[go: up one dir, main page]

JP3988259B2 - Building vibration control structure - Google Patents

Building vibration control structure Download PDF

Info

Publication number
JP3988259B2
JP3988259B2 JP18746398A JP18746398A JP3988259B2 JP 3988259 B2 JP3988259 B2 JP 3988259B2 JP 18746398 A JP18746398 A JP 18746398A JP 18746398 A JP18746398 A JP 18746398A JP 3988259 B2 JP3988259 B2 JP 3988259B2
Authority
JP
Japan
Prior art keywords
building
strength member
stairs
vibration
steel beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18746398A
Other languages
Japanese (ja)
Other versions
JP2000017882A (en
Inventor
英幸 福島
靖彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP18746398A priority Critical patent/JP3988259B2/en
Publication of JP2000017882A publication Critical patent/JP2000017882A/en
Application granted granted Critical
Publication of JP3988259B2 publication Critical patent/JP3988259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建物の制振構造に関し、とりわけ、階段の配置スペースを有効利用して、本来の活用スペースを狭くすることなく合理的に建物全体の耐震性を向上するようにした建物の制振構造に関する。
【0002】
【従来の技術】
従来からY形ブレースや制振間柱を用いた建物の制振構造が知られ、これらブレース,間柱に組み込まれる小耐力部材を早期に降伏させて、地震などの振動エネルギーを該小耐力部材の塑性エネルギーに変換して建物を制振するようになっている。しかし、これらY形ブレースや制振間柱は上下の梁間に組み込まれるものであるため、出入り口や通路などの開口部のレイアウトが困難になる。
【0003】
そこで、本出願人により特開平10−102682号公報として、鉄骨梁の長さ方向の一部を小耐力部材で構成することにより、開口部のレイアウトを容易にすることができる制振構造を提案した。
【0004】
【発明が解決しようとする課題】
しかしながら、かかる従来の鉄骨梁の長さ方向の一部を小耐力部材で構成した建物の制振構造にあっては、地震発生後に変形した小耐力部材の交換性を考慮して建物の四隅部に吹き抜けを配置し、上記小耐力部材を備えた鉄骨梁を該吹き抜け部分に整列配置するようになっている。ところが、このように吹き抜け部分によって小耐力部材の交換が容易になるが、該吹き抜け部分が平面計画上の大きな制約となって有効床面積が削減され、居住空間や事務空間などの本来の活用スペースが狭くなってしまうという課題があった。
【0005】
そこで、本発明はかかる従来の課題に鑑みて、小耐力部材を用いた場合にも建物の本来の活用スペースを削減することなく、効果的に振動吸収するようにした建物の制振構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するために本発明の請求項1に示す建物の制振構造は、建物の外側に面した部分に設けられた階段の周りを囲繞する鉄骨梁を前記建物から露出させ、前記鉄骨梁の一部に小耐力部材を介設し、建物に入力される振動エネルギーをこの小耐力部材の塑性エネルギーに変換することを特徴とする。
【0007】
また、本発明の請求項2に示す建物の制振構造は、上記階段は階段本体と踊場とを一体に形成し、階段本体を挟んで対向関係になる踊場の少なくとも一方を、エキスパンションジョイントを介して建物躯体に結合したことを特徴とする。
【0009】
以上の構成により本発明の作用を以下述べると、請求項1では鉄骨梁に設けた小耐力部材により建物に入力される振動エネルギーが塑性エネルギーに変換され、この変換時に振動エネルギーが効果的に吸収されるため建物の振動を減衰することができ、延いては、建物の制振機能を著しく向上することができる。このとき、上記小耐力部材が設けられる鉄骨梁は、建物に設けられた階段の周りを囲繞するものであるため、この階段の設置スペースを利用して該鉄骨梁を容易に露出させることができる。従って、振動により変形された小耐力部材の交換が容易になる。
【0010】
また、このように小耐力部材の交換を容易にするように鉄骨梁を露出して設けるにあたって、該鉄骨梁は建物に当然に設けられる階段、つまり、建物に必要な階段設置スペースを利用して設置することができるため、該小耐力部材を設置するための特別のスペースを余分に設ける必要が無く、延いては、本来の建物の活用スペース、つまり、居住スペースや事務スペースなどを削減することなく、建物の振動を効果的に吸収することができる。
【0011】
ここで、上記小耐力部材とは地震や強風等を起因とする振動が入力されて建物架構に応力が発生すると、他の素材よりも早期に降伏して応力が降伏耐力を上回った時から、弾塑性挙動による履歴減衰性能を生じ、制振効果を発揮する小耐力の部材をいう。
【0012】
上記小耐力部材としては例えば低降伏点鋼が挙げられる。推奨される低降伏点鋼としては、例えばBT−LYP100またはBT−LYP235(ともに新日本製鐵株式会社製の商品名)およびこれらと同等品を採用することができる。因みに、前者の降伏応力σyは1.0(t/cm2 )、破断応力σuは2.4(t/cm2 )であり、後者の降伏応力σyは2.4(t/cm2 )、破断応力σuは3.5(t/cm2 )である。また、上記小耐力部材の素材としては、上記低降伏点鋼の他に普通鋼材、アルミなどの金属を用いることができる。
【0013】
また、上記階段が建物の外側に面した部分に設けられ、かつ、上記小耐力部材を設ける鉄骨梁を建物から露出させてあるので、該鉄骨梁に設けられる上記小耐力部材も露出状態としておくことができ、上記階段が外側に面していることと相俟って、該小耐力部材の交換作業を建物の外側から行うことができる。従って、上記小耐力部材の交換作業を簡単にし、かつ、短時間のうちに交換が可能となるため、補修工事の工期の短縮化および省力化を達成することができる。
【0014】
更に、請求項では上記階段を階段本体と踊場とを一体に形成し、階段本体を挟んで対向関係になる踊場の少なくとも一方を、エキスパンションジョイントを介して建物躯体に結合したので、該エキスパンションジョイントによって建物と階段との相対移動が許容され、建物側の揺動が階段に入力されてこの階段が破壊されるのを防止することができる。従って、地震の発生に際しても、避難通路としての階段を確保することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。図1から図5は本発明の一実施形態を示す建物の制振構造で、図1は建物の縦断正面図、図2は建物の横断平面図、図3は階段の立体図、図4は階段の断面正面図、図5は図4中A部の拡大断面図である。
【0016】
即ち、本実施形態の制振構造が適用される建物10は、図1に示すように地上架構10aと地下架構10bとで構成され、地上架構10aはS造として構築されるとともに、地下架構10bはSRC造またはRC造として構築されている。そして、本実施形態の制振構造は上記地上架構10aに用いられ、該架構10aの特定部分の鉄骨梁12に小耐力部材としてのリンク材14を設けることにより構成される。該リンク材14は、低降伏点鋼,普通鋼材,アルミなどの塑性変形が可能な金属で形成され、建物10に入力される振動エネルギーをこのリンク材14の塑性エネルギーに変換する機能を備え、他の素材よりも早期に降伏して応力が降伏耐力を上回った時から弾塑性挙動による履歴減衰性能を生じるダンパ性能を発揮する。また、リンク材14は図1から図3中では黒塗りの三角形として示す。
【0017】
上記建物10は平面視で矩形状に形成され、該建物10の地上架構10aの四隅部分には図2に示すように建物10の外側に面する避難階段16が設けられる。つまり、図3にも示すように地上架構10aの四隅に、鉄骨梁12の1スパンに対応する寸法だけ躯体内に嵌入して形成される平面矩形状の階段設置スペースSが設けられ、このスペースSに避難階段16が設置される。従って、該階段設置スペースSでは、このスペースSの外側2面を囲繞するように1スパン分の鉄骨梁12a,12bが縦横方向に露出して互いに直結される。
【0018】
ここで、露出した上記鉄骨梁12a,12bを上述した特定部分の鉄骨梁として、これら鉄骨梁12a,12bの長さ方向の一部、つまり、本実施形態では図4に示すように該鉄骨梁12a,12bの中央部に、上記リンク材14を挿入して一体に結合するようになっている。
【0019】
上記避難階段16は、階段本体18と踊場20,20aとによって構成され、階段本体18を挟んで対向関係にある一方の踊場20が各階のフロア22に対応した位置、つまり地上架構10aの階段設置スペースSに面した鉄骨梁12に対応して設けられる一方、他方の踊場20aは階高の中間部に配置された鉄骨梁12bに固設される。
【0020】
上記一方の踊場20は図5に示すように、エキスパンションジョイント24を介して地上架構10aに結合されるようになっている。該エキスパンションジョイント24は、上記踊場20の取付け端および地上架構10aに固定されるブラケット24a,24b間に介設されるコイルスプリング24cと、地上架構10aに対する踊場20の相対移動分を考慮した両者間の隙間を覆うカバー24dとによって構成される。図5中上記踊場20が取り付けられる躯体壁面には、該踊場20の上方に位置して避難扉28が設けられる。
【0021】
以上の構成により本実施形態の建物の制振構造では、建物10の階段設置スペースSに露出した鉄骨梁12a,12bの一部にリンク材14を設け、このリンク材14によって建物10に入力される振動エネルギーを塑性エネルギーに変換することができるため、この振動エネルギーは効果的に吸収されて建物10の振動を減衰し、延いては、建物10を制振することができる。
【0022】
このとき、上記リンク材14が設けられる鉄骨梁12a,12bは、建物10に設けられた避難階段16の周りを囲繞するものであるため、この階段の設置スペースを利用して該鉄骨梁12a,12bを合理的に露出させることができる。従って、振動により変形されたリンク材14の交換が容易になる。
【0023】
また、このようにリンク部材14の交換を容易するように鉄骨梁12を設けるにあたって、該鉄骨梁12は建物10に設けられた避難階段16、つまり、建物10に必要な階段設置スペースSを利用して設置することができるため、リンク部材14を設置するための特別のスペースを余分に設ける必要が無く、延いては、建物10の居住スペースや事務スペースなどの本来の活用スペースを削減することなく、効果的に建物10の振動を吸収することができる。
【0024】
更に、本実施形態では上記避難階段16が建物10の外側に面した四隅部分に設けられ、かつ、該リンク材14を設ける鉄骨梁12a,12bは建物10から露出しているため、該鉄骨梁12a,12bに設けられる上記リンク材14も露出状態としておくことができ、上記避難階段16が外側に面していることと相俟って、該リンク材14の交換作業を建物10の外側から行うことが可能となる。このようにリンク材14の交換作業が簡単になり、かつ、短時間のうちに交換が可能となるため、補修工事の工期の短縮化および省力化が達成されることになる。
【0025】
ここで、上記避難階段16は踊場20,20aが対向関係に配置され、一方の踊場20をエキスパンションジョイント24を介して地上架構10aに結合したので、このエキスパンションジョイント24によって建物10と避難階段16との相対移動が許容される。このため、地震発生により建物10が大きく揺動された場合にも、この建物10側の揺動によって避難階段16に大荷重が入力されて破壊されるのを防止することができる。従って、地震に際して建物10から避難する場合にも、避難通路としての階段を確保することができる。
【0026】
ところで、本実施形態では上記避難階段16が建物10の四隅部分に設けられており、これら避難階段16の設置スペースSに露出する鉄骨梁12a,12bにリンク材14を設けて階段部分を制振構造とした場合を開示したが、これに限ることなくこの制振構造となった階段は、勿論このように隅部分に設置することが望ましいが、建物10の形状や規模などに合わせてその形成部分を適宜変更することができる。例えば、図6に示すように建物10が比較的大型である場合に、その両側中央部に形成する場合を含めて6箇所に設置し、また、図7に示すように建物10が比較的小型である場合に、その両端部に2箇所設置するようにしてもよい。勿論、上記階段は建物10の内部に形成してもよい。また、上述した制振構造が適用される地上架構10aをS造構造とした場合を開示したが、SRC造など他の構造形式とすることもできる。
【0027】
【発明の効果】
以上説明したように本発明の請求項1に示す建物の制振構造にあっては、階段の周りを囲繞する鉄骨梁の一部に小耐力部材を介設し、この小耐力部材により建物に入力される振動エネルギーを塑性エネルギーに変換し、この変換時に振動エネルギーを効果的に吸収して建物の振動を減衰し、延いては、建物の制振機能を著しく向上することができるようになっており、このとき、上記小耐力部材が設けられる鉄骨梁は、建物に設けられた階段の周りを囲繞するものであるため、この階段の設置スペースを利用して該鉄骨梁を容易に露出させることができる。従って、振動によって変形された小耐力部材の交換作業を容易にすることができる。
【0028】
そして、このように小耐力部材の交換を容易するように鉄骨梁を露出して設けるにあたって、建物に必要な階段の設置スペースを利用して設置することができるため、該小耐力部材を設置するための特別のスペースを余分に設ける必要が無く、延いては、建物の本来の活用スペースを削減することなく、効果的に建物の振動を吸収することができる。
【0029】
また、上記階段が建物の外側に面した部分に設けられ、該小耐力部材の交換作業を建物の外側から行うことが可能となり、かつ、上記小耐力部材を設ける鉄骨梁を建物から露出させてあるので、該鉄骨梁に設けられる上記小耐力部材も露出状態としておくことができる。このように小耐力部材が露出されることにより、上記階段が外側に面していることと相俟って、該小耐力部材の交換作業をさらに簡単にし、かつ、短時間のうちに交換が可能となるため、補修工事の工期の短縮化および省力化を達成することができる。
【0030】
更に、請求項では上記階段を階段本体と踊場とを一体に形成し、階段本体を挟んで対向関係になる踊場の少なくとも一方を、エキスパンションジョイントを介して建物躯体に結合したので、該エキスパンションジョイントによって建物と階段との相対移動を許容できる。このため、この建物の揺動が階段に直接入力されるのを防止でき、建物から避難する場合にも避難通路としての階段を確保することができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の制振構造が適用される建物の縦断正面図である。
【図2】図1の建物の横断平面図である。
【図3】図1の建物の階段部分を示す立体図である。
【図4】図3の階段部分の断面正面図である。
【図5】図4中A部の拡大断面図である。
【図6】本発明の制振構造の他の実施形態を示す建物の平面図である。
【図7】本発明の制振構造の更に他の実施形態を示す建物の平面図である。
【符号の説明】
10 建物
12,12a,12b 鉄骨梁
14 リンク材
16 避難階段
18 階段本体
20,20a 踊場
24 エキスパンションジョイント
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration damping structure for a building, and more particularly, to effectively use a space for arranging stairs to significantly improve the earthquake resistance of the whole building without reducing the original space for use. Concerning structure.
[0002]
[Prior art]
Conventionally, building damping structures using Y-shaped braces and damping studs are known. Small yield strength members built into these braces and studs are quickly yielded, and vibration energy such as earthquakes is plasticized. The building is converted to energy to control the building. However, since these Y-shaped braces and damping damping columns are incorporated between the upper and lower beams, the layout of openings such as doorways and passages becomes difficult.
[0003]
In view of this, the present applicant has proposed, as Japanese Patent Application Laid-Open No. 10-102682, a damping structure that can facilitate the layout of the opening by configuring a part of the length of the steel beam with a small strength member. did.
[0004]
[Problems to be solved by the invention]
However, in the vibration damping structure of a building in which a part of the length direction of the conventional steel beam is composed of a small strength member, the four corners of the building are considered in consideration of the exchangeability of the small strength member deformed after the occurrence of an earthquake. A steel beam provided with the small strength member is aligned and arranged in the hole portion. However, although the low-strength members can be easily replaced by the atrium part in this way, the aerial part becomes a major limitation in the plan plan and the effective floor area is reduced, and the original utilization space such as a living space or office space is reduced. There was a problem that would become narrower.
[0005]
Therefore, in view of the conventional problems, the present invention provides a building damping structure that effectively absorbs vibration without reducing the original space for using the building even when a small strength member is used. The purpose is to do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a vibration damping structure for a building according to claim 1 of the present invention exposes a steel beam surrounding a stairs provided in a portion facing the outside of the building from the building, and A small strength member is interposed in a part of the beam, and vibration energy input to the building is converted into plastic energy of the small strength member.
[0007]
In the building damping structure according to claim 2 of the present invention, the staircase is formed integrally with a staircase body and a landing, and at least one of the landings facing each other with the staircase body interposed therebetween is provided via an expansion joint. It is characterized by being connected to the building frame.
[0009]
The operation of the present invention will be described below with the above configuration. Claim 1 converts vibration energy input to the building into plastic energy by a small strength member provided on the steel beam, and the vibration energy is effectively absorbed during this conversion. Therefore, the vibration of the building can be attenuated, and the vibration control function of the building can be significantly improved. At this time, since the steel beam provided with the small strength member surrounds the stairs provided in the building, the steel beam can be easily exposed using the installation space of the stairs. . Therefore, it is easy to replace the small strength member deformed by vibration.
[0010]
Further, when the steel beam is exposed and provided so as to facilitate the replacement of the small strength member in this way, the steel beam is used for the stairs that are naturally provided in the building, that is, using the stairs installation space necessary for the building. Since it can be installed, there is no need to provide an extra space for installing the small strength member, and the use space of the original building, that is, the living space and office space should be reduced. In addition, the vibration of the building can be effectively absorbed.
[0011]
Here, when the stress is generated in the building frame due to the input of vibration caused by earthquakes, strong winds, etc. with the above small strength member, it yields earlier than other materials and the stress exceeds the yield strength, A member with small proof strength that produces hysteresis damping performance due to elasto-plastic behavior and exhibits a damping effect.
[0012]
Examples of the small yield strength member include low yield point steel. As the recommended low yield point steel, for example, BT-LYP100 or BT-LYP235 (both trade names manufactured by Nippon Steel Corporation) and equivalents thereof can be employed. Incidentally, the former yield stress σy is 1.0 (t / cm 2 ), the breaking stress σu is 2.4 (t / cm 2 ), and the latter yield stress σy is 2.4 (t / cm 2 ), The breaking stress σu is 3.5 (t / cm 2 ). In addition to the low yield point steel, a metal such as ordinary steel or aluminum can be used as the material for the small strength member.
[0013]
In addition , since the steel beam that provides the small strength member is exposed from the building, the staircase is provided in a portion facing the outside of the building, so that the small strength member provided on the steel beam is also exposed. In combination with the fact that the stairs face the outside, the small strength member can be exchanged from the outside of the building. Accordingly, the replacement work of the small strength member is simplified and can be replaced in a short time, so that the repair work can be shortened and labor can be saved.
[0014]
Furthermore, in claim 2 , the staircase is integrally formed with a staircase body and a landing, and at least one of the landings facing each other across the staircase body is coupled to the building frame via an expansion joint. Thus, relative movement between the building and the stairs is allowed, and it is possible to prevent the swing of the building from being input to the stairs and destroying the stairs. Therefore, it is possible to secure a stairway as an evacuation passage even when an earthquake occurs.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 5 show a vibration control structure of a building according to an embodiment of the present invention. FIG. 1 is a longitudinal front view of the building, FIG. 2 is a cross-sectional plan view of the building, FIG. FIG. 5 is an enlarged sectional view of a portion A in FIG. 4.
[0016]
That is, the building 10 to which the vibration damping structure of the present embodiment is applied includes a ground frame 10a and an underground frame 10b as shown in FIG. 1, and the ground frame 10a is constructed as an S structure and the underground frame 10b. Is constructed as SRC or RC. The vibration damping structure of the present embodiment is used for the above-mentioned ground frame 10a, and is configured by providing a link member 14 as a small strength member on the steel beam 12 at a specific portion of the frame 10a. The link material 14 is formed of a metal capable of plastic deformation such as low yield point steel, ordinary steel material, and aluminum, and has a function of converting vibration energy input to the building 10 into plastic energy of the link material 14; It exhibits a damper performance that yields hysteresis damping performance due to elastoplastic behavior from the time when the yield surpasses other materials and the stress exceeds the yield strength. The link member 14 is shown as a black triangle in FIGS.
[0017]
The building 10 is formed in a rectangular shape in plan view, and evacuation stairs 16 facing the outside of the building 10 are provided at the four corners of the ground frame 10a of the building 10 as shown in FIG. That is, as shown in FIG. 3, flat rectangular staircase installation spaces S formed by being fitted into the housing by dimensions corresponding to one span of the steel beam 12 are provided at the four corners of the ground frame 10a. An evacuation staircase 16 is installed in S. Therefore, in the stair installation space S, the steel beams 12a and 12b for one span are exposed in the vertical and horizontal directions so as to surround the two outer surfaces of the space S and are directly connected to each other.
[0018]
Here, the exposed steel beams 12a and 12b are used as the above-described specific portions of the steel beams 12a, 12b in a part in the length direction, that is, in this embodiment, as shown in FIG. The link member 14 is inserted into the central portion of 12a and 12b and joined together.
[0019]
The evacuation staircase 16 is composed of a staircase body 18 and landings 20 and 20a, and one landing 20 that is in an opposing relationship across the staircase body 18 corresponds to the floor 22 of each floor, that is, the staircase of the ground frame 10a is installed. The other landing 20a is fixed to a steel beam 12b disposed in the middle of the floor, provided corresponding to the steel beam 12 facing the space S.
[0020]
As shown in FIG. 5, the one landing 20 is connected to the ground frame 10 a via an expansion joint 24. The expansion joint 24 includes a coil spring 24c interposed between the mounting end of the landing 20 and the brackets 24a and 24b fixed to the ground frame 10a, and the two considering the relative movement of the landing 20 with respect to the ground frame 10a. And a cover 24d covering the gap. In FIG. 5, an evacuation door 28 is provided above the landing 20 on the frame wall to which the landing 20 is attached.
[0021]
With the above structure of the vibration damping structure for a building according to the present embodiment, the link material 14 is provided in a part of the steel beams 12a and 12b exposed in the staircase installation space S of the building 10, and the link material 14 inputs the link material 14. Therefore, the vibration energy can be effectively absorbed to attenuate the vibration of the building 10, and thus the building 10 can be damped.
[0022]
At this time, the steel beams 12a and 12b provided with the link member 14 surround the evacuation staircase 16 provided in the building 10. Therefore, the steel beams 12a and 12b are used by utilizing the installation space of the staircase. 12b can be reasonably exposed. Therefore, it becomes easy to replace the link member 14 deformed by vibration.
[0023]
Further, when the steel beam 12 is provided so as to facilitate the replacement of the link member 14 as described above, the steel beam 12 uses the evacuation stairs 16 provided in the building 10, that is, the stair installation space S necessary for the building 10. Therefore, it is not necessary to provide an extra space for installing the link member 14 and, in turn, reduce the original use space such as the living space and office space of the building 10. Therefore, the vibration of the building 10 can be effectively absorbed.
[0024]
Further, in the present embodiment, the evacuation stairs 16 are provided at the four corners facing the outside of the building 10 and the steel beams 12a and 12b on which the link material 14 is provided are exposed from the building 10, so that the steel beam The link material 14 provided in 12a and 12b can also be left exposed, and in combination with the escape stairs 16 facing outward, the link material 14 can be replaced from the outside of the building 10. Can be done. As described above, the replacement work of the link member 14 is simplified and can be replaced in a short time, so that the construction period of the repair work can be shortened and the labor can be saved.
[0025]
Here, the escaping stairs 16 are arranged such that the landings 20 and 20a face each other, and one of the landings 20 is coupled to the ground frame 10a via the expansion joint 24. Therefore, the expansion joint 24 and the evacuation stairs 16 Relative movement is allowed. For this reason, even when the building 10 is largely swung due to the occurrence of an earthquake, it is possible to prevent a large load from being input to the evacuation staircase 16 due to the swinging on the building 10 side to be destroyed. Therefore, even when evacuating from the building 10 in the event of an earthquake, it is possible to secure a staircase as an evacuation passage.
[0026]
By the way, in this embodiment, the said evacuation staircase 16 is provided in the four corner parts of the building 10, and the link material 14 is provided in the steel beam 12a, 12b exposed to the installation space S of these evacuation staircases 16, and a staircase part is controlled. Although the structure is disclosed, the staircase having the vibration damping structure is not limited to this, and it is of course desirable to install the staircase in the corner portion in this way, but the formation is made according to the shape and scale of the building 10. The part can be changed as appropriate. For example, when the building 10 is relatively large as shown in FIG. 6, it is installed at six locations including the case where it is formed at the center of both sides, and the building 10 is relatively small as shown in FIG. In such a case, two places may be provided at both ends thereof. Of course, the stairs may be formed inside the building 10. Moreover, although the case where the ground frame 10a to which the above-described vibration damping structure is applied is an S structure, it is disclosed, but other structure types such as an SRC structure may be used.
[0027]
【The invention's effect】
As described above, in the vibration control structure for a building according to claim 1 of the present invention, a small strength member is interposed in a part of the steel beam surrounding the stairs, and this small strength member adds to the building. The vibration energy that is input is converted into plastic energy, and at the time of this conversion, vibration energy is effectively absorbed to attenuate the vibration of the building, and the vibration control function of the building can be significantly improved. At this time, since the steel beam provided with the small strength member surrounds the stairs provided in the building, the steel beam is easily exposed using the installation space of the stairs. be able to. Therefore, the replacement work of the small strength member deformed by the vibration can be facilitated.
[0028]
And, since the steel beam is exposed and provided so as to facilitate the replacement of the small strength member in this way, it can be installed using the installation space of the stairs necessary for the building, so the small strength member is installed. Therefore, it is not necessary to provide an extra special space, and thus, vibrations of the building can be effectively absorbed without reducing the original use space of the building.
[0029]
Further , the staircase is provided in a portion facing the outside of the building, the replacement work of the small strength member can be performed from the outside of the building, and the steel beam provided with the small strength member is exposed from the building. Therefore, the small strength member provided on the steel beam can be exposed. In this way, by exposing the small strength member, coupled with the fact that the stairs face the outside, the replacement work of the small strength member is further simplified and can be replaced in a short time. This makes it possible to shorten the repair work period and save labor.
[0030]
Furthermore, in claim 2 , the staircase is integrally formed with a staircase body and a landing, and at least one of the landings facing each other across the staircase body is coupled to the building frame via an expansion joint. Allows relative movement between the building and the stairs. For this reason, it is possible to prevent the swinging of the building from being directly input to the stairs, and it is possible to secure the stairs as an evacuation passage even when evacuating from the building.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view of a building to which a vibration damping structure of the present invention is applied.
FIG. 2 is a cross-sectional plan view of the building of FIG.
FIG. 3 is a three-dimensional view showing a staircase portion of the building of FIG. 1;
4 is a cross-sectional front view of the staircase portion of FIG. 3;
5 is an enlarged cross-sectional view of a portion A in FIG.
FIG. 6 is a plan view of a building showing another embodiment of the vibration damping structure of the present invention.
FIG. 7 is a plan view of a building showing still another embodiment of the vibration damping structure of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Building 12, 12a, 12b Steel beam 14 Link material 16 Evacuation stairs 18 Stair body 20, 20a Landing place 24 Expansion joint

Claims (2)

建物の外側に面した部分に設けられた階段の周りを囲繞する鉄骨梁を前記建物から露出させ、前記鉄骨梁の一部に小耐力部材を介設し、建物に入力される振動エネルギーをこの小耐力部材の塑性エネルギーに変換することを特徴とする建物の制振構造。A steel beam surrounding the stairs provided on the outside facing part of the building is exposed from the building, and a small strength member is interposed in a part of the steel beam, and vibration energy input to the building is A vibration control structure for a building characterized by converting into plastic energy of a small strength member. 上記階段は階段本体と踊場とを一体に形成し、階段本体を挟んで対向関係になる踊場の少なくとも一方を、エキスパンションジョイントを介して建物躯体に結合したことを特徴とする請求項記載の建物の制振構造。The staircase forms a stairway body and landing together, at least one of landing to be opposed relationship across the stairs body, according to claim 1, characterized in that attached to the building skeleton via expansion joints building Vibration suppression structure.
JP18746398A 1998-07-02 1998-07-02 Building vibration control structure Expired - Fee Related JP3988259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18746398A JP3988259B2 (en) 1998-07-02 1998-07-02 Building vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18746398A JP3988259B2 (en) 1998-07-02 1998-07-02 Building vibration control structure

Publications (2)

Publication Number Publication Date
JP2000017882A JP2000017882A (en) 2000-01-18
JP3988259B2 true JP3988259B2 (en) 2007-10-10

Family

ID=16206530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18746398A Expired - Fee Related JP3988259B2 (en) 1998-07-02 1998-07-02 Building vibration control structure

Country Status (1)

Country Link
JP (1) JP3988259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172806A2 (en) * 2012-05-17 2013-11-21 Kaya Cemalettin Flexible installations and staircase connections in non- earthquake building system

Also Published As

Publication number Publication date
JP2000017882A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
KR101348577B1 (en) Seismic retrofit method using lateral beam-type damper installed in opening space of building structure
JP3988259B2 (en) Building vibration control structure
JP3772415B2 (en) Building vibration control structure
JP3208093B2 (en) Vibration control structure of building structure
JP5704126B2 (en) Seismic control building, control method
JP2991030B2 (en) Wind load compatible seismic frame and wind load compatible seismic building
JP2003172040A (en) Vibration damping wall
JP3407237B2 (en) Seismic and vibration control structure using steel plate block
JP3516930B2 (en) Skeleton infill compatible reinforced concrete frame
JPH10131543A (en) Damping structure
KR20230150535A (en) Seismic structure of curtain wall system
JP3020089B2 (en) Damping structure beam
KR102156870B1 (en) Damper block and earthquake-proof wall structure using the same
JP2004190303A (en) Stair installation structure of unit house
JP2001227194A (en) Damping structure and construction method
JP3848510B2 (en) Housing vibration control method
JP2001140497A (en) Earthquake-resistant house
JP3188640B2 (en) Joining structure of structural members
JP2012233374A (en) Seismic reinforcement structure
JPH01102182A (en) Earthquakeproof wall
JP6448832B1 (en) Seismic reinforcement structure of building
JPH0751803B2 (en) Seismic retrofitting method for RC structure opening
JP3171092B2 (en) Building damping structure
JP3640195B2 (en) Damping structure of buildings
JP6682781B2 (en) Damping building and damping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050624

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees