[go: up one dir, main page]

JP3994703B2 - Silicon carbide semiconductor device and manufacturing method thereof - Google Patents

Silicon carbide semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP3994703B2
JP3994703B2 JP2001259995A JP2001259995A JP3994703B2 JP 3994703 B2 JP3994703 B2 JP 3994703B2 JP 2001259995 A JP2001259995 A JP 2001259995A JP 2001259995 A JP2001259995 A JP 2001259995A JP 3994703 B2 JP3994703 B2 JP 3994703B2
Authority
JP
Japan
Prior art keywords
conductivity type
drift layer
region
layer
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001259995A
Other languages
Japanese (ja)
Other versions
JP2003069040A (en
Inventor
クマール ラジェシュ
剛 山本
淳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001259995A priority Critical patent/JP3994703B2/en
Publication of JP2003069040A publication Critical patent/JP2003069040A/en
Application granted granted Critical
Publication of JP3994703B2 publication Critical patent/JP3994703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/63Vertical IGFETs
    • H10D30/635Vertical IGFETs having no inversion channels, e.g. vertical accumulation channel FETs [ACCUFET] or normally-on vertical IGFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/611Insulated-gate field-effect transistors [IGFET] having multiple independently-addressable gate electrodes influencing the same channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • H10D62/107Buried supplementary regions, e.g. buried guard rings 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/109Reduced surface field [RESURF] PN junction structures
    • H10D62/111Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/125Shapes of junctions between the regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/832Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
    • H10D62/8325Silicon carbide

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素半導体装置およびその製造方法に関するものである。
【0002】
【従来の技術】
特開2001−144292号公報には、スーパージャンクションを具備する炭化珪素半導体装置が開示されている。詳しくは、図14に示すように、N+型SiC基板100の上にN型層101が形成されるとともに、N型層101の表層部にはP型ベース領域102a,102b、N型ソース領域103、N型チャネル層104が形成され、さらに、基板の上面にはゲート酸化膜105を介してゲート電極106が配置されている。一方、N型層101の内部にP型領域107が並設され、N型領域101aとP型領域107を横方向に交互に埋設してスーパージャンクションとしている。このスーパージャンクションにより高耐圧とすることができる。しかしながら、スーパージャンクションの設計をフレキシブルに行いたいという要求がある。
【0003】
【発明が解決しようとする課題】
本発明はこのような背景のもとになされたものであり、その目的は、より設計の自由度を増すことができる炭化珪素半導体装置およびその製造方法を提供することにある。
【0004】
【課題を解決するための手段】
請求項1に記載の発明では、スーパージャンクションでの不純物領域は、深さ方向において最も深い領域において最も薄く、最も浅い領域において最も濃くなっていることを特徴としている。このように、深さ方向における濃度勾配を所望にできることにより設計の自由度が増す。
【0005】
請求項2に記載の発明では、スーパージャンクションでの不純物領域は、横方向の幅が深さ方向において最も深い領域で最も広く、最も浅い領域で最も狭くなっていることを特徴としている。このように、深さ方向において幅を所望に変化させることができることにより設計の自由度が増す。
【0006】
請求項3に記載の発明では、スーパージャンクションでの不純物領域は、横方向の幅が深さ方向において最も深い領域で最も狭く、最も浅い領域で最も広くなっていることを特徴としている。このように、深さ方向における濃度勾配を所望にできること、および、深さ方向において幅を所望に変化させることができることにより設計の自由度が増す。
【0007】
製造方法として、請求項に記載のように、エピタキシャル成長により第1導電型のSiC基板の上に第1導電型のドリフト層を形成する。そして、ドリフト層に対しマスクを用いて一回目のイオン注入を行って、マスク開口部の下方におけるドリフト層に第2導電型の第1の不純物領域を埋設する。さらに、ドリフト層に対し別のマスクを用いて二回目のイオン注入を行って、マスク開口部の下方におけるドリフト層内に第1の不純物領域の不純物濃度より高い第2導電型の第2の不純物領域を一回目のイオン注入による第1の不純物領域とつながるように第1の不純物領域の上に埋設する。
【0008】
これにより請求項1,2,3に記載の炭化珪素半導体装置を製造することが可能となる。
【0009】
【発明の実施の形態】
以下、この発明を具体化した実施の形態を図面に従って説明する。
図1には本実施の形態における炭化珪素半導体装置の縦断面図を示す。
【0010】
図1において、ドレイン領域となるN+型(第1導電型)のSiC基板1の上に、エピタキシャル層よりなるN-型(低濃度な第1導電型)のドリフト層2と、エピタキシャル層よりなるP+型(第2導電型)の第1のゲート層3と、エピタキシャル層よりなるN+型(第1導電型)のソース層4とが順に積層されている。ソース層4と第1のゲート層3とを貫通してドリフト層2に達するトレンチ5が形成されている。さらに、このトレンチ5の内壁にエピタキシャル層よりなるN-型(第1導電型)のチャネル層6が形成されるとともに、その内方にエピタキシャル層よりなるP+型(第2導電型)の第2のゲート層7が形成されている。
【0011】
また、基板上面には絶縁膜(LTO膜)8が形成され、この絶縁膜8に設けたコンタクトホールを通して第1ゲート電極11,12が第1のゲート層3と、第2ゲート電極9,10が第2のゲート層7と、ソース電極13がN+ソース層4と、それぞれ接続されている。電極材9,11にはアルミを、電極材10,12にはニッケルを用いている。なお、N型SiC層と接触する場合には金属材9,11は不要である。また、基板1の裏面(下面)にはドレイン電極14が全面に形成されている。
【0012】
トランジスタ動作としては、第1および第2のゲート端子への電圧によって両ゲート層3,7に挟まれたチャネル層6において空乏層の幅を調整することによりチャネル幅を変えてドレイン電流を調整する。
【0013】
さらに、トランジスタセル形成領域の外周部(チップ外周部)にはソース層4と第1のゲート層3とを貫通してドリフト層2に達するトレンチ20が形成されている。このトレンチ20の内壁にはP+型のSiC層21が形成され、P+型SiC層21がガードリングとして機能する。P+型SiC層21(チップ外周部)の上面は絶縁膜(LTO膜)8にて覆われている。
【0014】
一方、トランジスタセル形成領域でのドリフト層2においてその内部にP型(第2導電型)の不純物領域30を並設しており、これにより、ドリフト層2にN型(第1導電型)の不純物領域とP型の不純物領域30を横方向に交互に埋設してスーパージャンクションとしている。
【0015】
ここで、本実施の形態においては埋設したP型不純物領域30に関して、深さ方向において濃度が異なるとともに、横方向の幅が深さ方向において異なっている。詳しくは、濃度については、深さ方向において3段階の濃度を有し、最も深い領域31においては最も薄く(P-)、中間の深さの領域32においては中間の濃度であり(P)、最も浅い領域32においては最も濃く(P+)なっている。一方、横方向の幅については、最も深い領域31においては最も広く、中間の深さの領域32においては中間の幅であり、最も浅い領域32においては最も狭くなっている。
【0016】
各領域31,32,33の濃度については、不純物にアルミを用いた場合、例えば、P-領域31が5×1016〜1×1018atms/cm3で、P領域32が5×1017〜1×1019atms/cm3で、P+領域33が5×1018〜5×1020atms/cm3である。
【0017】
このように、スーパージャンクションでの不純物領域30に関して、深さ方向における濃度勾配を所望にできること、および、深さ方向において幅を所望に変化させることにより、スーパージャンクションの設計の自由度が増す。
【0018】
なお、スーパージャンクションを構成するP型不純物領域30の電位はフローティングとしても、ソースと共にグランド電位としてもよい。図1にはフローティングとした場合を、また、図2にはグランド電位とした場合を示す。
【0019】
一方、トランジスタセルの外周部(チップ外周部)におけるガードリング部にはP型不純物領域30によるスーパージャンクションは形成されていない。つまり、トランジスタセルの形成領域においてのみスーパージャンクション構造を採り、トランジスタセルの形成領域の外周部においてはスーパージャンクション構造を採らないようにしている。これにより耐圧が下がるのを防ぐことができる。
【0020】
次に、製造方法を説明する。
図3(a)に示すように、N+型のSiC基板1の上に、エピタキシャル成長によりN-ドリフト層2を形成する。そして、N-ドリフト層2の上にパーニングしたマスク40を配置する。つまり、開口部41を有するマスク40を形成する。この状態でアルミのイオン注入を行う。このイオン注入は、高い注入エネルギー(例えば400keV)で、しかも低い注入量で行う。その結果、スーパージャンクションの最も深く、かつ低濃度なP型領域(P-領域)31が形成される。
【0021】
引き続き、図3(b)に示すように、マスク40の上にパーニングしたマスク42を配置する。このとき、マスク40の開口部41がマスク42にて塞がれるとともに当該領域に開口部41よりも面積の小さい開口部43が形成される。開口部41の中心と開口部42の中心は一致している。この状態でアルミのイオン注入を行う。このイオン注入は、中程度の注入エネルギー(例えば200keV)で、しかも中程度の注入量で行う。その結果、スーパージャンクションの中間の深さで、かつ中程度の濃度のP型領域32が形成される。
【0022】
引き続き、図4(a)に示すように、マスク42の上にパーニングしたマスク44を配置する。このとき、マスク42の開口部43がマスク44にて塞がれるとともに当該領域に開口部43よりも面積の小さい開口部45が形成される。開口部43の中心と開口部45の中心は一致している。この状態でアルミのイオン注入を行う。このイオン注入は、低い注入エネルギー(例えば100keV)で、しかも高い注入量で行う。その結果、スーパージャンクションの最も浅く、かつ高濃度なP型領域(P+領域)33が形成される。
【0023】
その後、図4(b)に示すように、N-ドリフト層2の上に、連続エピタキシャル成長により、第1のゲート層(P+層)3とN+ソース層4を形成する。
そして、図5(a)に示すように、ソース層4と第1のゲート層3とを貫通してドリフト層2に達するトレンチ5,20を形成する。
【0024】
その後、図5(b)に示すように、トレンチ5,20内を含む基板上に、エピタキシャル成長により、N-型エピタキシャル層6を形成する。そして、図6(a)に示すように、トランジスタセル形成領域の外周部におけるN-型エピ層6をRIEにより所定量t1だけエッチングして薄くする。さらに、図6(b)に示すように、熱拡散によりN-型エピ層6の表層部にP+層7を形成する。これにより、トランジスタセル形成領域の外周部におけるガードリング形成領域では全てP+層7となる。なお、熱拡散によりP+層7を形成したが、エピタキシャル成長あるいはイオン注入にてP+層7を形成してもよい。
【0025】
引き続き、図7(a)に示すように、トランジスタセル形成領域におけるソースコンタクト領域A1のN-型エピ層6およびP+層7をRIEにより除去する。さらに、図7(b)に示すように、トランジスタセル形成領域における第1のゲートコンタクト領域A2のソース層4をRIEにより除去する。
【0026】
その後、図1に示すように、絶縁膜8のデポおよびコンタクトホールの形成を行った後、ゲート電極9,10とゲート電極11,12とソース電極13を形成する。また、基板の裏面にドレイン電極14を形成する。
【0027】
このようにして、図3(a)のドリフト層2に対しマスク40を用いて一回目のイオン注入を行って、マスク開口部41の下方におけるドリフト層2での所定の深さにP-型の不純物領域31を埋設する工程と、図3(b)のドリフト層2に対し別のマスク42を用いて二回目のイオン注入を行って、マスク開口部43の下方におけるドリフト層2での所定の深さにP型の不純物領域32を一回目のイオン注入によるP型不純物領域31とつながる状態で埋設する工程とを備え(二回目のイオン注入に対する三回目のイオン注入も同様)、一回目のイオン注入でのマスク開口部41と二回目のイオン注入でのマスク開口部43とは中心が同じあって、その面積と、一回目のイオン注入での注入エネルギーと二回目のイオン注入での注入エネルギーと、イオンの注入量をともに異ならせた。その結果、不純物領域30について、深さ方向において濃度を異ならせることができるとともに、横方向の幅を深さ方向において異ならせることができる。
【0028】
図1に代わる別の例として図8に示すように、横方向の幅に関して、最も深いP-領域51においては最も狭く、中間の深さのP領域52においては中間の幅であり、最も浅いP+領域52においては最も広くしてもよい。
【0029】
製造の際には、図9(a),(b),(c)に示すようにマスク60,62,64の開口部61,63,65の幅を狭くしつつイオン注入する際に、注入エネルギーと注入量を調整すればよい。
【0030】
また、図1においてはJFETに適用したが、これに限ることなく、図10に示すようにMOSFETに適用してもよい。つまり、N+型SiC基板70の上にN型エピ層71が形成されるとともに、N型エピ層71の表層部にP型ベース領域72,73、N+型ソース領域74、N-型チャネル層75が形成され、さらに、基板の上面にはゲート酸化膜76を介してゲート電極77が配置されている。ソース電極78はN+ソース領域74とP+ベース領域73に接している。基板70の裏面にはドレイン電極79が形成されている。このMOSFETにおいて、N型ドリフト層71の内部に、P-領域31とP領域32とP+領域33とを積層したP型領域30を並べて埋設する。製造方法としては、図11に示すように、N+型SiC基板70の上にN型エピ層71を所定の厚さだけ成長させた後、P型領域30をイオン注入により形成し、その後に、N型エピ層71を引き続き成長させればよい。
【0031】
さらに、図1においては、不純物領域30は深さ方向において濃度が異なるとともに横方向の幅が深さ方向において異なっていたが、これに限ることなく、図12に示すように不純物領域30は横方向の幅が深さ方向において同一で、深さ方向において濃度が異なっていたり、あるいは、図13に示すように、不純物領域30は深さ方向において濃度が同一で、横方向の幅が深さ方向において異なっているようにしてもよい。
【0032】
さらには、図1ではトレンチ5は側面が斜状となっていたが、垂直であってもよい
【図面の簡単な説明】
【図1】実施の形態における炭化珪素半導体装置の縦断面図。
【図2】炭化珪素半導体装置の縦断面図。
【図3】炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図4】炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図5】炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図6】炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図7】炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図8】別例の炭化珪素半導体装置の縦断面図。
【図9】炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図10】別例の炭化珪素半導体装置の縦断面図。
【図11】別例の炭化珪素半導体装置の製造工程を説明するための縦断面図。
【図12】別例の炭化珪素半導体装置の縦断面図。
【図13】別例の炭化珪素半導体装置の縦断面図。
【図14】従来技術を説明するための炭化珪素半導体装置の縦断面図。
【符号の説明】
1…N+型SiC基板、2…N-ドリフト層、3…第1のゲート層(P+層)、4…N+ソース層、5…トレンチ、6…N-チャネル層、7…第2のゲート層(P+層)、30…P型不純物領域、31…P-領域、32…P領域、33…P+領域。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 2001-144292 discloses a silicon carbide semiconductor device having a super junction. Specifically, as shown in FIG. 14, an N-type layer 101 is formed on an N + -type SiC substrate 100, and P-type base regions 102a and 102b, an N-type source region are formed on the surface layer portion of the N-type layer 101. 103, an N-type channel layer 104 is formed, and a gate electrode 106 is disposed on the upper surface of the substrate via a gate oxide film 105. On the other hand, a P-type region 107 is arranged in parallel inside the N-type layer 101, and the N-type region 101a and the P-type region 107 are alternately buried in the lateral direction to form a super junction. With this super junction, a high breakdown voltage can be achieved. However, there is a demand for flexible design of the super junction.
[0003]
[Problems to be solved by the invention]
The present invention has been made under such a background, and an object of the present invention is to provide a silicon carbide semiconductor device and a method for manufacturing the same that can further increase the degree of freedom in design.
[0004]
[Means for Solving the Problems]
The invention described in claim 1 is characterized in that the impurity region in the super junction is thinnest in the deepest region in the depth direction and darkest in the shallowest region . Thus, the degree of freedom in design is increased by making the concentration gradient in the depth direction desired.
[0005]
According to a second aspect of the present invention, the impurity region at the super junction is characterized in that the lateral width is widest in the deepest region in the depth direction and narrowest in the shallowest region . Thus, the degree of freedom in design is increased by allowing the width to be changed as desired in the depth direction.
[0006]
According to a third aspect of the present invention, the impurity region at the super junction is characterized in that the lateral width is narrowest in the deepest region in the depth direction and widest in the shallowest region . As described above, the concentration gradient in the depth direction can be made desired, and the width can be changed in the depth direction as desired, thereby increasing the degree of freedom in design.
[0007]
As a manufacturing method, as claimed in claim 4, to form a drift layer of a first conductivity type on a SiC substrate of a first conductivity type by epitaxial growth. Then, by ion implantation of first time by using a mask to drift layer, burying the first impurity region of a second conductivity type in the drift layer below the mask opening. Furthermore, by ion implantation of second time using another mask to the drift layer, a second impurity of the first higher than the impurity concentration of the impurity region of the second conductivity type in the drift layer below the mask opening The region is embedded on the first impurity region so as to be connected to the first impurity region by the first ion implantation.
[0008]
Thus, the silicon carbide semiconductor device according to the first, second, and third aspects can be manufactured.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view of a silicon carbide semiconductor device in the present embodiment.
[0010]
In FIG. 1, on an N + type (first conductivity type) SiC substrate 1 serving as a drain region, an N type (low concentration first conductivity type) drift layer 2 composed of an epitaxial layer, and an epitaxial layer A P + -type (second conductivity type) first gate layer 3 and an N + -type (first conductivity type) source layer 4 made of an epitaxial layer are sequentially stacked. A trench 5 that penetrates the source layer 4 and the first gate layer 3 and reaches the drift layer 2 is formed. Further, an N type (first conductivity type) channel layer 6 made of an epitaxial layer is formed on the inner wall of the trench 5, and a P + type (second conductivity type) first made of an epitaxial layer is formed on the inside thereof. Two gate layers 7 are formed.
[0011]
An insulating film (LTO film) 8 is formed on the upper surface of the substrate, and the first gate electrodes 11 and 12 are connected to the first gate layer 3 and the second gate electrodes 9 and 10 through contact holes provided in the insulating film 8. Is connected to the second gate layer 7 and the source electrode 13 is connected to the N + source layer 4. Aluminum is used for the electrode materials 9 and 11, and nickel is used for the electrode materials 10 and 12. Note that the metal materials 9 and 11 are not necessary when contacting the N-type SiC layer. A drain electrode 14 is formed on the entire back surface (lower surface) of the substrate 1.
[0012]
As the transistor operation, the drain current is adjusted by changing the channel width by adjusting the width of the depletion layer in the channel layer 6 sandwiched between the gate layers 3 and 7 by the voltages to the first and second gate terminals. .
[0013]
Further, a trench 20 that penetrates the source layer 4 and the first gate layer 3 and reaches the drift layer 2 is formed in the outer peripheral portion (chip outer peripheral portion) of the transistor cell formation region. A P + type SiC layer 21 is formed on the inner wall of the trench 20, and the P + type SiC layer 21 functions as a guard ring. The upper surface of the P + -type SiC layer 21 (chip outer peripheral portion) is covered with an insulating film (LTO film) 8.
[0014]
On the other hand, in the drift layer 2 in the transistor cell formation region, a P-type (second conductivity type) impurity region 30 is juxtaposed, so that the drift layer 2 has an N-type (first conductivity type). Impurity regions and P-type impurity regions 30 are alternately buried in the lateral direction to form a super junction.
[0015]
Here, in the present embodiment, the buried P-type impurity region 30 has a different concentration in the depth direction and a lateral width in the depth direction. Specifically, the concentration has three levels in the depth direction, the thinnest in the deepest region 31 (P ), and the intermediate concentration in the intermediate depth region 32 (P). In the shallowest region 32, it is the darkest (P + ). On the other hand, the lateral width is the widest in the deepest region 31, the intermediate width in the intermediate depth region 32, and the narrowest in the shallowest region 32.
[0016]
Regarding the concentrations of the regions 31, 32, and 33, when aluminum is used as an impurity, for example, the P region 31 is 5 × 10 16 to 1 × 10 18 atms / cm 3 and the P region 32 is 5 × 10 17. ˜1 × 10 19 atoms / cm 3 and the P + region 33 is 5 × 10 18 to 5 × 10 20 atoms / cm 3 .
[0017]
As described above, with respect to the impurity region 30 in the super junction, the concentration gradient in the depth direction can be made desired, and the width is changed in the depth direction as desired, thereby increasing the degree of freedom in designing the super junction.
[0018]
Note that the potential of the P-type impurity region 30 constituting the super junction may be floating or may be a ground potential together with the source. FIG. 1 shows the case of floating, and FIG. 2 shows the case of ground potential.
[0019]
On the other hand, a super junction due to the P-type impurity region 30 is not formed in the guard ring portion in the outer peripheral portion (chip outer peripheral portion) of the transistor cell. That is, the super junction structure is adopted only in the transistor cell formation region, and the super junction structure is not adopted in the outer periphery of the transistor cell formation region. This can prevent the breakdown voltage from decreasing.
[0020]
Next, a manufacturing method will be described.
As shown in FIG. 3A, an N drift layer 2 is formed on an N + type SiC substrate 1 by epitaxial growth. Then, a masked mask 40 is disposed on the N drift layer 2. That is, the mask 40 having the opening 41 is formed. In this state, aluminum ions are implanted. This ion implantation is performed with a high implantation energy (for example, 400 keV) and a low implantation amount. As a result, the P-type region (P region) 31 having the deepest super junction and the low concentration is formed.
[0021]
Subsequently, as shown in FIG. 3B, a masked mask 42 is disposed on the mask 40. At this time, the opening 41 of the mask 40 is closed by the mask 42 and an opening 43 having a smaller area than the opening 41 is formed in the region. The center of the opening 41 is coincident with the center of the opening 42. In this state, aluminum ions are implanted. This ion implantation is performed with a medium implantation energy (for example, 200 keV) and with a medium implantation amount. As a result, a P-type region 32 having an intermediate depth and a medium concentration of the super junction is formed.
[0022]
Subsequently, as shown in FIG. 4A, a masked mask 44 is disposed on the mask 42. At this time, the opening 43 of the mask 42 is blocked by the mask 44 and an opening 45 having a smaller area than the opening 43 is formed in the region. The center of the opening 43 and the center of the opening 45 coincide. In this state, aluminum ions are implanted. This ion implantation is performed with a low implantation energy (for example, 100 keV) and a high implantation amount. As a result, the shallowest and high-concentration P-type region (P + region) 33 of the super junction is formed.
[0023]
Thereafter, as shown in FIG. 4B, a first gate layer (P + layer) 3 and an N + source layer 4 are formed on the N drift layer 2 by continuous epitaxial growth.
Then, as shown in FIG. 5A, trenches 5 and 20 that penetrate the source layer 4 and the first gate layer 3 and reach the drift layer 2 are formed.
[0024]
Thereafter, as shown in FIG. 5B, an N type epitaxial layer 6 is formed on the substrate including the inside of the trenches 5 and 20 by epitaxial growth. Then, as shown in FIG. 6A, the N -type epitaxial layer 6 in the outer peripheral portion of the transistor cell formation region is thinned by etching by a predetermined amount t1 by RIE. Further, as shown in FIG. 6B, a P + layer 7 is formed on the surface layer portion of the N -type epi layer 6 by thermal diffusion. As a result, all of the guard ring formation region in the outer peripheral portion of the transistor cell formation region becomes the P + layer 7. Although the formation of the P + layer 7 by thermal diffusion, may be formed the P + layer 7 by epitaxial growth or ion implantation.
[0025]
Subsequently, as shown in FIG. 7A, the N type epi layer 6 and the P + layer 7 in the source contact region A1 in the transistor cell formation region are removed by RIE. Further, as shown in FIG. 7B, the source layer 4 in the first gate contact region A2 in the transistor cell formation region is removed by RIE.
[0026]
Thereafter, as shown in FIG. 1, after depositing the insulating film 8 and forming a contact hole, the gate electrodes 9 and 10, the gate electrodes 11 and 12, and the source electrode 13 are formed. Further, the drain electrode 14 is formed on the back surface of the substrate.
[0027]
In this way, the first ion implantation is performed on the drift layer 2 of FIG. 3A using the mask 40 to obtain a P type to a predetermined depth in the drift layer 2 below the mask opening 41. The impurity region 31 is buried, and the drift layer 2 shown in FIG. 3B is ion-implanted a second time using another mask 42, so that a predetermined value in the drift layer 2 below the mask opening 43 is obtained. And a step of burying the P-type impurity region 32 in a state of being connected to the P-type impurity region 31 by the first ion implantation (the same applies to the third ion implantation for the second ion implantation). The mask opening 41 in the second ion implantation and the mask opening 43 in the second ion implantation have the same center, the area, the implantation energy in the first ion implantation, and the ion implantation in the second ion implantation. Injection energy And chromatography were both varied amount of injected ions. As a result, the impurity regions 30 can have different concentrations in the depth direction, and can have different lateral widths in the depth direction.
[0028]
As another example instead of FIG. 1, as shown in FIG. 8, the lateral width is the narrowest in the deepest P region 51, the intermediate width in the intermediate depth P region 52, and the shallowest. The P + region 52 may be widest.
[0029]
In manufacturing, as shown in FIGS. 9A, 9B, and 9C, implantation is performed when ions are implanted while the widths of the openings 61, 63, 65 of the masks 60, 62, 64 are narrowed. What is necessary is just to adjust energy and injection amount.
[0030]
Moreover, although applied to JFET in FIG. 1, you may apply not only to this but to MOSFET as shown in FIG. That is, an N type epi layer 71 is formed on an N + type SiC substrate 70, and P type base regions 72 and 73, an N + type source region 74, an N type channel are formed on the surface layer portion of the N type epi layer 71. A layer 75 is formed, and a gate electrode 77 is disposed on the upper surface of the substrate via a gate oxide film 76. Source electrode 78 is in contact with N + source region 74 and P + base region 73. A drain electrode 79 is formed on the back surface of the substrate 70. In this MOSFET, a P-type region 30 in which a P region 31, a P region 32, and a P + region 33 are stacked is embedded in the N-type drift layer 71 side by side. As a manufacturing method, as shown in FIG. 11, after growing an N-type epi layer 71 by a predetermined thickness on an N + -type SiC substrate 70, a P-type region 30 is formed by ion implantation, and thereafter The N-type epi layer 71 may be continuously grown.
[0031]
Further, in FIG. 1, the impurity region 30 has a different concentration in the depth direction and a lateral width in the depth direction. However, the present invention is not limited to this, and the impurity region 30 has a lateral width as shown in FIG. The width in the direction is the same in the depth direction, and the concentration is different in the depth direction. Alternatively, as shown in FIG. 13, the impurity region 30 has the same concentration in the depth direction and the width in the lateral direction is the depth. The directions may be different.
[0032]
Furthermore, although the trench 5 has an oblique side surface in FIG. 1, it may be vertical .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a silicon carbide semiconductor device in an embodiment.
FIG. 2 is a longitudinal sectional view of a silicon carbide semiconductor device.
FIG. 3 is a longitudinal sectional view for illustrating a process for manufacturing a silicon carbide semiconductor device.
FIG. 4 is a longitudinal sectional view for illustrating a process for manufacturing a silicon carbide semiconductor device.
FIG. 5 is a longitudinal sectional view for illustrating a process for manufacturing a silicon carbide semiconductor device.
FIG. 6 is a longitudinal sectional view for illustrating a process for manufacturing a silicon carbide semiconductor device.
FIG. 7 is a longitudinal sectional view for illustrating a process for manufacturing a silicon carbide semiconductor device.
FIG. 8 is a longitudinal sectional view of another example of a silicon carbide semiconductor device.
FIG. 9 is a longitudinal sectional view for illustrating the manufacturing process for the silicon carbide semiconductor device.
FIG. 10 is a longitudinal sectional view of another example of a silicon carbide semiconductor device.
FIG. 11 is a longitudinal sectional view for illustrating a manufacturing step for another example silicon carbide semiconductor device.
FIG. 12 is a longitudinal sectional view of another example of a silicon carbide semiconductor device.
FIG. 13 is a longitudinal sectional view of another example of a silicon carbide semiconductor device.
FIG. 14 is a longitudinal sectional view of a silicon carbide semiconductor device for illustrating a conventional technique.
[Explanation of symbols]
1 ... N + -type SiC substrate, 2 ... N - drift layer, 3 ... first gate layer (P + layer), 4 ... N + source layer, 5 ... trench, 6 ... N - channel layer, 7 ... second gate layer (P + layer), 30 ... P-type impurity region, 31 ... P - area, 32 ... P region, 33 ... P + region.

Claims (5)

ドレイン領域となる第1導電型のSiC基板(1)の上にSiCよりなる低濃度な第1導電型のドリフト層(2)が形成されるとともに、当該ドリフト層(2)の上またはドリフト層(2)の表層部にSiCよりなる第1導電型のソース層(4)を配し、さらに、ドリフト層(2)の内部に第2導電型の不純物領域(30)を並設することにより、ドリフト層(2)に第1導電型の不純物領域と第2導電型の不純物領域を横方向に交互に埋設してスーパージャンクションとした炭化珪素半導体装置において、
前記不純物領域(30)の不純物濃度は、深さ方向において最も深い領域において最も薄く、最も浅い領域において最も濃くなっていることを特徴とする炭化珪素半導体装置。
A low-concentration first conductivity type drift layer (2) made of SiC is formed on the first conductivity type SiC substrate (1) to be a drain region, and the drift layer (2) or the drift layer is formed. By arranging the first conductivity type source layer (4) made of SiC on the surface layer portion of (2), and further arranging the second conductivity type impurity region (30) inside the drift layer (2). In the silicon carbide semiconductor device in which the first conductivity type impurity region and the second conductivity type impurity region are alternately buried in the drift layer (2) in the lateral direction to form a super junction,
The impurity concentration of the impurity region (30) is the thinnest in the deepest region in the depth direction and the highest in the shallowest region .
ドレイン領域となる第1導電型のSiC基板(1)の上にSiCよりなる低濃度な第1導電型のドリフト層(2)が形成されるとともに、当該ドリフト層(2)の上またはドリフト層(2)の表層部にSiCよりなる第1導電型のソース層(4)を配し、さらに、ドリフト層(2)の内部に第2導電型の不純物領域(30)を並設することにより、ドリフト層(2)に第1導電型の不純物領域と第2導電型の不純物領域を横方向に交互に埋設してスーパージャンクションとした炭化珪素半導体装置において、
前記不純物領域(30)は、横方向の幅が深さ方向において最も深い領域で最も広く、最も浅い領域で最も狭くなっていることを特徴とする炭化珪素半導体装置。
A low-concentration first conductivity type drift layer (2) made of SiC is formed on the first conductivity type SiC substrate (1) serving as a drain region, and the drift layer (2) or the drift layer is formed. By arranging the first conductivity type source layer (4) made of SiC on the surface layer portion of (2), and further arranging the second conductivity type impurity region (30) inside the drift layer (2). In the silicon carbide semiconductor device in which the first conductivity type impurity region and the second conductivity type impurity region are alternately buried in the drift layer (2) in the lateral direction to form a super junction,
The silicon carbide semiconductor device characterized in that the impurity region (30) is widest in the deepest region in the depth direction and narrowest in the shallowest region .
ドレイン領域となる第1導電型のSiC基板(1)の上にSiCよりなる低濃度な第1導電型のドリフト層(2)が形成されるとともに、当該ドリフト層(2)の上またはドリフト層(2)の表層部にSiCよりなる第1導電型のソース層(4)を配し、さらに、ドリフト層(2)の内部に第2導電型の不純物領域(30)を並設することにより、ドリフト層(2)に第1導電型の不純物領域と第2導電型の不純物領域を横方向に交互に埋設してスーパージャンクションとした炭化珪素半導体装置において、
前記不純物領域(30)は、横方向の幅が深さ方向において最も深い領域で最も狭く、最も浅い領域で最も広くなっていることを特徴とする炭化珪素半導体装置。
A low-concentration first conductivity type drift layer (2) made of SiC is formed on the first conductivity type SiC substrate (1) to be a drain region, and the drift layer (2) or the drift layer is formed. By arranging the first conductivity type source layer (4) made of SiC on the surface layer portion of (2), and further arranging the second conductivity type impurity region (30) inside the drift layer (2). In the silicon carbide semiconductor device in which the first conductivity type impurity region and the second conductivity type impurity region are alternately buried in the drift layer (2) in the lateral direction to form a super junction,
The impurity region (30) has a lateral width that is the narrowest in the deepest region in the depth direction and the widest in the shallowest region .
ドレイン領域となる第1導電型のSiC基板(1)の上にSiCよりなる低濃度な第1導電型のドリフト層(2)が形成されるとともに、当該ドリフト層(2)の上またはドリフト層(2)の表層部にSiCよりなる第1導電型のソース層(4)を配し、さらに、ドリフト層(2)の内部に第2導電型の不純物領域(30)を並設することにより、ドリフト層(2)に第1導電型の不純物領域と第2導電型の不純物領域を横方向に交互に埋設してスーパージャンクションとした炭化珪素半導体装置の製造方法であって、A low-concentration first conductivity type drift layer (2) made of SiC is formed on the first conductivity type SiC substrate (1) serving as a drain region, and the drift layer (2) or the drift layer is formed. By arranging the first conductivity type source layer (4) made of SiC on the surface layer portion of (2), and further arranging the second conductivity type impurity region (30) inside the drift layer (2). A method of manufacturing a silicon carbide semiconductor device having a super junction by burying first conductivity type impurity regions and second conductivity type impurity regions alternately in a lateral direction in a drift layer (2),
エピタキシャル成長により第1導電型のSiC基板(1)の上に低濃度な第1導電型のドリフト層(2)を形成する工程と、  Forming a low-concentration first conductivity type drift layer (2) on the first conductivity type SiC substrate (1) by epitaxial growth;
ドリフト層(2)に対しマスク(40)を用いて一回目のイオン注入を行って、マスク開口部(41)の下方におけるドリフト層(2)内に第2導電型の第1の不純物領域(31)を埋設する工程と、  A first ion implantation is performed on the drift layer (2) using the mask (40), and the first impurity region (second conductivity type) (in the drift layer (2) below the mask opening (41) ( 31) burying;
ドリフト層(2)に対し別のマスク(42)を用いて二回目のイオン注入を行って、マスク開口部(43)の下方におけるドリフト層(2)内に第1の不純物領域(31)の不純物濃度より高い第2導電型の第2の不純物領域(32)を一回目のイオン注入による第1の不純物領域(31)とつながる状態となるように第1の不純物領域(31)の上に埋設する工程と、  A second ion implantation is performed on the drift layer (2) using another mask (42), and the first impurity region (31) is formed in the drift layer (2) below the mask opening (43). On the first impurity region (31), the second impurity region (32) of the second conductivity type higher than the impurity concentration is connected to the first impurity region (31) by the first ion implantation. Burying process,
を含むことを特徴とする炭化珪素半導体装置の製造方法。The manufacturing method of the silicon carbide semiconductor device characterized by the above-mentioned.
一回目のイオン注入でのマスク開口部(41)と二回目のイオン注入でのマスク開口部(43)とは中心が同じあって、その面積と、一回目のイオン注入での注入エネルギーと二回目のイオン注入での注入エネルギーと、イオンの注入量がいずれも異なっていることを特徴とする請求項に記載の炭化珪素半導体装置の製造方法。The mask opening (41) in the first ion implantation and the mask opening (43) in the second ion implantation have the same center, the area, the implantation energy in the first ion implantation, and the two. The method for manufacturing a silicon carbide semiconductor device according to claim 4 , wherein an implantation energy in the second ion implantation and an ion implantation amount are both different.
JP2001259995A 2001-08-29 2001-08-29 Silicon carbide semiconductor device and manufacturing method thereof Expired - Fee Related JP3994703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259995A JP3994703B2 (en) 2001-08-29 2001-08-29 Silicon carbide semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259995A JP3994703B2 (en) 2001-08-29 2001-08-29 Silicon carbide semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003069040A JP2003069040A (en) 2003-03-07
JP3994703B2 true JP3994703B2 (en) 2007-10-24

Family

ID=19087263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259995A Expired - Fee Related JP3994703B2 (en) 2001-08-29 2001-08-29 Silicon carbide semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3994703B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317383B4 (en) * 2003-04-15 2008-10-16 Infineon Technologies Ag Junction Field Effect Transistor (JFET) with compensation region and field plate
JP5196980B2 (en) * 2007-12-10 2013-05-15 株式会社東芝 Semiconductor device
JP4577355B2 (en) * 2007-12-26 2010-11-10 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
JP5271022B2 (en) * 2008-10-01 2013-08-21 株式会社豊田中央研究所 Semiconductor device
JP5880311B2 (en) * 2012-06-26 2016-03-09 住友電気工業株式会社 Silicon carbide semiconductor device
DE102015202121B4 (en) 2015-02-06 2017-09-14 Infineon Technologies Ag SiC based super-barrier semiconductor devices and methods of making them
US9735237B2 (en) * 2015-06-26 2017-08-15 General Electric Company Active area designs for silicon carbide super-junction power devices
US10756188B2 (en) * 2016-04-14 2020-08-25 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method of manufacturing the same
SE541571C2 (en) * 2017-09-15 2019-11-05 Ascatron Ab A double grid structure
CN114335146B (en) * 2021-12-31 2024-04-26 清纯半导体(宁波)有限公司 Semiconductor structure and preparation method thereof
CN118825085B (en) * 2024-09-11 2025-02-11 山东大学 A silicon carbide trench junction barrier Schottky diode and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447065B2 (en) * 1999-01-11 2010-04-07 富士電機システムズ株式会社 Superjunction semiconductor device manufacturing method
JP4450122B2 (en) * 1999-11-17 2010-04-14 株式会社デンソー Silicon carbide semiconductor device
JP4483001B2 (en) * 2000-02-17 2010-06-16 富士電機システムズ株式会社 Semiconductor element

Also Published As

Publication number Publication date
JP2003069040A (en) 2003-03-07

Similar Documents

Publication Publication Date Title
US6770539B2 (en) Vertical type MOSFET and manufacturing method thereof
US10374079B2 (en) Silicon carbide semiconductor device and method for manufacturing same
US6551865B2 (en) Silicon carbide semiconductor device and method of fabricating the same
JP4450122B2 (en) Silicon carbide semiconductor device
US6262439B1 (en) Silicon carbide semiconductor device
EP0923137A2 (en) Trenched field effect transistor and method of its manufacture
US7569900B2 (en) Silicon carbide high breakdown voltage semiconductor device
JP4972855B2 (en) Semiconductor device and manufacturing method thereof
JP2008016518A (en) Semiconductor device and manufacturing method
JP2018110164A (en) Semiconductor device
KR20060048998A (en) Semiconductor device and manufacturing method thereof
US20250015138A1 (en) Semiconductor device and method of manufacturing the same
JP3994703B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
US20210043765A1 (en) Silicon carbide semiconductor device and manufacturing method of same
JP2020191409A (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2012094920A (en) Semiconductor device
KR100731141B1 (en) Semiconductor device and manufacturing method thereof
JP2015023115A (en) Fet incorporating schottky diode
JP4764003B2 (en) Semiconductor device
CN114072922B (en) Semiconductor device and manufacturing method thereof
JP2006140250A (en) Semiconductor device and manufacturing method thereof
JP2005197287A (en) Semiconductor device and manufacturing method thereof
CN115732558A (en) Semiconductor device and method for manufacturing the same
JP2023173420A (en) silicon carbide semiconductor device
JP7443853B2 (en) silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3994703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees