JP3992614B2 - Disinfectant and water-based disinfecting method using the disinfectant - Google Patents
Disinfectant and water-based disinfecting method using the disinfectant Download PDFInfo
- Publication number
- JP3992614B2 JP3992614B2 JP2002381452A JP2002381452A JP3992614B2 JP 3992614 B2 JP3992614 B2 JP 3992614B2 JP 2002381452 A JP2002381452 A JP 2002381452A JP 2002381452 A JP2002381452 A JP 2002381452A JP 3992614 B2 JP3992614 B2 JP 3992614B2
- Authority
- JP
- Japan
- Prior art keywords
- component
- disinfectant
- liquid disinfectant
- acid
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Paper (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、活性臭素を含む液状消毒剤に関し、特に、該液状消毒剤を用いる下水、屎尿、産業排水、工業用水、紙パルプ製造工程水、再利用水などの水系の消毒方法に関する。
【0002】
【従来の技術】
下水、屎尿、産業排水などには、感染症の原因となる大腸菌、Pseudomonas、Streptococcus faccalisなどの病原菌が含まれている。そこで、下水処理などにおいては、河川、海洋などの自然環境中に放出する前に、これら病原菌を塩素ガスや塩素系消毒剤で消毒して、大腸菌群数を水質汚濁防止法で規定されている3000個/mL以下にすることが一般的である。病原菌の殺菌消毒としては、紫外線照射やオゾン添加により消毒する場合もあるが、設備が膨大になるため、用途が限られている。
【0003】
塩素系消毒剤による水系の消毒は、紫外線照射やオゾン添加などによる消毒の場合に比べて、設備が簡潔であり、汚れの状態に対して適用性が高い、など、利点が多い。塩素系消毒剤による病原菌の殺菌消毒は、活性塩素が病原菌の細胞膜を破壊又は透過して、細胞内のタンパク質を変性させることによって、病原菌を死滅させる作用を利用するものである。しかし、雨天時下水など、水系中にアンモニアやアミンが共存する場合には、下記式(1)
【0004】
【化1】
【0005】
で示される化学反応が生じ、活性塩素がクロラミンに変化して細胞膜透過性が弱まるため、殺菌消毒作用が約1/10にまで低下する。つまり、消毒すべき水系中の病原菌数は変わらなくとも、アンモニアやアミンが共存する場合には、塩素系消毒剤の添加量を増大させる必要がある。塩素系消毒剤の添加量の増大は、資源の無駄使いという観点のみならず、トリハロメタンの生成量を増加させ、環境に悪影響を与えることにもなり、好ましくない。さらに、塩素系消毒剤を用いる場合に発生するクロラミンは、残留性が高く、クロラミンを分解処理するための装置を別に設ける必要がある、という問題もある。
【0006】
また、次亜塩素酸ナトリウムと臭化ナトリウムとを混合して次亜臭素酸を形成し、殺菌に用いる方法が知られている。しかし、次亜塩素酸ナトリウムは不安定な物質であり、貯蔵中に分解してしまう。つまり、次亜塩素酸ナトリウムの有効塩素が徐々に減少するため、次亜臭素酸を定常的に発生させることが困難である、という欠点がある。
【0007】
あるいは、亜塩素酸塩と酸とを配合し、二酸化塩素を発生させる方法も提案されている(日本特許出願2001-188198)。しかし、この方法を中性又はアルカリ性の水系に適用すると、下記式(2)
【0008】
【化2】
【0009】
の反応が生じて、二酸化塩素が亜塩素酸イオンになり、二酸化塩素の酸化力の1/5程度が消毒作用を呈するに過ぎず、消毒効率が低い、という問題がある。
またさらに、粉体のブロモクロロジメチルヒダントイン(BCDMH)などを用いて排水を消毒する方法も提案されている(特開2000-167563号公報)。しかし、粉体のBCDMHは、水に溶けにくく、ハンドリング性に劣る、という問題がある。そこで、粉体のBCDMHのハンドリング性を高めるために、スラリー化する方法も提案されている(日本特許出願2002-321778)が、この場合には、製造コストが高くなる、という問題がある。
【0010】
【特許文献1】
日本特許出願2001-188198
【特許文献2】
特開2000-167563号公報
【特許文献3】
日本特許出願2002-321778
【0011】
【発明が解決しようとする課題】
本発明の目的は、アンモニアやアミンの共存下でも塩素系消毒剤と同等の殺菌消毒作用を呈する新規な消毒剤、及び該消毒剤を用いた水系の消毒方法を提供することにある。
【0012】
本発明の別の目的は、貯蔵保存性に優れ、塩素系消毒剤と同様の殺菌消毒作用を呈する新規な消毒剤、及び該消毒剤を用いた水系の消毒方法を提供することにある。
【0013】
本発明のまた別の目的は、ハンドリング性に優れ、塩素系消毒剤と同様の殺菌消毒作用を呈する新規な消毒剤、及び該消毒剤を用いた水系の消毒方法を提供することにある。
【0014】
本発明のさらに別の目的は、処理後の水系への化学物質の残留が少なく、残留物質の分解処理等の後処理を必要とせず、低コストで、水系の殺菌消毒を行うことができる新規な消毒剤、及び該消毒剤を用いた水系の消毒方法を提供することにある。
【0015】
本発明のまたさらに別の目的は、消毒対象水系への添加後2分以内の短時間で、非常に良好に殺菌消毒を行うことができる新規な消毒剤、及び該消毒剤を用いた水系の消毒方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明によれば、亜塩素酸もしくは亜塩素酸塩と、臭化物及び/又はヨウ化物との反応により発生する活性臭素及び/又は活性ヨウ素を含む液状消毒剤が提供される。活性臭素及び/又は活性ヨウ素は、細胞膜を透過し、細胞内のタンパク質を変性させることによって、大腸菌などの病原菌を死滅させることができ、活性塩素と同等の殺菌力を発揮することができる。さらに、活性臭素及び/又は活性ヨウ素は、アンモニアやアミンの存在下でもクロラミン形成反応が生じにくいために活性状態が失われず、従来の塩素系殺菌剤に比較して良好な殺菌作用を発揮することができる。
【0017】
本発明の液状消毒剤において、活性臭素及び/又は活性ヨウ素は、有効ハロゲン濃度として塩素換算値で5〜300g/L、好ましくは20〜100g/L、さらに好ましくは40〜70g/Lで含まれていることが好ましい。本明細書において「有効ハロゲン濃度」とは、消毒剤の酸化力を塩素濃度に換算した値であり、後述するヨウ素滴定法に準拠して測定した塩素濃度換算値をいう。なお、活性臭素は活性ヨウ素よりも活性が高いので、本発明の液状消毒剤は、活性臭素を含むことがより好ましい。
【0018】
本発明の液状消毒剤において、活性臭素としては、次亜臭素酸、次亜臭素酸イオン、次亜臭素酸ナトリウム、次亜臭素酸カリウムなどの次亜臭素酸塩、臭素などを含むことが好ましく、活性ヨウ素としては、次亜ヨウ素酸、次亜ヨウ素イオン、次亜ヨウ素酸ナトリウム、次亜ヨウ素酸カリウムなどの次亜ヨウ素酸塩、ヨウ素などを含むことが好ましい。
【0019】
本発明において用いることができる臭化物及び/又はヨウ化物としては、臭素イオン及び/又はヨウ素イオンを供給し得るものであればよく、特に限定されるものではない。しかし、本発明において用いることができる臭化物としては、臭化ナトリウム、臭化カリウム、臭化水素酸、臭化リチウム又はこれらの2種以上の混合物を好ましく挙げることができる。また、本発明において用いることができるヨウ化物としては、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化リチウム、ヨウ化水素酸又はこれらの2種以上の混合物を好ましく挙げることができる。
【0020】
本発明の活性臭素及び/又は活性ヨウ素を含む液状消毒剤は、成分(A)亜塩素酸もしくは亜塩素酸塩と、成分(B)臭素イオン及び/又はヨウ素イオンを供給し得る物質もしくは臭素イオン及び/又はヨウ素イオンを含有する水溶液と、を酸性条件下で混合することにより得られる。このときの反応は、例えば、下記式(3)
【0021】
【化3】
【0022】
で表すことができ、次亜臭素酸などの活性臭素が生成する。
本発明において用いることができる成分(A)の亜塩素酸塩は、亜塩素酸ナトリウム、亜塩素酸カリウム及びこれらの混合物から選択されることが好ましい。
【0023】
本発明において用いることができる成分(B)の臭素イオンは、臭化ナトリウム、臭化カリウム、臭化水素酸、臭化リチウム又はこれらの2種以上の混合物に由来するものであることが好ましい。
【0024】
また、本発明において用いることができる成分(B)のヨウ素イオンは、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化リチウム、ヨウ化水素酸又はこれらの2種以上の混合物に由来するものであることが好ましい。
【0025】
特に、亜塩素酸ナトリウムと臭化ナトリウム又は臭化カリウムとの混合水溶液は安定性に優れており、本発明の液状消毒剤としてより好ましい。
本発明において、上記成分(A)と成分(B)とを酸性条件下で混合するとは、成分(A)及び成分(B)を別々に酸性溶液中に添加し混合する態様、あるいは成分(A)及び成分(B)を予め混合して得た混合液に、さらに酸を添加して混合する態様のいずれでもよい。
【0026】
本発明において、成分(A)亜塩素酸もしくは亜塩素酸塩と、成分(B)臭素イオン及び/又はヨウ素イオンと、のモル比は、1:0.5〜4であることが好ましく、特に1:1〜2であることが好ましい。臭素イオン及び/又はヨウ素イオンの比率が低いと、活性臭素及び/又は活性ヨウ素の生成率が低下して殺菌消毒効果が低くなる。一方、臭素イオン及び/又はヨウ素イオンの比率が高いと、コストが高くなるばかりでなく、過剰の臭素イオン及び/又はヨウ素イオンが環境中に放出されてしまう。よって、成分(A)亜塩素酸もしくは亜塩素酸塩と、成分(B)臭素イオン及び/又はヨウ素イオンとのモル比を上記範囲内とすることにより、過剰の臭素イオン及び/又はヨウ素イオンが環境中に放出されることなく、効果的に活性臭素及び/又は活性ヨウ素を生成し、優れた殺菌消毒作用を呈することができる。
【0027】
本発明において用いることができる酸としては、塩酸、硫酸、リン酸、ホウ酸、スルファミン酸などを好ましく挙げることができる。本発明においては、酸を添加することにより、成分(A)亜塩素酸もしくは亜塩素酸塩と成分(B)臭素イオン及び/又はヨウ素イオンとの反応を酸性条件下で行わせることができ、効率的に活性臭素及び/又は活性ヨウ素を生成させることができる。よって、例えば、成分(B)として臭化水素酸などの酸を用いることにより、追加の酸を添加する必要性を排除できる場合があることに注意されたい。
【0028】
本発明において、例えば酸として塩酸を用いる場合には、成分(A):成分(B):塩酸のモル比は、1:0.5〜4:2〜36が好ましく、特に1:1〜2:12が好ましい。また、例えば酸として硫酸を用いる場合には、成分(A):成分(B):硫酸のモル比は、1:0.5〜4:1〜36が好ましく、特に1:1:6が好ましい。添加する酸の量が過小である場合には、活性臭素及び/又は活性ヨウ素の生成率が低下し、添加する酸の量が過剰である場合には、コストが高くなり、好ましくない。
【0029】
本発明の液状消毒剤は、液状であることから、そのまま消毒対象水系に添加することができ、ハンドリング性に優れている。また、殺菌消毒作用の有効成分として活性塩素ではなく、活性臭素及び/又は活性ヨウ素を含むことから、貯蔵保存性に優れ、アンモニアやアミンの共存下でもクロラミンが発生しにくいので、殺菌消毒作用が低減することがなく、少量で塩素系消毒剤と同等の優れた殺菌消毒作用を呈する。。また、分解が困難なクロラミンなどの残留物が少ないので、残留化学物質の分解処理等の後処理が不要である。
【0030】
また、本発明によれば、成分(A)亜塩素酸もしくは亜塩素酸塩と、成分(B)臭素イオン及び/又はヨウ素イオンを供給し得る物質もしくは臭素イオン及び/又はヨウ素イオンを含有する水溶液と、を酸性条件下で混合して、液状消毒剤を調製し、得られた液状消毒剤を消毒対象水系に添加することを含む水系の消毒方法が提供される。
【0031】
本発明によって消毒処理することができる水系には、各種産業排水、屎尿、埋め立て処分場浸出水、脱水濾液、浄化槽汚泥、液状廃棄物、及び一般家庭や事業場などから排出される汚水や、汚水と雨水の混合した下水(雨天時下水)、雨水、地下水、各種汚水の凝集沈殿処理水、加圧浮上処理水、活性炭吸着処理水、化学酸化処理水、各種膜分離処理水など、およそ消毒を必要とするすべての水系が含まれる。
【0032】
本発明において、液状消毒剤は、消毒対象水系の現場(オンサイト)で調製することが好ましい。オンサイトで調製することによって、液状消毒剤の活性臭素及び/又は活性ヨウ素の活性が非常に高い状態のまま、液状消毒剤を処理対象水系に添加することが容易となる。しかし、調製直後に添加すると、成分(A)と成分(B)との反応が不充分で活性臭素及び/又は活性ヨウ素が十分に生成せず、逆に調製後長時間放置すると活性臭素及び/又は活性ヨウ素が失活しやすくなるので、調製後10時間以内、より好ましくは1時間以内、さらに好ましくは5分以内に、消毒対象水系に添加することが好ましい。
【0033】
本発明において、液状消毒剤の消毒対象水系への添加は、調製後の液状消毒剤をそのまま消毒対象水系へ添加してもよく、あるいは消毒対象水系から水を採取し、この水で希釈した後、再び消毒対象水系へ添加してもよい。
【0034】
本発明において、液状消毒剤の消毒対象水系への添加率は、有効ハロゲン濃度として塩素換算値で1〜25mg/Lの範囲、より好ましくは2〜12mg/L、さらに好ましくは3〜8mg/Lであることが好ましい。この範囲内であれば、十分な殺菌消毒効果を発揮すると同時に、処理後の水系中への消毒剤及び/又は消毒剤に由来する化学物質の残留が少なく、消毒剤コストを軽減することができ、残留化学物質除去のための後処理の必要性を排除することができる。
【0035】
本発明の水系の消毒方法では、液状消毒剤を用いるので、消毒対象水系の現場(オンサイト)で容易に調製し、そのまま消毒対象水系に容易に添加することができ、ハンドリング性に優れる。また、従来の塩素系消毒剤の場合に発生するクロラミンなどが発生しにくいので、アンモニアやアミンの共存下でも、十分な殺菌消毒作用が得られる。さらに、クロラミンなどの化学物質が残留しにくいので、自然環境に優しく、殺菌消毒処理後の水に対して後処理を施す必要がなく、経済的である。
【0036】
【好ましい実施形態】
本発明の液状消毒剤を用いる水系の消毒方法の一実施態様を図1に示す。
図1において、液状消毒剤の成分(A)及び成分(B)の混合溶液を貯蔵するタンク1、及び酸を貯蔵するタンク2が、それぞれポンプPを具備する供給ラインL1及びL2によって、ラインミキサ3に接続されている。ラインミキサ3には、消毒対象水系に液状消毒剤を供給する液状消毒剤供給ラインL3が接続されている。ラインミキサ3において、タンク1から供給された成分(A)及び成分(B)の混合溶液と、タンク2から供給された酸とが混合されて液状消毒剤を形成する。液状消毒剤は、ラインミキサ3内で撹拌されながら搬送され、液状消毒剤供給ラインL3を介して消毒対象水系に添加される。添加された液状消毒剤は、消毒対象水系の水流によって希釈及び撹拌混合され、水系中の大腸菌などの病原菌と十分に接触して、優れた殺菌作用を発揮する。消毒対象水系によっては、本発明の液状消毒剤と消毒対象水とを効率よく混合させるために、本発明の液状消毒剤を消毒対象水系に添加する前に、液状消毒剤に希釈水を添加して混合させてもよい(図中、点線で示す)。
【0037】
なお、図中、ラインミキサ3の代わりに、撹拌装置を具備する貯蔵タンクを用いてもよい。この場合には、貯蔵タンク内での滞留時間を長くすることができ、成分(A)及び(B)と酸との混合が十分に進行する。また、貯蔵タンクに、消毒対象水系から水を汲み上げるポンプを具備する希釈水供給ラインを設けてもよい。
【0038】
【実施例】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0039】
なお、以下の実施例において、有効ハロゲン濃度は下記手順に従うヨウ素滴定法を用いて測定した。
【0040】
ヨウ素滴定法
(試薬の調製)
(1)0.1mol/Lチオ硫酸ナトリウム溶液
1mol/Lチオ硫酸ナトリウム溶液(和光純薬工業(株)製、定量分析用)100mLを、純水で1Lに希釈して調製した。
(2)硫酸(1+5)
純水200mLに、硫酸(和光純薬工業(株)製、試薬特級(min95%))40mLを徐々に冷やしながら添加して調製した。
(3)酢酸(1+1)
純水150mLに、酢酸(和光純薬工業(株)製、試薬特級)150mLを添加して調製した。
(4)でんぷん溶液
でんぷん(和光純薬工業(株)製、試薬一級)1gを純水100mLに添加し、加熱溶解後、冷却して調製した。
【0041】
(試験操作)
(1)共栓付三角フラスコ(200mL)に、純水100mL、酢酸(1+1)5mL、ヨウ化カリウム(和光純薬工業(株)製、試薬特級)1gを加え、下記実施例1〜3で調製した各液状消毒剤及び各対照消毒剤サンプル5mLを添加した。
(2)共栓付三角フラスコを静かに振り混ぜた後、冷暗所(室温)で5分間静置させた。
(3)0.1mol/Lチオ硫酸ナトリウム溶液で滴定した。検水が褐色から淡黄色に変化したら、でんぷん溶液5mLを添加し、生じた青色が消えるまで滴定した。
(4)有効ハロゲン濃度は下記式1
【0042】
【数1】
【0043】
実施例1 液状消毒剤の調製
亜塩素酸ナトリウム(和光純薬工業(株)製、試薬)及び臭化ナトリウム(和光純薬工業(株)製、試薬特級)を純水に溶解させて、それぞれ、2mol/Lの亜塩素酸ナトリウム溶液及び4mol/Lの臭化ナトリウム溶液を調製した。
【0044】
調製した亜塩素酸ナトリウム溶液及び臭化ナトリウム溶液、ならびに塩酸(和光純薬工業(株)製、特級試薬(35〜37%))を、それぞれ下記表1に示す容量で、50mL発色管に添加し、2分間混合して反応させ、混合液を得た。
【0045】
得られた混合液を純水で50mLにメスアップして液状消毒剤サンプル及び対照サンプルとし、有効ハロゲン濃度を測定した。結果を下記表1に示す。
【0046】
【表1】
【0047】
表1より、本発明の活性臭素を含む液状消毒剤(サンプルNo.1及び2)は、高い有効ハロゲン濃度を示すが、活性臭素を含まない対照1(二酸化塩素が発生する)は、有効ハロゲン濃度が低いことがわかる。
【0048】
実施例2 液状消毒剤の調製
亜塩素酸ナトリウム(和光純薬工業(株)製、試薬)を純水で溶解して、2mol/Lの亜塩素酸ナトリウム溶液を調製した。
【0049】
調製した亜塩素酸ナトリウム溶液、臭化水素酸(和光純薬工業(株)製、試薬(47〜49%))及び塩酸(和光純薬工業(株)製、特級試薬(35〜37%))を、それぞれ下記表2に示す容量で、50mL発色管に入れ、2分間混合して反応させ、混合液を得た。
【0050】
得られた混合液を純水で50mLにメスアップして液状消毒剤サンプルとし、有効ハロゲン濃度を測定した。結果を下記表2に示す。
【0051】
【表2】
【0052】
実施例3 液状消毒剤の調製
亜塩素酸ナトリウム(和光純薬工業(株)製、試薬)、臭化ナトリウム(和光純薬工業(株)製、試薬特級)及び塩化カリウム溶液(和光純薬工業(株)製、試薬特級)を純水に溶解させて、それぞれ、2mol/Lの亜塩素酸ナトリウム溶液、4mol/Lの臭化ナトリウム溶液及び4mol/Lの塩化カリウム溶液を調製した。硫酸(和光純薬工業(株)製、試薬特級(min95%))を純水で希釈して、6mol/Lの硫酸溶液を調製した。
【0053】
調製した亜塩素酸ナトリウム溶液、臭化ナトリウム溶液、塩化カリウム溶液及び硫酸溶液を、それぞれ下記表3に示す容量で、50mL発色管に入れ、2分間混合して反応させ、混合液を得た。
【0054】
得られた混合液を純水で50mLにメスアップして液状消毒剤サンプルとし、有効ハロゲン濃度を測定した。結果を下記表3に示す。
【0055】
【表3】
【0056】
実施例4 液状消毒剤の調製
亜塩素酸ナトリウム(和光純薬工業(株)製、試薬)及びヨウ化カリウム(和光純薬工業(株)製、試薬特級)を純水に溶解させて、それぞれ、2mol/Lの亜塩素酸ナトリウム溶液及び4mol/Lのヨウ化カリウム溶液を調製した。
【0057】
調製した亜塩素酸ナトリウム溶液、ヨウ化カリウム溶液、及び塩酸(和光純薬工業(株)製、特級試薬(35〜37%))を、それぞれ下記表4に示す容量で、50mL発色管に入れ、2分間混合して反応させ、混合液を得た。
【0058】
得られた混合液を純水で50mLにメスアップして液状消毒剤サンプルとし、有効ハロゲン濃度を測定した。結果を下記表4に示す。
【0059】
【表4】
【0060】
実施例5 消毒試験
対照として、次亜臭素酸ナトリウム(和光純薬工業(株)製、試薬)、次亜塩素酸ナトリウム(旭電化工業(株)製)をそれぞれ純水で希釈して得た0.1mol/Lの次亜臭素酸ナトリウム溶液(対照2)、及び0.1mol/Lの次亜塩素酸ナトリウム溶液(対照3)を調製した。
【0061】
実施例1〜4で調製した液状消毒剤サンプルNo.1〜9、対照サンプル1〜3及び消毒剤を添加しない場合(ブランク)について、下記表5〜8に示す水質の4種類の消毒対象水系(汚水1〜4)に適用した場合の殺菌消毒効果を調べた。各サンプルの消毒効果は、下記手順に従う消毒試験を行い、処理後の各消毒対象水系(汚水1〜4)中に存在する大腸菌群数で比較した。
【0062】
(1)1Lビーカーに汚水500mLを採取し、ジャーテスター(宮本製作所製:JMD-4)にセットした。
(2)ジャーテスターに、液状消毒剤を表5〜8に示す添加率(有効ハロゲン換算値)となる既定量で添加し、150rpmで2分間撹拌した。
(3)消毒後の汚水5mLを、チオ硫酸ナトリウム(和光純薬工業(株)製、試薬)約0.25mg入りの試験管に採取し、大腸菌群数を測定した。大腸菌群数の測定は、デソキシコール酸塩培地(日水製薬(株)製)を用いた平板培養法で行った。
【0063】
各消毒試験の結果を下記表5〜8に示す。表中、殺菌消毒効果は、ブランク中の大腸菌群数を100とした場合の大腸菌群の除去率で示した。
【0064】
【表5】
【0065】
表5より、本発明の液状消毒剤(サンプルNo.1及び2)は、次亜臭素酸ナトリウム溶液(対照2)と同等以上の高い消毒効果を発揮することがわかる。特に、サンプルNo.2(亜塩素酸ナトリウム:臭化ナトリウム:塩酸=1:2:12)においては、次亜臭素酸ナトリウムの添加率の約3/4で同等の高い消毒効果(99.9%)を示す。一方、活性臭素を含まない対照1の消毒効果は非常に低い。このことから、本発明の活性臭素を含む液状消毒剤は、少量で且つ添加後2分間とう短時間で、非常に優れた殺菌消毒効果を示すことがわかる。
【0066】
【表6】
【0067】
表6より、活性臭素を含まない次亜塩素酸ナトリウム(対照3)の殺菌消毒効果は非常に低いが、本発明の活性臭素を含む液状消毒剤は、次亜臭素酸ナトリウムと同等の消毒効果を発揮することがわかる。また、臭化水素酸の比率が高いサンプルNo.5は、臭化水素酸の比率が低いサンプルNo.3及び4よりも優れた殺菌消毒効果を発揮することがわかる。
【0068】
【表7】
【0069】
表7より、硫酸を配合した場合には、塩化カリウムを添加することにより、殺菌消毒効果が改善されることがわかる。
【0070】
【表8】
【0071】
表8より、活性ヨウ素を含む液状消毒剤が次亜臭素酸ナトリウムと同等の殺菌消毒効果を示し、特に活性ヨウ素の割合が多いサンプルNo.9は、少量(5mg/L)で次亜臭素酸ナトリウムよりも高い殺菌消毒効果を示すことがわかる。
【0072】
実施例6 液状消毒剤成分の安定性
亜塩素酸ナトリウム(和光純薬工業(株)製、試薬)及び臭化ナトリウム(和光純薬工業(株)製、試薬特級)をそれぞれ純水で希釈して、2mol/Lの亜塩素酸ナトリウム溶液及び4mol/Lの臭化ナトリウム溶液を調製した。次に、2mol/Lの亜塩素酸ナトリウム溶液100mLと4mol/Lの臭化ナトリウム溶液50mLとを混合して、亜塩素酸ナトリウムと臭化ナトリウムの混合溶液(亜塩素酸ナトリウム:臭化ナトリウム=1:1(モル比))を調製した。対照として、12%次亜塩素酸ナトリウム溶液(旭電化工業(株)製)を用いた。得られた亜塩素酸ナトリウムと臭化ナトリウムとの混合溶液の有効ハロゲン濃度と、12%次亜塩素酸ナトリウム溶液の有効ハロゲン濃度とを経日的に測定して比較した。結果を下記表9に示す。
【0073】
【表9】
【0074】
表9から明らかなように、従来の塩素系消毒剤の成分である次亜塩素酸ナトリウム溶液の場合には、30日経過後には初期濃度の70%にまで有効ハロゲン濃度が低下しているのに対して、本発明の液状消毒剤の成分である亜塩素酸ナトリウムと臭化ナトリウムとの混合溶液においては、30日経過後にも初期濃度の98%を維持しており、非常に安定である。よって、本発明の液状消毒剤の成分(A)及び成分(B)の混合溶液は、長期保存に適し、必要時に、酸と混合することによって、本発明の液状消毒剤を容易に調製することができる。
【0075】
【発明の効果】
本発明の消毒剤は、非常に安定であり、長期保存に適し、次亜塩素酸ナトリウムなどを含む従来の塩素系消毒剤に比較して、最適条件で調製することができ、より効率よく水系の殺菌消毒が可能である。
【0076】
また、酸を含む本発明の消毒剤は、アンモニアやアミンが含まれる水系に対しても優れた殺菌消毒作用を発揮し、添加後1〜2分という短時間で且つ二酸化塩素を含む従来の消毒剤の約3倍という高い殺菌消毒効果を発揮することができる。
【図面の簡単な説明】
【図1】図1は、本発明の液状消毒剤を用いて水系消毒する一実施形態を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid disinfectant containing active bromine, and more particularly, to an aqueous disinfecting method such as sewage, manure, industrial wastewater, industrial water, paper pulp production process water, and reused water using the liquid disinfectant.
[0002]
[Prior art]
Sewage, human waste, industrial wastewater, and the like contain pathogenic bacteria such as Escherichia coli, Pseudomonas, and Streptococcus faccalis that cause infectious diseases. Therefore, in sewage treatment, etc., these pathogens are disinfected with chlorine gas or chlorine-based disinfectants before being released into the natural environment such as rivers and oceans, and the number of coliforms is regulated by the Water Pollution Control Law. Generally, it is 3000 or less / mL. As for sterilization of pathogenic bacteria, there are cases where it is sterilized by irradiation with ultraviolet rays or addition of ozone.
[0003]
Water-based disinfection with a chlorine-based disinfectant has many advantages, such as simple equipment and high applicability to dirt conditions, compared to disinfection by ultraviolet irradiation or ozone addition. Bactericidal disinfection of pathogenic bacteria with a chlorine-based disinfectant utilizes the action of active chlorine destroying or permeating the cell membrane of the pathogenic bacteria to denature intracellular proteins, thereby killing the pathogenic bacteria. However, when ammonia and amine coexist in the water system such as sewage in rainy weather, the following formula (1)
[0004]
[Chemical 1]
[0005]
The chemical reaction shown by the following occurs, and the active chlorine changes to chloramine and the cell membrane permeability is weakened, so that the bactericidal disinfection action is reduced to about 1/10. That is, even if the number of pathogenic bacteria in the aqueous system to be sterilized does not change, it is necessary to increase the addition amount of the chlorine-based disinfectant when ammonia and amine coexist. Increasing the amount of the chlorinated disinfectant is not preferable because it not only wastes resources, but also increases the amount of trihalomethane produced and adversely affects the environment. Furthermore, chloramine generated when using a chlorine-based disinfectant is highly persistent, and there is a problem that it is necessary to provide a separate device for decomposing chloramine.
[0006]
Further, a method is known in which sodium hypochlorite and sodium bromide are mixed to form hypobromite and used for sterilization. However, sodium hypochlorite is an unstable substance and decomposes during storage. That is, since the effective chlorine of sodium hypochlorite gradually decreases, there is a drawback that it is difficult to constantly generate hypobromite.
[0007]
Alternatively, a method in which chlorite and an acid are mixed to generate chlorine dioxide has been proposed (Japanese Patent Application 2001-188198). However, when this method is applied to a neutral or alkaline water system, the following formula (2)
[0008]
[Chemical 2]
[0009]
As a result of this reaction, chlorine dioxide becomes chlorite ion, and about 1/5 of the oxidizing power of chlorine dioxide only exhibits a disinfecting action, and there is a problem that disinfection efficiency is low.
Furthermore, a method of disinfecting waste water using powdered bromochlorodimethylhydantoin (BCDMH) or the like has been proposed (Japanese Patent Laid-Open No. 2000-167563). However, powdered BCDMH has a problem that it is difficult to dissolve in water and has poor handling properties. Then, in order to improve the handleability of powder BCDMH, the method of making into a slurry is also proposed (Japanese patent application 2002-321778), However, In this case, there exists a problem that manufacturing cost becomes high.
[0010]
[Patent Document 1]
Japanese patent application 2001-188198
[Patent Document 2]
JP 2000-167563 A [Patent Document 3]
Japanese Patent Application 2002-321778
[0011]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel disinfectant exhibiting a bactericidal disinfectant equivalent to that of a chlorine disinfectant even in the presence of ammonia or amine, and an aqueous disinfecting method using the disinfectant.
[0012]
Another object of the present invention is to provide a novel disinfectant that is excellent in storage stability and exhibits the same disinfecting action as a chlorine disinfectant, and a water-based disinfecting method using the disinfectant.
[0013]
Another object of the present invention is to provide a novel disinfectant that is excellent in handling properties and exhibits the same disinfecting action as a chlorine disinfectant, and a water disinfecting method using the disinfectant.
[0014]
Still another object of the present invention is to provide a novel system capable of sterilizing and disinfecting an aqueous system at a low cost without requiring a post-treatment such as a decomposition process of the residual substance with little residual chemical substance in the treated aqueous system. An object of the present invention is to provide a disinfectant and a water-based disinfecting method using the disinfectant.
[0015]
Still another object of the present invention is to provide a novel disinfectant capable of performing sterilization and disinfection very well within a short time of 2 minutes after addition to the disinfection target water system, and an aqueous system using the disinfectant. It is to provide a disinfection method.
[0016]
[Means for Solving the Problems]
According to the present invention, a liquid disinfectant containing active bromine and / or active iodine generated by reaction of chlorous acid or chlorite with bromide and / or iodide is provided. Active bromine and / or active iodine can kill pathogenic bacteria such as Escherichia coli by permeating the cell membrane and denaturing intracellular proteins, and can exert bactericidal power equivalent to active chlorine. Furthermore, active bromine and / or active iodine does not lose its active state because chloramine formation reaction is unlikely to occur even in the presence of ammonia or amine, and exhibits better bactericidal action than conventional chlorinated fungicides. Can do.
[0017]
In the liquid disinfectant of the present invention, active bromine and / or active iodine is contained as an effective halogen concentration in terms of chlorine as 5 to 300 g / L, preferably 20 to 100 g / L, more preferably 40 to 70 g / L. It is preferable. In this specification, the “effective halogen concentration” is a value obtained by converting the oxidizing power of a disinfectant into a chlorine concentration, and refers to a chlorine concentration converted value measured in accordance with the iodine titration method described later. In addition, since active bromine has higher activity than active iodine, it is more preferable that the liquid disinfectant of the present invention contains active bromine.
[0018]
In the liquid disinfectant of the present invention, the active bromine preferably contains hypobromite, hypobromite ion, hypobromite such as sodium hypobromite, potassium hypobromite, bromine and the like. The active iodine preferably contains hypoiodite, hypoiodide ion, hypoiodite such as sodium hypoiodite, potassium hypoiodite, iodine and the like.
[0019]
The bromide and / or iodide that can be used in the present invention is not particularly limited as long as it can supply bromine ions and / or iodine ions. However, preferred examples of the bromide that can be used in the present invention include sodium bromide, potassium bromide, hydrobromic acid, lithium bromide, and mixtures of two or more thereof. Preferred examples of the iodide that can be used in the present invention include sodium iodide, potassium iodide, lithium iodide, hydriodic acid, and a mixture of two or more thereof.
[0020]
The liquid disinfectant containing active bromine and / or active iodine of the present invention comprises component (A) chlorous acid or chlorite and component (B) a substance or bromine ion capable of supplying bromine ion and / or iodine ion. And / or an aqueous solution containing iodine ions is obtained by mixing under acidic conditions. The reaction at this time is, for example, the following formula (3)
[0021]
[Chemical 3]
[0022]
Active bromine such as hypobromous acid is produced.
The chlorite of component (A) that can be used in the present invention is preferably selected from sodium chlorite, potassium chlorite and mixtures thereof.
[0023]
The bromine ion of component (B) that can be used in the present invention is preferably derived from sodium bromide, potassium bromide, hydrobromic acid, lithium bromide or a mixture of two or more thereof.
[0024]
Moreover, the iodine ion of the component (B) that can be used in the present invention is derived from sodium iodide, potassium iodide, lithium iodide, hydriodic acid, or a mixture of two or more thereof. preferable.
[0025]
In particular, a mixed aqueous solution of sodium chlorite and sodium bromide or potassium bromide is excellent in stability, and is more preferable as the liquid disinfectant of the present invention.
In the present invention, mixing the component (A) and the component (B) under an acidic condition means that the component (A) and the component (B) are separately added and mixed in an acidic solution, or the component (A ) And the component (B) may be any of the embodiments in which an acid is further added to and mixed with the mixed solution obtained in advance.
[0026]
In the present invention, the molar ratio of the component (A) chlorous acid or chlorite and the component (B) bromine ion and / or iodine ion is preferably 1: 0.5 to 4, particularly It is preferably 1: 1 to 2. When the ratio of bromine ions and / or iodine ions is low, the production rate of active bromine and / or active iodine is lowered, and the sterilizing and disinfecting effect is lowered. On the other hand, when the ratio of bromine ions and / or iodine ions is high, not only the cost is increased, but excess bromine ions and / or iodine ions are released into the environment. Therefore, by setting the molar ratio of component (A) chlorous acid or chlorite and component (B) bromine ion and / or iodine ion within the above range, excess bromine ion and / or iodine ion can be Without being released into the environment, active bromine and / or active iodine can be produced effectively, and an excellent sterilizing action can be exhibited.
[0027]
Preferred examples of the acid that can be used in the present invention include hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, sulfamic acid, and the like. In the present invention, by adding an acid, the reaction between component (A) chlorous acid or chlorite and component (B) bromine ion and / or iodine ion can be carried out under acidic conditions, Active bromine and / or active iodine can be produced efficiently. Thus, it should be noted that the need to add additional acid may be eliminated, for example, by using an acid such as hydrobromic acid as component (B).
[0028]
In the present invention, for example, when hydrochloric acid is used as the acid, the molar ratio of component (A): component (B): hydrochloric acid is preferably 1: 0.5 to 4: 2 to 36, particularly 1: 1 to 2. : 12 is preferable. For example, when sulfuric acid is used as the acid, the molar ratio of component (A): component (B): sulfuric acid is preferably 1: 0.5-4: 1-36, particularly 1: 1: 6. . When the amount of the acid to be added is too small, the production rate of active bromine and / or active iodine is lowered, and when the amount of the acid to be added is excessive, the cost becomes high, which is not preferable.
[0029]
Since the liquid disinfectant of the present invention is in a liquid state, it can be added to a disinfecting target water system as it is and has excellent handling properties. In addition, it contains active bromine and / or active iodine instead of active chlorine as an active ingredient for sterilizing and disinfecting, so it has excellent storage stability and chloramine is hardly generated even in the presence of ammonia and amines. It does not reduce and exhibits an excellent bactericidal and disinfecting effect equivalent to a chlorine-based disinfectant in a small amount. . In addition, since there are few residues such as chloramine that are difficult to decompose, post-treatment such as decomposition treatment of residual chemical substances is unnecessary.
[0030]
Further, according to the present invention, component (A) chlorous acid or chlorite and component (B) a substance capable of supplying bromine ions and / or iodine ions, or an aqueous solution containing bromine ions and / or iodine ions Is prepared under the acidic condition to prepare a liquid disinfectant, and the obtained liquid disinfectant is added to the water system to be disinfected.
[0031]
Water systems that can be disinfected by the present invention include various industrial wastewater, human waste, landfill leachate, dehydrated filtrate, septic tank sludge, liquid waste, and sewage and sewage discharged from general households and business establishments. Sewage mixed with water and rainwater (rainwater during rainy weather), rainwater, groundwater, various sewage coagulation sedimentation treatment water, pressurized flotation treatment water, activated carbon adsorption treatment water, chemical oxidation treatment water, various membrane separation treatment water, etc. Includes all required water systems.
[0032]
In the present invention, the liquid disinfectant is preferably prepared at the site (onsite) of the water system to be disinfected. By preparing on-site, it becomes easy to add the liquid disinfectant to the water system to be treated while the active bromine and / or active iodine of the liquid disinfectant is in a very high state. However, if it is added immediately after preparation, the reaction between component (A) and component (B) is insufficient and active bromine and / or active iodine is not sufficiently produced. Or, since active iodine is liable to be deactivated, it is preferably added to the aqueous system to be disinfected within 10 hours, more preferably within 1 hour, and even more preferably within 5 minutes after preparation.
[0033]
In the present invention, the liquid disinfectant may be added to the disinfection target water system, and the prepared liquid disinfectant may be added to the disinfection target water system as it is, or after water is collected from the disinfection target water system and diluted with this water. Further, it may be added again to the water system to be disinfected.
[0034]
In the present invention, the addition rate of the liquid disinfectant to the disinfection target water system is in the range of 1 to 25 mg / L in terms of chlorine as the effective halogen concentration, more preferably 2 to 12 mg / L, still more preferably 3 to 8 mg / L. It is preferable that Within this range, a sufficient disinfecting and disinfecting effect can be achieved, and at the same time, the amount of disinfectant and / or chemical substances derived from the disinfectant in the water system after treatment can be reduced, and the disinfectant cost can be reduced. This eliminates the need for post-treatment to remove residual chemicals.
[0035]
In the water-based disinfection method of the present invention, since a liquid disinfectant is used, it can be easily prepared at the site (onsite) of the disinfection target water system, and can be easily added to the disinfection target water system as it is, and the handling property is excellent. Further, since chloramine generated in the case of a conventional chlorinated disinfectant is hardly generated, a sufficient sterilizing and disinfecting action can be obtained even in the presence of ammonia or amine. Furthermore, since chemical substances such as chloramine hardly remain, it is environmentally friendly, and it is economical because it is not necessary to perform post-treatment on water after sterilization treatment.
[0036]
[Preferred embodiment]
One embodiment of a water-based disinfection method using the liquid disinfectant of the present invention is shown in FIG.
In FIG. 1, a tank 1 for storing a mixed solution of components (A) and (B) of a liquid disinfectant and a tank 2 for storing an acid are connected to a line mixer by supply lines L1 and L2 each having a pump P. 3 is connected. The line mixer 3 is connected with a liquid disinfectant supply line L3 for supplying the liquid disinfectant to the water system to be disinfected. In the line mixer 3, the mixed solution of the component (A) and the component (B) supplied from the tank 1 and the acid supplied from the tank 2 are mixed to form a liquid disinfectant. The liquid disinfectant is conveyed while being stirred in the line mixer 3, and is added to the disinfecting target water system through the liquid disinfectant supply line L3. The added liquid disinfectant is diluted and agitated and mixed by the water flow of the disinfecting target water system, and sufficiently contacts with pathogenic bacteria such as Escherichia coli in the aqueous system to exert an excellent bactericidal action. Depending on the water system to be disinfected, in order to efficiently mix the liquid disinfectant of the present invention and the water to be disinfected, before adding the liquid disinfectant of the present invention to the water system to be disinfected, diluting water is added to the liquid disinfectant. May be mixed (indicated by a dotted line in the figure).
[0037]
In the figure, a storage tank equipped with a stirring device may be used instead of the line mixer 3. In this case, the residence time in the storage tank can be increased, and the mixing of the components (A) and (B) with the acid proceeds sufficiently. In addition, the storage tank may be provided with a dilution water supply line including a pump for pumping water from the sterilization target water system.
[0038]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
[0039]
In the following examples, the effective halogen concentration was measured using an iodometric titration method according to the following procedure.
[0040]
Iodometric titration method (reagent preparation)
(1) 0.1mol / L sodium thiosulfate solution
100 mL of 1 mol / L sodium thiosulfate solution (manufactured by Wako Pure Chemical Industries, Ltd., for quantitative analysis) was diluted to 1 L with pure water and prepared.
(2) Sulfuric acid (1 + 5)
To 200 mL of pure water, 40 mL of sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade (min 95%)) was added while gradually cooling.
(3) Acetic acid (1 + 1)
150 mL of acetic acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent) was added to 150 mL of pure water to prepare.
(4) Starch solution 1 g of starch (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade 1) was added to 100 mL of pure water, dissolved by heating, and then cooled and prepared.
[0041]
(Test operation)
(1) 100 mL of pure water, 5 mL of acetic acid (1 + 1), and 1 g of potassium iodide (made by Wako Pure Chemical Industries, Ltd., reagent grade) are added to an Erlenmeyer flask with a stopper (200 mL). Each liquid disinfectant prepared in 3 and each control disinfectant sample 5 mL were added.
(2) The conical stoppered Erlenmeyer flask was gently shaken and then allowed to stand for 5 minutes in a cool dark place (room temperature).
(3) Titrated with 0.1 mol / L sodium thiosulfate solution. When the sample water changed from brown to pale yellow, 5 mL of starch solution was added and titrated until the resulting blue color disappeared.
(4) The effective halogen concentration is the following formula 1.
[0042]
[Expression 1]
[0043]
Example 1 Preparation of liquid disinfectant Sodium chlorite (manufactured by Wako Pure Chemical Industries, Ltd., reagent) and sodium bromide (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) are dissolved in pure water. To prepare a 2 mol / L sodium chlorite solution and a 4 mol / L sodium bromide solution, respectively.
[0044]
The prepared sodium chlorite solution and sodium bromide solution and hydrochloric acid (made by Wako Pure Chemical Industries, Ltd., special grade reagent (35-37%)) are added to a 50 mL color tube at the volumes shown in Table 1 below. The mixture was reacted for 2 minutes to obtain a mixed solution.
[0045]
The resulting mixture was made up to 50 mL with pure water and used as a liquid disinfectant sample and a control sample, and the effective halogen concentration was measured. The results are shown in Table 1 below.
[0046]
[Table 1]
[0047]
From Table 1, the liquid disinfectant containing the active bromine of the present invention (samples No. 1 and 2) shows a high effective halogen concentration, but the control 1 containing no active bromine (producing chlorine dioxide) is effective halogen. It can be seen that the concentration is low.
[0048]
Example 2 Preparation of liquid disinfectant Sodium chlorite (manufactured by Wako Pure Chemical Industries, Ltd., reagent) was dissolved in pure water to prepare a 2 mol / L sodium chlorite solution.
[0049]
Prepared sodium chlorite solution, hydrobromic acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent (47-49%)) and hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent (35-37%)) ) Were put in 50 mL color tubes at the volumes shown in Table 2 below, mixed for 2 minutes and reacted to obtain a mixed solution.
[0050]
The resulting mixture was made up to 50 mL with pure water to obtain a liquid disinfectant sample, and the effective halogen concentration was measured. The results are shown in Table 2 below.
[0051]
[Table 2]
[0052]
Example 3 Preparation of liquid disinfectant Sodium chlorite (manufactured by Wako Pure Chemical Industries, Ltd., reagent), sodium bromide (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) and potassium chloride solution ( Dissolve Wako Pure Chemical Industries, Ltd. (special grade reagent) in pure water to prepare 2 mol / L sodium chlorite solution, 4 mol / L sodium bromide solution and 4 mol / L potassium chloride solution, respectively. did. Sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade (min 95%)) was diluted with pure water to prepare a 6 mol / L sulfuric acid solution.
[0053]
The prepared sodium chlorite solution, sodium bromide solution, potassium chloride solution and sulfuric acid solution were each put in a 50 mL color tube at the volumes shown in Table 3 below, mixed for 2 minutes and reacted to obtain a mixed solution.
[0054]
The resulting mixture was made up to 50 mL with pure water to obtain a liquid disinfectant sample, and the effective halogen concentration was measured. The results are shown in Table 3 below.
[0055]
[Table 3]
[0056]
Example 4 Preparation of liquid disinfectant Sodium chlorite (manufactured by Wako Pure Chemical Industries, Ltd., reagent) and potassium iodide (manufactured by Wako Pure Chemical Industries, Ltd., reagent special grade) are dissolved in pure water. To prepare a 2 mol / L sodium chlorite solution and a 4 mol / L potassium iodide solution, respectively.
[0057]
Put the prepared sodium chlorite solution, potassium iodide solution, and hydrochloric acid (manufactured by Wako Pure Chemical Industries, Ltd., special grade reagent (35-37%)) into a 50 mL color tube with the capacity shown in Table 4 below. The mixture was reacted for 2 minutes to obtain a mixed solution.
[0058]
The resulting mixture was made up to 50 mL with pure water to obtain a liquid disinfectant sample, and the effective halogen concentration was measured. The results are shown in Table 4 below.
[0059]
[Table 4]
[0060]
Example 5 Disinfection test As controls, sodium hypobromite (manufactured by Wako Pure Chemical Industries, Ltd., reagent) and sodium hypochlorite (Asahi Denka Kogyo Co., Ltd.) were each diluted with pure water. A 0.1 mol / L sodium hypobromite solution (control 2) and a 0.1 mol / L sodium hypochlorite solution (control 3) were prepared.
[0061]
Liquid disinfectant sample Nos. 1 to 9 prepared in Examples 1 to 4, control samples 1 to 3 and the case where no disinfectant is added (blank), four types of water disinfection target water systems shown in Tables 5 to 8 below. The sterilizing effect when applied to (sewage 1 to 4) was examined. The disinfection effect of each sample was subjected to a disinfection test according to the following procedure, and compared by the number of coliform groups present in each disinfection target water system (sewage 1 to 4) after treatment.
[0062]
(1) 500 mL of sewage was collected in a 1 L beaker and set in a jar tester (manufactured by Miyamoto Seisakusho: JMD-4).
(2) The liquid disinfectant was added to the jar tester at a predetermined amount that would give the addition rate (effective halogen conversion value) shown in Tables 5 to 8, and stirred at 150 rpm for 2 minutes.
(3) 5 mL of waste water after disinfection was collected in a test tube containing about 0.25 mg of sodium thiosulfate (manufactured by Wako Pure Chemical Industries, Ltd., reagent), and the number of coliforms was measured. The number of coliforms was measured by a plate culture method using a desoxycholate medium (manufactured by Nissui Pharmaceutical Co., Ltd.).
[0063]
The results of each disinfection test are shown in Tables 5 to 8 below. In the table, the bactericidal disinfection effect is shown by the removal rate of coliforms when the number of coliforms in the blank is 100.
[0064]
[Table 5]
[0065]
From Table 5, it can be seen that the liquid disinfectant of the present invention (samples No. 1 and 2) exhibits a high disinfecting effect equivalent to or higher than that of the sodium hypobromite solution (control 2). In particular, in sample No. 2 (sodium chlorite: sodium bromide: hydrochloric acid = 1: 2: 12), the same high disinfection effect (99.9%) at about 3/4 of the sodium hypobromite addition rate Indicates. On the other hand, the disinfection effect of Control 1 containing no active bromine is very low. From this, it can be seen that the liquid disinfectant containing active bromine of the present invention shows a very excellent sterilizing and disinfecting effect in a small amount and in a short time of 2 minutes after the addition.
[0066]
[Table 6]
[0067]
From Table 6, the disinfecting effect of sodium hypochlorite containing no active bromine (control 3) is very low, but the liquid disinfectant containing active bromine of the present invention has the same disinfecting effect as sodium hypobromite. It can be seen that Moreover, it turns out that sample No. 5 with a high ratio of hydrobromic acid exhibits a sterilization effect superior to samples No. 3 and 4 with a low ratio of hydrobromic acid.
[0068]
[Table 7]
[0069]
From Table 7, it can be seen that when sulfuric acid is added, the sterilizing and disinfecting effect is improved by adding potassium chloride.
[0070]
[Table 8]
[0071]
From Table 8, the liquid disinfectant containing active iodine shows the same sterilizing and disinfecting effect as sodium hypobromite. Especially, the sample No.9 with a large proportion of active iodine is hypobromite in a small amount (5mg / L). It can be seen that the disinfecting effect is higher than that of sodium.
[0072]
Example 6 Stability of liquid disinfectant component Sodium chlorite (manufactured by Wako Pure Chemical Industries, Ltd., reagent) and sodium bromide (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade) are each pure. Diluted with water to prepare a 2 mol / L sodium chlorite solution and a 4 mol / L sodium bromide solution. Next, 100 mL of a 2 mol / L sodium chlorite solution and 50 mL of a 4 mol / L sodium bromide solution were mixed, and a mixed solution of sodium chlorite and sodium bromide (sodium chlorite: sodium bromide = 1: 1 (molar ratio)) was prepared. As a control, a 12% sodium hypochlorite solution (Asahi Denka Kogyo Co., Ltd.) was used. The effective halogen concentration of the obtained mixed solution of sodium chlorite and sodium bromide was compared with the effective halogen concentration of the 12% sodium hypochlorite solution over time. The results are shown in Table 9 below.
[0073]
[Table 9]
[0074]
As is clear from Table 9, in the case of a sodium hypochlorite solution, which is a component of a conventional chlorinated disinfectant, the effective halogen concentration decreases to 70% of the initial concentration after 30 days. In contrast, the mixed solution of sodium chlorite and sodium bromide, which is a component of the liquid disinfectant of the present invention, maintains 98% of the initial concentration even after 30 days and is very stable. . Therefore, the mixed solution of the component (A) and the component (B) of the liquid disinfectant of the present invention is suitable for long-term storage, and the liquid disinfectant of the present invention can be easily prepared by mixing with an acid when necessary. Can do.
[0075]
【The invention's effect】
The disinfectant of the present invention is very stable, suitable for long-term storage, and can be prepared under optimum conditions as compared with conventional chlorinated disinfectants including sodium hypochlorite, and more efficiently an aqueous system. Can be sterilized.
[0076]
Further, the disinfectant of the present invention containing an acid exhibits an excellent sterilizing and disinfecting action even in an aqueous system containing ammonia and amine, and is a conventional disinfectant containing chlorine dioxide in a short time of 1 to 2 minutes after the addition. High sterilizing and disinfecting effect about 3 times that of the agent can be exhibited.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of aqueous disinfection using the liquid disinfectant of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381452A JP3992614B2 (en) | 2002-12-27 | 2002-12-27 | Disinfectant and water-based disinfecting method using the disinfectant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381452A JP3992614B2 (en) | 2002-12-27 | 2002-12-27 | Disinfectant and water-based disinfecting method using the disinfectant |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004210701A JP2004210701A (en) | 2004-07-29 |
JP3992614B2 true JP3992614B2 (en) | 2007-10-17 |
Family
ID=32817362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002381452A Expired - Fee Related JP3992614B2 (en) | 2002-12-27 | 2002-12-27 | Disinfectant and water-based disinfecting method using the disinfectant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3992614B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3685800B1 (en) * | 2004-09-17 | 2005-08-24 | 東西化学産業株式会社 | Hypobromite formation in aqueous systems |
JP5213299B2 (en) * | 2005-10-11 | 2013-06-19 | ソマール株式会社 | Method and apparatus for adding slime control agent |
DE102008026546B4 (en) * | 2008-05-29 | 2013-07-25 | Eberhard Kopp | Process for the preparation of a hypohalite-containing biocide, biocide obtainable by this process and its use |
DE202010017479U1 (en) * | 2010-04-16 | 2012-02-16 | Infracor Gmbh | diving reactor |
CN112870408A (en) * | 2021-02-08 | 2021-06-01 | 亚太森博(广东)纸业有限公司 | Sterilization system and operation method and application thereof |
CN114766509A (en) * | 2022-05-16 | 2022-07-22 | 深圳市玛斯特威科技开发有限公司 | Aviation disinfectant and preparation method thereof |
-
2002
- 2002-12-27 JP JP2002381452A patent/JP3992614B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004210701A (en) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101437754B (en) | Chlorine dioxide based cleaner/sanitizer | |
US9630841B2 (en) | Method for producing an aqueous stable chlorine dioxide solution | |
JP2009507903A (en) | Method for preparing peracid | |
US9149041B2 (en) | Stabilized and activated bromine solutions as a biocide and as an antifouling agent | |
KR102040042B1 (en) | Treatment method of ammonia-nitrogen containing wastewater and ammonia nitrogen decomposing agent | |
JP6649697B2 (en) | Water sterilization method | |
Narkis et al. | Disinfection of effluents by combinations of chlorine dioxide and chlorine | |
TW200829518A (en) | A method for producing a stable oxidizing biocide | |
Bekink et al. | Assessment of a chlorine dioxide proprietary product for water and wastewater disinfection | |
JP3992614B2 (en) | Disinfectant and water-based disinfecting method using the disinfectant | |
Nguema et al. | Application of ferrate (VI) as disinfectant in drinking water treatment processes: A review | |
JP2013039553A (en) | Weakly acidic hypochlorous acid aqueous solution of long life and method for producing the same | |
JP2015517984A (en) | Method for preparing an aqueous biocidal composition | |
AU2005200010C1 (en) | Biocidal applications of concentrated aqueous bromine chloride solutions | |
CN101023033B (en) | Generation method of hypobromous acid in water system | |
JP5281465B2 (en) | Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition | |
WO2014119606A1 (en) | Method for controlling slime in aqueous paper pulp system | |
Harris | The effect of predisinfection with chlorine dioxide on the formation of haloacetic acids and trihalomethanes in a drinking water supply | |
JP2004267896A (en) | Contamination preventing method for industrial/waste water system | |
JP2002086155A (en) | Sterilization method of water system | |
US20160068393A1 (en) | Process for the Generation of Chlorine Dioxide | |
JP2019034893A (en) | Method and disinfectant for disinfecting ammonia nitrogen containing wastewater | |
CN111202090A (en) | Hospital sewage disinfection powder and preparation method and use method thereof | |
WO2015162440A1 (en) | Process for preparing chlorine dioxide | |
CN110615520A (en) | Water treatment purification and disinfection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070601 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3992614 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |