[go: up one dir, main page]

JP3986208B2 - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP3986208B2
JP3986208B2 JP16702699A JP16702699A JP3986208B2 JP 3986208 B2 JP3986208 B2 JP 3986208B2 JP 16702699 A JP16702699 A JP 16702699A JP 16702699 A JP16702699 A JP 16702699A JP 3986208 B2 JP3986208 B2 JP 3986208B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
exhaust
light oil
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16702699A
Other languages
Japanese (ja)
Other versions
JP2000356127A (en
Inventor
浩 平林
満 細谷
清広 下川
正敏 下田
清治 引野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP16702699A priority Critical patent/JP3986208B2/en
Publication of JP2000356127A publication Critical patent/JP2000356127A/en
Application granted granted Critical
Publication of JP3986208B2 publication Critical patent/JP3986208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0022Controlling intake air for diesel engines by throttle control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンから排出される排ガスを浄化する装置に関する。更に詳しくは排ガス中のNOxの大気への排出を低減する装置に関するものである。
【0002】
【従来の技術】
従来、この種の排ガス浄化装置として、ディーゼルエンジンの排気管に触媒コンバータに収容されたNOx還元触媒が設けられ、このNOx還元触媒の排気上流側に還元剤を供給する還元剤供給手段が設けられ、更にエンジンの運転状況に応じてコントローラが上記還元剤供給手段を制御するように構成されたディーゼル機関の排ガス浄化装置が開示されている(特開平5−302509号)。この装置では、還元剤供給手段が排気管又は触媒コンバータに還元剤フィードノズル,還元剤フィードパイプ及び還元剤フィードポンプを介して接続された還元剤タンクと、還元剤フィードパイプに設けられ還元剤の還元剤フィードノズルへの供給量を調整可能な還元剤流量調整弁と、還元剤フィードノズルにエアフィードパイプを介して接続されたエアタンクと、エアフィードパイプに設けられ圧縮エアの還元剤フィードノズルへの供給量を調整可能な空気流量調整弁とを有する。還元剤としては軽油やエンジンオイル等が挙げられる。またコントローラは具体的にはエンジン回転速度,エンジン負荷,触媒入口側排ガス温度及び排ガス中の酸素濃度に応じて還元剤フィードポンプ,還元剤流量調整弁及び空気流量調整弁を制御するように構成される。
【0003】
このように構成されたディーゼル機関の排ガス浄化装置では、エンジンの運転状況に応じた最適量の還元剤が圧縮エアにより微細に霧化されて排ガスに供給される。この結果、還元剤の利用率を向上でき、排ガス中に含まれるNOxを効率的に低減処理できるので、還元剤の消費を低減することができる。また排ガスの温度低下が抑制されてNOx還元触媒の反応が十分に保たれるので、NOx浄化率を向上できるとともに、排ガス中に多量の酸素が含まれていてもNOxを触媒で処理できるようになっている。
【0004】
【発明が解決しようとする課題】
しかし、上記従来の特開平5−302509号公報に示されたディーゼル機関の排ガス浄化装置では、エンジンの排ガス中に多量の酸素が存在するため、還元剤として軽油を供給した場合、軽油がNOxとではなく排ガス中の酸素と反応してしまう。このためNOx還元触媒に比較的多くの還元剤を供給しても、触媒でのNOxの還元効率、即ちNOx低減率が未だ低い問題点があった。
【0005】
本発明の第1の目的は、NOx還元触媒で消費する還元剤量を低減できるとともに、高効率にNOxを低減することができる排ガス浄化装置を提供することにある。
本発明の第2の目的は、触媒の再生時にシリンダ内に噴射される軽油を十分に霧化することにより、シリンダ内でNOx還元触媒に最適な還元剤を生成し、かつこの還元剤をNOx還元触媒に供給することができる排ガス浄化装置を提供することにある。
本発明の第3の目的は、触媒の再生時に排気通路に噴射される軽油を十分に霧化することにより、排気通路内の排ガスの空燃比を確実に還元剤リッチの状態にすることができる排ガス浄化装置を提供することにある。
本発明の第4の目的は、触媒の再生開始時期及び再生完了時期を確実に検出することができる排ガス浄化装置を提供することにある。
本発明の第5の目的は、触媒の再生開始時期に達した後、触媒の再生禁止状態が所定時間以上継続しても、排ガス中のNOxを低減することができる排ガス浄化装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図15〜図17に示すように、ディーゼルエンジン11の排気通路12に設けられ排気通路12に流入する排ガス中のNOxを吸蔵しかつ排ガス中のHC,CO,CO2又はH2が増加したときに再生処理される触媒13と、ディーゼルエンジン11をバイパスして排気通路12及び吸気通路18を接続するEGRパイプ14に設けられこのEGRパイプ14を通過する排ガスの流量を調整するEGRバルブ16と、触媒13より排気上流側の排気通路12に接続され触媒13に向って軽油42を噴射可能な軽油添加手段71と、触媒13の再生開始時期を検出する再生開始検出センサ21と、再生開始検出センサ21の検出出力に基づいてEGRバルブ16及び軽油添加手段71を制御するコントローラ22とを備えた排ガス浄化装置であって、軽油添加手段71が排気通路12に挿入され触媒13に向って軽油42を噴射可能な添加用インジェクタ71aを有し、添加用インジェクタ71aのノズル部71cの噴孔71dにピン71eが遊挿され、噴孔71dの内周面に複数の螺旋溝71fが形成され、添加用インジェクタ71aが筒内燃料噴射装置51のコモンレール51b又はフィードポンプ51cに接続され、コントローラ22が添加用インジェクタ71aを制御することにより添加用インジェクタ71aから軽油42 ) が噴射されるように構成されたことを特徴とする
この請求項1に記載された排ガス浄化装置では、エンジン11の通常の運転時、即ちエンジン11内の混合気の空燃比がリーン状態のときには、触媒13が排ガス中のNOをNO2に酸化しNOxとして効率良く吸蔵し、触媒13によるNOx吸蔵量が所定値に達したことを再生開始検出センサ21が検出すると、コントローラ22がこのセンサ21の検出出力に基づいてEGRバルブ16を所定の開度で開き、排ガス中のO2濃度を低下させるとともに排ガス中のHC,CO,CO2又はH2の濃度を増加させる。この結果、触媒13での還元反応が促進され、触媒13に吸蔵されたNOxを無害のN2や水等に変換して大気に排出し、触媒13が再生される。また触媒13の再生時にコントローラ22がEGRバルブ16を所定の開度で開き、かつ軽油添加手段41から軽油42を噴射させるので、排ガス中のO 2 濃度を低下させるとともに排ガス中のHC,CO,CO 2 又はH 2 の濃度を増加させることができる。更に触媒13の再生時に排気通路12に噴射される軽油42を十分に霧化することができるので、排気通路12内の排ガス中のHCの濃度を高めた状態にすることができる。
【0013】
求項に係る発明は、請求項1に係る発明であって、更に触媒の再生時間が0.1〜秒であることを特徴とする。
請求項に記載された排ガス浄化装置では、触媒13の再生完了時期を予め定められた時間経過後とすることにより、確実に検出することができるので、再び触媒13により排ガス中のNOxを効率良く吸蔵することができる。
【0019】
【発明の実施の形態】
次に本発明の実施の形態を参考の形態とともに図面に基づいて説明する。
<第1の参考の形態>
図1に示すように、トラックのディーゼルエンジン11から排出された排ガスを浄化する排ガス浄化装置は排気管12に設けられた触媒13と、EGRパイプ14に設けられたEGRバルブ16と、排気管12に設けられた排気絞り弁17と、吸気管18に設けられた吸気絞り弁19と、触媒13の再生開始時期を検出する再生開始検出センサ21と、再生開始検出センサ21の検出出力に基づいてEGRバルブ16,排気絞り弁17及び吸気絞り弁19を制御するコントローラ22とを備える。上記触媒13は排気管12に流入する排ガス中のNOxを吸蔵し、かつ排ガス中のHC,CO,CO2又はH2を増加させたときに上記吸蔵したNOxを再生処理する、いわゆるNOx吸蔵還元型の触媒である。この触媒13は排気管12の途中に設けられたケース23に収容される。
【0020】
また触媒13は図示しないが排ガスの流れる方向に格子状(ハニカム状)の通路が形成されたモノリス担体(材質:コージェライト)と、このモノリス担体上に形成されかつ貴金属及びNOx吸蔵剤が担持されたコート層とを有する。貴金属としてはPtが挙げられ、NOx吸蔵剤としてはLi,Na,K,Cs等のアルカリ金属や、Mg,Ca,Ba等のアルカリ土類金属や、Y,La,Ce,Pr,Nd,Eu,Gd,Dy(Y以外はランタノイド系金属)等の希土類金属が挙げられる。上記NOx吸蔵剤は触媒の総重量に対して2〜20重量%、好ましくは5〜10重量%担持される。またコート層としてはアルミナが挙げられる。
【0021】
EGRパイプ14はエンジン11をバイパスして排気管12及び吸気管18を接続し、EGRバルブ16はEGRパイプ14を通過して排気管12から吸気管18に還流される排ガスの流量を調整するように構成される。EGRバルブ16は図示しないがモータにより弁体を駆動してEGRバルブ16の開度を調節する電動弁が用いられるが、エア駆動型弁等を用いてもよい。図1の符号26は吸気管18に還流される排ガス(EGRガス)を冷却するEGRクーラである。
【0022】
排気絞り弁17はEGRパイプ14の排気管12への接続部より排気下流側であって触媒13より排気上流側の排気管12に設けられ、排気管12を流れる排ガスの流量を調整可能に構成される。また吸気絞り弁19はEGRパイプ14の吸気管18への接続部より吸気上流側の吸気管18に設けられ、吸気管18を流れる吸気の流量を調整可能に構成される。排気絞り弁17は触媒13の再生時に排気管12を絞ることにより、EGRパイプ14を通って吸気管18に還流される排ガスを増量するように構成される。また吸気絞り弁19は触媒13の再生時に吸気管18を絞ることにより、シリンダ11aに供給される混合気の酸素量又は酸素濃度を低減するように構成される。
【0023】
再生開始検出センサ21はこの参考の形態では、アクセルペダルの踏込み量を検出するアクセルセンサ21aと、エンジン11の回転速度を検出する回転センサ21bとからなる。また触媒13より排気下流側の排気管12には触媒13を通過した排ガス中に含まれる酸素濃度を検出する出口側O2センサ31bが設けられ、触媒13より排気上流側の排気管12には触媒13を通過する前の排ガス中に含まれる酸素濃度を検出する入口側O2センサ31aが設けられる。入口側O2センサ及び出口側O2センサにより再生完了検出センサ31が構成される。触媒13は再生されるに従って触媒13上の酸素が使われるため、触媒13を通過した排ガス中の酸素濃度が次第に低下し、この酸素濃度が1%程度になると触媒13の再生がほぼ完了したと推定することができる。
【0024】
ケース23には触媒13の温度を検出する触媒温度センサ32が挿入される。この触媒温度センサ32は触媒13より排気上流側のケース23に挿入された入口側温度センサ32aと、触媒13より排気下流側のケース23に挿入された出口側温度センサ32bとからなり、両センサ32a,32bの各検出出力の平均値から触媒温度が推定されるように構成される。なお、触媒温度を推定するのは触媒13を効率良く再生できる温度範囲(200〜450℃)、即ち触媒再生可能温度で触媒13を再生するためである。またトラックの走行状態を検出する走行状態検出センサ33はこの参考の形態では上記アクセルセンサ21aであり、このアクセルセンサ21aの時間に対する変化率により、トラックが加速状態か或いは定常走行若しくは減速状態かが検出される。更に図1の符号34はエンジン11から排出された直後の排ガスの温度を検出する排ガス温度センサである。
【0025】
図2に示すように、上記アクセルセンサ21a,回転センサ21b,入口側O2センサ31a,出口側O2センサ31b,入口側温度センサ32a,出口側温度センサ32b,走行状態検出センサ33及び排ガス温度センサ34の各検出出力はI/Oポート22bを介してコントローラ22のCPU22aの制御入力に接続され、CPU22aの制御出力はI/Oポート22cを介してEGRバルブ16,排気絞り弁17及び吸気絞り弁19にそれぞれ接続される。またCPU22aにはメモリ37が接続され、このメモリ37には図4に示すように、触媒によるNOx吸蔵時,触媒再生時及び触媒再生禁止解除時の、EGRバルブ16の開度,排気絞り弁17の閉度及び吸気絞り弁19の閉度の制御マップA,B及びC(エンジン回転速度及びエンジン負荷が変化した場合の最適なEGRバルブ16の開度等を示すマップ)が記憶される。また上記メモリ37には図3に示すように、エンジン回転速度及びアクセルペダルの踏込み量(アクセル開度)の変化に伴って変化するエンジン11からのNOx排出量を示すNOx排出量マップが記憶される。なお、図1の符号38はマフラである。
【0026】
このように構成された排ガス浄化装置の動作を図5のフローチャートに沿って説明する。
先ずコントローラ22は回転センサ21b及びアクセルセンサ21aの各検出出力に基づいてエンジン11の回転速度及びアクセルペダルの踏込み量(アクセル開度)を取込む。次いでコントローラ22は上記エンジン回転速度及びアクセル開度をNOx排出量マップ(図3)に当てはめてエンジン11のNOx排出量を算出し、これにより触媒13に吸蔵されたNOx吸蔵量を積算する。次にコントローラ22はアクセル開度の変化率Y(単位時間当たりのアクセル開度の変化量)を算出し、例えばアクセル開度が所定値(例えば70%以上)を越え、その変化率Yが所定の変化率Y0を越えているとき(例えば、1秒間に5%以上アクセル開度が大きくなる方向に変化しているとき)には、トラックが加速状態であると判断し、アクセル開度及びその変化率Yが上記範囲外のときにはトラックが定常走行又は減速状態であると判断する。
【0027】
トラックが定常走行又は減速状態であり、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)以下である場合には、コントローラ22は図4の触媒によるNOx吸蔵時の制御マップAを取込み、この制御マップAに従ってEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を全閉にし、排気絞り弁17及び吸気絞り弁19を全開にする。この結果、通常運転時の制御が行われ、NOx吸蔵量の積算が続行される。この通常運転時(NOxの吸蔵時)にはシリンダ11a内の混合気の空燃比は高くリーン状態である、即ち空気過剰率(実際の供給空気量/軽油の燃焼に必要な理論的空気量)が2以上である。触媒13のコート層に担持されるNOx吸蔵剤として例えばBaを用いれば、エンジン11から排出されたNOxは触媒13において排ガス中のO2と反応し、更に触媒13中のBaO,BaCO3と反応して[Ba(NO32]が生成され、この状態で触媒13に吸蔵される。このためNOx濃度の高い触媒入口側の排ガスは触媒を通過した後、NOx濃度が極めて低くなって触媒出口側に排出され、NOxの大気中への排出を低減することができる。
【0028】
一方、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)を越えると、コントローラ22は触媒13が再生時期に達したと判断し、触媒温度センサ32の入口側温度センサ32a及び出口側温度センサ32bの各検出出力T1,T2を取込んで、これらの温度センサ32a,32bの各検出出力の平均値((T1+T2)/2)を触媒温度Tcと推定する。この触媒温度Tcが触媒再生下限温度T0(例えば200℃)を越えていると、コントローラ22は図4の触媒再生時の制御マップBを取込み、この制御マップBに基づいてEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を所定の開度で開き、排気絞り弁17及び吸気絞り弁19を所定の閉度で閉じる。これにより排ガス中の酸素濃度が低下するとともにHC,CO,CO2又はH2が還元剤として増加するので、先ず上記触媒13に吸蔵された[Ba(NO32]が排ガス中の上記還元剤と反応してN2まで還元され、次に触媒13が選択性の良い還元触媒として機能し、上記NO2が排ガス中のCO,HCと反応して無害なN2,CO2,H2Oが生成されて大気に排出される。この結果、排ガス中の酸素の影響を受けずに殆ど全てのCO,HCを触媒再生に有効に活用できるので、触媒13を効率良く再生することができる。
【0029】
コントローラ22は上記触媒13の再生中に入口側O2センサ31a及び出口側O2センサ31bの各検出出力に基づいて触媒13を通過する前及び触媒13を通過した後の排ガス中の酸素濃度をS1,S2それぞれ取込み、酸素濃度S1,S2の差が所定値以上であり、かつ酸素濃度S2が所定濃度S0(例えば1%)未満になったときに触媒13の再生が完了したと判断する。コントローラ22は触媒再生完了後、NOx吸蔵量の積算値を初期化した後に、図4の触媒によるNOx吸蔵時の制御マップAを取込み、この制御マップAに基づいてEGRバルブ16の開度等を制御する。
【0030】
なお、トラックが加速状態である、即ちアクセル開度が所定値以上で、その変化率Yが所定の変化率Y0を越えているとコントローラ22が判断し、かつ触媒温度Tcが触媒再生下限温度T0より高い場合には、コントローラ22は図4の触媒再生時の制御マップBを取込み、この制御マップBに基づいてEGRバルブ16等を制御する。トラックの加速時には多量の軽油がシリンダ11a内に噴射されるため、排ガス中の酸素濃度が低下するとともにHC,CO,CO2,H2の濃度が増加し、触媒13を効率良く再生することができる。コントローラ22は触媒13の再生中にアクセル開度及びその変化率Yを算出し、アクセル開度の変化率Yが所定の変化率Y0以下になったときに触媒13の再生を停止した後、図4の触媒によるNOx吸蔵時の制御マップAを取込み、この制御マップAに基づいてEGRバルブ16の開度等を制御する。
【0031】
また、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)を越え、コントローラ22が触媒の再生時期に達したと判断しても、触媒温度Tcが触媒再生下限温度T0(例えば200℃)以下である場合には、コントローラ22は触媒13の再生を禁止し、この再生禁止時間H0を積算する。再生禁止時間が例えば5分間以下の場合には触媒温度Tcの推定を繰返し、5分間を越えると、触媒13が排ガス中のNOxを有効に吸蔵できないと判断し、図4の触媒再生禁止解除時の制御マップCを取込み、この制御マップCに従ってEGRバルブ16を制御する。即ち、コントローラ22はEGRバルブ16を所定の開度で開くので、触媒13を再生することができる。この触媒13の再生完了は上記と同様に入口側O2センサ31a及び出口側O2センサ31bの各検出出力に基づいて判断する、即ち触媒13前後の酸素濃度S1,S2の差が所定値以上であり、かつ酸素濃度S2が所定濃度S0(例えば1%)未満になったときに触媒13の再生が完了したと判断する。コントローラ22は触媒再生完了後、NOx吸蔵量の積算値を初期化した後に、図4の触媒によるNOx吸蔵時の制御マップAを取込み、この制御マップAに基づいてEGRバルブ16の開度等を制御する。
【0032】
更に、触媒13の再生時にはエンジン11内での軽油の燃焼が不活発になるため、触媒入口側のNOx濃度は低下し、また触媒13が還元触媒として機能するので、触媒出口側のNOx濃度は急激に減少する。このように排ガス中のNOxを効率良く触媒13に吸蔵でき、かつ触媒13に吸蔵されたNOxを無害のN2や水等に変換して触媒13を短時間で効率良く再生することができる。
【0033】
<第2の参考の形態>
図6〜図8は第2の参考の形態を示す。図6において図1と同一符号は同一部品を示す。
この参考の形態では、触媒13より排気上流側の排気管12に軽油添加手段41が接続され、コントローラ22が再生開始検出センサ21の検出出力に基づいてEGRバルブ16,排気絞り弁17,吸気絞り弁19及び軽油添加手段41を制御するように構成される。軽油添加手段41は排気管12に挿入され触媒13に向って軽油42を噴射可能な添加用噴射ノズル41aと、添加用噴射ノズル41aに軽油42を圧送する添加用噴射ポンプ41bとを有する。添加用噴射ノズル41aは添加用吐出管41cを介して添加用噴射ポンプ41bの吐出口に連通接続され、添加用噴射ポンプ41bの吸入口は添加用吸入管41dを介して燃料タンク43に連通接続される。燃料タンク43には軽油42が貯留される。
【0034】
コントローラ22の制御入力にはアクセルセンサ21a,回転センサ21b,入口側O2センサ31a,出口側O2センサ31b,入口側温度センサ32a,出口側温度センサ32b,走行状態検出センサ33及び排ガス温度センサ34の各検出出力がそれぞれ接続され、コントローラ22の制御出力はEGRバルブ16,排気絞り弁17,吸気絞り弁19及び添加用噴射ポンプ41bにそれぞれ接続される。またメモリ37には図7に示すように、触媒によるNOx吸蔵時,触媒の再生時及び触媒再生禁止解除時の、EGRバルブ16の開度,排気絞り弁17の閉度,吸気絞り弁19の閉度及び排気管12への軽油添加量の制御マップA,B,C(エンジン回転速度及びエンジン負荷が変化した場合の最適なEGRバルブ16の開度等を示すマップ)が記憶される。上記以外は第1の参考の形態と同一に構成される。
【0035】
このように構成された排ガス浄化装置の動作を図8のフローチャートに沿って説明する。
触媒13によるNOx吸蔵量Xが所定量X0を越えてコントローラ22が触媒13の再生時に達したと判断し、触媒温度Tcが触媒再生下限温度T0を越えて触媒再生可能になると、コントローラ22は図7の触媒の再生時の制御マップBを取込み、この制御マップBに基づいてEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を所定の開度で開き、排気絞り弁17及び吸気絞り弁19を所定の閉度それぞれ閉じ、更に軽油添加手段41の添加用噴射ポンプ41bを作動して排気管12に軽油42を添加する。これにより排ガス中の酸素濃度が低下するとともに、排ガス中のHC,CO,CO2又はH2が第1の参考の形態より還元剤として更に増加する。この結果、先ず上記触媒13に吸蔵された[Ba(NO32]が排ガス中の上記還元剤と反応してN2まで還元され、次に触媒13が選択性の良い還元触媒として機能し、上記NO2が排ガス中のCO,HCと反応して無害なN2,CO2,H2Oが生成されて大気に排出されるので、排ガス中の酸素の影響を受けずに殆ど全てのCO,HCを触媒再生に有効に活用することができる。上記以外の動作は第1の参考の形態と略同様であるので、繰返しの説明を省略する。
【0036】
<第3の参考の形態>
図9〜図11は第3の参考の形態を示す。図9において図1と同一符号は同一部品を示す。
この参考の形態では、シリンダ11aに噴射される軽油42の噴射時期及び噴射量のいずれか一方又は双方を変更可能な筒内燃料噴射装置51が用いられる。筒内燃料噴射装置51は先端部がシリンダ11aに臨みシリンダ11aに軽油42を噴射可能な筒内インジェクタ51aと、内部に軽油42を蓄圧し上記インジェクタ51aに軽油を圧送するコモンレール51bと、このコモンレール51bに軽油42を供給するフィードポンプ51cとを有する。
【0037】
筒内インジェクタ51aはこのインジェクタ51aに内蔵された電磁弁(図示せず)により軽油42の噴射量及び噴射時期が調整可能に構成される。また筒内インジェクタ51aは圧送管51dを介してコモンレール51bに連通接続され、コモンレール51bは筒内吐出管51eを介してフィードポンプ51cの吐出口に連通接続され、フィードポンプ51cの吸入口は筒内吸入管51fを介して燃料タンク43に連通接続される。触媒13の再生時には上記筒内燃料噴射装置51にてメイン噴射の時期を進角させ、かつメイン噴射後にポスト噴射を行うことにより、シリンダ11a内への軽油42の噴射時期及び噴射量の双方が変更されるように構成される。図9の符号52はコモンレール51b内の軽油42の圧力(燃料圧)を検出する圧力センサである。
【0038】
コントローラ22の制御入力にはアクセルセンサ21a,回転センサ21b,入口側O2センサ31a,出口側O2センサ31b,入口側温度センサ32a,出口側温度センサ32b,走行状態検出センサ33,排ガス温度センサ34及び圧力センサ52の各検出出力が接続され、コントローラ22の制御出力はEGRバルブ16,排気絞り弁17,吸気絞り弁19,筒内インジェクタ51a及びフィードポンプ51cにそれぞれ接続される。またメモリ37には図10に示すように、触媒によるNOx吸蔵時,触媒再生時及び触媒再生禁止解除時の、EGRバルブ16の開度,排気絞り弁の閉度,吸気絞り弁の閉度,メイン噴射の時期,パイロット噴射の有無・時期及びポスト噴射の有無・時期の制御マップA,B,C(エンジン回転速度及びエンジン負荷が変化した場合の最適なEGRバルブ16の開度等を示すマップ)が記憶される。上記以外は第1の参考の形態と同一に構成される。
【0039】
このように構成された排ガス浄化装置の動作を図11のフローチャートに基づいて説明する。
トラックが定常走行又は減速状態であり、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)以下である場合には、コントローラ22は図10の触媒によるNOx吸蔵時の制御マップAを取込み、この制御マップAに従ってEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を全閉にし、排気絞り弁17及び吸気絞り弁19を全開にし、メイン噴射を最も燃焼効率の高い時期に行い、更にパイロット噴射を行う。このときポスト噴射は行わない。この結果、通常運転時の制御が行われ、排ガス中のNOxは触媒13により吸蔵されるので、NOxの大気中への排出を低減することができる。
【0040】
トラックが定常走行又は減速状態であり、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)を越え、更に触媒温度Tcが触媒再生下限温度T0(例えば200℃)を越えている場合には、図10の触媒によるNOx吸蔵時の制御マップBを取込み、この制御マップBに従ってEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を所定の開度で開き、排気絞り弁17及び吸気絞り弁19を所定の閉度で閉じ、メイン噴射を通常走行時より所定の角度だけ進角させる。またパイロット噴射を行わず、ピストン11bの上死点の後にポスト噴射を複数回に分けて行う。これにより排ガス中の酸素濃度が低下するとともに、排ガス中のHC,CO,CO2又はH2が第1の参考の形態より還元剤として更に増加する。この結果、排ガス中の酸素の影響を受けずに殆ど全てのCO,HCを触媒再生に有効に活用することができる。
【0041】
なお、トラックが加速状態であり、触媒温度Tcが触媒再生下限温度T0より高い場合には、コントローラ22は図10の触媒再生時の制御マップBを取込み、この制御マップBに基づいてEGRバルブ16等を制御する。トラックの加速時には多量の軽油42がシリンダ11a内に噴射されるため、排ガス中の酸素濃度が低下するとともにHC,CO,CO2,H2の濃度が増加し、触媒13を効率良く再生することができる。
【0042】
また、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)を越え、コントローラ22が触媒13の再生時期に達したと判断しても、触媒温度Tcが触媒再生下限温度T0(例えば200℃)以下である場合には、コントローラ22は触媒13の再生を禁止し、この再生禁止時間H0を積算する。再生禁止時間が例えば5分間以下の場合には触媒温度Tcの推定を繰返し、5分間を越えると、触媒13が排ガス中のNOxを有効に吸蔵できないと判断し、図10の触媒再生禁止解除時の制御マップCを取込み、この制御マップCに従ってEGRバルブ16を制御する。即ち、コントローラ22はEGRバルブ16を所定の開度で開き、メイン噴射を通常走行時より所定の角度だけ進角させる。このときパイロット噴射及びポスト噴射は行わない。この結果、触媒13を再生することができる。上記以外の動作は第1の参考の形態と略同様であるので、繰返しの説明を省略する。
【0043】
<第4の参考の形態>
図12〜図14は第4の参考の形態を示す。図12において図6及び図9と同一符号は同一部品を示す。
この参考の形態の排ガス浄化装置は、第2の参考の形態の排ガス浄化装置に第3の参考の形態の筒内燃料噴射装置19を組込んだ装置である。即ち、この参考の形態の排ガス浄化装置は触媒13と、EGRバルブ16と、排気絞り弁17と、吸気絞り弁19と、軽油添加手段41と、筒内燃料噴射装置51とを備え、コントローラ22は再生開始検出センサ21の検出出力に基づいてEGRバルブ16,排気絞り弁17,吸気絞り弁19,軽油添加手段41及び筒内燃料噴射装置51を制御するように構成される。
【0044】
アクセルセンサ21a,回転センサ21b,入口側O2センサ31a,出口側O2センサ31b,入口側温度センサ32a,出口側温度センサ32b,走行状態検出センサ33,排ガス温度センサ34及び圧力センサ36の各検出出力はコントローラ22の制御入力に接続され、コントローラ22の制御出力はEGRバルブ16,排気絞り弁17,吸気絞り弁19,添加用噴射ポンプ41b,筒内インジェクタ51a及びフィードポンプ51cにそれぞれ接続される。またメモリ37には図13に示すように、触媒によるNOx吸蔵時,触媒再生時及び触媒再生禁止解除時の、EGRバルブ16の開度,排気絞り弁17の閉度,吸気絞り弁19の閉度,メイン噴射の時期,パイロット噴射の有無・時期,ポスト噴射の有無・時期及び排気管12への軽油添加量の制御マップA,B,C(エンジン回転速度及びエンジン負荷が変化した場合の最適なEGRバルブ16の開度等を示すマップ)が記憶される。上記以外は第2及び第3の参考の形態と同一に構成される。
【0045】
このように構成された排ガス浄化装置の動作を図14のフローチャートに基づいて説明する。
トラックが定常走行又は減速状態であり、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)以下である場合には、コントローラ22は図13の触媒によるNOx吸蔵時の制御マップAを取込み、この制御マップAに従ってEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を全閉にし、排気絞り弁17及び吸気絞り弁18を全開にし、メイン噴射を最も燃焼効率の高い時期に行い、更にパイロット噴射を行う。このときポスト噴射及び排気管12への軽油添加は行わない。この結果、通常運転時の制御が行われ、排ガス中のNOxは触媒13により吸蔵されるので、NOxの大気中への排出を低減することができる。
【0046】
トラックが定常走行又は減速状態であり、触媒13のNOx吸蔵量Xが所定量X0(例えば70%)を越え、更に触媒温度Tcが触媒再生下限温度T0(例えば200℃)を越えている場合には、図13の触媒によるNOx吸蔵時の制御マップBを取込み、この制御マップBに従ってEGRバルブ16等を制御する。即ち、コントローラ22はEGRバルブ16を所定の開度で開き、排気絞り弁17及び吸気絞り弁19を所定の閉度で閉じ、メイン噴射を通常走行時より所定の角度だけ進角させ、更に添加用噴射ポンプ41bを作動して排気管12に軽油42を添加する。またパイロット噴射を行わず、ピストン11bの上死点の後にポスト噴射を複数回に分けて行う。これにより排ガス中の酸素濃度が低下するとともに、排ガス中のHC,CO,CO2又はH2が第1の参考の形態より還元剤として更に増加する。この結果、排ガス中の酸素の影響を受けずに殆ど全てのCO,HCを触媒再生に有効に活用することができる。上記以外の動作は第2及び第3の参考の形態と略同様であるので、繰返しの説明を省略する。
【0049】
<実施の形態>
図15図17は本発明の実施の形態を示す。図15において図12と同一符号は同一部品を示す。
この実施の形態では、軽油添加手段71が触媒13に向って軽油42を噴射可能な添加用インジェクタ71aを有し、この添加用インジェクタ71aが連通管71bを介して筒内燃料噴射装置51のコモンレール51bに接続され、コントローラ22が添加用インジェクタ71aを制御することにより添加用インジェクタ71aから軽油42が噴射されるように構成される(図15)。添加用インジェクタ71aはこのインジェクタ71aに内蔵された電磁弁(図示せず)により軽油42の噴射量及び噴射時期が調整可能に構成される。また添加用インジェクタ71aはスロットル形のノズル部71cを有し、このノズル部71cは触媒13より排気上流側の排気管12に挿入される(図16)。ノズル部71cの噴孔71dにはピン71eが遊挿され、噴孔71dの内周面には複数の螺旋溝71fが形成される(図16及び図17)。また添加用インジェクタ71aは上述のようにコモンレール51bに接続されるため、第1の参考の形態の添加用噴射ポンプは不要になる。更に触媒再生は触媒再生開始から予め設定された時間だけ行われる。このため入口側O2センサ及び出口側O2センサは不要となる。また上記触媒再生時間はできるだけ短い方が良いが、0.1〜2秒に設定される。触媒再生時間を0.1〜180秒に限定したのは、0.1秒未満では触媒の再生が完了せず、秒を越えると黒煙の排出量が多くなるためである。上記以外は第4の参考の形態と同一に構成される。
【0050】
このように構成された排ガス浄化装置では、触媒13の再生時に添加用インジェクタ71aから噴射された軽油42は排気管12の内面に沿って螺旋状に進むので、瞬時に霧化されて排ガスの空燃比を速やかにリッチ状態にすることができるとともに、HC,CO,H2の増量を図ることができる。この結果、触媒13が還元触媒として機能し、触媒13を効率良く再生することができる。またコントローラ22は触媒13の再生開始と同時に触媒再生時間を計測し、所定時間経過後(例えば2秒)に触媒再生が完了したと判断するので、所定時間経過後、NOx吸蔵量の積算値を初期化し、触媒によるNOx吸蔵時のマップを取込み、このマップに基づいてEGRバルブ16の開度等を制御する。上記以外の動作は第4の参考の形態と略同様であるので、繰返しの説明を省略する。
【0052】
なお、上記実施の形態では、触媒の再生時に筒内燃料噴射装置にてメイン噴射の時期を進角させ、かつメイン噴射後にポスト噴射を行うことにより、シリンダ内への軽油の噴射時期及び噴射量の双方を変更したが、メイン噴射の時期の進角化又はポスト噴射のいずれか一方を行うことにより、シリンダ内への軽油の噴射時期及び噴射量のいずれか一方又は双方を変更してもよい。
また、上記実施の形態では、本発明のディーゼルエンジンをトラックに搭載したが、バス,乗用車又はその他の車両、或いは船,建設機械等に搭載してもよい。
また、上記実施の形態では、触媒の再生禁止の状態が所定時間以上継続したときに、コントローラが触媒の再生禁止を解除し、EGRバルブの開放及び筒内燃料噴射装置によるメイン噴射の時期の進角化の双方を行うように構成したが、EGRバルブの開放及び筒内燃料噴射装置によるメイン噴射の時期の進角化のいずれか一方を行うように構成してもよい。
【0053】
また、上記実施の形態では、トラックの走行状態を検出する走行状態検出センサとしてアクセルセンサを挙げたが、アクセルセンサに加えてトラックの車速を検出する車速センサを用いてもよい。
また、上記実施の形態では、添加用インジェクタを筒内燃料噴射装置のコモンレールに接続したが、筒内燃料噴射装置のフィードポンプの吐出口に接続してもよい。
更に、上記実施の形態では、触媒温度を入口側温度センサ及び出口側温度センサの各検出出力(触媒入口温度及び触媒出口温度)に基づいて推定したが、触媒温度を入口側温度センサ又は出口側温度センサのいずれか一方の検出出力(触媒入口温度又は触媒出口温度のいずれか一方)に基づいて推定してもよい。
【0060】
【発明の効果】
以上述べたように、本発明によれば、排気通路に設けられた触媒が排ガス中のNOxを吸蔵しかつ排ガス中の酸素濃度が低下したときに上記吸蔵したNOxを放出し、ディーゼルエンジンをバイパスするEGRパイプにEGRバルブを設け、更にコントローラが触媒の再生開始時期を検出する再生開始検出センサの検出出力に基づいてEGRバルブを制御するように構成したので、エンジンの通常の運転時、即ちエンジン内の混合気の空燃比がリーン状態のときには、触媒が排ガス中のNOをNO2に酸化しNOxとして効率良く吸蔵し、触媒によるNOx吸蔵量が所定値に達したときには、コントローラがEGRバルブを開くので、排ガス中のO2濃度を低下させるとともに排ガス中のHC,CO,CO2又はH2の濃度を増加させることができる。この結果、触媒での還元反応が促進され、触媒に吸蔵されたNOxを無害のN2や水等に変換して大気に排出し、触媒を再生することができる。
【0061】
また触媒より排気上流側の排気通路に、触媒に向って軽油を噴射可能な軽油添加手段を接続し、コントローラが再生開始検出センサの検出出力に基づいてEGRバルブ及び軽油添加手段を制御するように構成すれば、触媒の再生時に上記EGRバルブのみを制御する場合或いはEGRバルブと排気絞り弁又は吸気絞り弁とを制御する場合より更に排ガス中のO2濃度を低下させるとともにHC,CO,CO2又はH2の濃度を増加させることができる。この結果、更に効率良く触媒を再生することができる。
【0063】
た軽油添加手段の添加用インジェクタが筒内燃料噴射装置のコモンレール又はフィードポンプに接続し、コントローラが添加用インジェクタを制御することにより添加用インジェクタから軽油を噴射するように構成すれば、触媒の再生時に排気通路に噴射される軽油を十分に霧化することができるので、排気通路内の排ガス中のHCの濃度を高めた状態にすることができる。
た触媒の再生時間を0.1〜秒とすれば、触媒の再生完了時期を確実に検出することができるので、再び触媒により排ガス中のNOxを効率良く吸蔵することができる。
【図面の簡単な説明】
【図1】参考形態の排ガス浄化装置を示す構成図。
【図2】 その排ガス浄化装置の制御を示すブロック線図。
【図3】 エンジン回転速度及びアクセル開度の変化に伴って変化するエンジンからのNOx排出量を示すNOx排出量マップ。
【図4】 触媒によるNOx吸蔵時,触媒の再生時及び触媒再生禁止解除時のEGRバルブの開度等を示す制御マップ。
【図5】 その排ガス浄化装置の動作を示すフローチャート。
【図6】参考形態を示す図1に対応する構成図。
【図7】 触媒によるNOx吸蔵時,触媒の再生時及び触媒再生禁止解除時のEGRバルブの開度等を示す制御マップ。
【図8】 その排ガス浄化装置の動作を示すフローチャート。
【図9】参考形態を示す図1に対応する構成図。
【図10】 触媒によるNOx吸蔵時,触媒の再生時及び触媒再生禁止解除時のEGRバルブの開度等を示す制御マップ。
【図11】 その排ガス浄化装置の動作を示すフローチャート。
【図12】参考形態を示す図1に対応する構成図。
【図13】 触媒によるNOx吸蔵時,触媒の再生時及び触媒再生禁止解除時のEGRバルブの開度等を示す制御マップ。
【図14】 その排ガス浄化装置の動作を示すフローチャート。
図15】 本発明の実施形態を示す図1に対応する構成図。
図16図15のD部拡大断面図。
図17】 その軽油添加手段の添加用インジェクタの噴孔を含む要部拡大斜視図。
【符号の説明】
11 ディーゼルエンジン
2 排気管(排気通路)
13 触媒
14 EGRパイプ
16 EGRバルブ
8 吸気管(吸気通路)
21 再生開始検出センサ
2 コントローラ
71 軽油添加手段
2 軽油
51 筒内燃料噴射装置
51a 筒内インジェクタ
51b コモンレール
51c フィードポンプ
1a 添加用インジェクタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for purifying exhaust gas discharged from a diesel engine. More specifically, the present invention relates to an apparatus that reduces the emission of NOx in exhaust gas to the atmosphere.
[0002]
[Prior art]
Conventionally, as this type of exhaust gas purifying apparatus, a NOx reduction catalyst housed in a catalytic converter is provided in an exhaust pipe of a diesel engine, and a reducing agent supply means for supplying a reducing agent to the exhaust upstream side of the NOx reduction catalyst is provided. Furthermore, there is disclosed a diesel engine exhaust gas purification device in which a controller controls the above-mentioned reducing agent supply means in accordance with the operating condition of the engine (Japanese Patent Laid-Open No. 5-302509). In this apparatus, a reducing agent supply means is connected to an exhaust pipe or a catalytic converter via a reducing agent feed nozzle, a reducing agent feed pipe and a reducing agent feed pump, and a reducing agent feed pipe is provided in the reducing agent feed pipe. A reducing agent flow rate adjustment valve capable of adjusting the supply amount to the reducing agent feed nozzle, an air tank connected to the reducing agent feed nozzle via an air feed pipe, and a reducing agent feed nozzle for compressed air provided in the air feed pipe And an air flow rate adjusting valve capable of adjusting the supply amount of the air. Examples of the reducing agent include light oil and engine oil. The controller is specifically configured to control the reducing agent feed pump, the reducing agent flow rate adjusting valve, and the air flow rate adjusting valve in accordance with the engine speed, the engine load, the exhaust gas temperature on the catalyst inlet side, and the oxygen concentration in the exhaust gas. The
[0003]
In the exhaust gas purification apparatus for a diesel engine configured in this way, an optimal amount of reducing agent according to the operating condition of the engine is finely atomized by compressed air and supplied to the exhaust gas. As a result, the utilization rate of the reducing agent can be improved, and NOx contained in the exhaust gas can be efficiently reduced, so that the consumption of the reducing agent can be reduced. Further, since the temperature reduction of the exhaust gas is suppressed and the reaction of the NOx reduction catalyst is sufficiently maintained, the NOx purification rate can be improved, and NOx can be treated with the catalyst even if the exhaust gas contains a large amount of oxygen. It has become.
[0004]
[Problems to be solved by the invention]
However, in the conventional exhaust gas purifying apparatus for diesel engines disclosed in Japanese Patent Laid-Open No. 5-302509, since a large amount of oxygen is present in the exhaust gas of the engine, when light oil is supplied as a reducing agent, the light oil becomes NOx. Instead, it reacts with oxygen in the exhaust gas. For this reason, even if a relatively large amount of reducing agent is supplied to the NOx reduction catalyst, there is a problem that the NOx reduction efficiency at the catalyst, that is, the NOx reduction rate is still low.
[0005]
A first object of the present invention is to provide an exhaust gas purifying apparatus capable of reducing the amount of reducing agent consumed by a NOx reduction catalyst and reducing NOx with high efficiency.
The second object of the present invention is to sufficiently atomize the light oil injected into the cylinder at the time of regeneration of the catalyst, thereby generating an optimum reducing agent for the NOx reduction catalyst in the cylinder, and using this reducing agent as NOx. An object of the present invention is to provide an exhaust gas purification device that can be supplied to a reduction catalyst.
The third object of the present invention is to sufficiently atomize the light oil injected into the exhaust passage at the time of regeneration of the catalyst, so that the air-fuel ratio of the exhaust gas in the exhaust passage can be surely made rich in the reducing agent. An object is to provide an exhaust gas purification device.
A fourth object of the present invention is to provide an exhaust gas purifying apparatus capable of reliably detecting the catalyst regeneration start timing and regeneration completion timing.
A fifth object of the present invention is to provide an exhaust gas purifying device capable of reducing NOx in exhaust gas even when the regeneration prohibition state of the catalyst continues for a predetermined time or more after reaching the regeneration start time of the catalyst. It is in.
[0006]
[Means for Solving the Problems]
  The invention according to claim 115 to 17As shown, the NOx in the exhaust gas that is provided in the exhaust passage 12 of the diesel engine 11 and flows into the exhaust passage 12 is occluded, and HC, CO, CO in the exhaust gas2Or H2EGR that adjusts the flow rate of exhaust gas that is provided in an EGR pipe 14 that bypasses the diesel engine 11 and connects the exhaust passage 12 and the intake passage 18 by bypassing the diesel engine 11 and that passes through the EGR pipe 14. A valve 16;A light oil adding means 71 connected to the exhaust passage 12 upstream of the catalyst 13 and capable of injecting light oil 42 toward the catalyst 13;A regeneration start detection sensor 21 that detects the regeneration start timing of the catalyst 13 and an EGR valve 16 based on the detection output of the regeneration start detection sensor 21.And light oil adding means 71An exhaust gas purifying apparatus comprising a controller 22 for controllingThus, the light oil adding means 71 is inserted into the exhaust passage 12 and has an addition injector 71a capable of injecting the light oil 42 toward the catalyst 13, and the pin 71e is idled in the nozzle hole 71d of the nozzle portion 71c of the addition injector 71a. A plurality of spiral grooves 71f are formed on the inner peripheral surface of the injection hole 71d, the addition injector 71a is connected to the common rail 51b or the feed pump 51c of the in-cylinder fuel injection device 51, and the controller 22 inserts the injection injector 71a. By controlling the addition from the injector 71a to the light oil 42 ) Is configured to be injected.
  In the exhaust gas purifying apparatus according to the first aspect, when the engine 11 is operated normally, that is, when the air-fuel ratio of the air-fuel mixture in the engine 11 is in a lean state, the catalyst 13 changes NO in the exhaust gas to NO.2When the regeneration start detection sensor 21 detects that the NOx occlusion amount by the catalyst 13 has reached a predetermined value, the controller 22 sets the EGR valve 16 to a predetermined value based on the detection output of the sensor 21. Open at an opening of 0, O in exhaust gas2HC, CO, CO in exhaust gas while reducing concentration2Or H2Increase the concentration of. As a result, the reduction reaction in the catalyst 13 is promoted, and NOx occluded in the catalyst 13 is harmless N2The catalyst 13 is regenerated by converting it into water or the like and discharging it to the atmosphere.Further, when the catalyst 13 is regenerated, the controller 22 opens the EGR valve 16 at a predetermined opening and injects the light oil 42 from the light oil adding means 41. 2 HC, CO, CO in exhaust gas while reducing concentration 2 Or H 2 The concentration of can be increased. Furthermore, since the light oil 42 injected into the exhaust passage 12 during regeneration of the catalyst 13 can be sufficiently atomized, the concentration of HC in the exhaust gas in the exhaust passage 12 can be increased.
[0013]
ContractClaim2The invention according to claim1Further, the catalyst regeneration time is 0.1 to2It is characterized by seconds.
  ThisofClaim2In the exhaust gas purification apparatus described in the above, the regeneration completion time of the catalyst 13 isPredictTherefore, after the predetermined time has elapsed, it can be reliably detected, so that the NOx in the exhaust gas can be efficiently occluded by the catalyst 13 again.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  Next, the present inventionThe fruitThe form of applicationAlong with the reference formExplain based on the drawingsThe
  <First Reference Form>
  As shown in FIG. 1, an exhaust gas purifying device for purifying exhaust gas discharged from a diesel engine 11 of a truck is provided with a catalyst 13 provided in an exhaust pipe 12, an EGR valve 16 provided in an EGR pipe 14, and an exhaust pipe 12. Based on the exhaust throttle valve 17 provided in the engine, the intake throttle valve 19 provided in the intake pipe 18, the regeneration start detection sensor 21 for detecting the regeneration start timing of the catalyst 13, and the detection output of the regeneration start detection sensor 21. A controller 22 for controlling the EGR valve 16, the exhaust throttle valve 17, and the intake throttle valve 19. The catalyst 13 occludes NOx in the exhaust gas flowing into the exhaust pipe 12, and HC, CO, CO in the exhaust gas.2Or H2This is a so-called NOx occlusion reduction type catalyst that regenerates the occluded NOx when the amount of NOx is increased. The catalyst 13 is accommodated in a case 23 provided in the middle of the exhaust pipe 12.
[0020]
Although not shown, the catalyst 13 has a monolithic carrier (material: cordierite) in which a grid-like (honeycomb-like) passage is formed in the exhaust gas flow direction, and is formed on the monolithic carrier and carries a noble metal and a NOx storage agent. And a coat layer. Examples of the noble metal include Pt, and examples of the NOx storage agent include alkali metals such as Li, Na, K, and Cs, alkaline earth metals such as Mg, Ca, and Ba, Y, La, Ce, Pr, Nd, and Eu. , Gd, Dy (other than Y, lanthanoid metal) and the like. The NOx storage agent is supported by 2 to 20% by weight, preferably 5 to 10% by weight, based on the total weight of the catalyst. An example of the coat layer is alumina.
[0021]
The EGR pipe 14 bypasses the engine 11 and connects the exhaust pipe 12 and the intake pipe 18, and the EGR valve 16 adjusts the flow rate of the exhaust gas that passes through the EGR pipe 14 and is recirculated from the exhaust pipe 12 to the intake pipe 18. Configured. Although the EGR valve 16 is not shown, an electric valve that adjusts the opening degree of the EGR valve 16 by driving a valve body by a motor is used, but an air-driven valve or the like may be used. Reference numeral 26 in FIG. 1 is an EGR cooler that cools the exhaust gas (EGR gas) recirculated to the intake pipe 18.
[0022]
The exhaust throttle valve 17 is provided in the exhaust pipe 12 on the exhaust downstream side of the connection portion of the EGR pipe 14 to the exhaust pipe 12 and on the exhaust upstream side of the catalyst 13 so that the flow rate of the exhaust gas flowing through the exhaust pipe 12 can be adjusted. Is done. The intake throttle valve 19 is provided in the intake pipe 18 upstream of the connection portion of the EGR pipe 14 to the intake pipe 18 so that the flow rate of the intake air flowing through the intake pipe 18 can be adjusted. The exhaust throttle valve 17 is configured to increase the amount of exhaust gas recirculated to the intake pipe 18 through the EGR pipe 14 by restricting the exhaust pipe 12 during regeneration of the catalyst 13. Further, the intake throttle valve 19 is configured to reduce the oxygen amount or oxygen concentration of the air-fuel mixture supplied to the cylinder 11a by restricting the intake pipe 18 during regeneration of the catalyst 13.
[0023]
  The reproduction start detection sensor 21referenceIn this embodiment, the accelerator sensor 21a detects the amount of depression of the accelerator pedal, and the rotation sensor 21b detects the rotational speed of the engine 11. The exhaust pipe 12 on the exhaust downstream side of the catalyst 13 has an outlet side O for detecting the oxygen concentration contained in the exhaust gas that has passed through the catalyst 13.2A sensor 31b is provided, and the exhaust pipe 12 upstream of the catalyst 13 has an inlet side O for detecting the oxygen concentration contained in the exhaust gas before passing through the catalyst 13.2A sensor 31a is provided. Entrance side O2Sensor and outlet side O2A regeneration completion detection sensor 31 is configured by the sensors. Since oxygen on the catalyst 13 is used as the catalyst 13 is regenerated, the oxygen concentration in the exhaust gas that has passed through the catalyst 13 gradually decreases, and when the oxygen concentration reaches about 1%, regeneration of the catalyst 13 is almost completed. Can be estimated.
[0024]
  A catalyst temperature sensor 32 that detects the temperature of the catalyst 13 is inserted into the case 23. The catalyst temperature sensor 32 includes an inlet side temperature sensor 32a inserted into the case 23 upstream of the catalyst 13 and an outlet side temperature sensor 32b inserted into the case 23 downstream of the catalyst 13. The catalyst temperature is estimated from the average value of the detection outputs 32a and 32b. The reason for estimating the catalyst temperature is to regenerate the catalyst 13 within a temperature range (200 to 450 ° C.) in which the catalyst 13 can be efficiently regenerated, that is, a temperature at which the catalyst can be regenerated. The driving state detection sensor 33 for detecting the driving state of the truckreferenceIn this embodiment, the accelerator sensor 21a is used to detect whether the truck is in an accelerating state, a steady running state, or a decelerating state based on the rate of change of the accelerator sensor 21a with respect to time. Further, reference numeral 34 in FIG. 1 denotes an exhaust gas temperature sensor for detecting the temperature of the exhaust gas immediately after being discharged from the engine 11.
[0025]
As shown in FIG. 2, the accelerator sensor 21a, the rotation sensor 21b, the inlet side O2Sensor 31a, outlet side O2The detection outputs of the sensor 31b, the inlet side temperature sensor 32a, the outlet side temperature sensor 32b, the running state detection sensor 33, and the exhaust gas temperature sensor 34 are connected to the control input of the CPU 22a of the controller 22 via the I / O port 22b. Are connected to the EGR valve 16, the exhaust throttle valve 17, and the intake throttle valve 19 through the I / O port 22c. Further, a memory 37 is connected to the CPU 22a, and as shown in FIG. 4, the opening of the EGR valve 16 and the exhaust throttle valve 17 when the NOx is occluded by the catalyst, when the catalyst is regenerated, and when the catalyst regeneration prohibition is canceled are shown. Are stored and control maps A, B and C (maps indicating the optimum opening degree of the EGR valve 16 and the like when the engine speed and the engine load change) are stored. Further, as shown in FIG. 3, the memory 37 stores a NOx emission map indicating NOx emission from the engine 11 that changes with changes in the engine speed and the accelerator pedal depression amount (accelerator opening). The In addition, the code | symbol 38 of FIG. 1 is a muffler.
[0026]
The operation of the exhaust gas purification apparatus configured as described above will be described with reference to the flowchart of FIG.
First, the controller 22 takes in the rotational speed of the engine 11 and the amount of depression of the accelerator pedal (accelerator opening) based on the detection outputs of the rotation sensor 21b and the accelerator sensor 21a. Next, the controller 22 calculates the NOx emission amount of the engine 11 by applying the engine rotation speed and the accelerator opening to the NOx emission amount map (FIG. 3), and thereby accumulates the NOx occlusion amount occluded in the catalyst 13. Next, the controller 22 calculates a change rate Y of the accelerator opening (a change amount of the accelerator opening per unit time). For example, the accelerator opening exceeds a predetermined value (for example, 70% or more), and the change rate Y is predetermined. Rate of change Y0(For example, when the accelerator opening changes in the direction of increasing by 5% or more per second), it is determined that the truck is in an acceleration state, and the accelerator opening and its change rate Y are When it is out of the above range, it is determined that the truck is in a steady running or decelerating state.
[0027]
The truck is in a steady running or decelerating state, and the NOx occlusion amount X of the catalyst 13 is a predetermined amount X0If it is (for example, 70%) or less, the controller 22 takes in the control map A at the time of NOx occlusion by the catalyst of FIG. 4 and controls the EGR valve 16 and the like according to this control map A. That is, the controller 22 fully closes the EGR valve 16 and fully opens the exhaust throttle valve 17 and the intake throttle valve 19. As a result, control during normal operation is performed, and accumulation of the NOx occlusion amount is continued. During this normal operation (NOx occlusion), the air-fuel ratio of the air-fuel mixture in the cylinder 11a is high and lean, that is, the excess air ratio (actual supply air amount / theoretical air amount necessary for light oil combustion). Is 2 or more. If, for example, Ba is used as the NOx occluding agent supported on the coating layer of the catalyst 13, NOx discharged from the engine 11 is converted into O in the exhaust gas at the catalyst 13.2And BaO, BaCO in the catalyst 13ThreeReacts with [Ba (NOThree)2] Is generated and stored in this state in the catalyst 13. For this reason, after the exhaust gas on the catalyst inlet side having a high NOx concentration passes through the catalyst, the NOx concentration becomes extremely low and is discharged to the catalyst outlet side, and NOx emission into the atmosphere can be reduced.
[0028]
On the other hand, the NOx occlusion amount X of the catalyst 13 is a predetermined amount X.0If it exceeds (for example, 70%), the controller 22 determines that the catalyst 13 has reached the regeneration timing, and each detection output T of the inlet side temperature sensor 32a and the outlet side temperature sensor 32b of the catalyst temperature sensor 32 is detected.1, T2Then, the average value of the detection outputs of these temperature sensors 32a and 32b ((T1+ T2) / 2) is estimated as the catalyst temperature Tc. This catalyst temperature Tc is the catalyst regeneration lower limit temperature T.0When the temperature exceeds (for example, 200 ° C.), the controller 22 takes in the control map B at the time of catalyst regeneration shown in FIG. That is, the controller 22 opens the EGR valve 16 with a predetermined opening degree, and closes the exhaust throttle valve 17 and the intake throttle valve 19 with a predetermined closing degree. As a result, the oxygen concentration in the exhaust gas decreases and HC, CO, CO2Or H2As the reducing agent increases, first, [Ba (NOThree)2] Reacts with the reducing agent in the exhaust gas to react with N2The catalyst 13 functions as a highly selective reduction catalyst, and the NO2Reacts with CO and HC in exhaust gas, harmless N2, CO2, H2O is produced and discharged to the atmosphere. As a result, almost all of CO and HC can be effectively utilized for catalyst regeneration without being affected by oxygen in the exhaust gas, so that the catalyst 13 can be efficiently regenerated.
[0029]
The controller 22 controls the inlet side O during regeneration of the catalyst 13.2Sensor 31a and outlet side O2Based on each detection output of the sensor 31b, the oxygen concentration in the exhaust gas before passing through the catalyst 13 and after passing through the catalyst 13 is expressed as S.1, S2Each uptake, oxygen concentration S1, S2Difference is not less than a predetermined value and the oxygen concentration S2Is the predetermined concentration S0When it becomes less than (for example, 1%), it is determined that regeneration of the catalyst 13 is completed. After the catalyst regeneration is completed, the controller 22 initializes the integrated value of the NOx occlusion amount, and then takes in the control map A when the NOx occlusion is performed by the catalyst shown in FIG. Control.
[0030]
The track is in an acceleration state, that is, the accelerator opening is equal to or greater than a predetermined value, and the change rate Y is a predetermined change rate Y.0The controller 22 determines that the temperature exceeds the catalyst regeneration temperature, and the catalyst temperature Tc is lower than the catalyst regeneration lower limit temperature T.0If higher, the controller 22 takes in the control map B during catalyst regeneration shown in FIG. 4 and controls the EGR valve 16 and the like based on the control map B. Since a large amount of light oil is injected into the cylinder 11a during the acceleration of the truck, the oxygen concentration in the exhaust gas decreases and HC, CO, CO2, H2Thus, the catalyst 13 can be efficiently regenerated. The controller 22 calculates the accelerator opening and its rate of change Y during regeneration of the catalyst 13, and the rate of change Y of the accelerator opening is a predetermined rate of change Y.0After the regeneration of the catalyst 13 is stopped at the following time, the control map A at the time of NOx occlusion by the catalyst of FIG. 4 is taken, and the opening degree of the EGR valve 16 and the like are controlled based on this control map A.
[0031]
Further, the NOx occlusion amount X of the catalyst 13 is a predetermined amount X.0Even if it is determined that the controller 22 has reached the catalyst regeneration timing (for example, 70%), the catalyst temperature Tc is equal to the catalyst regeneration lower limit temperature T.0When the temperature is equal to or lower than (eg, 200 ° C.), the controller 22 prohibits the regeneration of the catalyst 13 and the regeneration prohibiting time H0Is accumulated. For example, if the regeneration prohibition time is 5 minutes or less, the estimation of the catalyst temperature Tc is repeated, and if it exceeds 5 minutes, it is determined that the catalyst 13 cannot effectively store NOx in the exhaust gas. The control map C is taken in, and the EGR valve 16 is controlled according to the control map C. That is, since the controller 22 opens the EGR valve 16 at a predetermined opening, the catalyst 13 can be regenerated. The completion of regeneration of the catalyst 13 is similar to the above in the inlet side O.2Sensor 31a and outlet side O2A determination is made based on each detection output of the sensor 31b, that is, the oxygen concentration S before and after the catalyst 13.1, S2Difference is not less than a predetermined value and the oxygen concentration S2Is the predetermined concentration S0When it becomes less than (for example, 1%), it is determined that regeneration of the catalyst 13 is completed. After the catalyst regeneration is completed, the controller 22 initializes the integrated value of the NOx occlusion amount, and then takes in the control map A when the NOx occlusion is performed by the catalyst shown in FIG. Control.
[0032]
Further, since the combustion of light oil in the engine 11 becomes inactive when the catalyst 13 is regenerated, the NOx concentration on the catalyst inlet side decreases, and the catalyst 13 functions as a reduction catalyst, so the NOx concentration on the catalyst outlet side is Decreases rapidly. Thus, the NOx in the exhaust gas can be efficiently stored in the catalyst 13 and the NOx stored in the catalyst 13 is harmless N2It is possible to efficiently regenerate the catalyst 13 in a short time by converting it to water or the like.
[0033]
  <Second Reference Form>
  6 to 8Is the first2referenceThe form of is shown. 6, the same reference numerals as those in FIG. 1 denote the same parts.The
  thisreferenceIn this embodiment, the light oil adding means 41 is connected to the exhaust pipe 12 upstream of the catalyst 13, and the controller 22 detects the EGR valve 16, the exhaust throttle valve 17, and the intake throttle valve 19 based on the detection output of the regeneration start detection sensor 21. And it is comprised so that the light oil addition means 41 may be controlled. The light oil addition means 41 includes an addition injection nozzle 41a that is inserted into the exhaust pipe 12 and can inject the light oil 42 toward the catalyst 13, and an addition injection pump 41b that pumps the light oil 42 to the addition injection nozzle 41a. The addition injection nozzle 41a is connected to the discharge port of the addition injection pump 41b via the addition discharge pipe 41c, and the suction port of the addition injection pump 41b is connected to the fuel tank 43 via the addition suction pipe 41d. Is done. Light oil 42 is stored in the fuel tank 43.
[0034]
  The control input of the controller 22 includes an accelerator sensor 21a, a rotation sensor 21b, an inlet side O2Sensor 31a, outlet side O2The detection outputs of the sensor 31b, the inlet side temperature sensor 32a, the outlet side temperature sensor 32b, the running state detection sensor 33, and the exhaust gas temperature sensor 34 are respectively connected, and the control output of the controller 22 is the EGR valve 16, the exhaust throttle valve 17, the intake air The throttle valve 19 and the addition injection pump 41b are connected to each other. As shown in FIG. 7, the memory 37 stores the opening degree of the EGR valve 16, the degree of closing of the exhaust throttle valve 17, and the intake throttle valve 19 when the NOx is occluded by the catalyst, when the catalyst is regenerated, and when the catalyst regeneration prohibition is canceled. The control maps A, B, and C of the degree of closing and the amount of light oil added to the exhaust pipe 12 (maps indicating the optimum opening degree of the EGR valve 16 when the engine speed and the engine load change) are stored. 1st other than the abovereferenceThe configuration is the same as that.
[0035]
  The operation of the exhaust gas purification apparatus configured as described above will be described with reference to the flowchart of FIG.
  NOx occlusion amount X by the catalyst 13 is a predetermined amount X0The controller 22 determines that the catalyst 13 has reached the regeneration time, and the catalyst temperature Tc is the catalyst regeneration lower limit temperature T.0If the catalyst can be regenerated beyond this, the controller 22 takes in the control map B at the time of catalyst regeneration shown in FIG. 7 and controls the EGR valve 16 and the like based on the control map B. That is, the controller 22 opens the EGR valve 16 at a predetermined opening, closes the exhaust throttle valve 17 and the intake throttle valve 19 respectively, and further operates the addition injection pump 41b of the light oil addition means 41 to operate the exhaust pipe. 12 is added with light oil 42. As a result, the oxygen concentration in the exhaust gas decreases and HC, CO, CO in the exhaust gas.2Or H2Is the firstreferenceIt increases further as a reducing agent than the form of. As a result, first [Ba (NOThree)2] Reacts with the reducing agent in the exhaust gas to react with N2The catalyst 13 functions as a highly selective reduction catalyst, and the NO2Reacts with CO and HC in exhaust gas, harmless N2, CO2, H2Since O is generated and discharged to the atmosphere, almost all CO and HC can be effectively utilized for catalyst regeneration without being affected by oxygen in the exhaust gas. Operation other than the above is the firstreferenceSince it is substantially the same as the embodiment of FIG.
[0036]
  <Third Reference Form>
  9 to 11Is the firstThreereferenceThe form of is shown. 9, the same reference numerals as those in FIG. 1 denote the same parts.The
  thisreferenceIn this embodiment, an in-cylinder fuel injection device 51 that can change either or both of the injection timing and the injection amount of the light oil 42 injected into the cylinder 11a is used. The in-cylinder fuel injection device 51 has an in-cylinder injector 51a whose front end faces the cylinder 11a and can inject the light oil 42 into the cylinder 11a, a common rail 51b that accumulates the light oil 42 inside and pressure-feeds the light oil to the injector 51a, and the common rail A feed pump 51c for supplying light oil 42 to 51b.
[0037]
The in-cylinder injector 51a is configured such that the injection amount and injection timing of the light oil 42 can be adjusted by a solenoid valve (not shown) built in the injector 51a. The in-cylinder injector 51a is connected to the common rail 51b through the pressure feed pipe 51d, the common rail 51b is connected to the discharge port of the feed pump 51c through the in-cylinder discharge pipe 51e, and the suction port of the feed pump 51c is connected to the inside of the cylinder. The fuel tank 43 is connected in communication via the suction pipe 51f. When the catalyst 13 is regenerated, the in-cylinder fuel injection device 51 advances the main injection timing and performs post-injection after the main injection, so that both the injection timing and the injection amount of the light oil 42 into the cylinder 11a can be achieved. Configured to be changed. Reference numeral 52 in FIG. 9 is a pressure sensor for detecting the pressure (fuel pressure) of the light oil 42 in the common rail 51b.
[0038]
  The control input of the controller 22 includes an accelerator sensor 21a, a rotation sensor 21b, an inlet side O2Sensor 31a, outlet side O2Sensor 31b, inlet side temperature sensor 32a, outlet side temperature sensor 32b, running state detection sensor 33, exhaust gas temperature sensor 34, and pressure sensor 52 are connected to each other. Control outputs of controller 22 are EGR valve 16, exhaust throttle valve. 17, intake throttle valve 19, in-cylinder injector 51a, and feed pump 51c are connected to each other. In addition, as shown in FIG. 10, the memory 37 stores the opening degree of the EGR valve 16, the exhaust throttle valve closing degree, the intake throttle valve closing degree at the time of NOx occlusion by the catalyst, at the time of catalyst regeneration, and at the time of releasing the catalyst regeneration prohibition. Control map A, B, C of main injection timing, pilot injection presence / absence / post injection injection timing / timing (map showing optimum EGR valve 16 opening degree when engine speed and engine load change) ) Is stored. 1st other than the abovereferenceThe configuration is the same as that.
[0039]
The operation of the thus configured exhaust gas purification apparatus will be described based on the flowchart of FIG.
The truck is in a steady running or decelerating state, and the NOx occlusion amount X of the catalyst 13 is a predetermined amount X0If it is (for example, 70%) or less, the controller 22 takes in the control map A at the time of NOx occlusion by the catalyst of FIG. 10 and controls the EGR valve 16 and the like according to this control map A. That is, the controller 22 fully closes the EGR valve 16, fully opens the exhaust throttle valve 17 and the intake throttle valve 19, performs main injection at a timing with the highest combustion efficiency, and further performs pilot injection. At this time, post injection is not performed. As a result, control during normal operation is performed, and NOx in the exhaust gas is occluded by the catalyst 13, so that NOx emission into the atmosphere can be reduced.
[0040]
  The truck is in a steady running or decelerating state, and the NOx occlusion amount X of the catalyst 13 is a predetermined amount X0(For example, 70%) and the catalyst temperature Tc is lower than the catalyst regeneration lower limit temperature T0When the temperature exceeds (for example, 200 ° C.), the control map B at the time of NOx occlusion by the catalyst of FIG. 10 is taken, and the EGR valve 16 and the like are controlled according to this control map B. That is, the controller 22 opens the EGR valve 16 with a predetermined opening, closes the exhaust throttle valve 17 and the intake throttle valve 19 with a predetermined close degree, and advances the main injection by a predetermined angle from the normal travel time. Further, the pilot injection is not performed, and the post injection is performed in a plurality of times after the top dead center of the piston 11b. As a result, the oxygen concentration in the exhaust gas decreases and HC, CO, CO in the exhaust gas.2Or H2Is the firstreferenceIt increases further as a reducing agent than the form of. As a result, almost all CO and HC can be effectively utilized for catalyst regeneration without being affected by oxygen in the exhaust gas.
[0041]
The track is in an accelerated state, and the catalyst temperature Tc is the catalyst regeneration lower limit temperature T.0If higher, the controller 22 takes in the control map B during catalyst regeneration shown in FIG. 10 and controls the EGR valve 16 and the like based on the control map B. Since a large amount of light oil 42 is injected into the cylinder 11a during the acceleration of the truck, the oxygen concentration in the exhaust gas decreases and HC, CO, CO2, H2Thus, the catalyst 13 can be efficiently regenerated.
[0042]
  Further, the NOx occlusion amount X of the catalyst 13 is a predetermined amount X.0Even if the controller 22 determines that the regeneration time of the catalyst 13 has been reached (for example, 70%), the catalyst temperature Tc is equal to the catalyst regeneration lower limit temperature T.0When the temperature is equal to or lower than (eg, 200 ° C.), the controller 22 prohibits the regeneration of the catalyst 13 and the regeneration prohibiting time H0Is accumulated. For example, if the regeneration prohibition time is 5 minutes or less, the estimation of the catalyst temperature Tc is repeated, and if it exceeds 5 minutes, it is determined that the catalyst 13 cannot effectively store NOx in the exhaust gas. The control map C is taken in, and the EGR valve 16 is controlled according to the control map C. That is, the controller 22 opens the EGR valve 16 at a predetermined opening, and advances the main injection by a predetermined angle from the normal travel time. At this time, pilot injection and post injection are not performed. As a result, the catalyst 13 can be regenerated. Operation other than the above is the firstreferenceSince it is substantially the same as the embodiment of FIG.
[0043]
  <Fourth Reference Form>
  12 to 14Is the firstFourreferenceThe form of is shown. 12, the same reference numerals as those in FIGS. 6 and 9 denote the same parts.The
  thisreferenceThe exhaust gas purification apparatus of the form of the secondreferenceIn the exhaust gas purification device of the formreferenceThis is a device incorporating the in-cylinder fuel injection device 19 of the form. That is, thisreferenceThe exhaust gas purifying apparatus of the form includes a catalyst 13, an EGR valve 16, an exhaust throttle valve 17, an intake throttle valve 19, a light oil addition means 41, and an in-cylinder fuel injection device 51, and the controller 22 detects regeneration start. Based on the detection output of the sensor 21, the EGR valve 16, the exhaust throttle valve 17, the intake throttle valve 19, the light oil adding means 41 and the in-cylinder fuel injection device 51 are controlled.
[0044]
  Accelerator sensor 21a, rotation sensor 21b, inlet side O2Sensor 31a, outlet side O2The detection outputs of the sensor 31b, the inlet side temperature sensor 32a, the outlet side temperature sensor 32b, the running state detection sensor 33, the exhaust gas temperature sensor 34, and the pressure sensor 36 are connected to the control input of the controller 22, and the control output of the controller 22 is EGR. Connected to the valve 16, the exhaust throttle valve 17, the intake throttle valve 19, the addition injection pump 41b, the in-cylinder injector 51a, and the feed pump 51c, respectively. As shown in FIG. 13, the memory 37 stores the opening degree of the EGR valve 16, the degree of closing of the exhaust throttle valve 17, and the closing of the intake throttle valve 19 when NOx is occluded by the catalyst, during catalyst regeneration, and when the catalyst regeneration prohibition is canceled. , Main injection timing, pilot injection presence / absence, post-injection presence / absence / timing and light oil addition amount to exhaust pipe 12 A, B, C (optimal when engine speed and engine load change) A map indicating the opening degree of the EGR valve 16 is stored. Other than the above, the second and thirdreferenceThe configuration is the same as that.
[0045]
The operation of the exhaust gas purification apparatus configured as described above will be described based on the flowchart of FIG.
The truck is in a steady running or decelerating state, and the NOx occlusion amount X of the catalyst 13 is a predetermined amount X0If it is (for example, 70%) or less, the controller 22 takes in the control map A at the time of NOx occlusion by the catalyst of FIG. 13 and controls the EGR valve 16 and the like according to this control map A. That is, the controller 22 fully closes the EGR valve 16, fully opens the exhaust throttle valve 17 and the intake throttle valve 18, performs main injection at the time when the combustion efficiency is highest, and further performs pilot injection. At this time, post injection and addition of light oil to the exhaust pipe 12 are not performed. As a result, control during normal operation is performed, and NOx in the exhaust gas is occluded by the catalyst 13, so that NOx emission into the atmosphere can be reduced.
[0046]
  The truck is in a steady running or decelerating state, and the NOx occlusion amount X of the catalyst 13 is a predetermined amount X0(For example, 70%) and the catalyst temperature Tc is lower than the catalyst regeneration lower limit temperature T0When the temperature exceeds (for example, 200 ° C.), the control map B at the time of NOx occlusion by the catalyst of FIG. 13 is taken, and the EGR valve 16 and the like are controlled according to this control map B. That is, the controller 22 opens the EGR valve 16 at a predetermined opening, closes the exhaust throttle valve 17 and the intake throttle valve 19 at a predetermined close degree, advances the main injection by a predetermined angle from the normal travel time, and further adds The injection pump 41b is operated to add light oil 42 to the exhaust pipe 12. Further, the pilot injection is not performed, and the post injection is performed in a plurality of times after the top dead center of the piston 11b. As a result, the oxygen concentration in the exhaust gas decreases and HC, CO, CO in the exhaust gas.2Or H2Is the firstreferenceIt increases further as a reducing agent than the form of. As a result, almost all CO and HC can be effectively utilized for catalyst regeneration without being affected by oxygen in the exhaust gas. Operations other than the above are the second and thirdreferenceSince it is substantially the same as the embodiment of FIG.
[0049]
  <Embodiment>
  FIG.~FIG.Is the present inventionThe fruitAn embodiment is shown.FIG.In FIG. 12, the same reference numerals as those in FIG.The
  In this embodiment, the light oil addition means 71 has an addition injector 71a capable of injecting light oil 42 toward the catalyst 13, and this addition injector 71a is connected to the common rail of the in-cylinder fuel injection device 51 via the communication pipe 71b. It is connected to 51b, and the controller 22 controls the injector 71a for addition, and it is comprised so that the light oil 42 may be injected from the injector 71a for addition (FIG.). The injector 71a for addition is configured such that the injection amount and the injection timing of the light oil 42 can be adjusted by a solenoid valve (not shown) built in the injector 71a. The addition injector 71a has a throttle-type nozzle portion 71c, and this nozzle portion 71c is inserted into the exhaust pipe 12 upstream of the catalyst 13 (see FIG.FIG.). A pin 71e is loosely inserted into the nozzle hole 71d of the nozzle portion 71c, and a plurality of spiral grooves 71f are formed on the inner peripheral surface of the nozzle hole 71d (see FIG.FIG.as well asFIG.). Since the injector 71a for addition is connected to the common rail 51b as described above, the first injector 71areferenceThe addition injection pump of the form is not required. Further, catalyst regeneration is performed for a preset time from the start of catalyst regeneration. For this reason, the inlet side O2Sensor and outlet side O2A sensor is unnecessary. The catalyst regeneration time should be as short as possible., 0. Set to 1-2 seconds. The catalyst regeneration time is limited to 0.1 to 180 seconds. If less than 0.1 seconds, the regeneration of the catalyst is not completed,2This is because if it exceeds 2 seconds, the amount of black smoke emitted increases. 4th except the abovereferenceThe configuration is the same as that.
[0050]
  In the exhaust gas purification apparatus configured as described above, the light oil 42 injected from the addition injector 71a during the regeneration of the catalyst 13 advances spirally along the inner surface of the exhaust pipe 12, so that it is instantly atomized and the exhaust gas is emptied. The fuel ratio can be quickly made rich, and HC, CO, H2Can be increased. As a result, the catalyst 13 functions as a reduction catalyst, and the catalyst 13 can be efficiently regenerated. Further, the controller 22 measures the catalyst regeneration time simultaneously with the start of regeneration of the catalyst 13, and determines that the catalyst regeneration has been completed after a lapse of a predetermined time (for example, 2 seconds), so the integrated value of the NOx occlusion amount is calculated after the lapse of the predetermined time. Initialization is performed, a map at the time of NOx occlusion by the catalyst is taken in, and the opening degree of the EGR valve 16 and the like are controlled based on this map. The operation other than the above is the fourthreferenceSince it is substantially the same as the embodiment of FIG.
[0052]
  The aboveRealIn the present embodiment, when the catalyst is regenerated, the in-cylinder fuel injection device advances the main injection timing and performs post-injection after the main injection, thereby reducing both the injection timing and the injection amount of light oil into the cylinder. Although changed, either or both of the injection timing and the injection amount of the light oil into the cylinder may be changed by performing either one of the advance timing of the main injection timing or the post injection.
  Also onRealIn the present embodiment, the diesel engine of the present invention is mounted on a truck. However, it may be mounted on a bus, a passenger car or other vehicle, a ship, a construction machine, or the like.
  Also onRealIn the present embodiment, when the catalyst regeneration prohibition state continues for a predetermined time or longer, the controller cancels the catalyst regeneration prohibition, and opens the EGR valve and advances the timing of main injection by the in-cylinder fuel injection device. Although it is configured to perform both, it may be configured to perform either one of the opening of the EGR valve and the advance of the timing of the main injection by the in-cylinder fuel injection device.
[0053]
  Also onRealIn the embodiment, the accelerator sensor is described as the traveling state detection sensor that detects the traveling state of the truck. However, a vehicle speed sensor that detects the vehicle speed of the truck may be used in addition to the accelerator sensor.
  Also onRealIn the embodiment, the injector for addition is connected to the common rail of the in-cylinder fuel injection device, but may be connected to the discharge port of the feed pump of the in-cylinder fuel injection device.
  Furthermore, aboveRealIn the present embodiment, the catalyst temperature is estimated based on the respective detection outputs (catalyst inlet temperature and catalyst outlet temperature) of the inlet side temperature sensor and the outlet side temperature sensor, but the catalyst temperature is determined by the inlet side temperature sensor or the outlet side temperature sensor. You may estimate based on any one detection output (one of catalyst inlet temperature or catalyst outlet temperature).
[0060]
【The invention's effect】
  As described above, according to the present invention, the catalyst provided in the exhaust passage occludes NOx in the exhaust gas and releases the occluded NOx when the oxygen concentration in the exhaust gas decreases, bypassing the diesel engine. Since the EGR valve is provided in the EGR pipe to be operated, and the controller controls the EGR valve based on the detection output of the regeneration start detection sensor for detecting the regeneration start timing of the catalyst. When the air-fuel ratio of the air-fuel mixture is lean, the catalyst converts NO in the exhaust gas to NO2When the NOx occlusion amount by the catalyst reaches a predetermined value, the controller opens the EGR valve.2HC, CO, CO in exhaust gas while reducing concentration2Or H2The concentration of can be increased. As a result, the reduction reaction in the catalyst is promoted, and NOx occluded in the catalyst is removed from harmless N2The catalyst can be regenerated by converting it to waterThe
[0061]
  Further, a light oil addition means capable of injecting light oil toward the catalyst is connected to the exhaust passage upstream of the catalyst, and the controller controls the EGR valve and the light oil addition means based on the detection output of the regeneration start detection sensor.RuWith this configuration, the OGR in the exhaust gas is further increased than when only the EGR valve is controlled during regeneration of the catalyst, or when the EGR valve and the exhaust throttle valve or the intake throttle valve are controlled.2While reducing the concentration, HC, CO, CO2Or H2The concentration of can be increased. As a result, the catalyst can be regenerated more efficiently.The
[0063]
  MaLightIf the injector for addition of the oil addition means is connected to the common rail or feed pump of the in-cylinder fuel injection device, and the controller controls the injector for addition to inject light oil from the injector for injection, the catalyst can be regenerated. Since the light oil injected into the exhaust passage can be sufficiently atomized, the concentration of HC in the exhaust gas in the exhaust passage can be increased.
  MaTouchThe regeneration time of the medium is 0.1 to2If it is set to second, the regeneration completion timing of the catalyst can be reliably detected, so that the NOx in the exhaust gas can be efficiently occluded again by the catalyst.
[Brief description of the drawings]
[Figure 1]First1referenceThe block diagram which shows the exhaust gas purification apparatus of a form.
FIG. 2 is a block diagram showing control of the exhaust gas purification device.
FIG. 3 is a NOx emission map showing NOx emission from the engine which changes with changes in engine speed and accelerator opening.
FIG. 4 is a control map showing the opening degree of the EGR valve and the like when NOx is occluded by the catalyst, when the catalyst is regenerated, and when the catalyst regeneration prohibition is canceled.
FIG. 5 is a flowchart showing the operation of the exhaust gas purifying apparatus.
[Fig. 6]First2referenceThe block diagram corresponding to FIG. 1 which shows a form.
FIG. 7 is a control map showing the opening degree of the EGR valve and the like when NOx is occluded by the catalyst, when the catalyst is regenerated, and when the catalyst regeneration prohibition is canceled.
FIG. 8 is a flowchart showing the operation of the exhaust gas purifying apparatus.
FIG. 9First3referenceThe block diagram corresponding to FIG. 1 which shows a form.
FIG. 10 is a control map showing the opening degree of the EGR valve and the like when NOx is occluded by the catalyst, when the catalyst is regenerated, and when the catalyst regeneration prohibition is canceled.
FIG. 11 is a flowchart showing the operation of the exhaust gas purifying apparatus.
FIG.First4referenceThe block diagram corresponding to FIG. 1 which shows a form.
FIG. 13 is a control map showing the opening degree of the EGR valve and the like when NOx is occluded by the catalyst, when the catalyst is regenerated, and when the catalyst regeneration prohibition is canceled.
FIG. 14 is a flowchart showing the operation of the exhaust gas purifying apparatus.
[FIG.The present inventionThe fruitThe block diagram corresponding to FIG. 1 which shows embodiment.
[FIG.]FIG.FIG.
[FIG.An enlarged perspective view of the main part including the injection hole of the injector for adding the light oilFigure.
[Explanation of symbols]
  11 Diesel engine
12 Exhaust pipe (exhaust passage)
  13 Catalyst
  14 EGR pipe
  16 EGR valve
18 Intake pipe (intake passage)
21  Playback start detection sensor
22 Controller
71  Light oil addition means
42 Light oil
  51 In-cylinder fuel injection device
  51a In-cylinder injector
  51b Common rail
  51c feed pump
71a Additive injector

Claims (2)

ディーゼルエンジン(11)の排気通路(12)に設けられ前記排気通路(12)に流入する排ガス中のNOxを吸蔵しかつ前記排ガス中のHC,CO,CO2又はH2が増加したときに再生処理される触媒(13)と、
前記ディーゼルエンジン(11)をバイパスして前記排気通路(12)及び吸気通路(18)を接続するEGRパイプ(14)に設けられ前記EGRパイプ(14)を通過する排ガスの流量を調整するEGRバルブ(16)と、
前記触媒 (13) より排気上流側の排気通路 (12) に接続され前記触媒 (13) に向って軽油 (42) を噴射可能な軽油添加手段 (71) と、
前記触媒(13)の再生開始時期を検出する再生開始検出センサ(21)と、
前記再生開始検出センサ(21)の検出出力に基づいて前記EGRバルブ(16)及び前記軽油添加手段 (71)を制御するコントローラ(22)と
を備えた排ガス浄化装置であって、
前記軽油添加手段 (71) が排気通路 (12) に挿入され触媒 (13) に向って軽油 (42) を噴射可能な添加用インジェクタ (71a) を有し、
前記添加用インジェクタ (71a) のノズル部 (71c) の噴孔 (71d) にピン (71e) が遊挿され、
前記噴孔 (71d) の内周面に複数の螺旋溝 (71f) が形成され、
前記添加用インジェクタ (71a) が筒内燃料噴射装置 (51) のコモンレール (51b) 又はフィードポンプ (51c) に接続され、
コントローラ (22) が前記添加用インジェクタ (71a) を制御することにより前記添加用インジェクタ (71a) から軽油 (42) が噴射されるように構成された
ことを特徴とする排ガス浄化装置
It is provided in the exhaust passage (12) of the diesel engine (11), stores NOx in the exhaust gas flowing into the exhaust passage (12), and is regenerated when HC, CO, CO 2 or H 2 in the exhaust gas increases. A catalyst (13) to be treated;
An EGR valve that adjusts the flow rate of exhaust gas that is provided in an EGR pipe (14) that bypasses the diesel engine (11) and connects the exhaust passage (12) and the intake passage (18) and that passes through the EGR pipe (14). (16)
The catalyst jettable light oil addition means from being connected to the exhaust upstream side of the exhaust passage (12) toward said catalyst (13) gas oil (42) (13) (71),
A regeneration start detection sensor ( 21 ) for detecting the regeneration start time of the catalyst (13);
An exhaust gas purification apparatus comprising a controller (22) for controlling the EGR valve (16) and the light oil addition means (71) based on a detection output of the regeneration start detection sensor ( 21 ) ,
The light oil addition means (71) has an addition injector (71a) inserted into the exhaust passage (12) and capable of injecting light oil (42) toward the catalyst (13) ,
A pin (71e) is loosely inserted into the nozzle hole (71d) of the nozzle portion (71c) of the injector for addition (71a) ,
A plurality of spiral grooves (71f) are formed on the inner peripheral surface of the nozzle hole (71d) ,
The addition injector (71a) is connected to the common rail (51b) or feed pump (51c) of the in- cylinder fuel injection device (51) ,
The controller (22) is configured so that the light oil (42) is injected from the addition injector (71a) by controlling the addition injector (71a) .
An exhaust gas purification apparatus characterized by that .
触媒の再生時間が0.1〜秒である請求項1記載の排ガス浄化装置。Claim 1 Symbol placement of the exhaust gas purifying apparatus playing time of the catalyst is from 0.1 to 2 seconds.
JP16702699A 1999-06-14 1999-06-14 Exhaust gas purification device Expired - Fee Related JP3986208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16702699A JP3986208B2 (en) 1999-06-14 1999-06-14 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16702699A JP3986208B2 (en) 1999-06-14 1999-06-14 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2000356127A JP2000356127A (en) 2000-12-26
JP3986208B2 true JP3986208B2 (en) 2007-10-03

Family

ID=15842024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16702699A Expired - Fee Related JP3986208B2 (en) 1999-06-14 1999-06-14 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP3986208B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6681564B2 (en) * 2001-02-05 2004-01-27 Komatsu Ltd. Exhaust gas deNOx apparatus for engine
JP3767533B2 (en) * 2001-09-12 2006-04-19 三菱ふそうトラック・バス株式会社 Exhaust purification device
JP2005307769A (en) * 2004-04-19 2005-11-04 Hino Motors Ltd Exhaust emission control device
JP4267534B2 (en) 2004-07-23 2009-05-27 日野自動車株式会社 Abnormality detection method for exhaust purification system
JP4530778B2 (en) * 2004-09-17 2010-08-25 日野自動車株式会社 Method for adding reducing agent to NOx reduction catalyst
DE602005015897D1 (en) 2004-12-08 2009-09-17 Hino Motors Ltd EXHAUST EMISSION DEVICE
JP3901194B2 (en) * 2005-04-21 2007-04-04 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
JP4417878B2 (en) * 2005-05-16 2010-02-17 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
JP4748124B2 (en) * 2007-07-03 2011-08-17 トヨタ自動車株式会社 Control device for internal combustion engine
JP5811822B2 (en) 2011-12-12 2015-11-11 いすゞ自動車株式会社 Diesel engine exhaust gas purification method and exhaust gas purification system

Also Published As

Publication number Publication date
JP2000356127A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
US7963103B2 (en) Exhaust gas purification method and system
US8341943B2 (en) Exhaust gas purification method and exhaust gas purification system
US8104271B2 (en) Exhaust purification device and exhaust purification method of internal combustion engine
EP1176290B1 (en) Exhaust gas purification device for internal combustion engine
JP5056725B2 (en) Control device for internal combustion engine
JP3986208B2 (en) Exhaust gas purification device
JP2009013842A (en) Engine exhaust purification system
JP3628277B2 (en) Engine exhaust gas purification device
JP3552489B2 (en) Exhaust gas purification device for internal combustion engine
JP3525912B2 (en) Exhaust gas purification device for internal combustion engine
JP5151861B2 (en) Exhaust gas purification system and exhaust gas purification method
JP4661013B2 (en) Internal combustion engine
US8534048B2 (en) Exhaust purification system of internal combustion engine
JP4556364B2 (en) Exhaust gas purification device for internal combustion engine
JP2010159727A (en) Exhaust emission purifying apparatus for internal-combustion engine
JP4284919B2 (en) Exhaust gas purification device for internal combustion engine and control method thereof
JP2003269230A (en) Internal combustion engine
JP7024471B2 (en) Engine control
WO2005078252A1 (en) Engine exhaust emission control system
JP2010106750A (en) Exhaust emission control device for vehicle
JP3624812B2 (en) Exhaust gas purification device for internal combustion engine
JP4007059B2 (en) Exhaust gas purification device for internal combustion engine
JP3642159B2 (en) Exhaust gas purification device for internal combustion engine
JP2002038929A (en) Exhaust gas purification device for internal combustion engine
JP2009257235A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees