JP3984020B2 - 不揮発性半導体記憶装置 - Google Patents
不揮発性半導体記憶装置 Download PDFInfo
- Publication number
- JP3984020B2 JP3984020B2 JP2001324141A JP2001324141A JP3984020B2 JP 3984020 B2 JP3984020 B2 JP 3984020B2 JP 2001324141 A JP2001324141 A JP 2001324141A JP 2001324141 A JP2001324141 A JP 2001324141A JP 3984020 B2 JP3984020 B2 JP 3984020B2
- Authority
- JP
- Japan
- Prior art keywords
- gate electrode
- floating gate
- conductors
- insulator
- memory device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/41—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region of a memory region comprising a cell select transistor, e.g. NAND
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
- H10B41/42—Simultaneous manufacture of periphery and memory cells
- H10B41/43—Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor
- H10B41/48—Simultaneous manufacture of periphery and memory cells comprising only one type of peripheral transistor with a tunnel dielectric layer also being used as part of the peripheral transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/6891—Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/68—Floating-gate IGFETs
- H10D30/6891—Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
- H10D30/6894—Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode having one gate at least partly in a trench
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
【発明の属する技術分野】
本発明は、溝型素子分離領域、浮遊ゲートと制御ゲートを有する半導体装置に関し、特に、浮遊ゲートと制御ゲート間の容量結合によってセルを動作させる不揮発性メモリの製造方法に関するものである。
【0002】
【従来の技術】
不揮発性半導体記憶装置は不揮発性メモリセルで構成されている。
この不揮発性メモリセルは、浮遊ゲートと制御ゲートを有する。浮遊ゲートと制御ゲート間の容量結合により浮遊ゲートの電位を制御する。制御ゲートと浮遊ゲートの容量結合が大きい程、制御ゲートの電圧を低くする事ができる。容量結合を大きくするために、制御ゲートと浮遊ゲート間の対向面積を以下のように大きくする。浮遊ゲートは、第1層目の多結晶シリコン(Si)膜と第2層目の多結晶シリコンの2層構造を有する。第1層目の多結晶シリコン膜は、溝型素子分離領域と自己整合的に形成される。第2層目の多結晶シリコンは、溝型素子分離領域上に張り出すように形成される。第2層目の多結晶シリコンの上に絶縁膜が形成される。この絶縁膜の上に制御ゲートが形成される。
【0003】
しかしながら、このセル構造では、メモリセルの素子分離幅Wtとして、第2層目の多結晶シリコン同士を分離する為のスペースとリソグラフィ工程の時の合わせ余裕が、必要である。
【0004】
このセル構造では、浮遊ゲートと制御ゲート間の容量結合を大きくするために、浮遊ゲートの膜厚を厚くすることが有効である。浮遊ゲートの膜厚を厚くすると、セル間の浮遊ゲートの容量結合C2が大きくなる。容量結合C2が大きくなると、隣のセルのデータの状態によって、セルのスレシホールド電圧が変調を受けやすい問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、浮遊ゲートと制御ゲート間の容量を大きく維持したまま素子分離幅Wtを狭めることが可能な半導体装置を提供することにある。
【0006】
また、本発明は、浮遊ゲートと制御ゲート間の容量結合を大きくしても浮遊ゲート間容量が大きくなりにくく、セル間の電気的干渉を防ぐことができる半導体装置の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記問題点を解決するための本発明の特徴は、表面に溝を有する半導体基板と、その溝に埋め込まれ側面の上部が半導体基板の表面より高い第1と第2の絶縁体と、半導体基板の表面上に設けられ、一端が第1の絶縁体と接し、他端が第2の絶縁体と接する第3の絶縁膜と、第3の絶縁膜の表面上に設けられ、一端面が第1の絶縁体と接し、他端面が第2の絶縁体と接する第1の導電体と、第1の導電体の一端面の近傍に設けられる第2の導電体と、第1の導電体の他端面の近傍に設けられる第3の導電体と、第2の導電体の第1の側面と第3の導電体の第2の側面に接し、第1の導電体の上面と接する第4の絶縁膜と、第4の絶縁膜の上に設けられる第4の導電体とを有する半導体装置にある。
【0008】
【発明の実施の形態】
次に、図面を参照して、本発明の実施の形態について説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。また、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。
【0009】
(第1の実施の形態)図1(a)は本発明の第1の実施の形態に係る半導体装置の上面図である。図1(b)は図1(a)の半導体装置のI−I方向の断面図である。図2(a)は図1(a)の半導体装置のII−II方向の断面図である。図2(b)は図1(a)の半導体装置のIII−III方向の断面図である。
【0010】
本発明の第1の実施の形態に係る半導体装置は、以下の特徴を有する。半導体基板1は、表面に溝を有する。素子分離領域21乃至24は、その溝に埋め込まれる。素子分離領域21乃至24の側面が、基板1の表面より高い位置まで伸びている。トンネル酸化膜31乃至33が、基板1の表面上に設けられる。トンネル酸化膜31乃至33の両端が素子分離領域21乃至24と接している。
【0011】
トンネル酸化膜31乃至33の表面上に設けられ両端面が素子分離領域21乃至24と接している第1の導電体41乃至43と、第1の導電体41乃至43の表面上に設けられ第1の導電体の一方の端面の近傍に設けられ第1の側面が素子分離領域21乃至24と接している第2の導電体51、53、55と、第1の導電体41乃至43の表面上に設けられ第1の導電体の他方の端面の近傍に設けられ第1の側面が素子分離領域21乃至24と接している第3の導電体52、54、56とで構成される浮遊ゲート電極と、第2の導電体51、53、55と第3の導電体52、54、56の第2の側面と接し、第1の導電体41乃至43の表面と接する絶縁膜6と、絶縁膜6の上に設けられる制御ゲート7とで構成される。
【0012】
なお、以下の実施例では、電荷蓄積を担う電極(電荷蓄積領域)を、慣例に従い浮遊ゲート電極として示すが、用途に応じた保持時間、例えば、不揮発性メモリ用途では10年、揮発性メモリ用途では1秒(second)程度の時間だけ電荷保持を行える電極であればよい。
【0013】
半導体基板1の表面近傍で浮遊ゲート電極の下方以外の領域81乃至87の導電型は、他の領域の導電型と異なっている。さらに、図1(a)に示すように、溝型素子分離領域21乃至24を縦方向に複数平行に配置し、制御ゲート7と27を横方向に複数平行に配置することで、基板1上に不揮発性メモリセルを多数集積することができる。
【0014】
浮遊ゲート電極は、第1層目が第1の導電体41乃至43であり、第2層目が第2と第3の導電体51乃至56である2層構造になっている。第2と第3の導電体は、第1の導電体と電気的に接続しており、第1乃至第3の導電体が一体となって浮遊ゲート電極として機能する。
【0015】
溝型素子分離領域21乃至24と第1層目の浮遊ゲート電極層41乃至43のパターンは互いに反転パターンの関係にあり、溝型素子分離領域21乃至24によって第1層目の浮遊ゲート電極層41乃至43が自己整合的に分離されている。第2の浮遊ゲート電極層51乃至56は第1の浮遊ゲート電極41乃至43の端部において素子分離絶縁膜21乃至24の側面に側壁状に形成され、その側壁内面部分で制御ゲート7の下に凸の部分に対向している。
【0016】
浮遊ゲート42、53、54と制御ゲート7を有するフラッシュメモリにおいて、浮遊ゲート42、53、54と制御ゲート7間の容量結合を維持しながら微細化する為に、溝型素子分離領域22、23と、活性領域及び自己整合的に形成された第1の浮遊ゲート電極42を形成する第一の電極層の両端部に自己整合的に側壁53、54が形成され、その側壁53、54と制御ゲート7の容量結合を有効に利用する。これにより、制御ゲート7と浮遊ゲート42、53、54間の容量結合が増しメモリセルの性能が向上する。
【0017】
すなわち、第2の導電体51の側面が第1の素子分離領域21と接し、第3の導電体52の側面が第2の素子分離領域22と接する。このことにより、素子分離領域21、22に対して自己整合的に導電体51、52を製造することが可能になる。
【0018】
また、図2(a)と図10に示すように、浮遊ゲート44あるいは71乃至74の多結晶シリコンの膜厚を素子分離領域22、23に沿って側壁状に薄くできるため、隣接セル61乃至64間の浮遊ゲート電極間の寄生容量C1を小さくできる。このことにより、寄生容量C1を介したセル間干渉を低減することができる。
【0019】
図3と4は、本発明の第1の実施の形態に係る半導体装置を製造する方法を示す工程断面図である。以下に製造方法を説明する。
【0020】
(1)まず、図3(a)に示すように、メモリセルの素子分離22と23用の溝部10と、第1の浮遊ゲート41乃至43及び活性領域は自己整合的に加工され、第1の浮遊ゲート41乃至43は活性領域を分離する素子分離領域22、23への落ち込みは全くないように形成される。
【0021】
p型シリコン(Si)基板1上に、不揮発性メモリセルのトンネル(Tunnel)酸化膜となる3nm以上15nm以下、例えば膜厚10nmの酸化膜または酸窒化膜31乃至33、浮遊ゲートの一部の第1の浮遊ゲート電極となる第1の多結晶シリコン(Si)膜41乃至43、キャップ材として機能するシリコン窒化膜91乃至93を順次堆積する。このキャップ材91乃至93の膜厚に対応して、後で素子分離領域の側壁に形成される第2の浮遊ゲート電極51乃至56の高さが決まる。すなわち、キャップ材91乃至93の膜厚を厚くすることにより、第2の浮遊ゲート電極51乃至56の高さを高くすることができる。第1の多結晶シリコン膜41乃至43の膜厚は10nm以上で500nm以下の範囲で例えば30nmである。シリコン窒化膜91乃至93の膜厚は3nm以上500nm以下の範囲で例えば100nmである。
【0022】
次に、リソグラフィ工程とエッチングにより、素子分離領域21乃至24となる領域に溝10を掘る。具体的にはキャップ材91乃至93(シリコン窒化膜)、第1の浮遊ゲート材料31乃至33、Si基板1を順次エッチングする。素子分離用の溝10と、第一の多結晶シリコン膜41乃至43、シリコン窒化膜91乃至93は自己整合的に形成される事になる。シリコン基板1中に掘る素子分離用の溝10の深さは、50nm以上1000nm以下で例えば300nmといった深さである。素子分離用の溝10を掘った後、必要に応じて薄い酸化膜を例えば熱酸化法により形成する。この膜厚は3nm以上20nm以下で例えば10nmといった膜厚である。
【0023】
これにより、メモリセルの素子分離用の溝部10と、第一の浮遊ゲート41乃至43及び活性領域は、自己整合的に加工され、第一の浮遊ゲート41乃至43は活性領域を分離する素子分離領域21乃至24への落ち込みは全くないように形成される。これは、セルの微細化を実現すると共に、活性領域のコーナー部を覆うように浮遊ゲート41乃至43が形成される事がない為、電界集中の効果によるメモリセル特性のバラツキを抑制する事ができる。
【0024】
(2)次に必要に応じて酸化膜を形成し、素子分離領域21乃至24に例えば、高密度プラズマ(HDP:High Density Plasma)法により絶縁膜を埋め込む。次に、図3(b)に示すように、この埋め込み材を堆積後、ケミカルメカニカルポリッシュ(CMP:Chemical Mechanical Polish)等の方法で、キャップ材91乃至93の上面まで絶縁膜21乃至24を平坦化する。素子分離領域21乃至24に埋め込まれている絶縁性埋め込み材は浮遊ゲートの端部に自己整合的に埋め込まれる。
【0025】
(3)図3(c)に示すように、キャップ材91乃至93であるシリコン窒化膜を除去することにより、埋め込み材21乃至24で取り囲まれた溝部11を形成する。例えばキャップ材91乃至93がシリコン窒化膜であれば、熱(ホット)リン酸(H3PO4)といった薬液で処理すれば、キャップ材91乃至93のみを容易に除去する事ができる。
【0026】
(4)図4(a)に示すように、素子分離領域21乃至24の側壁に第2の浮遊ゲート電極51乃至56を形成する為に、薄い多結晶シリコン膜5を堆積する。
【0027】
(5)図4(b)に示すように、この多結晶シリコン膜5をエッチバックすることにより、素子分離領域に埋め込まれた絶縁膜21乃至24の側面部に第2の浮遊ゲート材51乃至56を形成する。このエッチバック工程で、セル間に存在する素子分離領域21乃至24の上の第2の多結晶シリコン膜5は自己整合的に除去され、セル毎に分離することができる。例えば第2の浮遊ゲート材52と53は分離される。第1の浮遊ゲート材41乃至43と第2の浮遊ゲート材51乃至56は、第2の浮遊ゲート材51乃至56の底面で電気的に接続される。なお、第1と第2の浮遊ゲート間に薄い絶縁膜が存在していても容量結合される為、電気的に接続される場合と同様の動作が行われる。
【0028】
(6)図4(c)に示すように、浮遊ゲート42、53、54と制御ゲート7間の層間絶縁膜6を形成する。層間絶縁膜6としては、シリコン酸化膜/シリコン窒化膜/シリコン酸化膜の3層構造膜いわゆるONO膜を用いる。
なお、この工程時の半導体装置の上方からの透視図を図5に示す。図5のI−I方向の断面図が図4(c)である。
【0029】
(7)図1(b)に示すように、絶縁膜6で三方を囲まれた溝部11の内部を埋め込むように制御ゲート材7を形成する。素子分離領域の側壁に形成された第2の浮遊ゲート材料51乃至56と制御ゲート材料7の容量結合が確保できる。
【0030】
(8)図1(a)に示すように、リソグラフィ工程とエッチングにより、制御ゲート材7と27を短冊状に形成する。このとき同じマスクを用い、さらに領域21乃至24もマスクに、図2の(a)(b)のように浮遊ゲート42、44等もエッチングする。なお、このエッチングにおいては、図1(b)に示すように、厚さが厚さH1でみな等しいゲート材7、導電体56等と絶縁膜6を同時に同じ速度でエッチングする必要が生じる場合がある。この場合はスパッタ性の高いエッチング条件を選択してもよいし、後述する第2の変形例を採用することで材料によってエッチング速度が異なっていても良好なエッチング形状を得ることができる。
【0031】
最後に、領域21乃至24や制御ゲート材料7、27をマスクに基板1にイオン注入を行い、活性化処理を行って、ソース・ドレイン領域81乃至87を形成する。
【0032】
この構造においては、一般に使用される浮遊ゲートを分離する為のリソグラフィとエッチング工程が不要である。浮遊ゲート41乃至43と活性領域の合わせ余裕も不要である。素子分離領域21乃至24と活性領域が自己整合的に形成できる。このことにより、セルが微細化できる。図1(b)に示すようにセルの横幅を最小デザインルールをFとした時に、領域23等の幅と間隔をそれぞれFに設定できるので、2倍のFまで縮小できる。そして、高電圧を用いる半導体集積回路において、その素子分離スペースをFに縮小することができ、チップ面積を縮小できるので、コストを削減する事ができる。
【0033】
また、浮遊ゲート電極を構成するために、第1の浮遊ゲート(導電膜)41乃至43の両端部に自己整合的に第2の浮遊ゲート(導電膜)51乃至56による側壁が形成される。浮遊ゲート41乃至43の多結晶シリコンの膜厚を側壁状に薄くできるため、隣接セル間の浮遊ゲート電極間の寄生容量C1を介したセル間干渉を低減することもできる。このように、浮遊ゲートと制御ゲートを有するフラッシュメモリにおいて、浮遊ゲート41乃至43等と制御ゲート7間の容量結合を維持しながら微細化できる。
【0034】
(第1の実施の形態の第1の変形例)図6に示すように、高さH2を大きくすることによって、浮遊ゲートと制御ゲート間の容量結合を大きくすることができる。高さH2を大きくするには、原理的にはキャップ材91等の膜厚をH2に設定すればよい。この時、導電体41の膜厚を厚くする必要が無く、幅の狭い導電体51、52等の高さが大きくなるだけなので、浮遊ゲート同士の間の容量結合C1は増大するもののその増大率は、浮遊ゲート41、51、52と制御ゲート7間の容量結合の増大率より小さくできる。
【0035】
(第1の実施の形態の第2の変形例)第1の実施の形態では、素子分離領域21乃至24の側面に設けられる第2の浮遊ゲート51等の側面が、基板1の表面に対し垂直である。この垂直の場合、図1(a)に示すような短冊状の制御ゲート7、27をリアクティブイオンエッチング(RIE:Reactive Ion Etching)により形成するときに、自己整合的に同じマスクを用いて連続的に、制御ゲート7等と浮遊ゲート51、52等をエッチング加工する。このときに、浮遊ゲート51、52等の側面と制御ゲート7等の側面の間の垂直の絶縁膜6が除去されにくい。この除去されない絶縁膜6により、下層の第1層多結晶Si膜41等のエッチングにおいて、エッチング残りが発生する可能性がある。このエッチング残りはセル同士の浮遊ゲートをショートさせ半導体装置の歩留りを低下させる恐れがある。
【0036】
そこで、第2の変形例としては、図7に示すように素子分離領域21乃至24に側面に設けられる側壁の第2の浮遊ゲート電極層151乃至156の断面形状を順テーパー形状にする。この形状により、エッチング時の絶縁膜16の加工性を高める。これは、浮遊ゲート電極層151等の形状を順テーパー形状にすることで、絶縁膜16が斜めに配置されるので、RIEのような異方性エッチングでも絶縁膜を少ないエッチング量で容易に除去することができるからである。この順テーパー形状は、例えば浮遊ゲート電極層151乃至156を形成するエッチバック時のエッチング条件を変えること(例えば基板温度を下げる等)により実現できる。
【0037】
(第1の参考例)第1の実施の形態では、側壁の浮遊ゲート51等の2面ある側面のうちの溝11の内側の側面のみで、浮遊ゲート51等は制御ゲート7と対向し容量結合している。第1の参考例では、図8(b)に示すように、溝11の外側の側面でも浮遊ゲート51等と制御ゲート7が対向する。
第1の参考例の半導体装置では、第1の実施の形態の半導体装置より、浮遊ゲート51等と制御ゲート7の容量結合をさらに増大させることが可能である。
【0038】
製造方法は、第1の実施の形態の工程(5)の図4(b)まで同じである。次に図8(a)に示すように例えばウェット(wet)エッチング法により素子分離領域(STI)21乃至24の溝部内に埋め込まれている絶縁膜をエッチバックする。以降の工程は第1の実施の形態の工程(6)の図4(c)以降と同じである。すなわち、図8(b)に示すように、第1の浮遊ゲート41乃至43と第2の浮遊ゲート51乃至56の上に絶縁膜6を形成し、さらに、絶縁膜6上に制御ゲート7となる導電膜を形成する。このような構造を用いることにより、第2の浮遊ゲート51等の両側面で、制御ゲート7と容量結合させることができる。第2の浮遊ゲート51等の高さが同一であれば、第1の実施の形態より第2の浮遊ゲート51等と制御ゲート7の間の容量結合を大きくすることができる。また、第1の実施の形態と同じ大きさの容量結合を得るために、第2の浮遊ゲート51等の高さを第1の実施の形態より低くすることができる。
【0039】
第1の参考例の半導体装置においては、メモリセル部の素子分離領域の絶縁膜21乃至24の高さは、第1の浮遊ゲート41乃至43の多結晶シリコン膜の上面の高さより高くする。このことにより、図1(a)及び図2(a)に示す制御ゲート7と制御ゲート27のショートを防止することができる。
【0040】
逆に、図9(a)に示すように、メモリセル部の素子分離領域の絶縁膜22の高さが、第1の浮遊ゲート41の上面の高さより低い場合について説明する。この場合に、制御ゲート電極7が、第1の浮遊ゲート41の上面の高さより低い位置に設けられる。そして、制御ゲート電極7が、領域116のように第2の浮遊ゲート52の下方に設けられる。第2の浮遊ゲート52が、第1の浮遊ゲート41よりも、素子分離領域22側に広がる。第2の浮遊ゲート52が、素子分離領域22の上方に設けられる。この広がりは、第1の浮遊ゲート41の上に第2の浮遊ゲート52を形成する処理の前処理で生じる。この前処理では、第1の浮遊ゲート41の上の自然酸化膜をエッチング除去する。このとき、露出している素子分離領域22もエッチングされ、素子分離領域21と22の間隔が広がる。
【0041】
制御ゲート7と制御ゲート27を分離加工する。制御ゲート7、ブロック絶縁膜6と浮遊ゲート52、41を異方性エッチングによってほぼ垂直にエッチング加工しようとすると、この分離加工に困難が生じる。制御ゲート7を全面形成後、MISFETのソースまたはドレイン電極を形成するために、異方性エッチングであるRIEによって、制御ゲート7、ブロック絶縁膜6、浮遊ゲート電極52、41を、ほぼ垂直に加工する。
【0042】
まず、制御ゲート7をパターニングして垂直加工する。
ブロック絶縁膜6はエッチングされずに残る。制御ゲート電極7の第2の浮遊ゲート電極52の下方の領域116もエッチングされずに残る。これは、領域116がエッチャントから第2の浮遊ゲート52でマスクされるからである。
【0043】
この後、ブロック絶縁膜6を異方性エッチングする。第2の浮遊ゲート52の下のブロック絶縁膜114は、エッチングされずに残る。これは、膜114がエッチャントから第2の浮遊ゲート52でマスクされるからである。領域116もエッチングされずに残る。
【0044】
最後に、第1の浮遊ゲート41をエッチングによって取り除く。このエッチングのときも、膜114と領域116は除去されずに残る場合がある。
【0045】
このエッチング残り領域116は、隣接するデータ制御線7と27の間の短絡不良を生じさせる。この短絡不良は、本発明者らが初めて見出した。領域116が除去されて存在せず、膜114のみがエッチング後に残った場合も、ソース/ドレイン領域を形成するためのイオン注入を行うときや、ソース/ドレイン領域へのコンタクト電極を形成するためのエッチングを行うときに、イオン注入やエッチングのマスクとなるため、問題である。
【0046】
これらのことから、第1の参考例では、メモリセル部の素子分離領域21乃至24の高さは、第1の浮遊ゲート41の上面より高くなるように制御する。このことにより、制御ゲート電極7のエッチング残りの領域116を生じなくする。
【0047】
(第2の参考例)第1の実施形態では、素子分離領域21乃至24の側面部に側壁状に第2の浮遊ゲート材51乃至56を形成する。第2の浮遊ゲート材51乃至56のそれぞれの分離は、エッチバック工程で行う。このエッチバック工程に関し、以下の問題が発生する場合があると考えられる。
【0048】
まず、エッチバックする第2の浮遊ゲート51乃至56の材料は多結晶シリコン膜である。第2の浮遊ゲート51乃至56の下層には、第1の浮遊ゲート41乃至43が設けられている。この第1の浮遊ゲート41乃至43の材料も多結晶シリコン膜である。エッチバック工程において、第2の浮遊ゲート54と55を確実に分離させる為に、第1の浮遊ゲート41乃至43もエッチングされる。これにより第1の浮遊ゲートの仕上がりの膜厚が、半導体記憶装置の間と内部でばらつく。このばらつきにより、セル特性がばらつく可能性を発明者は考えた。
【0049】
次に、セル間の容量結合C1を減少させるために、第1の浮遊ゲート41乃至43の膜厚を薄くすることができる。これは、この膜厚を減らしても、制御ゲートと浮遊ゲートの容量結合を減らすことがないからである。しかし、第1の浮遊ゲート41乃至43の膜厚を薄くすると、この薄い膜41乃至43の表面がエッチバック工程においてエッチングされる。このエッチングにより、薄い膜41乃至43にピンホールといった欠陥が発生する。この欠陥により、膜41乃至43の下層のトンネル酸化膜31乃至33の信頼性を劣化させる可能性を発明者は考えた。
【0050】
最後に、図8(a)において、第2の浮遊ゲート51乃至56は、下層の第一の浮遊ゲート41乃至43と密着する面積が小さい。このことにより、第2の浮遊ゲート51乃至56の高さを高くしすぎると、第2の浮遊ゲート51乃至56が、第一の浮遊ゲート41乃至43から剥がれ倒れる可能性を発明者は考えた。
【0051】
そこで第2の参考例では、半導体装置は、メモリセルの2つの第2の浮遊ゲート51と52を分離せず接続された一体のままの構造を有する。
そして、第2の浮遊ゲート54と55を分離するエッチバック工程では、第2の浮遊ゲート55と56の間に、第1の浮遊ゲート43を露出させない。
【0052】
すなわち、第2の参考例に係る半導体装置は、図11(a)に示すように、表面に溝を有する半導体基板1を有する。素子分離領域21乃至24は、その溝に埋め込まれ側面が基板1の表面より高い位置まで伸びている。素子分離領域21乃至24の上面は、基板1の表面より高い。トンネル酸化膜31乃至33は、基板1の表面上に設けられる。トンネル酸化膜31乃至33の両端が素子分離領域21乃至24と接している。浮遊ゲートは、第1の導電体41乃至43と、第2の導電体51乃至53を有している。第1の導電体41乃至43は、トンネル酸化膜31乃至33の表面上に設けられる。第1の導電体41乃至43の両端面が、素子分離領域21乃至24と接している。第2の導電体51乃至53は、第1の導電体41乃至43の表面上に設けられる。第2の導電体51、53、55の底部が第1の導電体41乃至43に接する。第2の導電体51、53、55の両端部は、中央部より高い。その両端部の高さは、素子分離領域の上面の高さとほぼ等しい。浮遊ゲートと制御ゲートの間の絶縁膜6は、第2の導電体51乃至53の表面に接する。絶縁膜6は、素子分離領域21乃至24の上面の上に設けられる。制御ゲート7は、絶縁膜6の上に設けられる。
【0053】
浮遊ゲートは第1の導電体41乃至43と第2の導電体51乃至53の2層の積層構造になっている。導電体41乃至43と51乃至53は、いずれも厚さを薄く設定することにより、浮遊ゲートと制御ゲートの間の接合容量を減らすことなく、隣接メモリセルの浮遊ゲート間の寄生容量C1を小さくできる。
【0054】
次に、第2の参考例に係る半導体装置の製造方法を説明する。
【0055】
第1の実施形態の図3(a)から図4(a)を用いて説明した半導体装置の製造方法と基本的に同じ製造方法をまず行う。すなわち、メモリセルの素子分離用の溝部10と、第1の浮遊ゲート41乃至43及び活性領域は自己整合的に加工される。第1の浮遊ゲート41乃至43は素子分離領域21乃至24への落ち込みは全くない。
【0056】
(1)図3(a)に示すように、p型シリコン(Si)基板1上に、シリコン酸化膜または酸窒化膜31乃至33を熱酸化により成膜する。このシリコン酸化膜または酸窒化膜31乃至33は、不揮発性メモリセルのトンネル(Tunnel)酸化膜となる。このシリコン酸化膜31乃至33の膜厚は3nm以上15nm以下、例えば10nm程度である。続けて、浮遊ゲートの一部で第1の導電体41乃至43となる多結晶シリコン(Si)膜を、シリコン酸化膜31乃至33の上に形成する。第1の導電体41乃至43の膜厚は10nm以上500nm以下で、例えば30nm程度である。さらに、キャップ材91乃至93として機能するシリコン窒化膜を、第1の導電体41乃至43の上に堆積する。このキャップ材91乃至93の膜厚によって、後で形成する第2の導電体51乃至53の高さが決まる。キャップ材91乃至93の膜厚は3nm以上500nm以下の範囲で、例えば120nm程度である。
【0057】
次に、ホトリソグラフィとエッチングにより、素子分離領域21乃至24となる領域に溝10を掘る。具体的には、素子分離領域21乃至24となる領域のキャップ材91乃至93、第1の導電体41乃至43、シリコン基板1を順次エッチングする。図3(a)に示すように、溝10と、第1の導電体41乃至43、キャップ材91乃至93は自己整合的に形成できる。これにより、セルの微細化を実現すると共に、活性領域のコーナー部を覆うように浮遊ゲートが形成される事がない為、電界集中の効果によるメモリセル特性のバラツキを抑制する事ができる。シリコン基板1中の溝10の深さは、50nm以上1000nm以下の範囲で、例えば300nm程度である。素子分離用の溝10の形成後、必要に応じて薄いシリコン酸化膜を、基板1と第1導電体の露出面の上に熱酸化法により形成する。この薄いシリコン酸化膜の膜厚は3nm以上20nm以下の範囲で、例えば5nm程度である。
【0058】
次に、溝10に例えば高密度プラズマ(HDP:High DensityPlasma)法により絶縁膜を埋め込む。埋め込み材を堆積後、ケミカルメカニカルポリッシュ(CMP:Chemical Mechanical Polish)等の方法で、キャップ材91乃至93の上面まで絶縁膜を研磨して平坦化する。図3(b)に示すように、素子分離領域21乃至24として埋め込まれる絶縁性埋め込み材は、浮遊ゲート41乃至43の端部に自己整合的に埋め込まれる。次に、図3(c)に示すように、キャップ材91乃至93を除去する。このことにより、素子分離領域21乃至24で取り囲まれた溝部11を形成する。次に、浮遊ゲート電極の第2の導電体51乃至53となる薄い多結晶シリコン膜5を堆積する。この多結晶シリコン膜5の膜厚は3nm以上250nm以下の範囲で、例えば20nm程度である。ここまでの製造方法は基本的には第1の実施形態と同じである。
【0059】
次ぎに、図12(a)に示すように、例えばフォトレジスト76を多結晶シリコン膜5の上の全面に塗布する。図12(b)に示すように、レジスト76をエッチバックする。このことにより、素子分離領域21乃至24の上に位置する多結晶シリコン膜5を露出させる。エッチバックされたレジスト77乃至79は、溝11の中に埋め込まれる。図12(c)に示すように、例えばRIE法によるエッチバックで、素子分離領域21乃至24の上の多結晶シリコン膜5を除去する。浮遊ゲート電極の第2の導電体51乃至53が形成される。図12(d)に示すように、レジスト77乃至79を剥離する。
【0060】
最後に、第2の導電体51乃至53と、素子分離領域21乃至24の上に、浮遊ゲートと制御ゲート間の絶縁膜6を形成する。そして、図11(a)に示すように、制御ゲート7となる多結晶シリコン膜を堆積する。
【0061】
(第2の参考例の第1の変形例)第2の参考例の第1の変形例の半導体装置は、図11(b)に示すように素子分離領域21乃至24の上面の高さが、第2の導電体51乃至53の最上部の高さより低い。そして、素子分離領域21乃至24の上面の高さが、第2の導電体51乃至53の最下部の高さより高いか等しい。このことにより、図9のエッチング残り116を生じさせることがない。素子分離領域21乃至24の上方に配置される制御ゲート7と、第2の導電体51乃至53とが、絶縁膜6を介して対向する。すなわち、第2の導電体51乃至53の外側の側面部でも、第2の導電体51乃至53が制御ゲート7と絶縁膜6を介して対向する。このことにより、第2の参考例の第1の変形例は、第2の参考例に比較して、制御ゲート7と浮遊ゲート51乃至53の間の容量結合をより高くできる。
【0062】
次に、第2の参考例の第1の変形例の半導体装置の製造方法について説明する。図4(a)に示す第2の導電体5を堆積するところまでは第1の実施の形態と第2の参考例と同じである。次に、図13(a)に示すように、シリコン酸化膜120をCVD法で堆積する。図13(b)に示すように、シリコン酸化膜120のエッチバックを行う。素子分離領域21乃至24の上方の第2の導電体5が露出する。シリコン酸化膜121乃至123は、溝11の内部に埋め込まれる。この時、溝11の内のシリコン酸化膜121乃至123の残り膜厚dは、後で素子分離領域21乃至24をエッチング除去する深さよりも薄いことが望ましい。
【0063】
次に、図13(c)に示すように、CMP法あるいはエッチバック法により、素子分離領域21乃至24の上の第2の導電体5を除去する。第2の導電体5は第2の導電体51乃至53は分割される。CMP法によれば、溝11の側面に残る第2の導電体の高さを良好に制御できる。
【0064】
次ぎに、図13(d)に示すように、シリコン酸化膜121乃至123と素子分離領域21乃至24のエッチングを行う。このエッチングにより、溝11の内のシリコン酸化膜121乃至123を除去する。第2の導電体の上面を露出させる。そして、素子分離領域21乃至24を所望の深さまでエッチングする。この時、所望の深さよりも、シリコン酸化膜121乃至123の残り膜厚dが薄ければ、素子分離領域21乃至24のエッチングと同時にシリコン酸化膜121乃至123の除去ができる。このエッチングにより、第2の導電体51乃至53の外側面部のフィン状の突起が露出する。第2の導電体51乃至53の底面の全面が、第1の導電体41乃至43の上面の全面に接しているので、突起は倒れにくい。
【0065】
最後に、図11(b)に示すように、素子分離領域21乃至24の上と、第2の導電体51乃至53の上に、絶縁膜6を形成する。絶縁膜6の上に制御ゲート7となる多結晶シリコン膜を堆積する。
【0066】
(第2の参考例の第2の変形例)第2の参考例の第2の変形例の半導体装置は、図11(c)に示すように、第2の導電体57乃至59が、素子分離領域124乃至127の上に配置される。このことにより、浮遊ゲート57乃至59と制御ゲート7の絶縁膜6を介して対向する部分の面積を、第2の参考例の半導体装置より広くできる。第2の参考例の第2の変形例は、第2の参考例に比較して、制御ゲート7と浮遊ゲート57乃至59の間の容量結合をより高くできる。
【0067】
次に第2の参考例の第2の変形例の半導体装置の製造方法について説明する。図3(c)に示すキャップ材91乃至93を除去するところまでは第1の実施の形態と第2の参考例と同じである。次に、図14(a)に示すように、素子分離領域124乃至127をウェット(wet)エッチング等の等方性エッチングによりエッチングする。このエッチングにより、素子分離領域124乃至127は後退する。第1の導電体41乃至43の側方の素子分離領域124乃至127も除去される。溝11の幅は広がる。
【0068】
次に、図14(b)に示すように、第2の導電体5を、素子分離領域124乃至127の上と、第1の導電体41乃至43の上に成膜する。特に、第2の導電体5は、第1の導電体41乃至43の側面の上にも成膜する。この後の製造方法は、図12(a)から図12(d)に示す第2の参考例の製造方法と同じである。すなわち、図14(c)に示すように、フォトレジスト77乃至79で、溝11の内部の第2の導電体57乃至59を保護しながら、第2の導電体57乃至59を分割する。このような工程により、素子分離領域124乃至127に第2の導電体57乃至59を張り出す形状を形成することができる。
【0069】
(第2の参考例の第3の変形例)第2の参考例の第3の変形例の半導体装置は、図11(d)に示すように、第2の参考例の第1の変形例と第2の参考例の第2の変形例の特徴を兼ね備えている。第2の導電体57乃至59の外側の側面が、制御ゲートと絶縁物6を介して対向している。また、第2の導電体57乃至59が、素子分離領域124乃至127の上に配置され、素子分離領域124乃至127に張り出している。
【0070】
素子分離領域124乃至127の上面の高さが、第2の導電体57乃至59の最上部の高さより低い。そして、素子分離領域124乃至127の上面の高さが、第2の導電体57乃至59の最下部の高さより高いか等しい。このことにより、図9のエッチング残り116を生じさせることがない。素子分離領域124乃至127の上方に配置される制御ゲート7と、第2の導電体57乃至59とが、絶縁膜6を介して対向する。このことにより、第2の参考例の第3の変形例は、第2の参考例に比較して、制御ゲート7と浮遊ゲート57乃至59の間の容量結合をより高くできる。第2の参考例の第3の変形例の半導体装置の製造方法は、第2の参考例の第1の変形例と第2の参考例の第2の変形例の製造方法に基づく。
【0071】
(第2の実施の形態)第2の実施の形態は、第2の参考例の、特に、第3の変形例を、さらに詳細に説明する。第2の実施の形態の半導体装置は、NAND構造の不揮発性の半導体記憶装置である。第2の実施の形態の半導体装置は、メモリセル領域と周辺回路領域の間の領域と、メモリセル領域の制御ゲート電極7の上面の段差が小さいことを特徴とする。なお、第2の実施の形態において、図15(b)の絶縁膜101、102も素子分離領域124乃至127とみなせる。このことにより、第2の実施の形態の素子分離領域101、102、124乃至127の形状は、図11(d)の第2の参考例の第3の変形例の素子分離領域124乃至127の形状と同じであると考えられる。
【0072】
図15(a)は、第2の実施の形態の半導体装置の上方からの透視図である。図15(a)の左側がメモリセル領域である。図15(a)の右側が周辺回路領域である。図15(b)は図15(a)のI−I方向の断面図である。図15(c)は図15(a)のVI−VI方向の断面図である。互いに等しい幅の制御ゲート28、7、27が等間隔に平行に横方向に配置されている。素子分離領域124乃至127が制御ゲート28、7、27の下方において、平行に縦方向に配置されている。メモリセル領域において、素子分離領域124乃至127は、例えば互いに等しい幅を有し、等間隔に配置されることが、素子分離耐圧を揃え、チャネルコンダクタンスを揃え、均一なデバイスを形成するのに望ましい。メモリセル162、163とダミーセル161のソース/ドレイン領域81乃至87は、上方に制御ゲート28、7、27と、素子分離領域124乃至127が配置されていない領域に設けられる。周辺回路164のソース/ドレイン領域88は、上方に制御ゲート28、7、27と、素子分離領域124が配置されていない領域に設けられる。
【0073】
素子分離領域124乃至127の上方に形成された制御ゲート電極7の底面は、第1の導電体41乃至43の上面よりも積み上げ方向の上方に配置される。第2の導電体58、59の2つの外側の側面の最大の距離は、第1の導電体42、43の2つの端面の距離よりも大きい。第2の導電体58、59の下面すなわち外側の側面の下端は、第1の導電体42、43の上面よりも下に設けられる。第2の導電体58、59は、第1の導電体42、43の上で連結された一体の導電体である。第2の導電体58、59の2つの外側の側面の距離は、この側面の上部ほど狭い。制御ゲート電極7は、ブロック絶縁膜6を介して第2の導電体58、59の上面と側面に対向する。素子分離領域125は、第2の導電体57に接する。素子分離領域124も、第2の導電体57に接する。素子分離領域124は、素子分離領域125より幅が広い。素子分離領域124の上面の高さは、素子分離領域125の上面の高さより高い。
【0074】
ダミーセル161は、複数のメモリセル162、163からなるメモリセルアレイと周辺回路164との間に形成される。ダミーセル161は、メモリセル162、163の動作やプロセス制御性を安定させる。ダミーセル161は、メモリセル162、163とほぼ同等の構造を有し、メモリセル162、163と隣接して形成される。ダミーセル161は1つに限らず、勿論複数形成しても構わない。また、記号をわかりやすく表示する便宜上、ダミーセル161と周辺回路164の間を分離して示した。ダミーセル161と周辺回路164は、素子分離領域124を同一として連続して形成される。周辺回路164とは、メモリセル162、163以外で、MISトランジスタとして機能するデバイスのことである。
【0075】
p型シリコン基板1のボロン(B)の不純物濃度は、1014cm−3以上で1019cm−3以下である。p型シリコン基板1の上に、例えば、3nm以上で15nm以下の厚さのシリコン酸化膜またはオキシナイトライド膜であるゲート絶縁膜31乃至33、35が設けられている。ゲート絶縁膜31乃至33、35の上には、ポリシリコンからなる第1の導電体41乃至43、141が設けられている。第1の導電体42と43は、メモリセル163、162の浮遊ゲートの第1の電荷蓄積層として機能する。第1の導電体41乃至43、141には、例えばリン(P)または砒素(As)が不純物濃度で1018cm−3以上で1021cm−3以下の範囲で添加されている。第1の導電体41乃至43、141の厚さは10nm以上で500nm以下の範囲である。また、ゲート絶縁膜31乃至33、35と第1の導電体41乃至43、141は、段差のない平面上に設けられている。このことにより、メモリセル162と163の電気特性のセル間のばらつきを均一にすることができる。第1の導電体41乃至43、141の側面には、浮遊ゲート側壁酸化膜101が設けられている。
【0076】
第1の導電体41乃至43、141と、浮遊ゲート側壁酸化膜101の上には、第2の導電体57乃至59と157が設けられている。この第2の導電体57乃至59と157は、例えばリンまたは砒素を不純物として不純物濃度1018cm−3以上で1021cm−3以下の範囲で添加されているポリシリコンである。第2の導電体57乃至59の厚さは、3nm以上で500nm以下の範囲である。好ましくは、第2の導電体57乃至59の厚さは、第1の導電体41乃至43の厚さの半分よりも小さく、例えば、3nm以上で100nm以下の範囲である。
【0077】
この範囲においても、制御ゲート間の容量結合を小さくすることがない。また、データの読み出し時間や書き込み時間を著しく長くするほどに、抵抗成分が大きくなることもない。一方、セル間の結合容量を小さくすることができる。
【0078】
第2の導電体57乃至59は、第1の導電体41乃至43の上面の全面と、対向する側面の上部に接している。すなわち、第2の導電体57乃至59は、第1の導電体41乃至43の上面および側面を覆っている。また、第2の導電体57乃至59は、図1(b)の導電体51、52と異なり、一体の導電体である。これらのことにより、第2の導電体57乃至59と第1の導電体41乃至43は、より広い面積で密着するため、第2の導電体57乃至59の内部応力や、第2の導電体57乃至59に対する外力による剥離を防止することができる。
【0079】
第2の導電体58、59は、メモリセル162、163の浮遊ゲートの第2の電荷蓄積層として機能する。第2の導電体58、59の外側面部の上面は、内部の上面より高い。第2の導電体58、59は大文字のHの形状を有している。第2の導電体58、59は、外側の右側に第1の側面と、外側の左側に第2の側面を有している。第2の導電体58、59は、内側の右側に第3の側面と、内側の左側に第4の側面を有している。第2の導電体58、59の外側の第1と第2の側面の下部は素子分離領域125乃至127に接している。第2の導電体58、59の外側の第1と第2の側面と内側の第3と第4の側面の上部の上にはブロック絶縁膜6が設けられている。第2の導電体58、59の内部の上面にもブロック絶縁膜6が設けられている。このブロック絶縁膜6の上には制御ゲート7が設けられている。ブロック絶縁膜6は、例えば、厚さ5nm以上で30nm以下の範囲のシリコン酸化膜またはオキシナイトライド膜、または、それぞれの厚さが2nm以上で100nm以下の範囲のシリコン酸化膜/シリコン窒化膜/シリコン酸化膜からなる積層膜(ONO膜)である。制御ゲート7は、例えばリン、砒素、またはボロンを不純物として不純物濃度1017cm−3以上で1021cm−3以下の範囲で添加されているポリシリコンである。又、制御ゲート7は、タングステンシリサイド(WSi)とポリシリコンとのスタック構造であってもよい。また、ニッケルシリサイド(NiSi)、モリブデンシリサイド(MoSi)、チタニウムシリサイド(TiSi)、コバルトシリサイド(CoSi)とポリシリコンのスタック構造であってもよい。制御ゲート7の厚さは、10nm以上で500nm以下の範囲の厚さである。素子分離領域125乃至127の上方に位置するブロック絶縁膜6および制御ゲート7は、第1の導電体42、43の上面よりも上方に形成されている。同様に、素子分離領域125乃至127の上方に位置するブロック絶縁膜6および制御ゲート7は、第2の導電体58、59の最下面よりも上方に形成されている。すなわち、図15(b)の高さHは、正の値になる。このことにより、図9で説明した制御ゲート7のエッチング残り116が発生することがない。
【0080】
シリコン基板1の上には、ライナー絶縁膜102を介して素子分離領域124乃至127が設けられている。素子分離領域124乃至127は、例えば、シリコン酸化膜からなる。素子分離領域124乃至127が形成されていないシリコン基板1の表面上に、ゲート絶縁膜31乃至33、35と第1の導電体41乃至43、141と第2の導電体57乃至59が自己整合的に設けられている。
【0081】
第2の実施の形態では、第2の導電体58、59が一体の導電体である。このことにより、第1の導電体42、43と第2の導電体58、59との接触面積が増大する。このことによって、第1の導電体42、43と第2の導電体58、59の間の容量またはコンダクタンスを大きくできる。よって、第2の導電体58、59の電位変動に対して、第1の導電体42、43の電位変動を大きくできる。また、第1の導電体42、43と制御ゲート電極7とのカップリング比を向上させることができる。
【0082】
第2の導電体58、59の外側面部の凸部は、内部に傾いている。
凸部の対向する内側の側面の距離は、凸部の上方ほど狭い。また、第2の導電体58、59の外側面部の凸部の対向する外側の側面の距離は、凸部の上方ほど大きい。このことにより、素子分離領域125乃至127で挟まれたシリコン基板1の幅で決まるトランジスタセルのチャネル幅を変えることなく一定にしたままで、隣接するメモリセルの第2の導電体58、59間の容量結合を小さくすることができる。よって、チャネル幅によって決まるトランジスタの電流駆動能力を一定に保ったままで、隣接するメモリセル間の容量結合によるしきい値変化を小さくすることができる。また、隣接するメモリセルの第2の導電体58、59間の短絡による不具合を減少させることができる。
【0083】
次に、第2の実施の形態の半導体装置の製造方法を説明する。第2の実施の形態の半導体装置の製造方法では、半導体装置のメモリセル領域と周辺回路領域を製造する方法を説明する。製造方法の途中までは、基本的には第1の実施形態の製造方法と同じである。図16乃至図20に第2の実施の形態の半導体装置の製造途中の断面図を示す。図16乃至図20の左側の(a)と(c)がメモリセル領域の断面図である。図16乃至図20の右側の(b)と(d)が周辺回路領域の断面図である。
【0084】
まず、図16(a)(b)に示すように、メモリセル162、163、ダミーセル161と周辺回路164の素子分離用の溝部10と、第1の浮遊ゲート(電荷蓄積層)41乃至43、周辺回路のゲート電極141及び活性領域1は自己整合的に加工される。第1の浮遊ゲート41乃至43、周辺回路のゲート電極141は、活性領域1の側面には形成されない。これにより、セル161乃至163の微細化を実現すると共に、活性領域1のコーナー部を覆うように浮遊ゲート42、43が形成される事がない為、電界集中の効果によるメモリセル特性のバラツキを抑制する事ができる。
【0085】
p型シリコン基板1上に、絶縁膜31乃至33、35をシリコン基板1の酸化または酸窒化により形成する。絶縁膜31乃至33、35の厚さは、3nm以上で15nm以下の範囲の厚さである。この絶縁膜31乃至33、35は、不揮発性メモリセル162、163のトンネル(Tunnel)酸化膜32、33と、ダミーセル161の絶縁膜31と、周辺回路のゲート絶縁膜35として機能する。
【0086】
次に、絶縁膜31乃至33、35の上に、第1の導電体41乃至43、141を成膜する。第1の導電体41乃至43、141の材料は、多結晶シリコンであり、膜厚は、10nm以上で500nm以下の範囲の膜厚である。第1の導電体41乃至43、141は、メモリセル162、163の第1の浮遊ゲート42、43と、ダミーセル161の導電体41と、周辺回路の第1のゲート電極141として機能する。
【0087】
第1の導電体41乃至43、141の上に、キャップ材91乃至94として機能するシリコン窒化膜を堆積する。このキャップ材91乃至94の膜厚によって、後で形成する第2の浮遊ゲート57乃至59、すなわち、第2の電荷蓄積層の高さが決まる。このキャップ材91乃至94の膜厚は100nm以上で500nm以下の範囲の膜厚である。
【0088】
次に、図16(a)(b)に示すように、リソグラフィエ程とエッチングにより、素子分離領域124乃至127となる領域に溝10を掘る。具体的には、素子分離領域124乃至127となる領域以外をマスクするレジストパターンを形成する。このレジストパターン及びこのレジスタパターンでパターニングされたキャップ材91乃至94をマスクに、キャップ材91乃至94、第1の導電体41乃至43、141、絶縁膜31乃至33、35とシリコン基板1を順次エッチングする。素子分離用の溝10と、第1の導電体41乃至43、141、キャップ材91乃至94は自己整合的に形成される。シリコン基板1中の素子分離用の溝10の深さは、50nm以上で500nm以下の範囲の深さである。溝10の側壁の形状は順テーパであることが好ましい。特に、キャップ材91乃至94の露出する側壁が順テーパであることが好ましい。このことにより、制御ゲート電極のエッチング残りを発生させることなくメモリセルを分離することができる。
【0089】
素子分離用の溝10を掘った後、必要に応じて、溝10の内壁の上に薄いライナー酸化膜102を成膜する。ライナー酸化膜102は、シリコン基板1を熱酸化して形成する。ライナー酸化膜102の膜厚は、3nm以上で15nm以下の範囲の膜厚である。この熱酸化の際に、第1の導電体41乃至43、141の側面も酸化され、シリコン酸化膜101が形成される。キャップ材91乃至94はほとんど酸化されない。キャップ材91乃至94よりも、第1の導電体41乃至43、141の方が酸化速度が速い。図16(c)(d)に示すように、第1の導電体41乃至43、141の幅は、キャップ材91乃至94の幅よりも狭くなる。
【0090】
次に、素子分離用の溝10に、例えば高密度プラズマ(HDP:High Density plasma)法で形成したシリコン酸化膜21乃至24を埋め込む。シリコン酸化膜21乃至24は、減圧(LP)CVD法で形成しても良い。図16(c)(d)に示すように、シリコン酸化膜21乃至24を堆積後、CMP法で、キャップ材91乃至94をCMP法のストップ材としてシリコン酸化膜21乃至24を平坦化する。これにより、素子分離領域21乃至24は、キャップ材91乃至94とシリコン酸化膜101の側面に自己整合的に形成される。
【0091】
図17(a)(b)に示すように、キャップ材91乃至94を選択的に除去する。このことにより、素子分離領域21乃至24で取り囲まれた溝部11を形成する。ここまでの工程は基本的には第1の実施形態の半導体装置の製造方法を適用させることができる。この溝部11の形成によって、第1の導電体41乃至43、141の表面は、空気に晒される。このため、いわゆる自然酸化膜103が第1の導電体41乃至43、141の表面上に成膜される。自然酸化膜103の膜厚は、0.3nmから2nmの範囲の膜厚である。この酸化膜103の膜厚は、ついで行われる第2の導電体5、57乃至59の堆積までの放置時間に依存する。この酸化膜103は、膜厚の均一性や制御性が劣るため、均一なカップリング比を得るためには取り除くことが必要がある。フッ酸によるウェットエッチングにより酸化膜103を、取り除く。フッ酸によるウェットエッチングを行うと、図17(c)(d)に示すように、シリコン酸化膜で形成された素子分離領域21乃至24の上部がエッチングされ、その上部の幅が狭まった素子分離領域124乃至127が形成される。溝部11の幅が広がる。酸化膜101も同時にエッチングされる。ここで、酸化膜101もエッチングされるのは、第1の導電体41乃至43、141の幅はキャップ材91乃至94の幅1よりも狭いので、キャップ材91乃至94を除去すると、酸化膜101が露出するからである。
【0092】
次に、図18(a)(b)に示すように、第1の導電体41乃至43、141と絶縁膜101と、素子分離領域124乃至127の上に第2の導電体5を成膜する。第2の導電膜5の材料は、多結晶シリコン膜であり、膜厚は、3nm以上で100nm以下の範囲の膜厚である。特に、10nm以上で30nm以下の範囲の膜厚が好ましい。この範囲であれば、セル間の容量結合は十分に小さく、電荷蓄積電極の内部の分布抵抗も十分に小さい。第2の導電体5は、第2の電荷蓄積電極(浮遊ゲート)58、59として機能する。
【0093】
ついで、第2の導電体5の上に、側壁マスク絶縁膜104を成膜する。側壁マスク絶縁膜104としては、例えば、テトラエトキシシラン(TEOS)を原料とするシリコン酸化膜やHTO(High Temperature Oxide)膜を用いる。側壁マスク絶縁膜104の膜厚は、3nm以上で100nm以下の範囲の膜厚で、例えば、10nm程度の膜厚である。フォトレジスト77乃至80を塗布する。次に、部分露光する。メモリセル162、163とダミーセル161の上のレジストを露光し、周辺回路164の上のレジストを露光しない。この露光の際に、露光量を調整することにより、図18(c)(d)に示すように、メモリセル162、163およびダミーセル161の溝部11の底部にレジスト77乃至79を残す。周辺回路164の活性領域とその周辺の素子分離領域124はレジスト80で覆う。この露光の際、メモリセル162、163およびダミーセル161のピッチよりも、波長が長い、例えば安価なi線のレジストを用いることができる。このことにより、メモリセル162、163およびダミーセル161の溝部11の底部にあるレジスト77乃至79までは露光されない。この露光の条件は、メモリセル162、163およびダミーセル161の活性領域にレジストが残ることと、メモリセル162、163およびダミーセル161の素子分離領域124乃至127上部のレジストは露光され剥離されることである。
【0094】
次に、図19(a)(b)に示すように、レジスト77乃至80をマスクとして、異方性エッチングを行い、側壁マスク絶縁膜104を除去する。ここで、第2の導電体5の溝部11の内部で対向する側面の間隔は、溝部11の上部ほど狭くなっている。よって、溝部11の側壁に形成された絶縁膜104は、素子分離領域124乃至127の上面の上に設けられた第2の導電体5にマスクされ、エッチングされずに残る。レジスト77乃至79の厚さのばらつきとは無関係に、側壁マスク絶縁膜104の最大高さが決定される。側壁マスク絶縁膜104の最大高さは、異方性エッチングのエッチング量によって決定される。側壁マスク絶縁膜104の最大高さを、均一な高さで制御性良く形成することができる。
【0095】
次に、レジスト77乃至80を剥離する。側壁マスク絶縁膜104をマスクとして、素子分離領域124乃至127をエッチングストッパーとして、図19(c)(d)に示すように、第2の導電体5をエッチングする。素子分離領域124乃至127の上の第2の導電体5は除去される。このことにより、第2の導電体57乃至59、157は互いに分離する。このエッチングとしては、エッチングダメージの少ない等方性エッチングを用いる。勿論、ダメージが問題とならない場合には、側壁マスク絶縁膜104をマスクとして異方性エッチングを行っても良い。異方性エッチングでは、図19(d)に示すような、第2の導電膜157の横方向のエッチング量は小さくできる。なお、第2の導電体57乃至59、157に直接レジスト77乃至80が接しないため、レジスト77乃至80から第2の導電体へのナトリウム(Na)や鉄(Fe)、クロム(Cr)などの金属汚染や炭素汚染を防ぐことができる。また、第2の導電体57乃至59、157のエッチングにCMP法を用いていない。このことにより、CMP法に特有のスクラッチよる残差残りや面積が広い部分のオーバーポリッシュ(over polish)現象が生じない。
【0096】
レジスト106を全面塗布する。ダミーセル161の一部と、周辺回路の素子分離領域124を覆うようにレジスト106を露光し、パターニングする。この露光では、メモリセルの溝部11の底も完全に露光されるような条件を選ぶ。図20(a)(b)に示すように、レジスト106をマスクとして、例えば等方性エッチングで側壁マスク絶縁膜104を剥離する。引き続き、レジスト106をマスクとして、異方性エッチングで素子分離絶縁膜124乃至127をエッチバックする。素子分離領域124乃至127の上面の高さは、第1の導電体41乃至43の上面よりも高く配置する。また、素子分離領域124乃至127の上面の高さは、第2の導電体57乃至59の下面よりも高く配置する。すなわち、素子分離領域124乃至127の側面と第2の導電体57乃至59の側面は接する。さらに、レジスト106が第2の導電体57乃至59、157の端面にのみ接触する。このため、第2の参考例の図12(a)のように、第2の導電体5の全面にレジスト76を塗布するよりも、レジスト106からの第2の導電体57乃至59、157への汚染を抑制することができる。また、第2の導電体57乃至59の端部の凸部が露出するが倒れることはない。これは、第2の導電体57乃至59の底部の面積が広いからである。
【0097】
レジスト106を剥離する。第2の導電体57乃至59、157の表面は、空気に晒されるため、いわゆる自然酸化膜が0.3nm〜2nm程度成長する。この自然酸化膜の膜厚は、ついで行われるブロック絶縁膜6の堆積までの時間に依存する。従って、この自然酸化膜の膜厚は、均一性や制御性が劣る。浮遊ゲートと制御ゲートの均一なカップリング比を得るためには、この自然酸化膜を取り除くことが必要である。そこで、例えば、この自然酸化膜のフッ酸によるエッチング処理を行う。
【0098】
図20(c)(d)に示すように、第2の導電体57乃至59、157の露出する表面と、素子分離領域124乃至127の上に、ブロック絶縁膜6を堆積する。ブロック絶縁膜6としては、例えば、厚さ5nmから30nmの範囲のシリコン酸化膜またはオキシナイトライド膜、または、それぞれの厚さが2nmから100nmの範囲のシリコン酸化膜/シリコン窒化膜/シリコン酸化膜の積層構造を有するONO膜が用いられる。
【0099】
次に、レジストを塗布し、ホトリソグラフィとエッチングを行う。このことにより、周辺回路164の第2の導電体157の上と、ダミーセル161と周辺回路164の間の素子分離領域124の上のブロック絶縁膜6を取り除く。制御ゲート電極7を、ブロック絶縁膜6と第2の導電体157の上に堆積する。制御ゲート電極7としては、例えばリン、砥素、またはボロンを不純物として、不純物濃度1017cm−3以上で1021cm−3以下の範囲で添加されているポリシリコンを用いる。または、制御ゲート電極7としては、タングステンシリサイド(WSi)とポリシリコンとのスタック構造、または、NiSi, MoSi、TiSi、CoSiとポリシリコンのスタック構造であってもよい。制御ゲート電極7の膜厚は、10nm以上で500nm以下の範囲の膜厚である。この制御ゲート電極7の膜厚は、第2の導電体57乃至59の端部の凸部の最大間隔の1/2以上とする。このことにより、第2の導電体57乃至59の凹部を埋め、凸部の上方に平坦化した制御ゲート電極7の上面を設けることができる。そして、制御ゲート電極7のリソグラフィ余裕を確保することができる。
【0100】
最後に、第1の参考例の製造方法と同様に、制御ゲート電極7、ブロック絶縁膜6、電荷蓄積電極となる第1と第2の導電体42、43,58,59を半導体表面内のパターンで線状に異方性エッチングで加工する。図15(a)に示すような、制御ゲート電極7、27、28に分割する。ここで、第2の導電体57乃至59の周辺部の凸部の間隔は、積み上げ方向に向かって狭くなる。このことにより、制御ゲート7の加工時の異方性エッチングの際に制御ゲート電極7のエッチング残りを減少させることができる。ソースドレイン領域81乃至88を制御ゲート電極7、27、28の両側に形成する。
【0101】
一方、図21(a)(b)(c)は、第2の実施の形態の製造工程で、図20(a)(b)に示されるのレジスト106のパターニングプロセスと、レジスト106によるマスクエッチングプロセスを省略した場合の半導体装置の断面図と上面図である。レジスト106によるマスクエッチングプロセスを省略すると、周辺回路164とダミーセル161の間の広い素子分離領域124がエッチバックされる。このエッチバックにより、メモリセル162、163の間の狭い素子分離領域125乃至127も共にエッチバックされるため、素子分離領域124乃至127の上面の高さはほぼ等しい。すなわち、一見すると、良好な平坦化がなされた状態である。しかし、図21(a)(b)に示すように、制御ゲート電極7を堆積すると、メモリセル領域の上面と、ダミーセル161と周辺回路164の間の広い素子分離領域124の上面とに、第2の導電体57乃至59の外側面部の凸部の高さ程度の段差Dが形成される。この段差Dにより、図21(c)に示すように、制御ゲート電極7、27、28の線幅が、広い素子分離領域124の上において、太くなる。制御ゲート電極7、27、28の線幅が太くなることにより、制御ゲート電極7、27、28の間で短絡が生じやすくなる場合が考えられた。あるいは、その段差Dによって、制御ゲート電極7、27、28を加工するリソグラフィの余裕が大幅に縮小することがわかった。このことにより、制御ゲート電極7、27、28の断線や、短絡を生じやすくなる場合が考えられた。
【0102】
これに対し、第2の実施の形態では、制御ゲート電極7、27、28を加工するリソグラフィにおいて、段差Dを小さくする。このために、あえて、図20(a)(b)に示すように、広い素子分離領域124の上面の高さを、素子分離領域125乃至127の上面の高さより高くする。このことにより、段差Dが小さくできるので、制御ゲート電極7、27、28を加工するリソグラフィの余裕の幅が広い。そして、制御ゲート電極7、27、28の断線や、短絡が生じにくくなる。
【0103】
(第2の実施の形態の変形例)第2の実施の形態の変形例は、第2の参考例の第1の変形例を、さらに詳細に説明する。第2の実施の形態の変形例の半導体装置は、メモリセル領域と周辺回路領域の間の領域と、メモリセル領域の制御ゲート電極7の上面の段差が小さいことを特徴とする。また、第2の実施の形態の変形例の半導体装置は、図9に示す制御ゲート電極7のエッチング残り116を生じさせない。このために、第2の実施の形態の変形例では、図22(b)(c)に示すように、第2の導電体57乃至59、157は、第1の導電体41乃至43、141の上面のみの上に形成される。そして、第2の導電体57乃至59、157の最大幅は、第1の導電体41乃至43、141の幅よりも小さい。すなわち、第2の導電体57乃至59の2つの外側の側面の最大の距離は、第1の導電体41乃至43の2つの端面の距離よりも小さい。
【0104】
図22(a)は、第2の実施の形態の変形例の半導体装置の上方からの透視図である。図22(a)の左側がメモリセル領域である。図22(a)の右側が周辺回路領域である。図22(b)は図22(a)のI−I方向の断面図である。図22(c)は図22(a)のVI−VI方向の断面図である。互いに等しい幅の制御ゲート28、7、27が等間隔に平行に横方向に配置されている。素子分離領域21乃至24が制御ゲート28、7、27の下方において、平行に縦方向に配置されている。メモリセル領域において、素子分離領域21乃至24は、互いに等しい幅を有し、等間隔に配置される。メモリセル162、163とダミーセル161のソース/ドレイン領域81乃至87は、上方に制御ゲート28、7、27と、素子分離領域21乃至24が配置されていない領域に設けられる。周辺回路164のソース/ドレイン領域88は、上方に制御ゲート28、7、27と、素子分離領域124が配置されていない領域に設けられる。
【0105】
p型シリコン基板1の上に、ゲート絶縁膜31乃至33、35が設けられている。ゲート絶縁膜31乃至33、35の上には、第1の導電体41乃至43、141が設けられている。このことにより、メモリセル162と163の電気特性のセル間のばらつきを均一にすることができる。第1の導電体41乃至43、141の側面には、浮遊ゲート側壁酸化膜101が設けられている。第1の導電体41乃至43、141の上には、第2の導電体57乃至59と157が設けられている。一方、浮遊ゲート側壁酸化膜101と素子分離領域21乃至24の上には、第2の導電体57乃至59は配置されない。
【0106】
第2の導電体57乃至59の底面の全面は、第1の導電体41乃至43の上面と接している。すなわち、第2の導電体57乃至59の底面の全面は、第1の導電体41乃至43の上面で覆われている。第2の導電体57乃至59も、一体の導電体である。より広い面積で第1の導電体と密着する。このため、第2の導電体57乃至59の内部応力や、第2の導電体57乃至59に対する外力による剥離を防止することができる。第2の導電体58、59は、外側面部において高く、内部において低い、いわゆる漢字の凹の形状を有している。第2の導電体58、59の外側の側面の下部は、素子分離領域21乃至24に接していることが好ましい。浮遊ゲート側壁酸化膜101は、素子分離絶縁膜21乃至24に接している。第2の導電体58、59の外側と内側の両側面の上にはブロック絶縁膜6が設けられている。第2の導電体58、59の内部の上面にもブロック絶縁膜6が設けられている。このブロック絶縁膜6の上には制御ゲート7が設けられている。素子分離領域21乃至24の上方に位置するブロック絶縁膜6および制御ゲート7は、第1の導電体42、43の上面(第2の導電体58、59の下面と一致する)よりも上方に形成されている。すなわち、図22(b)の高さHは、正の値になる。このことにより、図9で説明した制御ゲート7のエッチング残り116が発生することがない。なお、素子分離領域21乃至24の上方に位置するブロック絶縁膜6および制御ゲート7は、第1の導電体42、43の下面よりも上方に形成されていてもよい。このことによっても、図9で説明した制御ゲート7のエッチング残り116が発生することがない。
【0107】
シリコン基板1の上には、ライナー絶縁膜102を介して素子分離領域21乃至24が設けられている。素子分離領域21乃至24が形成されていないシリコン基板1の表面上に、ゲート絶縁膜31乃至33、35と第1の導電体41乃至43、141と第2の導電体57乃至59、157が自己整合的に設けられている。
【0108】
第2の実施の形態例の変形例では、第2の導電体58、59が一体の導電体である。このことにより、第1の導電体42、43と第2の導電体58、59との接触面積が増大する。このことによって、第1の導電体42、43と第2の導電体58、59の間の容量またはコンダクタンスを大きくできる。
【0109】
次に、第2の実施の形態の変形例の半導体装置の製造方法を説明する。第2の実施の形態の変形例の半導体装置の製造方法では、半導体装置のメモリセル領域と周辺回路領域を製造する方法を説明する。第2の実施の形態の製造方法の一部を変更する。図23に第2の実施の形態の変形例の半導体装置の製造途中の断面図を示す。図23の左側の(a)と(c)がメモリセル領域の断面図である。図23の右側の(b)と(d)が周辺回路領域の断面図である。
【0110】
まず、第2の実施の形態の図16(a)(b)に示された構造が得られるまで、第2の実施の形態の製造方法を実行する。次に、キャップ材91乃至94を、熱燐酸でエッチングする。キャップ材91乃至94を厚さで5nmから50nmまで範囲で除去する。図23(a)(b)に示すように、このエッチングにより、キャップ材95乃至98を形成できる。この除去する厚さは、浮遊ゲート側壁酸化膜101を形成によるときの第1の導電体41乃至43、141の減少量と、第1の導電体41乃至43、141の自然酸化膜を除去するときの素子分離領域21乃至24の減少量との和よりも大きい。次に、溝10の内壁の上に薄いライナー酸化膜102を成膜する。この後は、第2の実施の形態の製造方法で説明したのと同じ工程を行う。
【0111】
図23(c)(d)に示すように、第1の導電体41乃至43、141の自然酸化膜を除去した直後で、第2の導電体5を堆積する直前においては、第1の導電体41乃至43、141の上面の上方にのみ開口が設けられている。第1の導電体41乃至43、141の側面は露出していない。このことにより、第2の導電体57乃至59、157が、第1の導電体41乃至43、141の側面から下に落ち込むことがない。これにより、制御ゲート電極7は、第2の導電膜57乃至59、157の上面または側面に選択的に形成される。一方、制御ゲート電極7は、第2の導電膜57乃至59、157の下方には配置されない。また、制御ゲート電極7の底面が、第1の電荷蓄積層41の底面よりも積み上げ方向で上方に形成されれば、第2の導電体57乃至59、157がマスクとなって、制御ゲート電極7のエッチング残り116が生じることがない。
【0112】
本発明は上記実施形態に限られない。素子分離領域や絶縁膜の形成法は、シリコンをシリコン酸化膜やシリコン窒化膜に変換する酸化や窒化の方法に限られない。例えば、酸素イオンを堆積したシリコンに注入する方法や、堆積したシリコンを酸化する方法、シリコン窒化膜をシリコン酸化膜に転換する方法を用いてもよい。
【0113】
また、半導体基板は、p型シリコン基板に限られない。半導体基板は、n型シリコン基板やSOI基板のシリコン層、またはシリコンゲルマニウム(SiGe)混晶、炭化シリコンゲルマニウム(SiGeC)混晶など、シリコンを含む単結晶の半導体基板であってもよい。なお、p型シリコン基板からn型シリコン基板に置き換える場合は、n型MOSFETの形成にかえて、p型MOSFETの形成に置き換える。すなわち、上述の実施形態のn型をp型に読み替え、p型をn型と読み替える。さらに、ドーピング不純物種の砒素(As)、リン(P)をインジウム(In)、ボロン(B)のいずれかと読み替えればよい。
【0114】
また、制御ゲート電極および電荷蓄積領域はシリコン半導体、SiGe混晶、SiGeC混晶、TiSi、NiSi、CoSi、TaSi、WSi、MoSiなどのシリサイドやポリサイド、チタニウム(Ti)、アルミニウム(Al)、銅(Cu)、窒化チタニウム(TiN)、タングステン(W)などの金属を用いることができる。これらの材料は多結晶であってもよい。さらに、制御ゲート電極および電荷蓄積領域は、これら材料の積層構造であってもよい。また、制御ゲート電極および電荷蓄積領域には、アモルファスSi、 アモルファスSiGe混晶、または アモルファスSiGeC混晶を用いることができ、これらの積層構造にしてもよい。さらに、電荷蓄積領域はドット状に形成されていても構わず、本発明が適用できることは言うまでもない。その他、本発明の要旨を逸脱しない範囲で、様々に変形して実施することができる。
【0115】
【発明の効果】
以上説明したように、本発明によれば、浮遊ゲートと制御ゲート間の容量を大きく維持したまま素子分離幅Wtを狭めることが可能な半導体装置を提供できる。
【0116】
また、本発明によれば、浮遊ゲートと制御ゲート間の容量結合を大きくしても浮遊ゲート間容量が大きくなりにくく、セル間の電気的干渉を防ぐことができる半導体装置の製造方法を提供できる。
【図面の簡単な説明】
【図1】 第1の実施形態に係る半導体装置の上面図と断面図である。
【図2】 第1の実施形態に係る半導体装置の断面図である。
【図3】 第1の実施形態に係る半導体装置の製造工程毎の断面図(その1)である。
【図4】 第1の実施形態に係る半導体装置の製造工程毎の断面図(その2)である。
【図5】 第1の実施形態に係る製造途中の半導体装置(図4(c)に相当する工程における)の上方からの透視図である。
【図6】 第1の実施形態の第1の変形例に係る半導体装置の断面図である。
【図7】 第1の実施形態の第2の変形例に係る半導体装置の断面図である。
【図8】 第1の参考例に係る半導体装置の断面図である。
【図9】 第1の参考例に係る半導体装置の比較例の細部の断面図である。
【図10】 第1及び第1の参考例に係る半導体装置によって得られる浮遊ゲート間の結合容量低減の効果を説明するための図である。
【図11】 第2の参考例とその第1乃至第3の変形例に係る半導体装置の断面図である。
【図12】 第2の参考例に係る半導体装置の製造工程毎の断面図である。
【図13】 第2の参考例の第1の変形例に係る半導体装置の製造工程毎の断面図である。
【図14】 第2の参考例の第2の変形例に係る半導体装置の製造工程毎の断面図である。
【図15】 第2の実施の形態に係る半導体装置の上面図と断面図である。
【図16】 第2の実施の形態に係る半導体装置の製造工程毎の断面図(その1)である。
【図17】 第2の実施の形態に係る半導体装置の製造工程毎の断面図(その2)である。
【図18】 第2の実施の形態に係る半導体装置の製造工程毎の断面図(その3)である。
【図19】 第2の実施の形態に係る半導体装置の製造工程毎の断面図(その4)である。
【図20】 第2の実施の形態に係る半導体装置の製造工程毎の断面図(その5)である。
【図21】 第2の実施の形態に係る半導体装置の比較例の上面図と断面図である。
【図22】 第2の実施の形態の変形例に係る半導体装置の上面図と断面図である。
【図23】 第2の実施の形態の変形例に係る半導体装置の製造工程毎の断面図である。
【符号の説明】
1 p型シリコン基板
5 多結晶シリコン膜
6、16、26 浮遊ゲートと制御ゲートの間の絶縁膜、ONO膜
7、17、27、28 制御ゲート
8、81乃至87 主電極領域、ソース・ドレイン領域
10 溝
11 溝
21乃至24 素子分離領域、STI
31乃至34 トンネル酸化膜
35 シリコン酸化膜
41乃至44、71乃至74 浮遊ゲートの第1部分
51乃至60、151乃至156 浮遊ゲートの第2部分
61乃至64 メモリセル
65 選択トランジスタ
66 ソース拡散層
75 選択ゲート
76乃至80 フォトレジスト
91乃至94 キャップ材
120乃至123 シリコン酸化膜
124乃至127 素子分離領域、STI
141、157 周辺回路のゲート電極
161 ダミーセル
162、163 メモリセル
164 周辺トランジスタ
Claims (21)
- 表面に溝を有する半導体基板と、
前記溝に埋め込まれ側面の上部が前記基板の表面より高い第1と第2の絶縁体と、
前記基板の表面上に設けられ、一端が前記第1の絶縁体と接し、他端が前記第2の絶縁体と接する第3の絶縁膜と、
前記第3の絶縁膜の表面上に設けられ、一端面が前記第1の絶縁体と接し、他端面が前記第2の絶縁体と接する第1の浮遊ゲート電極と、
前記第1の浮遊ゲート電極の上方で、前記第1の浮遊ゲート電極の前記一端面の近傍に設けられる第2の浮遊ゲート電極と、
前記第1の浮遊ゲート電極の上方で、前記第1の浮遊ゲート電極の前記他端面の近傍に設けられる第3の浮遊ゲート電極と、
前記第2の浮遊ゲート電極の前記第3の浮遊ゲート電極と対向する側の第1の側面と、前記第3の浮遊ゲート電極の前記第2の浮遊ゲート電極と対向する側の第2の側面と、前記第1の浮遊ゲート電極の上面とを連続的に覆う第4の絶縁膜と、
前記第4の絶縁膜の上に設けられる制御ゲート電極とを有し、
前記第2の浮遊ゲート電極の前記第1の側面とは反対側の第2の側面と、前記第3の浮遊ゲート電極の前記第2の側面とは反対側の第1の側面との間隔は上ほど狭いことを特徴とする不揮発性半導体記憶装置。 - 前記第2の浮遊ゲート電極の前記第2の側面が前記第1の絶縁体と接し、前記第3の浮遊ゲート電極の前記第1の側面が前記第2の絶縁体と接することを特徴とする請求項1に記載の不揮発性半導体記憶装置。
- 前記第1の絶縁体と前記第2の絶縁体は、縦方向に複数平行に交互に配置され、前記制御ゲート電極は横方向に複数平行に配置されることを特徴とする請求項1又は請求項2に記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極が前記第1の浮遊ゲート電極と電気的に接続し、前記第3の浮遊ゲート電極が前記第1の浮遊ゲート電極と電気的に接続することを特徴とする請求項1乃至請求項3のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2と第3の浮遊ゲート電極の断面幅が積み上げ方向下向きに広くなることを特徴とする請求項1乃至請求項4のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第1の絶縁体の上方に形成された前記制御ゲート電極の底面と、前記第2の絶縁体の上方に形成された前記制御ゲート電極の底面とは、ともに前記第1の浮遊ゲート電極の上面よりも高いことを特徴とする請求項1乃至請求項5のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極の前記第1の側面とは反対側の前記第2の側面と前記第3の浮遊ゲート電極の前記第2の側面とは反対側の前記第1の側面の最大の間隔は前記第1の浮遊ゲート電極の前記一端面と前記他端面の距離よりも大きく、前記第2の浮遊ゲート電極の下面と前記第3の浮遊ゲート電極の下面は前記第1の浮遊ゲート電極の上面よりも低いことを特徴とする請求項2乃至請求項6のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極の前記第1の側面とは反対側の前記第2の側面と前記第3の浮遊ゲート電極の前記第2の側面とは反対側の前記第1の側面の最大の間隔は前記第1の浮遊ゲート電極の前記一端面と前記他端面の距離よりも小さいことを特徴とする請求項2乃至請求項6のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極の前記第1の側面とは反対側の前記第2の側面と前記制御ゲート電極の間に、前記第4の絶縁膜が配置され、前記第3の浮遊ゲート電極の前記第2の側面とは反対側の前記第1の側面と前記制御ゲート電極の間に、前記第4の絶縁膜が配置されることを特徴とする請求項2乃至請求項8のいずれか1つに記載の不揮発性半導体記憶装置。
- 表面に溝を有する半導体基板と、
前記溝に埋め込まれ上面が前記基板の表面より高い第1と第2の絶縁体と、
前記第1及び第2の絶縁体の間の前記基板の表面上に設けられる第3の絶縁膜と、
前記第3の絶縁膜の表面上に前記第1及び第2の絶縁体の間の領域に設けられる第1の浮遊ゲート電極と、
前記第1の浮遊ゲート電極の表面上に設けられ、外側面部の上面の高さが内部の上面の高さより高く、前記第2の絶縁体と接する第1の側面と前記第1の絶縁体と接する第2の側面の間隔は上ほど狭い第2の浮遊ゲート電極と、
前記第2の浮遊ゲート電極の前記内部の上面及び側面と接する第4の絶縁膜と、
前記第4の絶縁膜の上に設けられる制御ゲート電極とを有することを特徴とする不揮発性半導体記憶装置。 - 前記第1の絶縁体と前記第2の絶縁体は、縦方向に複数平行に交互に配置され、前記制御ゲート電極は横方向に複数平行に配置されることを特徴とする請求項10に記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極が前記第1の浮遊ゲート電極と電気的に接続することを特徴とする請求項10又は請求項11に記載の不揮発性半導体記憶装置。
- 前記第1の絶縁体の上方に形成された前記制御ゲート電極の底面は、前記第1の浮遊ゲート電極の上面よりも高いことを特徴とする請求項10乃至請求項12のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極の前記第1の側面と前記第2の側面の最大の間隔は前記第1の浮遊ゲート電極の幅よりも大きく、前記第2の浮遊ゲート電極の前記第1及び第2の側面近傍の下面は前記第1の浮遊ゲート電極の上面よりも低いことを特徴とする請求項10乃至請求項12のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極の前記第1の側面と前記第2の側面の最大の間隔は前記第1の浮遊ゲート電極の幅よりも小さいことを特徴とする請求項10乃至請求項12のいずれか1つに記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極の前記第2の側面と前記制御ゲート電極の間と、前記第2の浮遊ゲート電極の前記第1の側面と前記制御ゲート電極の間に、前記第4の絶縁膜がそれぞれ配置されることを特徴とする請求項10乃至請求項15のいずれか1つに記載の不揮発性半導体記憶装置。
- メモリセルアレイの端部に位置するダミーセルを有する不揮発性半導体記憶装置であって、前記ダミーセルの構造が、
表面に溝を有する半導体基板と、
前記溝に埋め込まれ上面が前記基板の表面より高い第1の絶縁体と、
前記溝に埋め込まれ上面が前記基板の表面より高く、幅が前記第1の絶縁体より大きく、上面が前記第1の絶縁体の上面より高い第2の絶縁体と、
前記第1及び第2の絶縁体の間の前記基板の表面上に設けられる第3の絶縁膜と、
前記第3の絶縁膜の表面上に前記第1及び第2の絶縁体の間の領域に設けられる第1の浮遊ゲート電極と、
前記第1の浮遊ゲート電極の表面上に設けられ、外側面部の上面の高さが内部の上面の高さより高く、前記第2の絶縁体と接する第1の側面と前記第1の絶縁体と接する第2の側面の間隔は上ほど狭い第2の浮遊ゲート電極と、
前記第2の浮遊ゲート電極の前記内部の上面及び側面と接する第4の絶縁膜と、
前記第4の絶縁膜の上に設けられる制御ゲート電極とを有することを特徴とする不揮発性半導体記憶装置。 - 前記第1の絶縁体と前記第2の絶縁体は、縦方向に平行に配置され、前記制御ゲート電極は横方向に複数平行に配置されることを特徴とする請求項17に記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極が前記第1の浮遊ゲート電極と電気的に接続することを特徴とする請求項17又は18に記載の不揮発性半導体記憶装置。
- 前記第1の絶縁体の上方に形成された前記制御ゲート電極の底面は、前記第1の浮遊ゲート電極の上面よりも高いことを特徴とする請求項17乃至請求項19に記載の不揮発性半導体記憶装置。
- 前記第2の浮遊ゲート電極が前記第1の絶縁体の上面から完全に除かれ、前記第3の浮遊ゲート電極が前記第2の絶縁体の上面から完全に除かれていることを特徴とする請求項1乃至請求項9のいずれか1つに記載の不揮発性半導体記憶装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001324141A JP3984020B2 (ja) | 2000-10-30 | 2001-10-22 | 不揮発性半導体記憶装置 |
US09/984,599 US6713834B2 (en) | 2000-10-30 | 2001-10-30 | Semiconductor device having two-layered charge storage electrode |
KR10-2001-0066992A KR100483416B1 (ko) | 2000-10-30 | 2001-10-30 | 반도체 장치 및 그 제조 방법 |
US10/728,818 US6806132B2 (en) | 2000-10-30 | 2003-12-08 | Semiconductor device having two-layered charge storage electrode |
US10/868,927 US20040229422A1 (en) | 2000-10-30 | 2004-06-17 | Semiconductor device having two-layered charge storage electrode |
US10/869,392 US7061069B2 (en) | 2000-10-30 | 2004-06-17 | Semiconductor device having two-layered charge storage electrode |
US11/373,982 US7420259B2 (en) | 2000-10-30 | 2006-03-14 | Semiconductor device having two-layered charge storage electrode |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-331407 | 2000-10-30 | ||
JP2000331407 | 2000-10-30 | ||
JP2001324141A JP3984020B2 (ja) | 2000-10-30 | 2001-10-22 | 不揮発性半導体記憶装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2002203919A JP2002203919A (ja) | 2002-07-19 |
JP2002203919A5 JP2002203919A5 (ja) | 2004-07-29 |
JP3984020B2 true JP3984020B2 (ja) | 2007-09-26 |
Family
ID=26603084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001324141A Expired - Fee Related JP3984020B2 (ja) | 2000-10-30 | 2001-10-22 | 不揮発性半導体記憶装置 |
Country Status (3)
Country | Link |
---|---|
US (5) | US6713834B2 (ja) |
JP (1) | JP3984020B2 (ja) |
KR (1) | KR100483416B1 (ja) |
Families Citing this family (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002176114A (ja) * | 2000-09-26 | 2002-06-21 | Toshiba Corp | 半導体装置及びその製造方法 |
JP2002217318A (ja) * | 2001-01-19 | 2002-08-02 | Sony Corp | 不揮発性半導体記憶素子及びその製造方法 |
US6762092B2 (en) | 2001-08-08 | 2004-07-13 | Sandisk Corporation | Scalable self-aligned dual floating gate memory cell array and methods of forming the array |
US6781189B2 (en) * | 2002-01-22 | 2004-08-24 | Micron Technology, Inc. | Floating gate transistor with STI |
US6894930B2 (en) | 2002-06-19 | 2005-05-17 | Sandisk Corporation | Deep wordline trench to shield cross coupling between adjacent cells for scaled NAND |
EP1514309B1 (en) | 2002-06-19 | 2013-11-27 | SanDisk Technologies Inc. | Deep wordline trench to shield cross coupling between adjacent cells of nand memory |
US6703272B2 (en) * | 2002-06-21 | 2004-03-09 | Micron Technology, Inc. | Methods of forming spaced conductive regions, and methods of forming capacitor constructions |
JP4412903B2 (ja) * | 2002-06-24 | 2010-02-10 | 株式会社ルネサステクノロジ | 半導体装置 |
JP2004055803A (ja) * | 2002-07-19 | 2004-02-19 | Renesas Technology Corp | 半導体装置 |
KR20040011016A (ko) * | 2002-07-26 | 2004-02-05 | 동부전자 주식회사 | 알에프 반도체소자 제조방법 |
TW544786B (en) * | 2002-07-29 | 2003-08-01 | Nanya Technology Corp | Floating gate and method therefor |
KR100448911B1 (ko) * | 2002-09-04 | 2004-09-16 | 삼성전자주식회사 | 더미 패턴을 갖는 비휘발성 기억소자 |
US6908817B2 (en) * | 2002-10-09 | 2005-06-21 | Sandisk Corporation | Flash memory array with increased coupling between floating and control gates |
KR100537276B1 (ko) * | 2002-11-18 | 2005-12-19 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
WO2004053992A2 (en) * | 2002-12-06 | 2004-06-24 | Koninklijke Philips Electronics N.V. | Shallow trench isolation in floating gate devices |
KR100880340B1 (ko) | 2002-12-20 | 2009-01-28 | 주식회사 하이닉스반도체 | 플래쉬 메모리 소자의 제조 방법 |
KR100526463B1 (ko) * | 2003-05-07 | 2005-11-08 | 매그나칩 반도체 유한회사 | 반도체 소자의 제조 방법 |
JP3964828B2 (ja) | 2003-05-26 | 2007-08-22 | 株式会社東芝 | 半導体装置 |
US7105406B2 (en) * | 2003-06-20 | 2006-09-12 | Sandisk Corporation | Self aligned non-volatile memory cell and process for fabrication |
JP2005072380A (ja) * | 2003-08-26 | 2005-03-17 | Toshiba Corp | 不揮発性半導体記憶装置、その製造方法、電子カード及び電子装置 |
US6943118B2 (en) * | 2003-09-18 | 2005-09-13 | Macronix International Co., Ltd. | Method of fabricating flash memory |
US7221008B2 (en) | 2003-10-06 | 2007-05-22 | Sandisk Corporation | Bitline direction shielding to avoid cross coupling between adjacent cells for NAND flash memory |
US7202523B2 (en) * | 2003-11-17 | 2007-04-10 | Micron Technology, Inc. | NROM flash memory devices on ultrathin silicon |
US7183153B2 (en) * | 2004-03-12 | 2007-02-27 | Sandisk Corporation | Method of manufacturing self aligned non-volatile memory cells |
KR100589058B1 (ko) * | 2004-03-16 | 2006-06-12 | 삼성전자주식회사 | 불휘발성 메모리 장치 및 이를 형성하기 위한 방법 |
JP2005277171A (ja) * | 2004-03-25 | 2005-10-06 | Toshiba Corp | 半導体装置およびその製造方法 |
JP2005332885A (ja) | 2004-05-18 | 2005-12-02 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
US7371638B2 (en) * | 2004-05-24 | 2008-05-13 | Samsung Electronics Co., Ltd. | Nonvolatile memory cells having high control gate coupling ratios using grooved floating gates and methods of forming same |
KR100621628B1 (ko) * | 2004-05-31 | 2006-09-19 | 삼성전자주식회사 | 비휘발성 기억 셀 및 그 형성 방법 |
JP2006012871A (ja) * | 2004-06-22 | 2006-01-12 | Nec Electronics Corp | 不揮発性半導体記憶装置及びその製造方法 |
US7388251B2 (en) * | 2004-08-11 | 2008-06-17 | Micron Technology, Inc. | Non-planar flash memory array with shielded floating gates on silicon mesas |
TWI249846B (en) * | 2004-08-23 | 2006-02-21 | Winbond Electronics Corp | Memory device |
US20060043463A1 (en) * | 2004-09-01 | 2006-03-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Floating gate having enhanced charge retention |
US7183161B2 (en) * | 2004-09-17 | 2007-02-27 | Freescale Semiconductor, Inc. | Programming and erasing structure for a floating gate memory cell and method of making |
US7094645B2 (en) * | 2004-09-17 | 2006-08-22 | Freescale Semiconductor, Inc. | Programming and erasing structure for a floating gate memory cell and method of making |
JP2006108310A (ja) * | 2004-10-04 | 2006-04-20 | Toshiba Corp | 不揮発性半導体記憶装置とその製造方法 |
US7518179B2 (en) * | 2004-10-08 | 2009-04-14 | Freescale Semiconductor, Inc. | Virtual ground memory array and method therefor |
US7416956B2 (en) * | 2004-11-23 | 2008-08-26 | Sandisk Corporation | Self-aligned trench filling for narrow gap isolation regions |
US7381615B2 (en) | 2004-11-23 | 2008-06-03 | Sandisk Corporation | Methods for self-aligned trench filling with grown dielectric for high coupling ratio in semiconductor devices |
US8008701B2 (en) * | 2004-12-22 | 2011-08-30 | Giorgio Servalli | Method of making a floating gate non-volatile MOS semiconductor memory device with improved capacitive coupling and device thus obtained |
EP1675181A1 (en) * | 2004-12-22 | 2006-06-28 | STMicroelectronics S.r.l. | Methode of making a non-volatile MOS semiconductor memory device |
US7482223B2 (en) * | 2004-12-22 | 2009-01-27 | Sandisk Corporation | Multi-thickness dielectric for semiconductor memory |
US7840895B2 (en) * | 2005-03-07 | 2010-11-23 | Computer Associates Think, Inc. | System and method for data manipulation |
JP4113199B2 (ja) * | 2005-04-05 | 2008-07-09 | 株式会社東芝 | 半導体装置 |
JP4488947B2 (ja) | 2005-04-08 | 2010-06-23 | 株式会社東芝 | 不揮発性半導体記憶装置の製造方法 |
KR100674971B1 (ko) * | 2005-04-27 | 2007-01-26 | 삼성전자주식회사 | U자형 부유 게이트를 가지는 플래시 메모리 제조방법 |
US7335939B2 (en) * | 2005-05-23 | 2008-02-26 | Infineon Technologies Ag | Semiconductor memory device and method of production |
KR100645067B1 (ko) * | 2005-07-04 | 2006-11-10 | 삼성전자주식회사 | 플로팅 게이트를 갖는 비휘발성 기억 소자 및 그 형성 방법 |
KR100824400B1 (ko) * | 2005-07-08 | 2008-04-22 | 삼성전자주식회사 | 비휘발성 기억 소자 및 그 형성 방법 |
US7619270B2 (en) * | 2005-07-25 | 2009-11-17 | Freescale Semiconductor, Inc. | Electronic device including discontinuous storage elements |
US7582929B2 (en) * | 2005-07-25 | 2009-09-01 | Freescale Semiconductor, Inc | Electronic device including discontinuous storage elements |
US7619275B2 (en) * | 2005-07-25 | 2009-11-17 | Freescale Semiconductor, Inc. | Process for forming an electronic device including discontinuous storage elements |
US7642594B2 (en) * | 2005-07-25 | 2010-01-05 | Freescale Semiconductor, Inc | Electronic device including gate lines, bit lines, or a combination thereof |
US7112490B1 (en) * | 2005-07-25 | 2006-09-26 | Freescale Semiconductor, Inc. | Hot carrier injection programmable structure including discontinuous storage elements and spacer control gates in a trench |
DE102005038939B4 (de) * | 2005-08-17 | 2015-01-08 | Qimonda Ag | Halbleiterspeicherbauelement mit oberseitig selbstjustiert angeordneten Wortleitungen und Verfahren zur Herstellung von Halbleiterspeicherbauelementen |
KR101088061B1 (ko) | 2005-10-24 | 2011-11-30 | 삼성전자주식회사 | 플로팅 게이트를 갖는 비휘발성 기억 소자 및 그 형성 방법 |
JP2007081189A (ja) * | 2005-09-15 | 2007-03-29 | Elpida Memory Inc | 半導体記憶装置及びその製造方法 |
US7541240B2 (en) * | 2005-10-18 | 2009-06-02 | Sandisk Corporation | Integration process flow for flash devices with low gap fill aspect ratio |
JP2007134598A (ja) * | 2005-11-11 | 2007-05-31 | Toshiba Corp | 半導体装置の製造方法 |
KR100669346B1 (ko) | 2005-11-11 | 2007-01-16 | 삼성전자주식회사 | 플로팅 게이트를 갖는 비휘발성 기억 소자 및 그 형성 방법 |
JP2007157854A (ja) * | 2005-12-01 | 2007-06-21 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
EP1818989A3 (en) * | 2006-02-10 | 2010-12-01 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile semiconductor storage device and manufacturing method thereof |
EP1835530A3 (en) * | 2006-03-17 | 2009-01-28 | Samsung Electronics Co., Ltd. | Non-volatile memory device and method of manufacturing the same |
KR101488516B1 (ko) * | 2006-03-21 | 2015-02-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 불휘발성 반도체 기억장치 |
JP2007288175A (ja) * | 2006-03-21 | 2007-11-01 | Semiconductor Energy Lab Co Ltd | 不揮発性半導体記憶装置 |
EP1837900A3 (en) * | 2006-03-21 | 2008-10-15 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile semiconductor memory device |
EP1837917A1 (en) * | 2006-03-21 | 2007-09-26 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile semiconductor memory device |
TWI416738B (zh) * | 2006-03-21 | 2013-11-21 | Semiconductor Energy Lab | 非揮發性半導體記憶體裝置 |
US7592224B2 (en) | 2006-03-30 | 2009-09-22 | Freescale Semiconductor, Inc | Method of fabricating a storage device including decontinuous storage elements within and between trenches |
EP1840947A3 (en) * | 2006-03-31 | 2008-08-13 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile semiconductor memory device |
JP5483659B2 (ja) * | 2006-03-31 | 2014-05-07 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US7786526B2 (en) * | 2006-03-31 | 2010-08-31 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile semiconductor memory device |
US8022460B2 (en) * | 2006-03-31 | 2011-09-20 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile semiconductor memory device |
US7554854B2 (en) * | 2006-03-31 | 2009-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Method for deleting data from NAND type nonvolatile memory |
JP2007294911A (ja) * | 2006-03-31 | 2007-11-08 | Semiconductor Energy Lab Co Ltd | 不揮発性半導体記憶装置 |
JP2007335750A (ja) * | 2006-06-16 | 2007-12-27 | Toshiba Corp | 半導体記憶装置 |
US7977190B2 (en) | 2006-06-21 | 2011-07-12 | Micron Technology, Inc. | Memory devices having reduced interference between floating gates and methods of fabricating such devices |
WO2008001458A1 (fr) * | 2006-06-30 | 2008-01-03 | Fujitsu Microelectronics Limited | Dispositif à semi-conducteur et procédé de fabrication d'un semi-conducteur |
EP2054925A2 (en) * | 2006-08-16 | 2009-05-06 | SanDisk Corporation | Nonvolatile memories with shaped floating gates |
US7615445B2 (en) * | 2006-09-21 | 2009-11-10 | Sandisk Corporation | Methods of reducing coupling between floating gates in nonvolatile memory |
US20080074920A1 (en) * | 2006-09-21 | 2008-03-27 | Henry Chien | Nonvolatile Memory with Reduced Coupling Between Floating Gates |
US8652912B2 (en) | 2006-12-08 | 2014-02-18 | Micron Technology, Inc. | Methods of fabricating a transistor gate including cobalt silicide |
US7572699B2 (en) * | 2007-01-24 | 2009-08-11 | Freescale Semiconductor, Inc | Process of forming an electronic device including fins and discontinuous storage elements |
US7651916B2 (en) * | 2007-01-24 | 2010-01-26 | Freescale Semiconductor, Inc | Electronic device including trenches and discontinuous storage elements and processes of forming and using the same |
US7838922B2 (en) * | 2007-01-24 | 2010-11-23 | Freescale Semiconductor, Inc. | Electronic device including trenches and discontinuous storage elements |
JP2008218604A (ja) * | 2007-03-02 | 2008-09-18 | Nec Electronics Corp | 半導体装置 |
US7745285B2 (en) * | 2007-03-30 | 2010-06-29 | Sandisk Corporation | Methods of forming and operating NAND memory with side-tunneling |
KR100885891B1 (ko) * | 2007-04-30 | 2009-02-26 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 이의 제조 방법 |
JP5282372B2 (ja) * | 2007-05-11 | 2013-09-04 | ソニー株式会社 | 表示装置及び電子機器 |
KR20090047211A (ko) * | 2007-11-07 | 2009-05-12 | 삼성전자주식회사 | 도전 패턴의 형성 방법 및 이를 이용한 반도체 소자의 제조방법 |
KR101402890B1 (ko) * | 2007-11-30 | 2014-06-27 | 삼성전자주식회사 | 비휘발성 기억 소자 및 그 형성 방법 |
JP2009152498A (ja) * | 2007-12-21 | 2009-07-09 | Toshiba Corp | 不揮発性半導体メモリ |
JP2010004020A (ja) * | 2008-05-19 | 2010-01-07 | Toshiba Corp | 不揮発性半導体記憶装置およびその製造方法 |
US7935608B2 (en) * | 2008-06-02 | 2011-05-03 | Qimonda Ag | Storage cell having a T-shaped gate electrode and method for manufacturing the same |
JP5522915B2 (ja) | 2008-09-30 | 2014-06-18 | ローム株式会社 | 半導体記憶装置およびその製造方法 |
US7973353B2 (en) * | 2009-02-09 | 2011-07-05 | United Microelectronics Corp. | NAND memory cells |
KR101096388B1 (ko) * | 2009-12-30 | 2011-12-20 | 주식회사 하이닉스반도체 | 불휘발성 메모리 소자 및 이의 제조 방법 |
JP2012043856A (ja) * | 2010-08-16 | 2012-03-01 | Toshiba Corp | 半導体装置およびその製造方法 |
KR20120121722A (ko) * | 2011-04-27 | 2012-11-06 | 에스케이하이닉스 주식회사 | 반도체 소자 및 그 형성 방법 |
CN104752356B (zh) * | 2013-12-25 | 2018-07-06 | 北京兆易创新科技股份有限公司 | 一种或非型闪存的浮栅的制作方法 |
JP5781190B2 (ja) * | 2014-04-07 | 2015-09-16 | ローム株式会社 | 半導体記憶装置 |
CN106972022B (zh) * | 2016-01-11 | 2019-10-29 | 中芯国际集成电路制造(上海)有限公司 | 一种半导体器件及其制作方法、电子装置 |
TWI629749B (zh) * | 2016-11-24 | 2018-07-11 | 旺宏電子股份有限公司 | 半導體元件及其製造方法與記憶體的製造方法 |
CN108717931A (zh) * | 2018-05-23 | 2018-10-30 | 武汉新芯集成电路制造有限公司 | 一种改善浮栅缺陷的方法及半导体结构 |
CN110838490A (zh) * | 2018-08-17 | 2020-02-25 | 北京兆易创新科技股份有限公司 | 一种浮栅存储器的制备方法和浮栅存储器 |
US10886287B2 (en) * | 2019-01-14 | 2021-01-05 | Globalfoundries Inc. | Multiple-time programmable (MTP) memory device with a wrap-around control gate |
US12009435B2 (en) * | 2021-09-13 | 2024-06-11 | International Business Machines Corporation | Integrated nanosheet field effect transistors and floating gate memory cells |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10335497A (ja) | 1997-06-04 | 1998-12-18 | Sony Corp | 半導体不揮発性記憶装置およびその製造方法 |
JPH11163304A (ja) * | 1997-11-28 | 1999-06-18 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
US6342715B1 (en) * | 1997-06-27 | 2002-01-29 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device |
US5963824A (en) * | 1997-07-09 | 1999-10-05 | Advanced Micro Devices, Inc. | Method of making a semiconductor device with adjustable threshold voltage |
JPH1187543A (ja) | 1997-09-10 | 1999-03-30 | Toshiba Corp | 不揮発性半導体記憶装置 |
JPH11186419A (ja) * | 1997-12-25 | 1999-07-09 | Toshiba Corp | 不揮発性半導体記憶装置 |
JPH11261038A (ja) | 1998-03-11 | 1999-09-24 | Sony Corp | 半導体不揮発性記憶装置およびその製造方法 |
JP4237344B2 (ja) * | 1998-09-29 | 2009-03-11 | 株式会社東芝 | 半導体装置及びその製造方法 |
TW490860B (en) | 1998-12-24 | 2002-06-11 | United Microelectronics Corp | Manufacturing of flash memory cell |
JP3314748B2 (ja) | 1999-02-09 | 2002-08-12 | 日本電気株式会社 | 不揮発性半導体記憶装置の製造方法 |
TW407381B (en) | 1999-03-01 | 2000-10-01 | United Microelectronics Corp | Manufacture of the flash memory cell |
US6153494A (en) | 1999-05-12 | 2000-11-28 | Taiwan Semiconductor Manufacturing Company | Method to increase the coupling ratio of word line to floating gate by lateral coupling in stacked-gate flash |
US6391722B1 (en) | 2001-07-13 | 2002-05-21 | Vanguard International Semiconductor Corporation | Method of making nonvolatile memory having high capacitive coupling ratio |
-
2001
- 2001-10-22 JP JP2001324141A patent/JP3984020B2/ja not_active Expired - Fee Related
- 2001-10-30 KR KR10-2001-0066992A patent/KR100483416B1/ko not_active IP Right Cessation
- 2001-10-30 US US09/984,599 patent/US6713834B2/en not_active Expired - Fee Related
-
2003
- 2003-12-08 US US10/728,818 patent/US6806132B2/en not_active Expired - Fee Related
-
2004
- 2004-06-17 US US10/868,927 patent/US20040229422A1/en not_active Abandoned
- 2004-06-17 US US10/869,392 patent/US7061069B2/en not_active Expired - Fee Related
-
2006
- 2006-03-14 US US11/373,982 patent/US7420259B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US20040232515A1 (en) | 2004-11-25 |
US20060163637A1 (en) | 2006-07-27 |
US7420259B2 (en) | 2008-09-02 |
US20040080020A1 (en) | 2004-04-29 |
US7061069B2 (en) | 2006-06-13 |
US6713834B2 (en) | 2004-03-30 |
US20020093073A1 (en) | 2002-07-18 |
KR20020034907A (ko) | 2002-05-09 |
US6806132B2 (en) | 2004-10-19 |
US20040229422A1 (en) | 2004-11-18 |
KR100483416B1 (ko) | 2005-04-15 |
JP2002203919A (ja) | 2002-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3984020B2 (ja) | 不揮発性半導体記憶装置 | |
US7723188B2 (en) | Non-volatile memory devices and methods of forming the same | |
US7323375B2 (en) | Fin field effect transistor device and method of fabricating the same | |
US7005328B2 (en) | Non-volatile memory device | |
JP4131896B2 (ja) | 不揮発性半導体記憶装置の製造方法 | |
US20050156233A1 (en) | Stacked gate flash memory device and method of fabricating the same | |
US7061040B2 (en) | Memory device | |
US20040077147A1 (en) | Stacked gate flash memory device and method of fabricating the same | |
US6784039B2 (en) | Method to form self-aligned split gate flash with L-shaped wordline spacers | |
US20030060011A1 (en) | Semiconductor device and method of manufacturing the same | |
US20080076243A1 (en) | Self-aligned non-volatile memory and method of forming the same | |
JP5718585B2 (ja) | 半導体装置及びその製造方法、並びにデータ処理システム | |
KR20170137637A (ko) | 반도체 장치 및 그 제조 방법 | |
JP2009267208A (ja) | 半導体装置及びその製造方法 | |
JP2006093230A (ja) | 不揮発性半導体記憶装置 | |
KR100521371B1 (ko) | 소노스형 비휘발성 메모리 및 그 제조 방법 | |
EP1218941B1 (en) | Non-volatile memory having high gate coupling capacitance | |
JP2001332637A (ja) | 半導体記憶装置及びその製造方法 | |
US20050106818A1 (en) | [memory device and fabrication method thereof] | |
JP2009152412A (ja) | 半導体装置及びその製造方法 | |
US20050156225A1 (en) | Methods of fabricating semiconductor devices with scalable two transistor memory cells | |
KR100491457B1 (ko) | 불휘발성 반도체 기억 장치 | |
JP2008153672A (ja) | 不揮発性半導体記憶装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070417 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070705 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100713 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110713 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |