JP3992004B2 - Engine air-fuel ratio control device - Google Patents
Engine air-fuel ratio control device Download PDFInfo
- Publication number
- JP3992004B2 JP3992004B2 JP2004080484A JP2004080484A JP3992004B2 JP 3992004 B2 JP3992004 B2 JP 3992004B2 JP 2004080484 A JP2004080484 A JP 2004080484A JP 2004080484 A JP2004080484 A JP 2004080484A JP 3992004 B2 JP3992004 B2 JP 3992004B2
- Authority
- JP
- Japan
- Prior art keywords
- lean
- fuel ratio
- stoichiometric
- air
- nox
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 74
- 238000001179 sorption measurement Methods 0.000 claims description 42
- 230000001186 cumulative effect Effects 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 25
- 230000007704 transition Effects 0.000 claims description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 276
- 238000002347 injection Methods 0.000 description 24
- 239000007924 injection Substances 0.000 description 24
- 239000003054 catalyst Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
本発明は、エンジンに供給する混合気の空燃比を運転条件に応じて理論空燃比とこれよりリーン側の空燃比とに切換える空燃比切換手段を備えると共に、排気系にリーン側空燃比での運転時にNOx(窒素酸化物)を吸着し、理論空燃比での運転時に前記吸着したNOxを処理する排気処理装置を備えるエンジンの空燃比制御装置に関する。 The present invention includes air-fuel ratio switching means for switching the air-fuel ratio of an air-fuel mixture supplied to an engine to a stoichiometric air-fuel ratio and a leaner air-fuel ratio depending on operating conditions, and an exhaust system at a lean-side air-fuel ratio. The present invention relates to an air-fuel ratio control apparatus for an engine having an exhaust treatment device that adsorbs NOx (nitrogen oxide) during operation and processes the adsorbed NOx during operation at a stoichiometric air-fuel ratio.
従来より、燃費向上を目的として、エンジンに供給する混合気の空燃比を所定の運転条件にて理論空燃比(以下「ストイキ」という;A/F=14.6)よりリーン側の空燃比(以下「リーン」という;例えばA/F=22)に制御するようにしたリーン制御エンジンが提案されている。 Conventionally, for the purpose of improving fuel efficiency, the air-fuel ratio of an air-fuel mixture supplied to an engine is set to a leaner air-fuel ratio (hereinafter referred to as “stoichi”; A / F = 14.6) under a predetermined operating condition (hereinafter “Stoichi”). There has been proposed a lean control engine which is controlled to “lean”; for example, A / F = 22).
また、かかるリーン制御エンジンにおいて、排気系に排気処理装置としてNOx吸着三元触媒を設けて、リーンでの運転時にNOxを吸着し、ストイキでの運転時に前記吸着したNOxを処理する一方、吸着能力等との関係で空燃比の切換えに一定の制限を設けるようにしたものがある(特許文献1)。
本発明は、このような実状に鑑み、運転条件がストイキ領域からリーン領域へ移行した場合や、運転条件がリーン領域からストイキ領域へ移行した場合に、排気処理装置のNOx吸着能力等との関係で、より適切に空燃比を切換えて、排気性能の向上を図ることを目的とする。In view of such a situation, the present invention relates to the NOx adsorption capacity of the exhaust treatment device when the operating condition shifts from the stoichiometric region to the lean region, or when the operating condition shifts from the lean region to the stoichiometric region. Therefore, it is an object to improve the exhaust performance by switching the air-fuel ratio more appropriately.
このため、請求項1に係る発明では、排気系に、リーンでの運転時にNOxを吸着し、ストイキでの運転時に前記吸着したNOxを処理する排気処理装置を備えるエンジンにおいて、エンジン回転数とエンジン負荷とで定まる運転条件がリーン領域にあるかストイキ領域にあるかを判定する手段と、ストイキでの運転時に累積NOx処理量を算出する手段(ストイキ時累積NOx処理量算出手段)と、前記累積NOx処理量に基づいてヒステリシス時間を算出する手段と、前記運転条件が前記ストイキ領域から前記リーン領域に移行した場合、前記運転条件の移行から前記ヒステリシス時間が経過するまでの間、リーンへの切換えを禁止してストイキでの運転を維持し、前記ヒステリシス時間の経過後にリーンでの運転に切換える手段(ストイキ→リーン遅延手段)とを設けて、エンジンの空燃比制御装置を構成する(図1参照)。 Therefore, according to the first aspect of the present invention, in an engine provided with an exhaust treatment device that adsorbs NOx during the lean operation and processes the adsorbed NOx during the stoichiometric operation, the engine speed and the engine Means for determining whether an operating condition determined by a load is in a lean region or a stoichiometric region, a means for calculating a cumulative NOx processing amount during a stoichiometric operation (a stoichiometric cumulative NOx processing amount calculating unit), and the cumulative Means for calculating the hysteresis time based on the NOx processing amount, and switching to lean when the operating condition shifts from the stoichiometric region to the lean region until the hysteresis time elapses from the transition of the operating condition maintaining operation at stoichiometric prohibits switches for operation in lean after the hysteresis time unit (strike · The → lean delay means) and the provided, constituting the air-fuel ratio control apparatus for an engine (see Figure 1).
また、請求項2に係る発明では、排気系に、リーンでの運転時にNOxを吸着し、ストイキでの運転時に前記吸着したNOxを処理する排気処理装置を備えるエンジンにおいて、エンジン回転数とエンジン負荷とで定まる運転条件がリーン領域にあるかストイキ領域にあるかを判定する手段と、リーンでの運転時に累積NOx吸着量を算出する手段(リーン時累積NOx吸着量算出手段)と、前記累積NOx吸着量に基づいてヒステリシス時間を算出する手段と、前記運転条件が前記リーン領域から前記ストイキ領域に移行した場合、前記運転条件の移行から前記ヒステリシス時間が経過するまでの間、ストイキへの切換えを禁止してリーンでの運転を維持し、前記ヒステリシス時間の経過後にストイキでの運転に切換える手段(リーン→ストイキ遅延手段)と、を設けて、エンジンの空燃比制御装置を構成する(図1参照)。
In the invention according to
請求項1に係る発明では、ストイキでの運転中に累積NOx処理量が算出され、これに基づいて、ストイキからリーンへの切換え時に該切換えを遅延させるヒステリシス時間が設定される。すなわち、ストイキ運転時における累積NOx処理量が小さいとき程、リーン運転への切換え時のヒステリシス時間を長くして、リーン運転に切換える前に、ストイキ運転の継続により吸着NOxの処理を図り、逆に、ストイキ運転時における累積NOx処理量が大きいとき程、リーン運転への切換え時のヒステリシス時間を短くして、リーン運転へ早期に切換えるのである。
従って請求項1に係る発明によれば、ストイキ運転時における累積NOx処理量に対応させて、リーン運転への切換え時のヒステリシス時間を設定することにより、累積NOx処理量が小さいときには、ヒステリシス時間を長くして、ストイキ運転により吸着NOxの処理を図り、逆に、累積NOx処理量が大きいときには、ヒステリシス時間を短くして、リーン運転への早期切換えにより燃費向上を図ることができるという効果が得られる。
According to the first aspect of the present invention, the accumulated NOx processing amount is calculated during operation at stoichiometry, and based on this, a hysteresis time for delaying the switching at the time of switching from stoichiometric to lean is set. That is, the smaller the cumulative NOx processing amount during stoichiometric operation, the longer the hysteresis time at the time of switching to lean operation, and the adsorption NOx processing is continued by continuing the stoichiometric operation before switching to lean operation. As the cumulative NOx processing amount during stoichiometric operation increases, the hysteresis time at the time of switching to lean operation is shortened, and the operation is switched to lean operation earlier.
Therefore, according to the first aspect of the present invention, the hysteresis time is set when the cumulative NOx processing amount is small by setting the hysteresis time when switching to the lean operation in correspondence with the cumulative NOx processing amount during the stoichiometric operation. The adsorption NOx is processed by stoichiometric operation, and when the accumulated NOx processing amount is large, the hysteresis time is shortened, and the fuel consumption can be improved by early switching to lean operation. It is done.
また、請求項2に係る発明では、リーンでの運転中に累積NOx吸着量が算出され、これに基づいて、リーンからストイキへの切換え時に該切換えを遅延させるヒステリシス時間が設定される。すなわちリーン運転時における累積NOx吸着量が大きいとき程、ストイキ運転への切換え時のヒステリシス時間を短くして、ストイキ運転へ早期に切換えるのである。
従って請求項2に係る発明によれば、リーン運転時における累積NOx吸着量に対応させて、ストイキ運転への切換え時のヒステリシス時間を設定することにより、累積NOx吸着量が大きいとき程、ヒステリシス時間を短くして、ストイキ運転への早期に切換えにより排気性能向上を図ることができるという効果が得られる。
In the invention according to
Therefore, according to the invention according to
以下に本発明の実施の形態を説明する。
本発明の一実施形態を図2〜図7により説明する。
図2はシステム構成を示している。
エンジン1の各気筒の燃焼室には、エアクリーナ2から、スロットル弁3、吸気マニホールド4を介して、空気が吸入される。吸気マニホールド4の各ブランチ部にはそれぞれ電磁式の燃料噴射弁5が設けられており、各燃料噴射弁5から噴射される燃料により混合気が生成される。そして、混合気は燃焼室内で点火栓6により点火されて燃焼する。
Embodiments of the present invention will be described below.
An embodiment of the present invention will be described with reference to FIGS.
FIG. 2 shows a system configuration.
Air is drawn into the combustion chamber of each cylinder of the
燃料噴射弁5は後述するコントロールユニット12からのエンジン回転に同期して所定のタイミングで出力される駆動パルス信号により通電されて開弁し、所定圧力に調整された燃料を噴射する。従って、駆動パルス信号のパルス幅により燃料噴射量が制御される。
エンジン1からの排気は、排気マニホールド7を経て、排気管8に至る。
The
The exhaust from the
この排気管8の途中には、排気処理装置として、NOx吸着三元触媒10が介装されている。このNOx吸着三元触媒10は、ストイキ条件でHC,COを酸化し、NOx を還元する三元触媒機能を有するのみならず、リーン条件下でNOxを吸着し、ストイキ条件で前記吸着したNOx及び新たに流入するNOxを処理する機能を有している。そして、排気はNOx吸着三元触媒10を通過後、マフラー11を経て排出される。
In the middle of the
燃料噴射弁5の作動を制御するコントロールユニット12は、マイクロコンピュータを内蔵するもので、各種のセンサから信号が入力されている。
前記各種のセンサとしては、スロットル弁3の上流側でエンジン1の吸入空気流量Qを検出するエアフローメータ13、エンジン1のカム軸回転から基準クランク角信号及び単位クランク角信号を出力し間接的にエンジン回転数Nを検出できるクランク角センサ14、エンジン1のウォータジャケット内の冷却水温度Twを検出する水温センサ15、排気マニホールド7に取付けられてエンジン1に吸入される混合気の空燃比に関連する排気中酸素濃度に対応した電圧信号を出力するO2 センサ16等が設けられている。
The
As the various sensors, an air flow meter 13 for detecting the intake air flow rate Q of the
ここにおいて、コントロールユニット12は、前記各種のセンサからの信号に基づき後述のごとく演算処理を行って、燃料噴射弁5の作動を制御する。
次に図3〜図4のフローチャートに従ってコントロールユニット12の演算処理内容について説明する。尚、本フローは所定時間Δt(例えば20ms)毎に実行される。
Here, the
Next, the calculation processing contents of the
特に本実施形態は、ストイキ→リーンの切換え時と、リーン→ストイキの切換え時とに、それぞれ異なるヒステリシス時間の遅れを持たせ、かつストイキ→リーンの切換え時のヒステリシス時間をリーン→ストイキの切換え時のヒステリシス時間より長くして、リーン運転に先立って十分にストイキ運転がなされるようにする一方、ストイキ運転時における累積NOx処理量に基づいて、ストイキ→リーンの切換え時のヒステリシス時間を設定し、また、リーン運転時における累積NOx吸着量に基づいて、リーン→ストイキの切換え時のヒステリシス時間を設定するようにしたものである。In particular, this embodiment has different hysteresis time delays at the time of switching from stoichiometric to lean and at the time of switching from lean to stoichiometric, and the hysteresis time when switching from stoichiometric to lean is changed from lean to stoichiometric. The hysteresis time at the time of switching from stoichiometric to lean is set based on the accumulated NOx processing amount during the stoichiometric operation, while making the stoichiometric operation sufficiently performed prior to the lean operation. Further, the hysteresis time at the time of switching from lean to stoichiometry is set based on the accumulated NOx adsorption amount during lean operation.
ステップ1(図にはS1と記してある。以下同様)では、エアフローメータ13からの信号に基づいて吸入空気流量Qを検出する。
ステップ2では、クランク角センサ14からの信号に基づいてエンジン回転数Nを検出する。
ステップ3では、吸入空気流量Qとエンジン回転数Nとから、ストイキ(A/F=14.6)相当の基本燃料噴射量Tp=K×Q/N(Kは定数)を計算する。
In step 1 (indicated as S1 in the figure, the same applies hereinafter), the intake air flow rate Q is detected based on the signal from the air flow meter 13.
In
In
ステップ4では、水温センサ15からの信号に基づいて冷却水温度Twを検出する。
ステップ5では、冷却水温度Twが例えば70℃以上か否かを判定し、70℃未満の低温時は、ストイキにより運転するため、ステップ6へ進む。
ステップ6では、基本燃料噴射量Tpと、O2 センサ16からの信号に基づいて設定される空燃比フィードバック補正係数αと、バッテリ電圧に基づいて設定される電圧補正分Tsとから、次式に従って、燃料噴射量Tiを計算し、本ルーチンを終了する。
In
In
In
Ti=Tp×α+Ts
燃料噴射量Tiが計算されると、これが所定のレジスタにセットされ、エンジン回転に同期して所定のタイミングで、このTiのパルス幅の駆動パルス信号が燃料噴射弁5に出力されて燃料噴射が行われる。このとき、空燃比はストイキに制御される。
Ti = Tp × α + Ts
When the fuel injection amount Ti is calculated, this is set in a predetermined register, and at a predetermined timing in synchronism with the engine rotation, a drive pulse signal having a pulse width of Ti is output to the
ステップ5での判定で冷却水温度Twが70℃以上の時は、運転領域に応じた空燃比の切換制御を実現するため、ステップ7へ進む。
ステップ7では、エンジン回転数Nと基本燃料噴射量(負荷)Tpとに基づき、図5のマップ上での領域(ストイキ領域・リーン領域)を検出して、ステップ8へ進む。
When the cooling water temperature Tw is 70 ° C. or higher as determined in
In step 7, an area (stoichiometric area / lean area) on the map of FIG. 5 is detected based on the engine speed N and the basic fuel injection amount (load) Tp, and the process proceeds to
ステップ8では、リーン領域か否かを判定し、リーン領域のときはステップ31へ進み、ストイキ領域のときはステップ40へ進む。
ステップ31では、リーンフラグFLの値(ストイキ運転中はFL=0、リーン運転中はFL=1)を判定する。
FL=0のときは、現在ストイキ運転中でストイキ→リーンの切換え指令がなされたときであり、このときはステップ32へ進む。
In
In
When FL = 0, this is the time when the stoichiometric / lean switching command is issued during the stoichiometric operation. At this time, the routine proceeds to
ステップ32では、ストイキ→リーンの切換え指令から実際に切換えるまでのヒステリシス時間を計時すべく、タイマTLを本ルーチンの実行時間隔Δt分増加させて、ステップ33へ進む。
ステップ33では、タイマTLが後述するステップ47にて定められるヒステリシス時間THL以上になったか否かを判定し、TL≧THLのときに、リーン切換えを許可してステップ34へ進む。この意味については後述する。
In
In
ステップ34では、リーンフラグFLをセット(FL=1)、ストイキフラグFSをリセット(FS=0)して、ステップ35へ進む。
ステップ35では、タイマTLをリセット(TL=0)して、ステップ36へ進む。
ステップ36では、リーン運転時における累積NOx吸着量ΣCNOを初期化(ΣCNO=0)して、ステップ39へ進む。
In step 34, the lean flag FL is set (FL = 1), the stoichiometric flag FS is reset (FS = 0), and the process proceeds to step 35.
In step 35, the timer TL is reset (TL = 0), and the process proceeds to step 36.
In step 36, the accumulated NOx adsorption amount ΣC NO during lean operation is initialized (ΣC NO = 0), and the routine proceeds to step 39.
ステップ39では、次式のごとく、基本燃料噴射量Tpをリーン(A/F=22)相当に補正した上で、燃料噴射量Tiを計算し、本ルーチンを終了する。
Ti=Tp×(14.6/22)+Ts
燃料噴射量Tiが計算されると、これが所定のレジスタにセットされ、エンジン回転に同期して所定のタイミングで、このTiのパルス幅の駆動パルス信号が燃料噴射弁5に出力されて燃料噴射が行われる。このとき、空燃比はリーンに制御される。
In
Ti = Tp × (14.6 / 22) + Ts
When the fuel injection amount Ti is calculated, this is set in a predetermined register, and at a predetermined timing in synchronism with the engine rotation, a drive pulse signal having a pulse width of Ti is output to the
これ以降は、リーン領域である限り、ステップ31での判定でFL=1となるので、ステップ37,38へ進む。
ステップ37では、リーン運転時における累積NOx吸着量ΣCNOを計算する。すなわち、次式のごとく、吸入空気流量Qと、吸着NOx濃度P1 との積によりNOx吸着量を求め、これを前回までの累積NOx吸着量ΣCNOに加算して、累積NOx吸着量ΣCNOを更新する。
Thereafter, as long as the region is a lean region, FL = 1 in the determination in
In
ΣCNO=ΣCNO+Q×P1 但し、P1 =f1(Q)
尚、吸着NOx濃度P1 は吸入空気流量Qの関数(Q大→P1 大)とし、図6に示すマップから検索により求める。
ステップ38では、リーン運転時における累積NOx吸着量ΣCNOに対応させて、リーン→ストイキの切換え時のヒステリシス時間THSを次式により算出する。
ΣC NO = ΣC NO + Q × P 1 where P 1 = f 1 (Q)
The adsorbed NOx concentration P 1 is a function of the intake air flow rate Q (Q large → P 1 large), and is obtained by searching from the map shown in FIG.
In
THS=m1 /ΣCNO 但し、m1 は定数
すなわち、リーン運転時における累積NOx吸着量ΣCNOが多い程、ストイキへの切換えを早くしてNOxの処理を図るべく、リーン→ストイキの切換え時のヒステリシス時間THSを短くする。
ステップ37,38の後は、ステップ39へ進んで、リーン運転を続行する。
T HS = m 1 / ΣC NO However, m 1 is a constant. That is, the larger the cumulative NOx adsorption amount ΣC NO during lean operation, the faster the switch to stoichiometric and the more the NOx processing is performed, so the switch from lean to stoichiometric. The hysteresis time T HS is shortened.
After
ステップ8での判定でストイキ領域の場合は、ステップ40へ進む。
ステップ40では、ストイキフラグFSの値(リーン運転中はFS=0、ストイキ運転中はFS=1)を判定する。
FS=0のときは、現在リーン運転中でリーン→ストイキの切換え指令がなされたときであり、このときはステップ41へ進む。
If it is determined in
In
When FS = 0, the lean-to-stoichi change command is issued during the lean operation. In this case, the process proceeds to step 41.
ステップ41では、リーン→ストイキの切換え指令から実際に切換えるまでのヒステリシス時間を計時すべく、タイマTSを本ルーチンの実行時間隔Δt分増加させて、ステップ42へ進む。
ステップ42では、タイマTSが前述したステップ38にて定められるヒステリシス時間THS以上になったか否かを判定し、TS≧THSのときに、ストイキ切換えを許可してステップ43へ進む。この意味については後述する。
ステップ43では、ストイキフラグFSをセット(FS=1)、リーンフラグFLをリセット(FL=0)して、ステップ44へ進む。
In step 41, the timer TS is increased by the execution time interval Δt of this routine in order to measure the hysteresis time from the lean-to-stoichi switching command to the actual switching, and the routine proceeds to step 42.
In
In step 43, the stoichiometric flag FS is set (FS = 1), the lean flag FL is reset (FL = 0), and the process proceeds to step 44.
ステップ44では、タイマTSをリセット(TS=0)して、ステップ45へ進む。
ステップ45では、ストイキ運転時における累積NOx処理量ΣPNOを初期化(ΣPNO=0)して、ステップ48へ進む。
ステップ48では、ストイキ相当の基本燃料噴射量Tpに基づき、次式に従って、燃料噴射量Tiを計算し、本ルーチンを終了する。
In
In
In
Ti=Tp×α+Ts
燃料噴射量Tiが計算されると、これが所定のレジスタにセットされ、エンジン回転に同期して所定のタイミングで、このTiのパルス幅の駆動パルス信号が燃料噴射弁5に出力されて燃料噴射が行われる。このとき、空燃比はストイキに制御される。
Ti = Tp × α + Ts
When the fuel injection amount Ti is calculated, this is set in a predetermined register, and at a predetermined timing in synchronism with the engine rotation, a drive pulse signal having a pulse width of Ti is output to the
これ以降は、ストイキ領域である限り、ステップ40での判定でFS=1となるので、ステップ46,47へ進む。
ステップ46では、ストイキ運転時における累積NOx処理量ΣPNOを計算する。すなわち、次式のごとく、吸入空気流量Qと、処理NOx濃度P2 との積によりNOx処理量を求め、これを前回までの累積NOx処理量ΣPNOに加算して、累積NOx処理量ΣPNOを更新する。
Thereafter, as long as it is the stoichiometric region, FS = 1 in the determination in
In
ΣPNO=ΣPNO+Q×P2 但し、P2 =f2(Q)
尚、処理NOx濃度P2 は吸入空気流量Qの関数(Q大→P2 大)とし、図7に示すマップから検索により求める。Q小でP 2 が小さいのは、Q小ではNOx脱離量が少ないからである。
ステップ47では、ストイキ運転時における累積NOx処理量ΣPNOに対応させて、ストイキ→リーンの切換え時のヒステリシス時間THLを次式により算出する。
ΣP NO = ΣP NO + Q × P 2 where P 2 = f 2 (Q)
The processing NOx concentration P 2 is a function of the intake air flow rate Q (Q large → P 2 large), and is obtained by searching from the map shown in FIG. The reason why P 2 is small when Q is small is that the amount of NOx desorbed is small when Q is small.
In
THL=m0 /ΣPNO 但し、m0 は定数
すなわち、ストイキ運転時における累積NOx処理量ΣPNOが多い程、リーンへの切換えを早くすべく、ストイキ→リーンの切換え時のヒステリシス時間THLを短くする。
また、m0 >m1 として、同一条件では、ストイキ→リーンの切換え時のヒステリシス時間THLをリーン→ストイキの切換え時のヒステリシス時間THSより長くする。
T HL = m 0 / ΣP NO where m 0 is a constant. That is, as the cumulative NOx processing amount ΣP NO during stoichiometric operation increases, the hysteresis time T HL when switching from stoichiometric to lean so that the switching to lean becomes faster. To shorten.
Further, assuming that m 0 > m 1 and under the same conditions, the hysteresis time T HL at the time of switching from stoichiometric to lean is set longer than the hysteresis time T HS at the time of switching from lean to stoichiometric.
ステップ46,47の後は、ステップ48へ進んで、ストイキ運転を続行する。
以上のように、ストイキ運転中には累積NOx処理量ΣPNOが算出されて、これに対応してストイキ→リーンの切換え時のヒステリスシ時間THLが設定され(ステップ46,47)、リーン運転中には累積NOx吸着量ΣCNOが算出されて、これに対応してリーン→ストイキの切換え時のヒステリシス時間THSが設定されている(ステップ37,38)。
After
As described above, the cumulative NOx processing amount ΣP NO is calculated during the stoichiometric operation, and the hysteresis time T HL at the time of switching from stoichiometric to lean is set correspondingly (
ここで、運転条件がストイキ領域からリーン領域に移行した場合は、ステップ31,32を経てステップ33へ進み、切換え指令からの経過時間TLがストイキ運転時における累積NOx処理量ΣPNOに基づくヒステリシス時間THL(=m0 /ΣPNO)以上か否かを判定し、TL≧THLの場合は、リーン切換えを許可してステップ34へ進ませるが、TL<THLの場合は、リーン切換えを禁止してステップ40へ進ませる。
Here, when the operating condition shifts from the stoichiometric region to the lean region, the process proceeds to step 33 through
すなわち、現在のストイキ運転時における累積NOx処理量ΣPNOが小さいとき程、ストイキ→リーンの切換え時のヒステリシス時間THLを長くして、リーン運転に切換える前に、ストイキ運転の継続により吸着NOxの処理を図り、逆に、現在のストイキ運転時における累積NOx処理量ΣPNOが大きいとき程、ストイキ→リーンの切換え時のヒステリシス時間THLを短くして、リーン運転へ早期に切換えるのである。 That is, as the cumulative NOx throughput .SIGMA.P NO during the current stoichiometric operation is small, the hysteresis time T HL during stoichiometric → lean switching to longer, before switching to lean operation, the suction NOx by continuing stoichiometric operation On the contrary, as the cumulative NOx processing amount ΣP NO at the current stoichiometric operation is larger, the hysteresis time T HL at the time of switching from stoichiometric to lean is shortened, and the operation is switched to the lean operation earlier.
また、運転条件がリーン領域からストイキ領域に移行した場合は、ステップ40,41を経てステップ42へ進み、切換え指令からの経過時間TSがリーン運転時における累積NOx吸着量ΣCNOに基づくヒステリシス時間THS(=m1 /ΣCNO)以上か否かを判定し、TS≧THSの場合は、ストイキ切換えを許可してステップ43へ進ませるが、TS<THSの場合は、ストイキ切換えを禁止してステップ31へ進ませる。
Further, when the operating condition shifts from the lean region to the stoichiometric region, the process proceeds to step 42 through
すなわち、現在のリーン運転時における累積NOx吸着量ΣCNOが大きいとき程、リーン→ストイキの切換え時のヒステリシス時間THSを短くして、ストイキ運転へ早期に切換えるのである。 That is, as the cumulative NOx adsorption amount ΣC NO during the current lean operation increases, the hysteresis time T HS when switching from lean to stoichiometric is shortened, and the operation is switched to stoichiometric operation earlier.
本実施例においては、ステップ7,8,39,48の部分が空燃比切換手段(特にステップ7,8の部分がリーン領域・ストイキ領域判定手段)に相当し、ステップ45,46の部分がストイキ時累積NOx処理量算出手段に相当し、ステップ47の部分が累積NOx処理量に基づくヒステリシス時間算出手段に相当し、ステップ32,33の部分がストイキ→リーン遅延手段に相当する。また、ステップ36,37の部分がリーン時累積NOx吸着量算出手段に相当し、ステップ38の部分が累積NOx吸着量に基づくヒステリシス時間算出手段に相当し、ステップ41,42の部分がリーン→ストイキ遅延手段に相当する。
In this embodiment, steps 7, 8, 39 and 48 correspond to air-fuel ratio switching means (particularly, steps 7 and 8 are lean region / stoichiometric region determination means) , and steps 45 and 46 are stoichiometric. The time cumulative NOx processing amount calculation means corresponds to step 47, the hysteresis time calculation means based on the cumulative NOx processing amount, and the
尚、ストイキ運転時における累積NOx処理量ΣCNote that cumulative NOx processing amount ΣC during stoichiometric operation NONO (ステップ46)及びリーン運転時における累積NOx吸着量ΣP(Step 46) and cumulative NOx adsorption amount ΣP during lean operation NONO (ステップ37)は、これに相当する値として、単に吸入空気流量Qを累積することにより求めてもよい。累積NOx処理量及び累積NOx吸着量は累積吸入空気流量にほぼ比例するからである。(Step 37) may be obtained by simply accumulating the intake air flow rate Q as a value corresponding thereto. This is because the cumulative NOx processing amount and the cumulative NOx adsorption amount are substantially proportional to the cumulative intake air flow rate.
すなわち、ストイキ運転時における累積NOx処理量(累積吸入空気流量)ΣPThat is, the cumulative NOx processing amount (cumulative intake air flow rate) ΣP during stoichiometric operation
NONO
を計算する際に、次式のごとく、NOx処理量に関連する値として吸入空気流量Qを読込み、これを前回までの累積NOx処理量ΣP, The intake air flow rate Q is read as a value related to the NOx processing amount as shown in the following equation, and this is the cumulative NOx processing amount ΣP up to the previous time.
NONO
に加算して、累積NOx処理量ΣPCumulative NOx processing amount ΣP
NONO
を更新してもよい。May be updated.
ΣPΣP
NONO
=ΣP= ΣP
NONO
+Q+ Q
また、リーン運転時における累積NOx吸着量(累積吸入空気流量)ΣCAlso, the accumulated NOx adsorption amount (cumulative intake air flow rate) ΣC during lean operation
NONO
を計算する際に、次式のごとく、NOx処理量に関連する値として吸入空気流量Qを読込み、これを前回までの累積NOx吸着量ΣCIs calculated, the intake air flow rate Q is read as a value related to the NOx processing amount as in the following equation, and this is the cumulative NOx adsorption amount ΣC up to the previous time.
NONO
に加算して、累積NOx吸着量ΣCCumulative NOx adsorption amount ΣC
NONO
を更新してもよい。May be updated.
ΣCΣC
NONO
=ΣC= ΣC
NONO
+Q+ Q
また、以上の実施形態では、ストイキ運転時における累積NOx処理量ΣCFurther, in the above embodiment, the cumulative NOx processing amount ΣC during the stoichiometric operation. NONO 及びリーン運転時における累積NOx吸着量ΣPAnd cumulative NOx adsorption amount ΣP during lean operation NONO は、吸入空気量に基づいて算出しているので、次のような効果が得られる。Is calculated based on the intake air amount, and the following effects are obtained.
前記特許文献1に記載の装置にあっては、リーンでの運転時にエンジン回転数を累積することにより累積NOx吸着量を推定し、これに基づいてリーンでの運転を制限したり、あるいはストイキでの運転を所定時間以上にしているものの、エンジン回転数の累積では負荷の項がないため、吸着限界を推定する際の精度が悪く、また単に時間により制限するのでは、更に精度が悪いので、排気性能の向上を望めないという問題点があった。In the apparatus described in
この点、以上の実施形態では、ストイキでの運転中に吸入空気流量に基づいて累積NOx処理量が精度よく算出され、また、リーンでの運転中に吸入空気流量に基づいて累積NOx吸着量が精度よく算出され、これらに基づいて、排気処理装置のNOx吸着能力等との関係で精度よく空燃比の切換えに一定の制限を設けて、排気性能の向上を図ることができる。In this regard, in the above-described embodiment, the accumulated NOx processing amount is accurately calculated based on the intake air flow rate during the operation at the stoichiometry, and the accumulated NOx adsorption amount is calculated based on the intake air flow amount during the lean operation. Accurately calculated, and based on these, it is possible to improve exhaust performance by providing a certain limit for switching the air-fuel ratio accurately in relation to the NOx adsorption capacity of the exhaust treatment device and the like.
1 エンジン
5 燃料噴射弁
10 NOx吸着三元触媒
12 コントロールユニット
13 エアフローメータ
14 クランク角センサ
15 水温センサ
17 O2 センサ
1 engine
5 Fuel injection valve
10 NOx adsorption three way catalyst
12 Control unit
13 Air flow meter
14 Crank angle sensor
15 Water temperature sensor
17 O 2 sensor
Claims (2)
エンジン回転数とエンジン負荷とで定まる運転条件がリーン領域にあるか理論空燃比領域にあるかを判定する手段と、
理論空燃比での運転時に累積NOx処理量を算出する手段と、
前記累積NOx処理量に基づいてヒステリシス時間を算出する手段と、
前記運転条件が前記理論空燃比領域から前記リーン領域に移行した場合、前記運転条件の移行から前記ヒステリシス時間が経過するまでの間、リーン側空燃比への切換えを禁止して理論空燃比での運転を維持し、前記ヒステリシス時間の経過後にリーン側空燃比での運転に切換える手段と、
を備えることを特徴とするエンジンの空燃比制御装置。 In an air-fuel ratio control apparatus for an engine, the exhaust system includes an exhaust treatment device that adsorbs NOx during operation at a lean air-fuel ratio and processes the adsorbed NOx during operation at a stoichiometric air-fuel ratio.
Means for determining whether the operating condition determined by the engine speed and the engine load is in a lean region or a theoretical air-fuel ratio region;
Means for calculating a cumulative NOx processing amount during operation at the theoretical air-fuel ratio;
Means for calculating a hysteresis time based on the cumulative NOx processing amount;
When the operating condition shifts from the stoichiometric air-fuel ratio region to the lean region, switching to the lean-side air-fuel ratio is prohibited until the hysteresis time elapses from the transition of the operating condition. Means for maintaining operation and switching to operation at a lean air-fuel ratio after the hysteresis time has elapsed ;
An air-fuel ratio control apparatus for an engine comprising:
エンジン回転数とエンジン負荷とで定まる運転条件がリーン領域にあるか理論空燃比領域にあるかを判定する手段と、
リーン側空燃比での運転時に累積NOx吸着量を算出する手段と、
前記累積NOx吸着量に基づいてヒステリシス時間を算出する手段と、
前記運転条件が前記リーン領域から前記理論空燃比領域に移行した場合、前記運転条件の移行から前記ヒステリシス時間が経過するまでの間、理論空燃比への切換えを禁止してリーン側空燃比での運転を維持し、前記ヒステリシス時間の経過後に理論空燃比での運転に切換える手段と、
を備えることを特徴とするエンジンの空燃比制御装置。 In an air-fuel ratio control apparatus for an engine, the exhaust system includes an exhaust treatment device that adsorbs NOx during operation at a lean air-fuel ratio and processes the adsorbed NOx during operation at a stoichiometric air-fuel ratio.
Means for determining whether the operating condition determined by the engine speed and the engine load is in a lean region or a theoretical air-fuel ratio region;
Means for calculating a cumulative NOx adsorption amount during operation at a lean air-fuel ratio;
Means for calculating a hysteresis time based on the accumulated NOx adsorption amount;
When the operating condition shifts from the lean region to the stoichiometric air-fuel ratio region, switching to the stoichiometric air-fuel ratio is prohibited during the period from the transition of the operating condition until the hysteresis time elapses. Means for maintaining operation and switching to operation at the stoichiometric air-fuel ratio after elapse of the hysteresis time ;
An air-fuel ratio control apparatus for an engine comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004080484A JP3992004B2 (en) | 2004-03-19 | 2004-03-19 | Engine air-fuel ratio control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004080484A JP3992004B2 (en) | 2004-03-19 | 2004-03-19 | Engine air-fuel ratio control device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6304775A Division JPH08158914A (en) | 1994-12-08 | 1994-12-08 | Air fuel ratio control device for engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004169709A JP2004169709A (en) | 2004-06-17 |
JP3992004B2 true JP3992004B2 (en) | 2007-10-17 |
Family
ID=32709608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004080484A Expired - Lifetime JP3992004B2 (en) | 2004-03-19 | 2004-03-19 | Engine air-fuel ratio control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3992004B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4510651B2 (en) * | 2005-01-28 | 2010-07-28 | 本田技研工業株式会社 | Exhaust gas purification device for internal combustion engine |
JP4569769B2 (en) * | 2005-09-02 | 2010-10-27 | 三菱自動車工業株式会社 | Exhaust gas purification device for internal combustion engine |
JP6287802B2 (en) * | 2014-12-12 | 2018-03-07 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP6241412B2 (en) | 2014-12-25 | 2017-12-06 | トヨタ自動車株式会社 | Control device for internal combustion engine |
-
2004
- 2004-03-19 JP JP2004080484A patent/JP3992004B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004169709A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3759567B2 (en) | Catalyst degradation state detection device | |
JP2000345895A (en) | Air-fuel ratio controller for internal combustion engine | |
WO2015170449A1 (en) | Exhaust gas purification device for internal combustion engine | |
JP2001241319A (en) | Engine diagnostic equipment | |
JPH07229439A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3992004B2 (en) | Engine air-fuel ratio control device | |
JPH06117308A (en) | Air-fuel ratio control device for engine | |
JPH10159625A (en) | Air-fuel ratio control device for internal combustion engine | |
JP3764842B2 (en) | Heater control device for air-fuel ratio sensor | |
JPH06346774A (en) | Air-fuel ratio controller for internal combustion engine | |
JPH07151000A (en) | Air-fuel ratio controller for internal combustion engine | |
JPH09310635A (en) | Air-fuel ratio control device for internal combustion engine | |
JP2000130221A (en) | Fuel injection control device for internal combustion engine | |
JP3601101B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP4072412B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2596054Y2 (en) | Air-fuel ratio feedback control device for internal combustion engine | |
JPH08158914A (en) | Air fuel ratio control device for engine | |
JPH08254145A (en) | Exhaust purifying device for internal combustion engine | |
JP4064092B2 (en) | Engine air-fuel ratio control device | |
JP3023614B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0729234Y2 (en) | Electronically controlled fuel injection device for internal combustion engine | |
JPH077562Y2 (en) | Electronically controlled fuel injection device for internal combustion engine | |
JP3864455B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3627608B2 (en) | Air-fuel ratio sensor activity determination device | |
JP2958595B2 (en) | Air-fuel ratio feedback control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040319 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040319 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070703 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070716 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100803 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110803 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120803 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130803 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140803 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |