[go: up one dir, main page]

JP3991588B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP3991588B2
JP3991588B2 JP2000394297A JP2000394297A JP3991588B2 JP 3991588 B2 JP3991588 B2 JP 3991588B2 JP 2000394297 A JP2000394297 A JP 2000394297A JP 2000394297 A JP2000394297 A JP 2000394297A JP 3991588 B2 JP3991588 B2 JP 3991588B2
Authority
JP
Japan
Prior art keywords
plating layer
nickel plating
layer
forming
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394297A
Other languages
Japanese (ja)
Other versions
JP2002198620A (en
Inventor
晃司 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000394297A priority Critical patent/JP3991588B2/en
Publication of JP2002198620A publication Critical patent/JP2002198620A/en
Application granted granted Critical
Publication of JP3991588B2 publication Critical patent/JP3991588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、表面実装部品、特にベアチップ等の電子部品を実装するプリント配線板の製造方法に関するものである。
【0002】
【従来の技術】
従来のプリント配線板のパターン形成方法は、大別するとサブトラクティブ法とアディティブ法の二つがあり、サブトラクティブ法は量産性が高く、製造コストを低減できることからプリント配線板のパターン形成方法として多用されている。
【0003】
図8はサブトラクティブ法によるパターン形成の製造工程手順である。
【0004】
基材2と銅はく3からなる銅張り積層板1(図8(A)参照)の表面にフォトプロセスによりエッチングレジスト4を形成した後(図8(B)参照)、塩化第二銅などのエッチング液により不要な銅はくを除去して所定のパターン5を形成した上で(図8(C)参照)、エッチングレジストを剥離してパターン形成が完了する(図8(D)参照)。
【0005】
そして、図9(A)に示すように、配線基板の表面に部品実装部分を残してソルダレジスト14を塗布する。
【0006】
最後に、仕上げ処理として、図9(B)に示すように、部品実装の際、接続電極となるパターンの上に無電解ニッケルめっき層6、さらにその上に無電解金めっき層7を形成する。
【0007】
【発明が解決しようとする課題】
ところが、上記従来の製造方法では、図5(a)に示すようにパターン間隙で印刷かすれによるソルダレジスト14の未着15やボイド16が発生する場合がある。特に今後、ファインパターン化が進み、パターンの間隙が狭くなると顕著になる。
【0008】
近年の表面実装用の電子部品のプリント配線板への実装は、図6(a)に示すような通称フリップチップ実装と呼ばれる実装方法が増え、ベアチップ8と基板10の隙間に接続信頼性向上のため、封止樹脂17を注入することが多い。
【0009】
この注入工程では、パターンの狭ピッチ化が進むなか、いかにボイドの巻きこみをなくして早く注入させられるかが大きな課題となっている。上記従来の基板においてはボイド18の発生を抑えるのは困難であった。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を有する。
【0011】
本発明の請求項に記載の発明は、銅張積層板にめっきレジストを選択的に形成する工程と、前記めっきレジストの非形成部に電解ニッケルめっき層を形成する工程と、前記めっきレジストを剥離する工程と、前記電解ニッケルめっき層が形成されていない部分の銅はくをエッチングし導体パターンを有する配線基板を形成する工程と、前記導体パターン及び前記電解ニッケルめっき層の間を含む絶縁基板上全面に絶縁樹脂層を形成する工程と、ベルトサンダー研磨またはバフ研磨により前記絶縁樹脂層を前記電解ニッケルめっき層の表面が露出するまで平滑に研磨すると同時に前記電解ニッケルめっき層の表面に研磨痕をつける工程と、表面に研磨痕を有する前記電解ニッケルめっき層の上に無電解ニッケルめっき層を形成する工程と、前記無電解ニッケルめっき層の上に無電解金めっき層を形成する工程を含むプリント配線板の製造方法というものであり、これにより、ソルダレジストを形成する際、従来のようにパターン間隙においてソルダレジストの未着やボイドが発生せず、薄く均一に塗布できる。また部品と基板の隙間に接続信頼性向上のため、封止樹脂を注入する際もボイドの巻き込みを防止できるという作用効果が得られる。
【0012】
また本発明は、金属導電層は、電解ニッケルめっき、または電解ニッケルめっき上に電解金めっきにて形成するいうものであり、これにより、金属導電層を接続電極としてはんだ接合する場合、金属導電層となるニッケル皮膜中にはリンが含まれないため、高いはんだ接合強度を維持することができる、また多数のピンホールが存在する無電解金めっきに比べて、電解金めっきはピンホールのない緻密な層が形成されるため腐食が発生せず、長期保存性が良好であるという作用効果が得られる。
【0013】
また本発明は、露出した金属導電層の表面に無電解金めっきを行ういうものであり、これにより、電解金めっきの場合に必要となる通電のための引き回し線が不要となるため、配線密度と部品実装密度を上げることができるという作用効果が得られる。
【0014】
また本発明は、無電解金めっきを行う直前に無電解ニッケルめっきを露出した金属導電層の表面に行ういうものであり、これにより、絶縁樹脂層を平滑に研磨する際に生じた金属導電層の研磨痕を緩和させたり、金めっき層の密着を向上させることができるという作用効果が得られる。
【0015】
【発明の実施の形態】
(実施の形態1)
図1、2は本発明の実施の形態1におけるプリント配線板の製造工程図である。
【0016】
図1、2において、本実施形態では配線基板10として、基材2には例えばガラスエポキシ基板の両面に導電層として銅はく3を貼り付けてなる銅張り積層板を使用している(図1(A)参照)。
【0017】
この配線基板10に対してフォトプロセスによりめっきレジスト11を形成する(図1(B)参照)。
【0018】
次に、めっきレジスト11の非形成部に金属導電層としての矩形状断面を有する電解ニッケルめっき層12を形成する(図1(C)参照)。そしてめっきレジスト11を水酸化ナトリウム等の溶液で剥離する(図1(D)参照)。
【0019】
次に、電解ニッケルめっき層12をエッチングレジストとして、銅アンモニウム錯イオンを主成分とするアルカリエッチング液により不要な銅はくを除去して所定のパターン5を形成する(図2(E)参照)。
【0020】
次に、配線基板10の表面に絶縁樹脂層13を形成する。この絶縁樹脂材料としては、熱硬化型のエポキシ系樹脂を使用し、スクリーン印刷機、カーテンコータ、スロットコータなどで塗布した後、熱硬化炉で指触乾燥の状態にしたうえで、配線基板10の裏面側にも同様に絶縁樹脂材料を塗布して、熱硬化炉で両面同時に硬化させる(図(F)参照)。
【0021】
次に、硬化した絶縁樹脂層13を研磨する。研磨装置としては例えばベルトサンダーやバフ研磨機などを使用し、電解ニッケルめっき層12が表面に露出されるまで平滑に研磨する(図(G)参照)。その後、必要に応じて配線基板の表面に部品実装部分を残してソルダレジストを塗布することもある(図5(b))。
【0022】
最後に、仕上げ処理として、部品実装部分などの電解ニッケルめっき層が露出した部分に金めっき処理を施す。この金めっき処理層7は無電解めっきにより実施し、露出した電解ニッケルめっき層の表面を酸処理、アルカリ処理、シアン処理などの化学研磨とバフなどによる機械研磨を組み合わせて、充分活性化した後、金めっきを実施する(図2(H)参照)。また図2(G)のところで実施した研磨により電解ニッケルめっき層の表面に大きな研磨痕がある場合や金めっき層の密着を向上させるため金めっき直前に無電解ニッケルめっき層を電解ニッケルめっき層の上に実施することもある。
【0023】
<本実施形態の利点>
このように本実施の形態におけるプリント配線板の構成および製造方法によれば、次のような効果が得られる。
【0024】
(1)ベアチップを基板にフリップチップ実装する際のアンダフィル材の注入が容易でボイドの発生がない(図6(b))。
【0025】
本実施形態では絶縁樹脂層13により基板表面が平坦化されているため、ボイドの発生が格段に減少し、注入の時間が大幅に短縮される。なお、この封止樹脂の代わりに樹脂の硬化収縮を利用してベアチップと基板の電気接続を保つ圧接工法の場合で、樹脂がペースト状以外にフィルム状のもの、あるいは樹脂に導電粒子を含むもの、含まないものを使用する場合も同様の効果がある。
【0026】
(2)上記実施形態で示したように絶縁樹脂層13上にソルダレジストを形成する場合でも、従来の基板の課題であるパターン間隙で印刷かすれによるソルダレジスト14の未着15やボイド16の発生がない。
【0027】
本実施形態では絶縁樹脂層13で基板が平坦化されているため、未着15やボイド16の発生もないばかりかソルダレジストを薄く、均一に塗布することができる。
【0028】
(3)部品実装に必要なパターン上幅を確保でき、実装時の位置ずれに関して許容度が大きくなる。部品を実装するパターンの上幅は電解ニッケルめっき層12の幅により決まり、この幅はフォトプロセスに使用するマスクフィルムのパターン幅によりコントロールされるものであって、パターン5のエッチング状態に左右されることはないため、一定の安定したパターン上幅が得られる。
【0029】
(4)基板が平坦なため実装する部品が基板のパターンからずれ落ちて傾いたりしない。図7(a)、(b)に示すように従来の基板であればベアチップ8に配置された基板との接続電極であるバンプ9が実装時の圧力によりパターン5からずれ落ちてベアチップが傾き、接触不良を起こすなどの不具合が発生していた。図7(c)、(d)に示すように本実施形態では電解ニッケルめっき層12の端部にバンプ9が配置されても絶縁樹脂層13により平坦化されているためベアチップ8が傾くことがなく、接続が維持される。
【0030】
(5)仕上げの表面処理として実施しているニッケルめっきは電解めっきにより形成されることから、ニッケル皮膜中にリンを含まないため、はんだ接合強度が向上する。高密度基板やベアチップ実装用基板では仕上げの表面処理として、ニッケル、金めっきが多用されている。ニッケル、金めっきには電解めっきと無電解めっきがあり、電解めっきの場合、通電のための引き回し線が必要であるが、高密度基板では引き回し線を収容するだけのスペースがないため、無電解めっきによるものが多い。ところが無電解ニッケルめっきは還元剤として次亜リン酸ナトリウムを使用しているため、ニッケル皮膜中には必然的にリンが含まれる。このリンを含んだニッケルめっき層の部分を接続電極としてはんだ接合した場合、はんだ中のすずとニッケルにより合金層が形成され、接合界面にはリン濃度が高い層ができる。このリン濃度の高い層の形成ははんだ接合強度を低下させることがわかっている。本実施形態により作製した基板の接続電極部は電解ニッケルめっきにより形成されていることからリンを含まず、高いはんだ接合強度を維持することができる。したがって、本基板に表面実装部品をはんだで接続する場合や本基板をベアチップ実装用基板として使用し、マザー基板の上にはんだボールによりBGA実装を行う場合に有効である。
【0031】
(6)高密度基板やベアチップ基板として汎用されているビルドアップ配線基板は絶縁樹脂上に析出させた銅めっき層によって、配線パターンおよび部品実装パターンを形成していることから、銅はくのピール強度やプル強度が低いため、基板からの部品脱落が問題となっている。本実施形態による基板は銅はくの側面が絶縁樹脂層により覆われているため、ピール強度やプル強度が大幅に向上する。
【0032】
(実施の形態2)
図3、4は本発明の実施の形態2におけるプリント配線板の製造工程図である。
【0033】
本実施形態では図3(B)までは実施の形態1の図1(B)までと同様、フォトプロセスによりめっきレジスト11を形成する(図3(B)参照)。
【0034】
次に、めっきレジスト11の非形成部に電解ニッケルめっき層12を形成し、さらにその上に電解金めっき層19を形成する(図3(C)参照)。そしてめっきレジスト11を水酸化ナトリウム等の溶液で剥離する(図3(D)参照)。
【0035】
次に、電解ニッケルめっき層12および電解金めっき層19をエッチングレジストとして、銅アンモニウム錯イオンを主成分とするアルカリエッチング液により不要な銅はくを除去して所定のパターン5を形成する(図4(E)参照)。その後、必要に応じて配線基板の表面に部品実装部分を残してソルダレジストを塗布することもある。
【0036】
最後に、仕上げ処理として、パターン5の側面の銅露出部分を防錆することを目的として、水溶性耐熱プリフラックス20により処理する(図4(F)参照)。この水溶性耐熱プリフラックス20はアルキルベンズイミダゾール誘導体を主成分とするもので、防錆成分が銅表面にのみ化学吸着するもので、金めっき部やソルダレジストには吸着および反応しない。
【0037】
<本実施形態の利点>
(1)実施の形態1と同様に、部品実装に必要なパターン上幅を確保でき、実装の位置ずれに関して許容度が大きくなる。
【0038】
(2)本実施形態による基板は実施の形態1と同様、接続電極となるニッケルめっき層は電解めっきにより形成されていることから、ニッケル層中にリンを含まないため、はんだ接合強度が向上する。また、ニッケル層の上の金めっきも電解めっきによるものであり、ピンホールのない緻密な層が形成されるため、長期保存性は良好である。
【0039】
従来、金めっきは無電解めっきによるものが多く、そのため金めっき層には多数のピンホールが存在する。このピンホールの部分では金とニッケルの接触による局部電池が形成され、金とニッケル間に非常に大きな電位差が生じて腐食が発生する。この腐食は時間の経過とともに進行するため、長期保存ができない。
【0040】
また金めっき層に存在するピンホールの部分ではニッケル層が表面に出ているが、ニッケルは仕上げ処理の水溶性耐熱プリフラックスの成分と結合するため、銅表面だけでなく、ニッケルめっきおよび金めっきを施した接続電極部にも有機被膜が形成される。接続電極部に有機被膜が形成されるとベアチップ実装時のワイヤボンディング接続等が困難になるなどの大きな課題があったが、本実施形態では金めっき層を電解めっきで形成するため、ピンホールのない緻密な層を形成することができるだけでなく、金めっきの厚みもめっき条件により容易にコントロールできる。
【0041】
【発明の効果】
以上のように、本発明によれば、絶縁基板上に形成された導体パターンの上に矩形状断面を有する金属導電層が形成され、導体パターン及び金属導電層の間の絶縁基板上に形成された絶縁樹脂層を有し、この絶縁樹脂層は金属導電層と略同一水準の厚さで略平坦に形成されているプリント配線板により、ソルダレジストを形成する際、従来のようにパターン間隙においてソルダレジストの未着やボイドが発生せず、薄く均一に塗布できる。また部品と基板の隙間に接続信頼性向上のため、封止樹脂を注入する際もボイドの巻き込みを防止できる信頼性の高いプリント配線板を実現できるものである。
【図面の簡単な説明】
【図1】 本発明の実施の形態1におけるプリント配線板の製造方法を示す工程断面図
【図2】 同実施の形態1におけるプリント配線板の製造方法を示す工程断面図
【図3】 本発明の実施の形態2におけるプリント配線板の製造方法を示す工程断面図
【図4】 同実施の形態2におけるプリント配線板の製造方法を示す工程断面図
【図5】 (a)従来のプリント配線板とのソルダレジストの形成状態を示す断面図
(b)本発明の実施の形態1におけるソルダレジスト形成と金めっき処理状態を示す断面図
【図6】 (a)従来の電子部品の実装状態を示す断面図
(b)本発明の実施の形態1における電子部品の実装状態を示す断面図
【図7】 本発明の実施の形態1における電子部品の実装状態を比較するための断面図
【図8】 従来のプリント配線板の製造方法を示す工程断面図
【図9】 従来のプリント配線板の製造方法を示す断面図
【符号の説明】
1 銅張り積層板
2 基材
3 銅はく(導体層)
4 エッチングレジスト
5 パターン
6 無電解ニッケルめっき層
7 無電解金めっき層
8 ベアチップ
9 バンプ
10 配線基板
11 めっきレジスト
12 電解ニッケルめっき層
13 絶縁樹脂層
14 ソルダレジスト
15 ソルダレジストの未着
16 ソルダレジスト中のボイド
17 封止樹脂
18 封止樹脂中のボイド
19 電解金めっき層
20 水溶性耐熱プリフラックス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a printed wiring board on which surface-mounted components, particularly electronic components such as bare chips, are mounted.
[0002]
[Prior art]
Conventional patterning methods for printed wiring boards can be broadly divided into subtractive methods and additive methods. Subtractive methods are frequently used as patterning methods for printed wiring boards because of their high mass productivity and reduced manufacturing costs. ing.
[0003]
FIG. 8 shows a manufacturing process procedure for pattern formation by the subtractive method.
[0004]
After forming an etching resist 4 on the surface of a copper-clad laminate 1 (see FIG. 8A) made of a base material 2 and copper foil 3 (see FIG. 8B), cupric chloride, etc. After removing unnecessary copper foil with the etching solution to form a predetermined pattern 5 (see FIG. 8C), the etching resist is removed to complete pattern formation (see FIG. 8D). .
[0005]
Then, as shown in FIG. 9A, the solder resist 14 is applied leaving the component mounting portion on the surface of the wiring board.
[0006]
Finally, as a finishing process, as shown in FIG. 9B, an electroless nickel plating layer 6 is formed on a pattern to be a connection electrode, and an electroless gold plating layer 7 is further formed thereon, as shown in FIG. .
[0007]
[Problems to be solved by the invention]
However, in the above-described conventional manufacturing method, as shown in FIG. 5A, the solder resist 14 may not be deposited 15 or voids 16 may occur due to printing blur in the pattern gap. In particular, it will become more prominent as fine patterning progresses and the pattern gap becomes narrower.
[0008]
In recent years, mounting of electronic components for surface mounting onto a printed wiring board has increased by a mounting method called flip chip mounting as shown in FIG. 6A, and the connection reliability is improved in the gap between the bare chip 8 and the substrate 10. Therefore, the sealing resin 17 is often injected.
[0009]
In this implantation process, as the pitch of the pattern is narrowed, how to eliminate the void entrainment and to be implanted quickly becomes a big problem. In the conventional substrate, it is difficult to suppress the generation of voids 18.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0011]
According to a first aspect of the present invention includes the steps of selectively forming a plating resist on the copper-clad laminate, and forming the electroless nickel plating layer on the non-formation portion of the plating resist, the plating resist An insulating substrate including a step of peeling, a step of etching a portion of the copper foil where the electrolytic nickel plating layer is not formed to form a wiring substrate having a conductive pattern, and a space between the conductive pattern and the electrolytic nickel plating layer A process of forming an insulating resin layer on the entire upper surface, and polishing the insulating resin layer smoothly by belt sander polishing or buffing until the surface of the electrolytic nickel plating layer is exposed, and simultaneously polishing the surface of the electrolytic nickel plating layer A step of forming a mark, a step of forming an electroless nickel plating layer on the electrolytic nickel plating layer having a polishing mark on the surface, This is a method of manufacturing a printed wiring board including a step of forming an electroless gold plating layer on an electroless nickel plating layer. With this, when forming a solder resist, the solder resist is formed in the pattern gap as in the prior art. It can be applied thinly and evenly without any adhesion or voids. Further, in order to improve the connection reliability in the gap between the component and the substrate, there is an effect that the void can be prevented from being entrained even when the sealing resin is injected.
[0012]
The present invention, the metal conductive layer is a layer called forming by electrolytic gold plating on the electroless nickel plating, or electroless nickel plating, thereby, to solder joining metal conductive layer as a connection electrode, a metal conductive Since the nickel film that is the layer does not contain phosphorus, high solder joint strength can be maintained, and electrolytic gold plating has no pinholes compared to electroless gold plating with many pinholes. Since a dense layer is formed, corrosion does not occur, and an effect that long-term storage is good is obtained.
[0013]
The present invention has referred to as performing electroless gold plating on the exposed surface of the metal conductive layer, thereby, since the lead wire for current supply required for the electrolytic gold plating is not required, wire The effect of increasing the density and the component mounting density can be obtained.
[0014]
The present invention has referred to as performed on the surface of the metal conductive layer exposed electroless nickel plating immediately before the electroless gold plating, thereby, the metal conductive generated when polishing smooth the insulating resin layer The effect that the grinding | polishing trace of a layer can be relieve | moderated and the adhesion | attachment of a gold plating layer can be improved is acquired.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
1 and 2 are manufacturing process diagrams of the printed wiring board according to Embodiment 1 of the present invention.
[0016]
1 and 2, in this embodiment, a copper-clad laminate obtained by attaching copper foil 3 as a conductive layer on both surfaces of a glass epoxy substrate, for example, is used as the substrate 10 as the wiring substrate 10 (FIG. 1). 1 (A)).
[0017]
A plating resist 11 is formed on the wiring substrate 10 by a photo process (see FIG. 1B).
[0018]
Next, an electrolytic nickel plating layer 12 having a rectangular cross section as a metal conductive layer is formed in a portion where the plating resist 11 is not formed (see FIG. 1C). Then, the plating resist 11 is peeled off with a solution such as sodium hydroxide (see FIG. 1D).
[0019]
Next, using the electrolytic nickel plating layer 12 as an etching resist, unnecessary copper foil is removed with an alkaline etching solution mainly composed of copper ammonium complex ions to form a predetermined pattern 5 (see FIG. 2E). .
[0020]
Next, the insulating resin layer 13 is formed on the surface of the wiring substrate 10. As this insulating resin material, a thermosetting epoxy resin is used, applied with a screen printing machine, a curtain coater, a slot coater, etc., and then dried in the touch in a thermosetting furnace. Similarly, an insulating resin material is applied to the back side of the resin and cured at the same time in a thermosetting furnace (see FIG. 2 (F)).
[0021]
Next, the cured insulating resin layer 13 is polished. The polishing apparatus using, for example, a belt sander or a buffing machine, electrolytic nickel plating layer 12 is smoothly polished until surface exposed (see FIG. 2 (G)). Thereafter, if necessary, a solder resist may be applied to the surface of the wiring board leaving a component mounting portion (FIG. 5B).
[0022]
Finally, as a finishing treatment, a gold plating treatment is performed on a portion where the electrolytic nickel plating layer is exposed, such as a component mounting portion. This gold plating layer 7 is performed by electroless plating, and the surface of the exposed electrolytic nickel plating layer is sufficiently activated by combining chemical polishing such as acid treatment, alkali treatment, and cyan treatment with mechanical polishing such as buffing. Then, gold plating is performed (see FIG. 2H). In addition, when the polishing performed in FIG. 2G has a large polishing mark on the surface of the electrolytic nickel plating layer, or in order to improve the adhesion of the gold plating layer, the electroless nickel plating layer is replaced with the electrolytic nickel plating layer immediately before the gold plating. May be implemented above.
[0023]
<Advantages of this embodiment>
As described above, according to the configuration and the manufacturing method of the printed wiring board in the present embodiment, the following effects can be obtained.
[0024]
(1) An underfill material can be easily injected when a bare chip is flip-chip mounted on a substrate, and voids are not generated (FIG. 6B).
[0025]
In the present embodiment, since the substrate surface is flattened by the insulating resin layer 13, the generation of voids is remarkably reduced, and the implantation time is greatly shortened. In addition, in the case of the pressure welding method that maintains the electrical connection between the bare chip and the substrate using the curing shrinkage of the resin instead of this sealing resin, the resin is a film in addition to the paste, or the resin contains conductive particles The same effect can be obtained when the one not included is used.
[0026]
(2) Even when the solder resist is formed on the insulating resin layer 13 as shown in the above embodiment, the solder resist 14 is not deposited 15 or the void 16 is generated due to the printing blur in the pattern gap, which is a problem of the conventional substrate. There is no.
[0027]
In this embodiment, since the substrate is flattened by the insulating resin layer 13, the solder resist can be thinly and uniformly applied as well as the occurrence of unattached 15 and voids 16.
[0028]
(3) The width on the pattern necessary for component mounting can be secured, and the tolerance for positional deviation during mounting is increased. The upper width of the pattern for mounting the component is determined by the width of the electrolytic nickel plating layer 12, and this width is controlled by the pattern width of the mask film used for the photo process, and depends on the etching state of the pattern 5. Therefore, a constant and stable pattern width can be obtained.
[0029]
(4) Since the substrate is flat, components to be mounted do not fall off the substrate pattern and do not tilt. As shown in FIGS. 7 (a) and 7 (b), if the substrate is a conventional substrate, the bump 9 as a connection electrode with the substrate disposed on the bare chip 8 is displaced from the pattern 5 by the pressure at the time of mounting, and the bare chip is inclined. Problems such as poor contact occurred. As shown in FIGS. 7C and 7D, in this embodiment, even if the bump 9 is disposed at the end of the electrolytic nickel plating layer 12, the bare chip 8 is inclined because it is flattened by the insulating resin layer 13. Connection is maintained.
[0030]
(5) Since the nickel plating performed as the finishing surface treatment is formed by electrolytic plating, the nickel coating does not contain phosphorus, so that the solder joint strength is improved. For high-density substrates and bare chip mounting substrates, nickel and gold plating are frequently used as finishing surface treatments. There are two types of nickel and gold plating: electroplating and electroless plating. In the case of electrolytic plating, a lead wire is required for energization, but a high-density board does not have enough space to accommodate the lead wire. Many are due to plating. However, since electroless nickel plating uses sodium hypophosphite as a reducing agent, the nickel film necessarily contains phosphorus. When the portion of the nickel plating layer containing phosphorus is soldered as a connection electrode, an alloy layer is formed by tin and nickel in the solder, and a layer having a high phosphorus concentration is formed at the joint interface. It has been found that the formation of this high phosphorus concentration layer reduces the solder joint strength. Since the connection electrode portion of the substrate fabricated according to this embodiment is formed by electrolytic nickel plating, it does not contain phosphorus and can maintain high solder joint strength. Therefore, it is effective when the surface-mounted component is connected to the substrate with solder, or when the substrate is used as a bare chip mounting substrate and BGA mounting is performed on the mother substrate with solder balls.
[0031]
(6) Since the build-up wiring board, which is widely used as a high-density board or bare chip board, forms a wiring pattern and a component mounting pattern by a copper plating layer deposited on an insulating resin, a copper foil peel Since the strength and the pull strength are low, component drop-off from the board is a problem. Since the side surface of the copper foil is covered with the insulating resin layer, the peel strength and pull strength of the substrate according to the present embodiment are greatly improved.
[0032]
(Embodiment 2)
3 and 4 are manufacturing process diagrams of the printed wiring board according to Embodiment 2 of the present invention.
[0033]
In this embodiment, the plating resist 11 is formed by a photo process up to FIG. 3B as in FIG. 1B of the first embodiment (see FIG. 3B).
[0034]
Next, an electrolytic nickel plating layer 12 is formed on a portion where the plating resist 11 is not formed, and an electrolytic gold plating layer 19 is further formed thereon (see FIG. 3C). Then, the plating resist 11 is peeled off with a solution such as sodium hydroxide (see FIG. 3D).
[0035]
Next, using the electrolytic nickel plating layer 12 and the electrolytic gold plating layer 19 as an etching resist, unnecessary copper foil is removed with an alkaline etching solution mainly composed of copper ammonium complex ions to form a predetermined pattern 5 (FIG. 5). 4 (E)). Thereafter, if necessary, a solder resist may be applied leaving a component mounting portion on the surface of the wiring board.
[0036]
Finally, as a finishing treatment, treatment is performed with a water-soluble heat-resistant preflux 20 for the purpose of rust-proofing the exposed copper portion on the side surface of the pattern 5 (see FIG. 4F). This water-soluble heat-resistant preflux 20 is mainly composed of an alkylbenzimidazole derivative, and the rust preventive component is chemically adsorbed only on the copper surface, and does not adsorb and react with the gold plating part or the solder resist.
[0037]
<Advantages of this embodiment>
(1) Similar to the first embodiment, it is possible to secure a pattern width necessary for component mounting, and a tolerance for mounting displacement is increased.
[0038]
(2) Since the nickel plating layer used as a connection electrode is formed by electroplating similarly to Embodiment 1, the board by this embodiment does not contain phosphorus in a nickel layer, Therefore Solder joint strength improves. . Further, the gold plating on the nickel layer is also by electrolytic plating, and a dense layer without pinholes is formed, so that long-term storage is good.
[0039]
Conventionally, gold plating is often performed by electroless plating, and therefore there are many pinholes in the gold plating layer. In this pinhole portion, a local battery is formed by contact between gold and nickel, and a very large potential difference is generated between gold and nickel, causing corrosion. Since this corrosion progresses with time, it cannot be stored for a long time.
[0040]
In addition, the nickel layer is exposed on the surface of the pinhole portion existing in the gold plating layer, but since nickel is combined with the water-soluble heat-resistant preflux component of the finishing treatment, not only the copper surface but also nickel plating and gold plating An organic film is also formed on the connection electrode portion that has been subjected to. When an organic film is formed on the connection electrode part, there is a big problem such as difficulty in wire bonding connection at the time of bare chip mounting. However, in this embodiment, the gold plating layer is formed by electrolytic plating. In addition to forming a dense layer, the thickness of the gold plating can be easily controlled by the plating conditions.
[0041]
【The invention's effect】
As described above, according to the present invention, the metal conductive layer having a rectangular cross section is formed on the conductor pattern formed on the insulating substrate, and is formed on the insulating substrate between the conductor pattern and the metal conductive layer. When the solder resist is formed by a printed wiring board formed substantially flat with the same thickness as the metal conductive layer, the insulating resin layer is formed in the pattern gap as in the prior art. Solder resist is not deposited and voids are not generated and can be applied thinly and uniformly. Further, in order to improve the connection reliability in the gap between the component and the substrate, it is possible to realize a highly reliable printed wiring board that can prevent voids from being entrained even when a sealing resin is injected.
[Brief description of the drawings]
1 is a process cross-sectional view illustrating a method for manufacturing a printed wiring board according to Embodiment 1 of the present invention. FIG. 2 is a process cross-sectional view illustrating a method for manufacturing a printed wiring board according to Embodiment 1. FIG. 4 is a process cross-sectional view showing a method for manufacturing a printed wiring board according to Embodiment 2 of the present invention. FIG. 4 is a process cross-sectional view showing a method for manufacturing a printed wiring board according to Embodiment 2. FIG. FIG. 6 is a cross-sectional view showing a solder resist formation state and a gold plating treatment state in Embodiment 1 of the present invention. FIG. 6A is a view showing a mounting state of a conventional electronic component. Sectional view (b) Sectional view showing the mounting state of the electronic component according to the first embodiment of the present invention. FIG. 7 is a sectional view for comparing the mounting state of the electronic component according to the first embodiment of the present invention. Traditional print Cross-sectional view showing a method for manufacturing a wiring board [FIG. 9] Cross-sectional view showing a conventional method for manufacturing a printed wiring board [Explanation of symbols]
1 Copper-clad laminate 2 Base material 3 Copper foil (conductor layer)
4 Etching resist 5 Pattern 6 Electroless nickel plating layer 7 Electroless gold plating layer 8 Bare chip 9 Bump 10 Wiring board 11 Plating resist 12 Electrolytic nickel plating layer 13 Insulating resin layer 14 Solder resist 15 Solder resist not attached 16 In solder resist Void 17 Sealing resin 18 Void in sealing resin 19 Electrolytic gold plating layer 20 Water-soluble heat-resistant preflux

Claims (1)

銅張積層板にめっきレジストを選択的に形成する工程と、前記めっきレジストの非形成部に電解ニッケルめっき層を形成する工程と、前記めっきレジストを剥離する工程と、前記電解ニッケルめっき層が形成されていない部分の銅はくをエッチングし導体パターンを有する配線基板を形成する工程と、前記導体パターン及び前記電解ニッケルめっき層の間を含む絶縁基板上全面に絶縁樹脂層を形成する工程と、ベルトサンダー研磨またはバフ研磨により前記絶縁樹脂層を前記電解ニッケルめっき層の表面が露出するまで平滑に研磨すると同時に前記電解ニッケルめっき層の表面に研磨痕をつける工程と、表面に研磨痕を有する前記電解ニッケルめっき層の上に無電解ニッケルめっき層を形成する工程と、前記無電解ニッケルめっき層の上に無電解金めっき層を形成する工程を含むプリント配線板の製造方法。A step of selectively forming a plating resist on a copper clad laminate, a step of forming an electrolytic nickel plating layer on a portion where the plating resist is not formed, a step of peeling off the plating resist, and forming the electrolytic nickel plating layer Etching a portion of the copper foil that has not been formed to form a wiring board having a conductor pattern; and forming an insulating resin layer on the entire surface of the insulating substrate including between the conductor pattern and the electrolytic nickel plating layer; Polishing the insulating resin layer smoothly by belt sander polishing or buffing until the surface of the electrolytic nickel plating layer is exposed, and simultaneously forming a polishing mark on the surface of the electrolytic nickel plating layer, and having a polishing mark on the surface Forming an electroless nickel plating layer on the electrolytic nickel plating layer; and forming an electroless nickel plating layer on the electroless nickel plating layer. Method for manufacturing a printed wiring board comprising the steps of forming a Kaikin plating layer.
JP2000394297A 2000-12-26 2000-12-26 Method for manufacturing printed wiring board Expired - Fee Related JP3991588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394297A JP3991588B2 (en) 2000-12-26 2000-12-26 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394297A JP3991588B2 (en) 2000-12-26 2000-12-26 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2002198620A JP2002198620A (en) 2002-07-12
JP3991588B2 true JP3991588B2 (en) 2007-10-17

Family

ID=18859944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394297A Expired - Fee Related JP3991588B2 (en) 2000-12-26 2000-12-26 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP3991588B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735274B2 (en) * 2006-01-16 2011-07-27 住友金属鉱山株式会社 Flexible wiring board and manufacturing method thereof.
JP5040346B2 (en) * 2007-02-15 2012-10-03 パナソニック株式会社 Method for manufacturing printed wiring board

Also Published As

Publication number Publication date
JP2002198620A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
KR100833723B1 (en) Manufacturing method of multilayer printed circuit board and multilayer printed circuit board
JP4997105B2 (en) Printed wiring board and manufacturing method thereof
KR101111930B1 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
EP1945013A1 (en) Multilayer printed wiring board and method for manufacturing same
KR20110083506A (en) Wiring board, its manufacturing method, and semiconductor package
JP5254775B2 (en) Wiring board manufacturing method
JP2008004924A (en) Manufacturing method of package substrate
JP2011129903A (en) Printed wiring board and manufacturing method thereof
JP2006093650A (en) Manufacturing method of package substrate using electroless nickel plating
JP2003133711A (en) Printed-wiring board and manufacturing method thereof, and packaging method of electronic component
JP4129665B2 (en) Manufacturing method of substrate for semiconductor package
JP4707273B2 (en) Manufacturing method of multilayer printed wiring board
JP3991588B2 (en) Method for manufacturing printed wiring board
JP2002329966A (en) Wiring board for manufacturing multilayer wiring board, and multilayer wiring board
JP2001352007A (en) Multilayer wiring board, method for manufacturing the same, and connection structure using the same
JP2002198639A (en) Printed wiring board, manufacturing method therefor and mounting method of electronic component
US7240431B2 (en) Method for producing multilayer printed wiring board, multilayer printed wiring board, and electronic device
JP3760857B2 (en) Method for manufacturing printed wiring board
JPH0491489A (en) Printed wiring board
JP2008124124A (en) Core board manufacturing method, and wiring board manufacturing method
JPH0621601A (en) Printed circuit board, and fabrication and connection thereof
JP2003243802A (en) Printed wiring board, its manufacturing method, and method of mounting electronic component using the same
JP2006287148A (en) Printed wiring board and method of manufacturing it, and method of packaging electronic part
JP2002158447A (en) Multilayer wiring board and method of manufacturing the same
JP4748889B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees