生成される。図9は、かかる動き補償予測を行うための動き補償予測部88の構成を示す図である。動き補償予測部88を動画像符号化装置1の動き補償予測部2と置き換えることができる。
【0056】
図9に示すように、動き補償予測部88は、予測参照領域生成部90と、適応FP生成部92と、予測参照領域格納部94と、動きベクトル生成部96と、予測画像生成部98と、予測誤差判定部100とを有する。
【0057】
予測参照領域生成部90は、動き補償予測を行う処理対象のブロックに対応する参照フレームの所定の領域の画像に基づいて予測参照画像を生成する。かかる所定の領域とは、処理対象のブロックの動きベクトルを検出するためにブロックマッチングを行うべき領域である。
【0058】
予測参照領域生成部90は、1/2画素補間領域生成部102と、1/4画素補間領域生成部104とを有する。1/2画素補間領域生成部102は、上記の所定の領域の画像を2倍の高解像度の画像とする。また、1/4画素補間領域生成部104は、2倍の高解像度の画像を更に4倍の高解像度の画像とした予測参照画像を生成する。以上の高解像度化は、上述した1/2画素補間領域生成部42と1/4画素補間領域生成部44とによる処理と同様の処理によって実現される。
【0059】
適応FP生成部92は、処理対象のブロックの周囲のブロックにおけるMVDをMVD記憶部20から取得して、MVDの絶対値が所定の基準値より小さい場合には、予測参照画像の(3/4、3/4)画素位置をFPとする。かかるFPの生成処理については、第1FP生成部26による処理と同様である。一方、適応FP生成部92は、上記のMVDの絶対値が所定の基準値以上の場合に、第2FP生成部28と同様の処理によって、予測参照画像にFPを設ける。適応FP生成部92によってFPが設けられた予測参照画像は、予測参照領域格納部94に格納される。
【0060】
動きベクトル生成部96は、動き補償予測を行う処理対象のブロックと予測参照画像とのブロックマッチングを行うべき予測参照画像の位置への動きベクトルを生成し、この動きベクトルを予測画像生成部98に出力する。動きベクトルは予測参照画像の全領域とのブロックマッチングが実現されるように複数生成される。
【0061】
予測画像生成部98は、予測参照領域格納部94に格納された予測参照画像のうち、動きベクトル生成部96によって出力された動きベクトルに対応するブロックの画像を予測画像の候補として抽出し、かかる予測画像の候補を動きベクトルと対応付ける。予測画像の候補は、動きベクトル生成部96によって生成される複数の動きベクトル各々に対応して生成される。
【0062】
予測誤差判定部100は、予測画像生成部98によって生成される複数の予測画像の候補のうち、処理対象のブロックとの誤差が最も少ない予測画像の候補を選択して、選択した候補を処理対象のブロックの予測画像PIとする。また、予測誤差判定部100は、この予測画像の候補に対応付けられている動きベクトルを処理対象のブロックの参照フレームに対する動きベクトルとする。予測画像は、符号化対象フレームEIの全てのブロックについて求められることによって符号化対象フレームの予測画像PIとされ、かかる予測画像は上記のように減算部6に出力される。また、動きベクトルも符号化対象フレームEIの全てのブロックについて求められる。かかる動きベクトルは予測誤差判定部100によってMVDとされて、符号化部12に出力される。
【0063】
以下、動き補償予測部88を用いた場合の動画像符号化装置1の動作、及びかかる動画像符号化装置1による動画像符号化の方法について説明する。ここでは、動き補償予測部2を用いた動画像符号化装置1による処理と異なる動き補償予測部88による処理についてのみ説明する。図10は、動き補償予測部88によって実行される動画像符号化の方法を示すフローチャートである。
【0064】
かかる動画像符号化方法においては、まず、処理対象のブロックの位置に応じて参照フレームの所定の領域の画像が抽出され、かかる画像が予測参照領域生成部90によって4倍の高解像度の画像とされる。この4倍の高解像度の画像は、予測参照画像とされる(ステップS20)。
【0065】
次いで、適応FP生成部92によってFPが予測参照画像に設けられる(ステップS21)。適応FP生成部92は、処理対象のブロックの周囲のブロックのMVDの絶対値と所定の基準値を比較した結果に基づいて、上述したように、予測参照画像に設けるFPの数を変える。このようにFPが設けられた予測参照画像は予測参照領域格納部94に格納される。
【0066】
次いで、動きベクトル生成部96によって、生成される動きベクトルが予測画像生成部98に出力される(ステップS22)。そして、予測画像生成部98によって予測参照画像から動きベクトルに対応する部分のブロックの画像が抽出され、抽出された画像は予測画像の候補とされて動きベクトルと対応付けられる(ステップS23)。ステップS22及びステップS23の処理は、動きベクトルを変更しつつ繰り返され、複数の予測画像の候補が生成される。そして、予測誤差判定部40によって、複数の予測画像の候補のうち最も処理対象のブロックとの誤差の少ない候補が処理対象のブロックの予測画像として抽出される。また、予測誤差判定部100によって、予測画像とされた上記の候補に対応付けられている動きベクトルが処理対象のブロックの動きベクトルとして抽出される(ステップS24)。ステップS20〜ステップS24の処理が、符号化対象フレームの全てのブロックについて繰り返されたることによって符号化対象フレームの予測画像が生成され、かかる予測画像が減算部6に出力される。また、全てのブロックに関する動きベクトルが予測誤差判定部100によってMVDとされて、符号化部12に出力される。
【0067】
次に、動き補償予測部88を備える動画像符号化装置1として、コンピュータを機能させるための動画像符号化プログラムについて説明する。かかる動画像符号化プログラムは、動画像符号化プログラム50における動き補償予測モジュール52を以下に説明する動き補償予測モジュール106に置き換えることによって構成される。図11は、動き補償予測モジュール106の構成を示す図である。
【0068】
動き補償予測モジュール106は、予測参照領域生成サブモジュール108と、適応FP生成サブモジュール110と、動きベクトル生成サブモジュール112と、予測画像生成サブモジュール114と、予測誤差判定サブモジュール116とを有する。また、予測参照領域生成サブモジュール108は、1/2画素補間領域生成サブモジュール118と、1/4画素補間領域生成サブモジュール120とを有する。予測参照領域生成サブモジュール108、適応FP生成サブモジュール110、動きベクトル生成サブモジュール112、予測画像生成サブモジュール114、予測誤差判定サブモジュール116、1/2画素補間領域生成サブモジュール118と、1/4画素補間領域生成サブモジュール120がコンピュータに実現させる機能はそれぞれ、予測参照領域生成部90、適応FP生成部92、動きベクトル生成部96、予測画像生成部98、予測誤差判定部100、1/2画素補間領域生成部102、1/4画素補間領域生成部104と同様である。
【0069】
以上のように、ブロックマッチングを行うべき参照フレームの所定の領域について予測参照画像を生成する処理によれば、参照フレーム全体の予測参照画像を一度に生成する処理に比べて、一時的に必要とされるメモリ容量が削減される。
【0070】
(第2実施形態)
次に、本発明の第2実施形態にかかる動画像符号化装置130について説明する。動画像符号化装置130では、処理対象のブロックの参照フレームからの動きの複雑度を表すために処理対象のブロックの周囲のブロックにおける非零DCT係数の数が用いられる点が、第1実施形態の動画像符号化装置1と異なる。DCT係数は、予測残差画像を分解したものであるから、処理対象のブロックと予測画像との差違が大きい程、すなわち処理対象のブロックの参照フレームからの動きが複雑であるほど、非零DCT係数の数は多くなる。
【0071】
動画像符号化装置130は、物理的には第1実施形態の動画像符号化装置1と同様の構成を有する。図12は、動画像符号化装置130の機能的な構成を示すブロック図である。図12に示すように動画像符号化装置130は、機能的には、動き補償予測部132と、フレームメモリ134と、減算部136と、変換部138と、量子化部140と、符号化部142と、逆量子化部144と、逆変換部146と、加算部148と、係数数記憶部150とを備える。これらの構成要素のうち、動き補償予測部132と、変換部138と、係数数記憶部150とが、動画像符号化装置1と異なる機能をもつ部分であるので、以下、動き補償予測部132と、変換部138と、係数数記憶部150とについて説明し、他の部分の説明は省略する。
【0072】
変換部138は、減算部136から出力される予測残差画像を所定サイズの複数のブロックに分割して、複数のブロック各々における予測残差画像にDCTを施す。予測残差画像にDCTが施されてなるDCT係数は、量子化部140によって量子化され量子化DCT係数とされ、ブロックごとに量子化DCT係数の数が係数数記憶部150に記録される。係数数記憶部150に記憶されている非零DCT係数の数は、動き補償予測部132によって用いられる。
【0073】
動き補償予測部132は、図2に示される第1実施形態の動き補償予測部2と同様の構成を有し、第1実施形態においては参照領域セレクタ36が処理対象のブロックにおける動きの複雑度を求める際に処理対象のブロックの周囲のブロックのMVDの絶対値を用いているのに代えて、処理対象のブロックの周囲のブロックの非零量子化DCT係数の数を用いる。なお、動き補償予測部132の他の処理については、動き補償予測部2と同様であるので説明を省略する。
【0074】
動画像符号化装置130の動作及び動画像符号化装置130による動画像符号化の方法についても、上述したように、処理対象のブロックの参照フレームからの動きの複雑度を表すために、処理対象のブロックの周囲のブロックにおける非零量子化DCT係数の数を用いる点において、第1実施形態と異なるだけであるので説明を省略する。また、コンピュータを動画像符号化装置130として動作させるための動画像符号化プログラムについても同様に、処理対象のブロックの参照フレームからの動きの複雑さを表すために、周囲のブロックにおける非零量子化DCT係数の数を用いる点において、第1実施形態の動画像符号化プログラム50と異なるだけであるので、その説明を省略する。
【0075】
なお、動画像符号化装置130においても、第1実施形態の動画像符号化装置1と同様に、動き補償予測を行うときに参照フレーム全体に対する予測参照画像を生成しても良く、処理対象のブロックの位置に応じてブロックマッチングを行うべき参照フレームの所定の領域についてのみ予測参照画像を生成してもよい。
【0076】
以上のように、処理対象ブロックの参照フレームからの動きの複雑度として、処理対象ブロックの周囲のブロックにおける非零量子化DCT係数の数を用いることによっても、本発明の思想を実現することができる。
【0077】
(第3実施形態)
次に、本発明の第3実施形態にかかる動画像符号化装置160について説明する。動画像符号化装置160では、処理対象のブロックの参照フレームからの動きの複雑度を表すために、処理対象のブロックにおけるMVDの絶対値が利用される点において、第1実施形態の動画像符号化装置1と異なる。
【0078】
動画像符号化装置160は、物理的には第1実施形態の動画像符号化装置1と同様の構成を有する。図13は、動画像符号化装置160の機能的な構成を示すブロック図である。図13に示すように動画像符号化装置160は、機能的には、動き補償予測部162と、フレームメモリ164と、減算部166と、変換部168と、量子化部170と、符号化部172と、逆量子化部174と、逆変換部176と、加算部178とを備える。これらの構成要素のうち、動画像符号化装置160においては、動き補償予測部162が動画像符号化装置1に備えられる構成要素と異なる処理を行うので、以下、動き補償予測部162について説明し、他の構成要素に関する説明は省略する。
【0079】
図14は、動き補償予測部162の構成を示すブロック図である。図14に示すように、動き補償予測部162は、予測参照領域生成部180と、予測参照領域格納部182と、動きベクトル生成部184、適応FP生成部186と、予測画像生成部188と、予測誤差判定部190とを有する。
【0080】
予測参照領域生成部180は、1/2画素補間領域生成部192と、1/4画素補間領域生成部194とを有し、第1実施形態の予測参照領域生成部90と同様の処理によって、処理対象のブロックに対応する参照フレームの所定の領域の画像を4倍の高解像度の画像とした予測参照画像を生成する。予測参照領域生成部180は、予測参照画像を予測参照領域格納部182に格納する。
【0081】
動きベクトル生成部184は、処理対象のブロックについてブロックマッチングを行うべき予測参照画像の位置への動きベクトルを生成して、かかる動きベクトルを適応FP生成部186と、予測画像生成部188とに出力する。
【0082】
適応FP生成部186は、処理対象のブロックの周囲のブロックにおける動きベクトルの中間値によりなるベクトルと、動きベクトル生成部184によって出力される動きベクトルとを用いてMVDを生成する。適応FP生成部186は、このMVDの絶対値が所定の基準値より小さい場合には、予測参照画像の(3/4、3/4)画素位置をFPとする。かかるFPの生成処理については、第1実施形態の第1FP生成部26による処理と同様である。一方、適応FP生成部186は、上記のMVDの絶対値が所定の基準値以上の場合に、第1実施形態の第2FP生成部28と同様の処理によって、予測参照画像にFPを設ける。適応FP生成部186によってFPが設けられた予測参照画像は、予測画像生成部188に出力される。
【0083】
予測画像生成部188は、適応FP生成部186によって出力される予測参照画像から動きベクトル生成部184によって出力される動きベクトルに対応する位置のブロックの画像を予測画像の候補とし、かかる予測画像の候補と上記の動きベクトルを対応付ける。動きベクトル生成部184は、予測参照画像の全領域についてブロックマッチングが行われるように動きベクトルを複数生成し、予測画像生成部188によって複数の動きベクトル各々についての予測画像の候補が生成される。
【0084】
予測誤差判定部190は、予測画像生成部188によって生成される複数の予測画像の候補のうち、処理対象のブロックとの誤差が最も少ない候補を予測画像として抽出し、この候補に対応付けられている動きベクトルを処理対象のブロックの動きベクトルとして抽出する。予測画像は、符号化対象フレームの全てのブロックについて求められて、減算部166に出力される。動きベクトルも、符号化対象フレームの全てのブロックについて求められる。かかる動きベクトルは、予測誤差判定部190によってMVDとされて、符号化部172に出力される。
【0085】
次に、動画像符号化装置160の動作、及び第3実施形態にかかる動画像符号化方法について説明する。ここでは、第1実施形態の動画像符号化方法と異なる動き補償予測に関する処理についてのみ説明する。図15は、かかる動き補償予測に関する処理のフローチャートである。
【0086】
図15に示すように、第3実施形態の動き補償予測においては、まず、予測参照領域生成部180によって、参照フレームのうち処理対象のブロックに対応する所定の領域の画像が4倍の高解像度の画像とされ、かかる画像が予測参照画像として予測参照領域格納部182に格納される(ステップS30)。
【0087】
次いで、ブロックマッチングを行うべき予測参照画像の位置への動きベクトルが動きベクトル生成部184によって生成され、かかる動きベクトルは、適応FP生成部186と予測画像生成部188とに出力される(ステップS31)。
【0088】
次いで、動きベクトル生成部184によって出力される動きベクトルと、処理対象のブロックの周囲のブロックにおける動きベクトルの中間値によってなるベクトルとに基づいて差分動きベクトル(MVD)が、適応FP生成部186によって生成される。適応FP生成部186は、MVDの絶対値と所定の基準値との比較結果に基づいて、上述したように予測参照画像に設けるFPの数を変える。FPが設けられた予測参照画像は、予測画像生成部188に出力される(ステップS33)。
【0089】
適応FP生成部186によって出力される予測参照画像から動きベクトル生成部184によって出力される動きベクトルに対応する位置のブロックの画像が、予測画像生成部188によって抽出され、かかる画像は予測画像の候補とされて上記の動きベクトルと対応付けて予測誤差判定部190に出力される(ステップS34)。ステップS31からステップS34までの処理は、予測参照画像の全領域に対してブロックマッチングが行われるように繰り返され、複数の予測画像の候補が生成される。
【0090】
予測誤差判定部190は、複数の予測画像の候補のうち、処理対象のブロックとの誤差が最小の候補を予測画像として抽出し、この予測画像を減算部166に出力する。また、予測誤差判定部190は、かかる予測画像に対応付けられている動きベクトルを抽出する。予測誤差判定部190は動きベクトルをMVDにして、符号化部172に出力する(ステップS35)。
【0091】
以下、コンピュータを動画像符号化装置160として動作させる動画像符号化プログラムについて説明する。かかる動画像符号化プログラムは、第1実施形態の動画像符号化プログラム50と、動き補償予測モジュールの構成が異なるので、ここではその動き補償予測モジュール200の構成についてのみ説明する。
【0092】
図16は、動き補償予測モジュール200の構成を示す図である。動き補償予測モジュール200は、予測参照領域生成サブモジュール202と、動きベクトル生成サブモジュール204と、適応FP生成サブモジュール206と、予測画像生成サブモジュール208と、予測誤差判定サブモジュール210とを有する。予測参照領域生成サブモジュール202は、1/2画素補間領域生成サブモジュール212と、1/4画素補間領域生成サブモジュール214とを有する。予測参照領域生成サブモジュール202、動きベクトル生成サブモジュール204、適応FP生成サブモジュール206、予測画像生成サブモジュール208、予測誤差判定サブモジュール210、1/2画素補間領域生成サブモジュール212、1/4画素補間領域生成サブモジュール214がそれぞれコンピュータに実現させる機能はそれぞれ、予測参照領域生成部180、動きベクトル生成部184、適応FP生成部186、予測画像生成部188、予測誤差判定部190、1/2画素補間領域生成部192、1/4画素補間領域生成部194と同様である。
【0093】
以上のように、処理対象のブロック自体のMVD値を用いる構成の動画像符号化装置によっても、本発明の思想は実現される。
【0094】
(第4実施形態)
次に、本発明の第4実施形態にかかる動画像復号装置220について説明する。動画像復号装置220は、第1実施形態の動画像符号化装置1によって生成される圧縮データを復号して動画像を生成する装置である。動画像復号装置220は、物理的には、CPU(中央演算装置)、メモリといった記憶装置、ハードディスクといった格納装置等を備えるコンピュータである。ここでの「コンピュータ」とは、パーソナルコンピュータ等の通常のコンピュータに加えて、移動通信端末といった情報携帯端末も含むものであり、本発明の思想は情報処理可能な機器に広く適用される。
【0095】
以下、動画像復号装置220の機能的な構成について説明する。図17は、動画像復号装置220の機能的な構成を示すブロック図である。動画像復号装置220は、機能的には、復号部222と、逆量子化部224と、逆変換部226と、MVD記憶部228と、動き補償予測部230と、フレームメモリ232と、加算部234とを備える。
【0096】
復号部222は、動画像符号化装置1によって生成される圧縮データを復号する部分である。復号部222は、圧縮データを復号することによって得られるMVDをMVD記憶部228と動き補償予測部230とに出力する。また、復号部222は、圧縮データから復号する量子化係数を逆量子化部224に出力する。
【0097】
逆量子化部224は、上記の量子化係数に逆量子化操作を施してなる係数を生成し、かかる係数を逆変換部226に出力する。逆変換部226は、逆量子化部224によって出力される係数を用いて、所定の逆変換規則に基づき逆変換を行うことによって予測残差画像を生成する。逆変換部226はかかる予測残差画像を加算部234に出力する。ここで、動画像符号化装置1の変換部8によってDCTが用いられる場合に、所定の逆変換規則として逆DCTを用いることができる。また、動画像符号化装置1の変換部8によってMP法が用いられる場合には、MP法の逆操作を所定の逆変換規則とすることができる。
【0098】
MVD記憶部228は、復号部222によって出力されるMVDを記憶する。MVD記憶部228によって記憶されるMVDは動き補償予測部230によって利用される。
【0099】
動き補償予測部230は、復号部222によって出力されるMVDを用いて、フレームメモリ232に格納される参照フレームから復号対象フレームの予測画像を生成する。かかる処理の詳細は後述する。動き補償予測部230は、生成した予測画像を加算部234に出力する。
【0100】
加算部234は、動き補償予測部230によって出力される予測画像と逆変換部226によって出力される予測残差画像を加算して復号対象フレームを生成する。加算部234はかかるフレームをフレームメモリ232へ出力し、フレームメモリ232に出力されたフレームは参照フレームとして動き補償予測部230によって利用される。
【0101】
次に、動き補償予測部230の詳細について説明する。図18は動き補償予測部230の構成を示すブロック図である。動き補償予測部230は、予測参照領域生成部236と、第1FP生成部238と、第2FP生成部240と、第1予測参照領域格納部242と、第2予測参照領域格納部244と、参照領域セレクタ246と、予測画像生成部248とを有する。
【0102】
予測参照領域生成部236は、フレームメモリ232に格納された参照フレームRIに基づいて予測参照画像を生成する。予測参照領域生成部24は、1/2画素補間領域生成部250と、1/4画素補間領域生成部252とを有している。1/2画素補間領域生成部250、1/4画素補間領域生成部252はそれぞれ、動画像符号化装置1の1/2画素補間領域生成部42、1/4画素補間領域生成部44と同様の処理を行う。
【0103】
第1FP生成部238は、動画像符号化装置1の第1FP生成部26と同様の処理を行い、第1の予測参照画像を生成して、第1予測参照領域格納部242に格納する。第2FP生成部240は、動画像符号化装置1の第2FP生成部28と同様の処理を行い、第2の予測参照画像を生成して、第2予測参照領域格納部244に格納する。
【0104】
参照領域セレクタ246は、動画像符号化装置1の参照領域セレクタ36と同様の処理を行い、処理対象のブロックの周囲のブロックにおけるMVDをMVD記憶部228から取得し、取得したMVDの絶対値を所定の基準値と比較し、かかる比較を行った結果に基づいて、第1の予測参照画像と第2の予測参照画像とのうちいずれかを選択する判断結果を、予測画像生成部248に出力する。
【0105】
予測画像生成部248は、復号部222によって出力されるMVDから処理対象のブロックの動きベクトルを算出する。また、予測画像生成部248は、参照領域セレクタ246による判断結果に基づいて、第1の予測参照画像または第2の予測参照画像のいずれかを選択し、選択した画像のうち処理対象のブロックの動きベクトルに対応する位置のブロックの画像を予測画像として抽出する。
【0106】
以下、動画像復号装置220の動作について説明し、併せて第4実施形態にかかる動画像復号方法について説明する。図19は、第4実施形態の動画像復号方法のフローチャートである。また、図20は、かかる動画像復号方法の動き補償予測に関する処理を示すフローチャートである。
【0107】
図19に示すように、第4実施形態の動画像復号方法においては、まず、動画像符号化装置1によって生成された圧縮データから、復号部222によって復号対象フレームの複数のブロックそれぞれについてのMVDと、量子化係数が復号される(ステップS40)。量子化係数は、逆量子化部224によって逆量子化操作が施されてなる係数とされ(ステップS41)、かかる係数は逆変換部226によって逆変換に用いられ、かかる逆変換の結果、予測残差画像が復元される(ステップS42)。
【0108】
復号部222によって復号されたMVDは、MVD記憶部208によって記憶される。また、復号部222によって復号されたMVDは、動き補償予測部230に出力され、かかるMVDを用いて動き補償予測部230によって動き補償予測が行われる(ステップS43)。
【0109】
図20に示すよう、動き補償予測部230では、予測参照領域生成部236によって、参照フレームが4倍の高解像度の画像とされた予測参照画像が生成される(ステップS44)。かかる予測参照画像は、第1FS生成部238と第2FS生成部240とに出力される。予測参照画像は、第1FS生成部238によって第1の予測参照画像とされ、第2FP生成部240によって第2の予測参照画像とされる(ステップS45)。
【0110】
次いで、参照領域セレクタ246によって、処理対象のブロックの周囲のブロックにおけるMVDが用いられて、処理対象のブロックの複雑度が求められる。参照領域セレクタ246によって、かかる複雑度が所定の基準値と比較され、その比較結果に基づいて、第1の予測参照画像と第2の予測参照画像とのうちいずれかを選択する判断がなされる(ステップS46)。そして、予測画像生成部248によって、処理対象のブロックの動きベクトルがMVDに基づいて生成される。また、予測画像生成部248によって、第1の予測参照画像と第2の予測参照画像とのうち参照領域セレクタ246によって選択された画像から、処理対象のブロックの動きベクトルに対応する位置のブロックの画像が抽出される(ステップS47)。予測画像生成部248によって抽出される画像は、処理対象のブロックの予測画像とされる。
【0111】
ステップS52及びS53の処理は、復号対象フレームの全てのブロックについて実行されることによって、復号対象フレームの予測画像が生成される。図19に戻り、復号対象フレームの予測画像と予測残差画像とが加算部234によって加算され、復号対象フレームが復元される(ステップS48)。
【0112】
以下、コンピュータを動画像復号装置220として動作させる動画像復号プログラム260について説明する。図21は動画像復号プログラム260の構成を示す図である。動画像復号プログラム260は、処理を統括するメインモジュール261と、復号モジュール262と、逆量子化モジュール264と、逆変換モジュール266と、MVD記憶モジュール268と、動き補償予測モジュール270と、加算モジュール272とを備える。動き補償予測モジュール270は、予測参照領域生成サブモジュール274と、第1FP生成サブモジュール276と、第2FP生成サブモジュール278と、参照領域セレクトサブモジュール280と、予測画像生成サブモジュール282とを有する。予測参照領域生成サブモジュール274は、1/2画素補間領域生成サブモジュール284と、1/4画像補間領域生成サブモジュール286とを有する。
【0113】
復号モジュール262、逆量子化モジュール264、逆変換モジュール266、MVD記憶モジュール268、動き補償予測モジュール270、加算モジュール272、予測参照領域生成サブモジュール274、第1FP生成サブモジュール276、第2FP生成サブモジュール278、参照領域セレクトサブモジュール280、予測画像生成サブモジュール282、1/2画素補間領域生成サブモジュール284、1/4画像補間領域生成サブモジュール286がコンピュータに実現させる機能はそれぞれ、復号部222、逆量子化部224、逆変換部226、MVD記憶部228、動き補償予測部230、加算部234、予測参照領域生成部236、第1FP生成部238、第2FP生成部240、参照領域セレクタ246、予測画像生成部248、1/2画素補間領域生成部250、1/4画像補間領域生成部252と同様である。
【0114】
以下、第4実施形態にかかる動画像復号装置220の作用及び効果を説明する。動画像復号装置220では、処理対象のブロックの周囲のブロックにおけるMVDの絶対値が抽出される。かかるMVDの絶対値は、処理対象のブロックについての参照フレームからの動きの複雑度を表す。動画像復号装置220では、処理対象のブロックの周囲におけるMVDの絶対値が所定の基準値をより小さい場合には、第1FP生成部238によって生成された第1の予測参照画像から予測画像が抽出される。すなわち、FPの数が少ない第1の予測参照画像が用いられて予測画像が生成される。一方、処理対象のブロックの周囲におけるMVDの絶対値が所定の基準値以上の合には、第2FP生成部240によって生成された第2の予測参照画像から予測画像が抽出される。すなわち、FPの数が多い第2の予測参照画像が用いられて予測画像が生成される。以上のように動画像復号装置220は、動画像符号化装置1が動画像から圧縮データを生成する処理の逆処理を忠実に行うことによって、上記の動画像を復元することができる。
【0115】
なお、動き補償予測部230においては、動き補償予測を行うときに参照フレーム全体に対する予測参照画像が生成されていたが、処理対象のブロックに対して参照フレームの所定の領域、すなわち動きベクトルを用いて予測画像を抽出するために必要な領域についてのみ予測参照画像が生成されるように構成されても良い。この場合には、処理対象のブロックを切り替える毎に予測参照画像が生成される。図22は、かかる動き補償予測を行うための動き補償予測部290の構成を示すブロック図である。かかる動き補償予測部290は、動画像復号装置220の動き補償予測部230と置き換え可能である。
【0116】
動き補償予測部290は、予測参照領域生成部292と、適応FP生成部294と、予測参照領域格納部296と、予測画像生成部298とを有する。
【0117】
予測参照領域生成部292は、処理対象のブロックに対応する参照フレームの所定の領域の画像に基づいて予測参照画像を生成する。予測参照領域生成部292は、1/2画素補間領域生成部302と、1/4画素補間領域生成部304とを有する。1/2画素補間領域生成部302は、上記の所定の領域の画像を2倍の高解像度の画像とする。また、1/4画素補間領域生成部304は、2倍の高解像度の画像を更に4倍の高解像度の画像とした予測参照画像を生成する。かかる高解像度化は、動画像符号化装置1の1/2画素補間領域生成部42、1/4画素補間領域生成部44と同様の処理によって実現される。
【0118】
適応FP生成部294は、処理対象のブロックの周囲のブロックにおけるMVDをMVD記憶部208から取得して、MVDの絶対値が所定の基準値より小さい場合には、予測参照画像の(3/4、3/4)画素位置をFPとする。かかるFPの生成処理については、第1FP生成部238による処理と同様である。一方、適応FP生成部294は、上記のMVDの絶対値が所定の基準値以上の場合に、第2FP生成部240と同様の処理によって、予測参照画像にFPを設ける。適応FP生成部294によってFPが設けられた予測参照画像は、予測参照領域格納部296に格納される。
【0119】
予測画像生成部298は、復号部222によって復号されたMVDから処理対象のブロックの動きベクトルを生成する。予測画像生成部298は、処理対象のブロックの動きベクトルに対応する位置のブロックの画像を、予測参照領域格納部94に格納された予測参照画像から抽出して、この画像を予測画像として出力する。
【0120】
次に、コンピュータを動き補償予測部290と同様に動作させるための動き補償予測モジュール310について説明する。動き補償予測モジュール310は、動画像復号プログラム260の動き補償予測モジュール270に置き換えて用いられる。図23は、動き補償予測モジュール310の構成を示す図である。
【0121】
動き補償予測モジュール310は、予測参照領域生成サブモジュール312と、適応FP生成サブモジュール314と、予測画像生成サブモジュール316とを有する。予測参照領域生成サブモジュール312は、1/2画素補間領域生成サブモジュール318と、1/4画素補間領域生成サブモジュール320とを有する。予測参照領域生成サブモジュール312、適応FP生成サブモジュール314、予測画像生成サブモジュール316、1/2画素補間領域生成サブモジュール318、1/4画素補間領域生成サブモジュール320がコンピュータに実現させる機能はそれぞれ、予測参照領域生成部292、適応FP生成部294、予測画像生成部298、1/2画素補間領域生成部302、1/4画素補間領域生成部304と同様である。
【0122】
動き補償予測部290によれば、処理対象のブロックについて予測画像を抽出するために必要な領域についてのみ予測参照画像を生成することができるので、参照フレーム全体の予測参照画像を生成するのに要するメモリ容量を削減することができる。
【0123】
(第5実施形態)
本発明の第5実施形態にかかる動画像復号装置330について説明する。動画像復号装置330は、第2実施形態の動画像符号化装置130によって生成される圧縮データから動画像を復元する装置である。動画像復号装置330では、復号対象フレームにおける処理対象のブロックの参照フレームからの動きの複雑度を表すために、処理対象のブロックの周囲のブロックにおける量子化DCT係数の数が用いられる点が、第4実施形態の動画像復号装置220と異なる。
【0124】
動画像復号装置330は、物理的には第4実施形態の動画像復号装置220と同様の構成を有する。図24は、動画像復号装置330の機能的な構成を示すブロック図である。動画像復号装置330は、機能的には、復号部332と、逆量子化部334と、逆変換部336と、係数数記憶部338と、動き補償予測部340と、フレームメモリ342と、加算部344とを備える。これらの構成要素のうち、逆変換部336と、係数数記憶部338と、動き補償予測部340とが、動画像復号装置220と異なる機能をもつ部分であるので、以下、逆変換部336と、係数数記憶部338と、動き補償予測部340とについて説明し、他の部分の説明は省略する。
【0125】
逆変換部336は、逆量子化部334によって逆量子化操作が施されてなるDCT係数に逆DCTを施して、予測残差画像を復元する。
【0126】
係数数記憶部338は、復号部332によって復号された量子化DCT係数の数を復号対象フレームのブロックごとに記憶する。非零量子化DCT係数の数は、動き補償予測部340によって利用される。
【0127】
動き補償予測部340では、参照領域セレクタが処理対象のブロックに関する動きの複雑度として、処理対象のブロックの周囲のブロックの非零量子化DCT係数の数を用いる。動き補償予測部340の構成に関するその他の点において、動画像復号装置220の動き補償予測部230と同様の構成を有するので、説明を省略する。動き補償予測部340は、かかる動きの複雑度を判断した結果に基づいて、FPの数を変更した予測画像を生成する。
【0128】
なお、第5実施形態にかかる動画像復元方法については、処理対象のブロックの動きの複雑度として、処理対象のブロックの周囲のブロックにおける非零量子化DCT係数の数が用いられる点以外は、第4実施形態にかかる動画像復号方法と同様であるので、その説明を省略する。また、コンピュータを動画像復号装置330として動作させる動画像復号プログラムについても、動画像復号プログラム260の動き補償予測モジュール270を動き補償予測部340の機能を実現させるサブモジュールに置き換えることによって構成することができる。
【0129】
以上のように、第5実施形態にかかる動画像復号装置330は、動画像符号化装置1が動画像から圧縮データを生成する処理の逆処理を忠実に行うことによって、上記の動画像を復元することができる。
【0130】
(第6実施形態)
本発明の第6実施形態にかかる動画像復号装置350について説明する。動画像復号装置350は、第3実施形態の動画像符号化装置160によって生成される圧縮データから動画像を復号するための装置である。動画像復号装置350は、復号対象フレームにおける処理対象のブロックの参照フレームからの動きの複雑さを表すために、処理対象のブロックにおけるMVDの絶対値が利用される点において、第4実施形態の動画像復号装置220と異なる。
【0131】
動画像復号装置350は、物理的には、第4実施形態の動画像復号装置220と同様の構成を有する。図25は、動画像復号装置350の機能的な構成を示すブロック図である。図25に示すように動画像復号装置350は、機能的には、復号部352と、逆量子化部354と、逆変換部356と、動き補償予測部358と、フレームメモリ360と、加算部362とを備える。これらの構成要素のうち、動画像復号装置350においては、動き補償予測部358が動画像復号装置220に備えられる構成要素と異なる処理を行うので、以下、動き補償予測部358について説明し、他の構成要素に関する説明は省略する。
【0132】
図26は、動き補償予測部358の構成を示すブロック図である。図26に示すように、動き補償予測部358は、予測参照領域生成部370と、適応FP生成部372と、予測参照領域格納部374と、予測画像生成部376とを有する。予測参照領域生成部370は、1/2画素補間領域生成部380と、1/4画素補間領域生成部382とを有し、第4実施形態にかかる予測参照領域生成部292と同様の処理によって、処理対象のブロックに対応する参照フレームの所定の領域の画像を4倍の高解像度の画像とした予測参照画像を生成する。
【0133】
適応FP生成部372は、復号部352によって復号された処理対象のブロックのMVDの絶対値が所定の基準値より小さい場合には、予測参照画像の(3/4、3/4)画素位置をFPとする。かかるFPの生成処理については、第4実施形態の第1FP生成部238による処理と同様である。一方、適応FP生成部372は、上記のMVDの絶対値が所定の基準値以上の場合に、第4実施形態の第2FP生成部240と同様の処理によって、予測参照画像にFPを設ける。適応FP生成部372によってFPが設けられた予測参照画像は、予測参照領域格納部374に格納される。
【0134】
予測画像生成部376は、復号部352によって復号された処理対象のブロックのMVDから動きベクトルを生成する。予測画像生成部376は、適応FP生成部372によって生成される予測参照画像のうち、処理対象のブロックの動きベクトルに対応する位置のブロックの画像を予測画像とする。予測画像は、復号対象フレームの全てのブロックについて求められて、加算部362に出力される。
【0135】
以下、第6実施形態の動画像復号方法について説明する。かかる動画像復号方法については、第4実施形態の動画像復号方法と異なる動き補償予測の処理について説明する。図27は、第6実施形態にかかる動画像復号方法における動き補償予測の処理を示すフローチャートである。図27に示すように、かかる動き補償予測の処理においては、まず、予測参照領域生成部370によって予測参照画像が生成される(ステップS50)。予測参照画像は、予測画像を抽出するのに生成するのに必要な参照フレームにおける所定の領域に基づいて生成される。次いで、適応FP生成部372によって、処理対象ブロックのMVDの絶対値と所定の基準値が比較され、かかる比較の結果に応じた数のFPが設けられた予測参照画像が生成される(ステップS51)。次いで、予測画像生成部376によって、処理対象のブロックのMVDから動きベクトルが生成される。そして、予測画像生成部376によって、処理対象のブロックの動きベクトルによって特定される位置のブロックの画像が予測参照画像から抽出され、かかる画像が予測画像として出力される(ステップS52)。ステップS50からS52の処理が、復号対象フレームの全てのブロックについて実行されることによって、復号対象フレームが復元される。
【0136】
以下、コンピュータを動画像復号装置350として動作させる為の動画像復号プログラム390について説明する。図28は、動画像復号プログラム390の構成を示す図である。動画像復号プログラム390は、処理を統括するメインモジュール391と、復号モジュール392と、逆量子化モジュール394と、逆変換モジュール396と、動き補償予測モジュール398と、加算モジュール400とを備える。動き補償予測モジュール398は、予測参照領域生成サブモジュール402と、適応FP生成サブモジュール404と、予測画像生成サブモジュール406とを有する。予測参照領域生成サブモジュール402は、1/2画素補間領域生成サブモジュール408と、1/4画素補間領域生成サブモジュール410とを有する。
【0137】
復号モジュール392、逆量子化モジュール394、逆変換モジュール396、動き補償予測モジュール398、加算モジュール400、予測参照領域生成サブモジュール402、適応FP生成サブモジュール404、予測画像生成サブモジュール406、1/2画素補間領域生成サブモジュール408、1/4画素補間領域生成サブモジュール410がコンピュータに実現させる機能はそれぞれ、復号部352、逆量子化部354、逆変換部356、動き補償予測部358、加算部362、予測参照領域生成部370、適応FP生成部372、予測画像生成部376、1/2画素補間領域生成部380、1/4画素補間領域生成部382と同様である。
【0138】
以上のように、第6実施形態にかかる動画像復号装置350は、動画像符号化装置160が動画像から圧縮データを生成する処理の逆処理を忠実に行うことによって、上記の動画像を復元することができる。
【0139】
【発明の効果】
以上説明したように本発明によれば、動き補償予測の高解像度化による符号化効率の向上とフィルタリングによる符号化効率の向上を同時に実現可能な動画像符号化装置、動画像符号化方法、及び動画像符号化プログラムが提供される。また、かかる動画像符号化装置によって生成される圧縮データから動画像を復元するための動画像復号装置、動画像復号方法、及び動画像復号プログラムが提供される。
【図面の簡単な説明】
【図1】図1は、第1実施形態にかかる動画像符号化装置の機能的な構成を示すブロック図である。
【図2】図2は、第1実施形態にかかる動画像符号化装置に備えられる動き補償予測部の構成を示すブロック図である。
【図3】図3は、第1実施形態にかかる動画像符号化装置に備えられる第1FP生成部によって生成される第1の予測参照画像の一例を概略的に示す図である。
【図4】図4は、第1実施形態にかかる動画像符号化装置に備えられる第2FP生成部によって生成される第2の予測参照画像の一例を概略的に示す図である。
【図5】図5は、第1実施形態にかかる動画像符号化方法のフローチャートである。
【図6】図6は、第1実施形態にかかる動画像符号化方法における動き補償予測に関するフローチャートである。
【図7】図7は、第1実施形態にかかる動画像符号化プログラムの構成を示すブロック図である。
【図8】図8は、第1実施形態にかかる動画像符号化プログラムにおける動き補償予測モジュールの構成を示すブロック図である。
【図9】図9は、第1実施形態にかかる動画像符号化装置の他の態様にかかる動き補償予測部の構成を示すブロック図である。
【図10】図10は、第1実施形態にかかる動画像符号化方法の他の態様にかかる動き補償予測に関するフローチャートである。
【図11】図11は、第1実施形態にかかる動画像符号化プログラムの他の態様にかかる動き補償予測モジュールの構成を示す図である。
【図12】図12は、第2実施形態にかかる動画像符号化装置の機能的な構成を示すブロック図である。
【図13】図13は、第3実施形態にかかる動画像符号化装置の機能的な構成を示すブロック図である。
【図14】図14は、第3実施形態にかかる動画像符号化装置の動き補償予測部の構成を示すブロック図である。
【図15】図15は、第3実施形態にかかる動き補償予測の処理を示すフローチャートである。
【図16】図16は、第3実施形態にかかる動画像符号化プログラムの動き補償予測モジュールの構成を示す図である。
【図17】図17は、第4実施形態にかかる動画像復号装置の機能的な構成を示すブロック図である。
【図18】図18は、第4実施形態にかかる動画像復号装置の動き補償予測部の構成を示すブロック図である。
【図19】図19は、第4実施形態にかかる動画像復号方法のフローチャートである。
【図20】図20は、第4実施形態にかかる動画像復号方法の動き補償予測に関する処理を示すフローチャートである。
【図21】図21は、第4実施形態にかかる動画像復号プログラムの構成を示す図である。
【図22】図22は、第4実施形態の動画像復号装置の他の態様にかかる動き補償予測部の構成を示すブロック図である。
【図23】図23は、第4実施形態の動画像符号化プログラムの他の態様にかかる動き補償予測モジュールの構成を示す図である。
【図24】図24は、第5実施形態の動画像復号装置の機能的な構成を示すブロック図である。
【図25】図25は、第6実施形態にかかる動画像復号装置の機能的な構成を示すブロック図である。
【図26】図26は、第6実施形態にかかる動画像復号装置の動き補償予測部の構成を示すブロック図である。
【図27】図27は、第6実施形態にかかる動画像復号方法における動き補償予測の処理を示すフローチャートである。
【図28】図28は、第6実施形態にかかる動画像復号プログラムの構成を示す図である。
【符号の説明】
1…動画像符号化装置、2…動き補償予測部、4…フレームメモリ、6…減算部、8…変換部、10…量子化部、12…符号化部、14…逆量子化部、16…逆変換部、18…加算部、20…MVD記憶部、24…予測参照領域生成部、26…第1FP生成部、28…第2FP生成部、30…第1予測参照領域格納部、32…第2予測参照領域格納部、34…動きベクトル生成部、36…参照領域セレクタ、40…予測誤差判定部、42…1/2画素補間領域生成部、44…1/4画素補間領域生成部。
Claims (12)
- 符号化対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、該複数のブロック各々について該予測参照画像に対する動きベクトルを求めて、符号化対象フレームの予測画像を生成する動き補償予測手段を備える動画像符号化装置であって、
前記動き補償予測手段は、
前記複数のブロック各々について前記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、
高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を前記複雑度の増加に応じて増加させる所定規則を参照し、前記ブロック毎に前記複雑度抽出手段によって抽出される前記複雑度情報によって特定される前記複雑度に応じて前記予測画像に設ける前記フィルタリング画素の数を変更する予測画像生成手段と
を有することを特徴とする動画像符号化装置。 - 符号化対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、該複数のブロック各々について該予測参照画像に対する動きベクトルを求めて、符号化対象フレームの予測画像を生成する動き補償予測ステップを備える動画像符号化方法であって、
前記動き補償予測ステップにおいて、
前記複数のブロック各々について前記参照フレームからの動きの複雑度を示す複雑度情報を抽出し、
高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を前記複雑度の増加に応じて増加させる所定規則を参照し、前記ブロック毎に抽出される前記複雑度情報によって特定される前記複雑度に応じて前記予測画像に設ける前記フィルタリング画素の数を変更する
ことを特徴とする動画像符号化方法。 - コンピュータを、
符号化対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、該複数のブロック各々について該予測参照画像に対する動きベクトルを求めて、符号化対象フレームの予測画像を生成する動き補償予測手段として機能させる動画像符号化プログラムであって、
前記動き補償予測手段は、
前記複数のブロック各々について前記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、
高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を前記複雑度の増加に応じて増加させる所定規則を参照し、前記ブロック毎に前記複雑度抽出手段によって抽出される前記複雑度情報によって特定される前記複雑度に応じて前記予測画像に設ける前記フィルタリング画素の数を変更する予測画像生成手段と
を有することを特徴とする動画像符号化プログラム。 - 前記複雑度抽出手段は、前記複雑度情報として該複雑度情報を抽出すべき前記ブロックの周囲のブロックにおける差分動きベクトルの絶対値を用いることを特徴とする請求項3に記載の動画像符号化プログラム。
- コンピュータを、前記符号化対象フレームと前記予測画像との差演算によって生成される予測残差画像を所定の変換規則に基づいて所定の係数の集合に変換する変換手段として更に機能させ、
前記複雑度抽出手段は、前記複雑度情報として該複雑度情報を抽出すべき前記ブロックの周囲のブロックにおける前記所定の係数のうち非零となる係数の数を用いる
ことを特徴とする請求項3に記載の動画像符号化プログラム。 - 前記複雑度抽出手段は、前記複雑度情報として、該複雑度情報を抽出すべき前記ブロックの差分動きベクトルの絶対値を用いることを特徴とする請求項3に記載の動画像符号化プログラム。
- 復号対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から補間してなる補間画素を設けてなる予測参照画像を生成し、前記複数のブロック各々について符号化装置によって生成される圧縮データに基づいて生成される動きベクトルを用いて、該予測参照画像に基づく動き補償予測を行い予測画像を生成する動き補償予測手段を備える動画像復号装置であって、
前記動き補償予測手段は、
前記複数のブロック各々について前記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、
高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を前記複雑度の増加に応じて増加させる所定規則を参照し、前記ブロック毎に前記複雑度抽出手段によって抽出される前記複雑度情報によって特定される前記複雑度に応じて前記予測画像に設ける前記フィルタリング画素の数を変更する予測画像生成手段と
を有することを特徴とする動画像復号装置。 - 復号対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から直線補間してなる補間画素を設けてなる予測参照画像を生成し、前記複数のブロック各々について符号化装置によって生成される圧縮データに基づいて生成される動きベクトルを用いて、該予測参照画像に基づく動き補償予測を行い予測画像を生成する動き補償予測ステップを備える動画像復号方法であって、
前記動き補償予測ステップにおいて、
前記複数のブロック各々について前記参照フレームからの動きの複雑度を示す複雑度情報を抽出し、
高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を前記複雑度の増加に応じて増加させる所定規則を参照し、前記ブロック毎に抽出される前記複雑度情報によって特定される前記複雑度に応じて前記予測画像に設ける前記フィルタリング画素の数を変更する
ことを特徴とする動画像復号方法。 - コンピュータを、復号対象フレームを所定サイズの複数のブロックに分割し、参照フレームの所定領域について整数画素間に近傍の整数画素から直線補間してなる補間画素を設けてなる予測参照画像を生成し、前記複数のブロック各々について符号化装置によって生成される圧縮データに基づいて生成される動きベクトルを用いて、該予測参照画像に基づく動き補償予測を行い予測画像を生成する動き補償予測手段として機能させる動画像復号プログラムであって、
前記動き補償予測手段は、
前記複数のブロック各々について前記参照フレームからの動きの複雑度を示す複雑度情報を抽出する複雑度抽出手段と、
高周波遮断特性の異なる複数の低域通過フィルタのうち、高周波遮断特性の強い低域通過フィルタを周囲の整数画素に施してなる画素値を与えるフィルタリング画素の数を前記複雑度の増加に応じて増加させる所定規則を参照し、前記ブロック毎に前記複雑度抽出手段によって抽出される前記複雑度情報によって特定される前記複雑度に応じて前記予測画像に設ける前記フィルタリング画素の数を変更する予測画像生成手段と
を有することを特徴とする動画像復号プログラム。 - 前記複雑度抽出手段は、前記複雑度情報として該複雑度情報を抽出すべき前記ブロックの周囲のブロックにおける差分動きベクトルの絶対値を用いることを特徴とする請求項9に記載の動画像復号プログラム。
- 符号化装置によって生成される圧縮データであって、符号化対象フレームと前記予測画像との差演算によって生成される予測残差画像が所定の変換規則に基づいて所定の係数の集合に変換され、該所定の係数の集合が圧縮符号化された圧縮符号を含む圧縮データを所定の復号規則に基づいて復号する復号手段として、コンピュータを更に機能させ、
前記複雑度抽出手段は、前記複雑度情報として該複雑度情報を抽出すべき前記ブロックの周囲のブロックにおける前記所定の係数のうち非零となる係数の数を用いる
ことを特徴とする請求項9に記載の動画像復号プログラム。 - 前記複雑度抽出手段は、前記複雑度情報として該複雑度情報を抽出すべき前記ブロックの差分動きベクトルの絶対値を用いることを特徴とする請求項9に記載の動画像復号プログラム。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003088618A JP3997171B2 (ja) | 2003-03-27 | 2003-03-27 | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム |
US10/810,792 US7720153B2 (en) | 2003-03-27 | 2004-03-26 | Video encoding apparatus, video encoding method, video encoding program, video decoding apparatus, video decoding method and video decoding program |
EP20040007397 EP1467568A3 (en) | 2003-03-27 | 2004-03-26 | Apparatus and method for video encoding and decoding |
CN2010102245289A CN101902644A (zh) | 2003-03-27 | 2004-03-26 | 视频编码设备、方法和程序及视频解码设备、方法和程序 |
EP20100180803 EP2262266A3 (en) | 2003-03-27 | 2004-03-26 | Apparatus and method for video encoding and decoding |
EP20100158212 EP2197216A3 (en) | 2003-03-27 | 2004-03-26 | Apparatus and method for video encoding and decoding |
CN2004100312917A CN1535024B (zh) | 2003-03-27 | 2004-03-26 | 视频编码设备和方法及视频解码设备和方法 |
US12/755,685 US20110058611A1 (en) | 2003-03-27 | 2010-04-07 | Video encoding apparatus, video encoding method, video encoding program, video decoding apparatus, video decoding method and video decoding program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003088618A JP3997171B2 (ja) | 2003-03-27 | 2003-03-27 | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004297566A JP2004297566A (ja) | 2004-10-21 |
JP3997171B2 true JP3997171B2 (ja) | 2007-10-24 |
Family
ID=32866687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003088618A Expired - Fee Related JP3997171B2 (ja) | 2003-03-27 | 2003-03-27 | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム |
Country Status (4)
Country | Link |
---|---|
US (2) | US7720153B2 (ja) |
EP (3) | EP1467568A3 (ja) |
JP (1) | JP3997171B2 (ja) |
CN (2) | CN1535024B (ja) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003237289A1 (en) | 2002-05-29 | 2003-12-19 | Pixonics, Inc. | Maintaining a plurality of codebooks related to a video signal |
US20130107938A9 (en) * | 2003-05-28 | 2013-05-02 | Chad Fogg | Method And Apparatus For Scalable Video Decoder Using An Enhancement Stream |
DE102004059993B4 (de) * | 2004-10-15 | 2006-08-31 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Erzeugen einer codierten Videosequenz unter Verwendung einer Zwischen-Schicht-Bewegungsdaten-Prädiktion sowie Computerprogramm und computerlesbares Medium |
JP4398925B2 (ja) * | 2005-03-31 | 2010-01-13 | 株式会社東芝 | 補間フレーム生成方法、補間フレーム生成装置および補間フレーム生成プログラム |
KR20090127175A (ko) * | 2005-04-13 | 2009-12-09 | 가부시키가이샤 엔티티 도코모 | 동화상 부호화 장치, 동화상 복호 장치, 동화상 부호화 방법, 동화상 복호 방법, 동화상 부호화 프로그램, 및 동화상 복호 프로그램 |
US7894527B2 (en) | 2005-09-16 | 2011-02-22 | Sony Corporation | Multi-stage linked process for adaptive motion vector sampling in video compression |
US8165205B2 (en) | 2005-09-16 | 2012-04-24 | Sony Corporation | Natural shaped regions for motion compensation |
US20070064805A1 (en) * | 2005-09-16 | 2007-03-22 | Sony Corporation | Motion vector selection |
US7957466B2 (en) * | 2005-09-16 | 2011-06-07 | Sony Corporation | Adaptive area of influence filter for moving object boundaries |
US8107748B2 (en) * | 2005-09-16 | 2012-01-31 | Sony Corporation | Adaptive motion search range |
US7596243B2 (en) * | 2005-09-16 | 2009-09-29 | Sony Corporation | Extracting a moving object boundary |
US7620108B2 (en) * | 2005-09-16 | 2009-11-17 | Sony Corporation | Integrated spatial-temporal prediction |
US7885335B2 (en) * | 2005-09-16 | 2011-02-08 | Sont Corporation | Variable shape motion estimation in video sequence |
US8005308B2 (en) * | 2005-09-16 | 2011-08-23 | Sony Corporation | Adaptive motion estimation for temporal prediction filter over irregular motion vector samples |
US8059719B2 (en) * | 2005-09-16 | 2011-11-15 | Sony Corporation | Adaptive area of influence filter |
US7894522B2 (en) * | 2005-09-16 | 2011-02-22 | Sony Corporation | Classified filtering for temporal prediction |
JP2008067194A (ja) * | 2006-09-08 | 2008-03-21 | Toshiba Corp | フレーム補間回路、フレーム補間方法、表示装置 |
KR101447717B1 (ko) | 2006-10-30 | 2014-10-07 | 니폰덴신뎅와 가부시키가이샤 | 동영상 부호화 방법 및 복호방법, 그들의 장치 및 그들의 프로그램과 프로그램을 기록한 기억매체 |
DE102007017254B4 (de) * | 2006-11-16 | 2009-06-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zum Kodieren und Dekodieren |
JP4956550B2 (ja) * | 2006-11-30 | 2012-06-20 | 株式会社エヌ・ティ・ティ・ドコモ | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号化装置、動画像復号化方法及び動画像復号化プログラム |
WO2008147565A2 (en) * | 2007-05-25 | 2008-12-04 | Arc International, Plc | Adaptive video encoding apparatus and methods |
WO2009050766A1 (ja) * | 2007-10-18 | 2009-04-23 | Fujitsu Limited | 映像圧縮符号化・復元装置、映像圧縮符号化・復元プログラム、及び映像生成・出力装置 |
KR101386891B1 (ko) * | 2007-12-13 | 2014-04-18 | 삼성전자주식회사 | 영상 보간 방법 및 장치 |
TWI463874B (zh) * | 2008-01-02 | 2014-12-01 | Mstar Semiconductor Inc | 產生目標影像區塊的影像處理方法及其相關裝置 |
CA2714691A1 (en) * | 2008-03-07 | 2009-09-11 | Kabushiki Kaisha Toshiba | Video encoding/decoding apparatus |
CN101527843B (zh) * | 2008-03-07 | 2011-01-26 | 瑞昱半导体股份有限公司 | 用来解码视频画面中的视频块的装置及其相关方法 |
US9241094B2 (en) * | 2008-03-18 | 2016-01-19 | Intel Corporation | Capturing event information using a digital video camera |
US9251423B2 (en) * | 2008-03-21 | 2016-02-02 | Intel Corporation | Estimating motion of an event captured using a digital video camera |
US9256789B2 (en) * | 2008-03-21 | 2016-02-09 | Intel Corporation | Estimating motion of an event captured using a digital video camera |
US20090279614A1 (en) * | 2008-05-10 | 2009-11-12 | Samsung Electronics Co., Ltd. | Apparatus and method for managing reference frame buffer in layered video coding |
CN102957914B (zh) | 2008-05-23 | 2016-01-06 | 松下知识产权经营株式会社 | 图像解码装置、图像解码方法、图像编码装置、以及图像编码方法 |
KR101590663B1 (ko) * | 2008-07-25 | 2016-02-18 | 소니 주식회사 | 화상 처리 장치 및 방법 |
WO2010013203A2 (en) * | 2008-07-28 | 2010-02-04 | The Procter & Gamble Company | In-vitro deposition evaluation method for identifying personal care compositions which provide improved deposition of benefit agents |
US20100027663A1 (en) * | 2008-07-29 | 2010-02-04 | Qualcomm Incorporated | Intellegent frame skipping in video coding based on similarity metric in compressed domain |
JP5446198B2 (ja) * | 2008-10-03 | 2014-03-19 | 富士通株式会社 | 画像予測装置及び方法、画像符号化装置、画像復号化装置 |
TWI463878B (zh) * | 2009-02-19 | 2014-12-01 | Sony Corp | Image processing apparatus and method |
JP5000012B2 (ja) * | 2009-04-06 | 2012-08-15 | 三菱電機株式会社 | 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法 |
CN102265611A (zh) * | 2010-03-15 | 2011-11-30 | 联发科技(新加坡)私人有限公司 | 在混合视频编码中具有多个滤波器的本地环路内滤波 |
KR101529992B1 (ko) * | 2010-04-05 | 2015-06-18 | 삼성전자주식회사 | 픽셀 그룹별 픽셀값 보상을 위한 비디오 부호화 방법과 그 장치, 및 픽셀 그룹별 픽셀값 보상을 위한 비디오 복호화 방법과 그 장치 |
KR101682147B1 (ko) * | 2010-04-05 | 2016-12-05 | 삼성전자주식회사 | 변환 및 역변환에 기초한 보간 방법 및 장치 |
JP2011244210A (ja) * | 2010-05-18 | 2011-12-01 | Sony Corp | 画像処理装置および方法 |
KR101663764B1 (ko) * | 2010-08-26 | 2016-10-07 | 에스케이 텔레콤주식회사 | 인트라 예측을 이용한 부호화 및 복호화 장치와 방법 |
JP2012124673A (ja) * | 2010-12-07 | 2012-06-28 | Sony Corp | 画像処理装置、画像処理方法、およびプログラム |
US9258573B2 (en) * | 2010-12-07 | 2016-02-09 | Panasonic Intellectual Property Corporation Of America | Pixel adaptive intra smoothing |
US9930366B2 (en) * | 2011-01-28 | 2018-03-27 | Qualcomm Incorporated | Pixel level adaptive intra-smoothing |
JP5711370B2 (ja) * | 2011-06-30 | 2015-04-30 | 三菱電機株式会社 | 画像符号化装置、画像復号装置、画像符号化方法および画像復号方法 |
CN103828366B (zh) * | 2011-07-21 | 2017-10-20 | 黑莓有限公司 | 一种编码和解码方法、编码和解码设备 |
US9451271B2 (en) | 2011-07-21 | 2016-09-20 | Blackberry Limited | Adaptive filtering based on pattern information |
GB2497915B (en) | 2011-10-25 | 2015-09-09 | Skype | Estimating quality of a video signal |
KR101462052B1 (ko) * | 2011-11-09 | 2014-11-20 | 에스케이 텔레콤주식회사 | 변환을 이용한 주파수 도메인 상의 적응적 루프 필터를 이용한 영상 부호화/복호화 방법 및 장치 |
CN104704827B (zh) | 2012-11-13 | 2019-04-12 | 英特尔公司 | 用于下一代视频的内容自适应变换译码 |
GB2513090B (en) | 2013-01-28 | 2019-12-11 | Microsoft Technology Licensing Llc | Conditional concealment of lost video data |
CN104885470B (zh) | 2013-01-30 | 2018-08-07 | 英特尔公司 | 用于下一代视频的预测和编码的内容自适应划分 |
US9414067B2 (en) * | 2013-02-19 | 2016-08-09 | Interra Systems Inc. | Methods and systems for detection of block based video dropouts |
CN105141948A (zh) * | 2015-09-22 | 2015-12-09 | 天津师范大学 | 一种改进的hevc样点自适应补偿方法 |
US10715819B2 (en) * | 2017-04-26 | 2020-07-14 | Canon Kabushiki Kaisha | Method and apparatus for reducing flicker |
NL2024806B1 (en) | 2020-01-31 | 2021-09-13 | Champion Link Int Corp | Panel and method of producing such a panel |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3165296B2 (ja) * | 1992-12-25 | 2001-05-14 | 三菱電機株式会社 | フレーム間符号化処理方式及びフレーム間符号化処理方法及び符号化制御方式 |
TW293227B (ja) * | 1994-11-24 | 1996-12-11 | Victor Company Of Japan | |
JPH09102954A (ja) * | 1995-10-04 | 1997-04-15 | Matsushita Electric Ind Co Ltd | 1つまたは2つの予測ブロックからブロックの画素値を計算する方法 |
US6931063B2 (en) * | 2001-03-26 | 2005-08-16 | Sharp Laboratories Of America, Inc. | Method and apparatus for controlling loop filtering or post filtering in block based motion compensationed video coding |
US6950469B2 (en) * | 2001-09-17 | 2005-09-27 | Nokia Corporation | Method for sub-pixel value interpolation |
US7227901B2 (en) * | 2002-11-21 | 2007-06-05 | Ub Video Inc. | Low-complexity deblocking filter |
-
2003
- 2003-03-27 JP JP2003088618A patent/JP3997171B2/ja not_active Expired - Fee Related
-
2004
- 2004-03-26 US US10/810,792 patent/US7720153B2/en not_active Expired - Fee Related
- 2004-03-26 CN CN2004100312917A patent/CN1535024B/zh not_active Expired - Fee Related
- 2004-03-26 CN CN2010102245289A patent/CN101902644A/zh active Pending
- 2004-03-26 EP EP20040007397 patent/EP1467568A3/en not_active Withdrawn
- 2004-03-26 EP EP20100180803 patent/EP2262266A3/en not_active Withdrawn
- 2004-03-26 EP EP20100158212 patent/EP2197216A3/en not_active Withdrawn
-
2010
- 2010-04-07 US US12/755,685 patent/US20110058611A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US7720153B2 (en) | 2010-05-18 |
CN1535024B (zh) | 2010-08-18 |
CN101902644A (zh) | 2010-12-01 |
EP1467568A2 (en) | 2004-10-13 |
US20040233991A1 (en) | 2004-11-25 |
EP2197216A3 (en) | 2011-06-29 |
EP1467568A3 (en) | 2006-04-12 |
EP2262266A2 (en) | 2010-12-15 |
JP2004297566A (ja) | 2004-10-21 |
EP2197216A2 (en) | 2010-06-16 |
US20110058611A1 (en) | 2011-03-10 |
CN1535024A (zh) | 2004-10-06 |
EP2262266A3 (en) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3997171B2 (ja) | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム | |
JP5686499B2 (ja) | 画像予測符号化装置、方法及びプログラム、画像予測復号装置、方法及びプログラム、並びに、符号化・復号システム及び方法 | |
JP5542680B2 (ja) | 画像加工装置、方法及びプログラム、動画像符号化装置、方法及びプログラム、動画像復号装置、方法及びプログラム、並びに、符号化・復号システム及び方法 | |
JP3959039B2 (ja) | 画像符号化装置、画像符号化方法、画像符号化プログラム、画像復号装置、画像復号方法、及び画像復号プログラム | |
JP5306485B2 (ja) | 動きベクトル予測符号化方法、動きベクトル予測復号方法、動画像符号化装置、動画像復号装置およびそれらのプログラム | |
JP2006246474A (ja) | カラー成分間の単一符号化モードを利用して予測映像を生成する方法、およびその装置と、該単一符号化モードを利用して映像およびビデオを符号化/復号化する方法およびその装置 | |
JP2007300380A (ja) | 画像予測符号化装置、画像予測符号化方法、画像予測符号化プログラム、画像予測復号装置、画像予測復号方法及び画像予測復号プログラム | |
JP2012044705A (ja) | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法及び動画像復号プログラム | |
JPWO2011099440A1 (ja) | 動きベクトル予測符号化方法、動きベクトル予測復号方法、動画像符号化装置、動画像復号装置およびそれらのプログラム | |
KR100587562B1 (ko) | 비디오 프레임에 대한 움직임 추정 방법 및 비디오 인코더 | |
JP2023168518A (ja) | 予測ブロック生成装置、画像符号化装置、画像復号装置、及びプログラム | |
JP5092558B2 (ja) | 画像符号化方法、画像符号化装置、画像復号化方法及び画像復号化装置 | |
JP6564315B2 (ja) | 符号化装置、復号装置、及びプログラム | |
JP2021132302A (ja) | 画像符号化装置、画像復号装置及びこれらのプログラム | |
JPH08186817A (ja) | 動画像圧縮装置とその方法 | |
JP5415495B2 (ja) | 画像予測符号化装置、画像予測符号化方法、画像予測符号化プログラム、画像予測復号装置、画像予測復号方法及び画像予測復号プログラム | |
JP2020028066A (ja) | 色差イントラ予測候補生成装置、画像符号化装置、画像復号装置、及びプログラム | |
JP4344184B2 (ja) | 動画像符号化装置、動画像符号化方法、動画像符号化プログラム、動画像復号装置、動画像復号方法、及び動画像復号プログラム | |
WO2017104010A1 (ja) | 動画像符号化装置および動画像符号化方法 | |
CN105049846A (zh) | 图像和视频编解码的方法和设备 | |
JP6643884B2 (ja) | 映像符号化装置およびプログラム | |
JP2022171424A (ja) | 符号化装置、プログラム、及びモデル生成方法 | |
JP6485045B2 (ja) | インデックス演算装置、プログラム及び方法 | |
JP5668169B2 (ja) | 動画像予測符号化装置、動画像予測符号化方法、動画像予測符号化プログラム、動画像予測復号装置、動画像予測復号方法及び動画像予測復号プログラム | |
JP2020109960A (ja) | イントラ予測装置、画像符号化装置、画像復号装置、及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050411 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070423 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070806 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3997171 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |