[go: up one dir, main page]

JP3982426B2 - Silica film coated article - Google Patents

Silica film coated article Download PDF

Info

Publication number
JP3982426B2
JP3982426B2 JP2003034681A JP2003034681A JP3982426B2 JP 3982426 B2 JP3982426 B2 JP 3982426B2 JP 2003034681 A JP2003034681 A JP 2003034681A JP 2003034681 A JP2003034681 A JP 2003034681A JP 3982426 B2 JP3982426 B2 JP 3982426B2
Authority
JP
Japan
Prior art keywords
film
silica
water
coating
contact angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003034681A
Other languages
Japanese (ja)
Other versions
JP2003292342A (en
Inventor
和孝 神谷
豊幸 寺西
和宏 堂下
貴 砂田
浩明 小林
博章 山本
永史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2003034681A priority Critical patent/JP3982426B2/en
Publication of JP2003292342A publication Critical patent/JP2003292342A/en
Application granted granted Critical
Publication of JP3982426B2 publication Critical patent/JP3982426B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガラス、セラミックス、プラスチックスあるいは金属等の基材表面にシリカ系膜を被覆したシリカ系膜被覆物品に関する。
【0002】
【従来の技術】
ガラスその他の基材の表面に機能性皮膜を設ける際に、基材と機能性皮膜との結合強度を向上させること、および基材がアルカリ成分を含む場合にアルカリ成分の拡散を防止し、機能性皮膜の耐久性能を高めることを目的として、基材と機能性膜との間にシリカその他の酸化物下地膜が設ける種々の技術が知られている。
【0003】
この酸化物下地膜を設ける方法としては、ゾル−ゲル法(特公平4−20781号、特開平2−311332号)、クロロシランを非水系溶媒に溶かした溶液を塗布する方法(特開平5−86353号、日本特許第2525536号(特開平5−238781号))、CVD法、蒸着法等が知られている。
【0004】
【発明が解決しようとする課題】
これらの方法にあっては、機能性皮膜との結合強度を向上させるため下地膜の表面に水酸基を増やすことが主眼となっている。しかし、下地膜表面の水酸基は空気中に含まれる水を吸着し易く、いったん水が吸着するとそれを容易に取り除くことが困難で、機能性膜を塗布する際に100〜200℃程度の加熱を行うか(前記特公平4−20781号、前記特開平2−311332号、前記特開平5−238781号)、あるいは、加熱が必要でない場合にも長時間の処理(上記特開平5−86353号)が必要であった。
【0005】
また、酸化物下地膜を形成する方法(前記特開平2−311332号、前記日本特許第2525536号)においては、常温で塗布するのみでは下地膜自体の強度が低く、この強度を高めるために、塗布後に500〜600℃程度での焼成が不可欠であった。さらに、基材がアルカリを含む場合には、焼成中でのアルカリの拡散を防止するためには、100nm以上の厚みの酸化物下地膜を形成することが必要である。しかし、下地膜の厚みが大きくなると、膜厚が不均一となりやすく、反射ムラ等の外観不良が発生し易くなり、また、製造コストが高くなるなどの問題があった。
【0006】
また、テトラクロロシランをパーフロオロカーボン、塩化メチレン、炭化水素のような非水系溶媒に溶かした溶液を塗布する方法(前記日本特許第2525536号)では、常温でシリカ下地膜が得られるものの、耐擦傷性が低い。クロロシリル基は極めて反応性が高く、塗布液の調合、保存を水を含まない環境でおこなう必要があり、製造コストの面から好ましくない。
【0007】
本発明は上記の従来技術の問題点を解決して、焼成等の製造コストの上昇につながる処理を必要とせずに、下地膜として優れたシリカ系膜被覆物品を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明においては、低濃度のシリコンアルコキシドと高濃度の揮発性の酸からなるアルコール溶液を基材に塗布し、常温で乾燥することにより、強固でしかも表面にアルコキシル基を有するシリカ系膜を基材表面に被覆し、さらに、このシリカ系膜の上に加水分解可能な基と機能性官能基を有するオルガノシランを塗布することにより、機能性膜を基材に強固に結合せしめた。
【0009】
すなわち本発明は、シリコンアルコキシドおよび酸を含むアルコール溶液からなるコーティング液を基材に塗布するシリカ系膜被覆物品を製造する方法において、前記コーティング液は、
(A)シリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の少なくともいずれか1つ0.010〜3重量%(シリカ換算)、
(B)酸 0.0010〜1.0規定、および
(C)水 0〜10重量%
を含有することを特徴とするシリカ系膜被覆物品を製造する方法である。なお、(A)成分がシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の両者を含む場合は(A)成分の重量%はその合計値である。
【0010】
本発明において、上記コーティング液に用いるシリコンアルコキシドは特に限定するものではないが、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等を挙げることができるが、比較的分子量の小さいシリコンアルコキシド、例えば炭素数が3以下のアルコキシル基を有するテトラアルコキシシランが、緻密な膜となり易いので好ましく用いられる。またこれらテトラアルコキシシランの重合体であって、平均重合度が5以下のものも好ましく用いられる。
【0011】
上記コーティング液に用いる酸触媒の種類としては、常温の乾燥で揮発して膜中に残らないという観点から、塩酸、弗酸、硝酸、酢酸、ギ酸、トリフルオロ酢酸等の揮発性の酸が好ましく、なかでも、高い揮発性を有し、しかも取り扱いが比較的容易な塩酸が特に好ましい。
【0012】
また上記コーティング液に用いるアルコール溶媒についても特に限定するものではないが、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、ブチルアルコール、アミルアルコール等を挙げることができるが、それらの中で、メタノール、エタノール、1−プロパノール、2−プロパノールのような炭素数が3以下の鎖式飽和1価アルコールが、常温における蒸発速度が大きいので好ましく用いられる。
【0013】
シリコンアルコキシド、酸、および水(酸を溶解するためのもの、溶媒中の不純物、雰囲気の湿度から入るもの等)を含むアルコール溶液からなるコーティング液内部で、その調合中、貯蔵中および塗布後において、酸を触媒として、シリコンアルコキシドと水との間で、式(1)に示す加水分解反応が行われる。また式中、Rはアルキル基である。
【化1】
(−Si−OR)+(H2O)→(−Si−OH)+(ROH)・・・・・(1)
【0014】
また、加水分解反応したシラノール基(−Si−OH)同士が、式(2)に示すように脱水縮合反応してシロキサン結合(−Si−O−Si−)を形成する。
【化2】
(−Si−OH)+(−Si−OH)→(−Si−O−Si−)+(H2O) (2)
【0015】
シリコンアルコキシド、酸、および水を含むアルコール溶液からなるコーティング液中で、上記式(1)のように、シリコンアルコキシドのアルコキシ基が加水分解反応するかどうか、また、加水分解反応したシラノール基(−Si−OH)同士が、上記コーティング液中で上記式(2)に示すような脱水縮合反応をするかどうかは、溶液の酸濃度、シリコンアルコキシドまたはその加水分解物の濃度、水分量によって大きく左右される。シリコンアルコキシドの濃度および水分量が低いほど上記式(1)の反応が起こり難く、結果的に上記式(2)の反応も起こり難くなる、また、溶液の酸濃度がpHで0〜3の範囲にあるときは上記式(1)の反応は速やかに起こるが、上記式(2)の反応が起こり難い。
【0016】
本発明において、コーティング液中のシリコンアルコキシドは、塗布前においては、上記脱水縮合反応を抑制して、極力低重合度のまま保持し、このコーティング液を基材表面に塗布、乾燥する時に、急激に上記式(1)、式(2)の反応を起こしてシロキサン結合を形成させるため、常温で緻密な被膜を形成することを可能にした。従来技術のように溶液中でシリコンアルコキシドを加水分解、縮重合反応させた場合、溶液を基材表面に塗布、乾燥する時に重合体同士の結合となるために、空隙が生じやすくなり、緻密な被膜にならず、緻密な被膜にするために焼成硬化が必要であった。従って、本発明において、コーティング液中のシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)は、単量体または20量体未満の重合体であることが好ましい。しかし、単量体、および20量体未満の重合体の合計がシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)全体に対して80重量%以上を占める場合には、20量体以上の重合体が含まれていても差し支えない。
【0017】
本発明において、上記コーティング液中の酸触媒の濃度を0.0010〜1.0規定に保つことにより、コーティング液のpHが0〜3となり、特にpHが約2のときに、上記式(1)の残りのアルコキシル基の加水分解反応、および上記式(2)の脱水縮合反応が塗布前のコーティング液中で起こりにくくなり、コーティング液が塗布された直後に急激にこれらの反応が進行する。コーティング液中の酸の好ましい濃度は0.01〜1.0規定である。
【0018】
触媒として添加する酸は、水分含有量の0.3倍以上の高い濃度を有することが、上記コーティング液中の酸の濃度を維持するために好ましい。すなわち、水溶液の状態の酸を使用するときは、23.1%以上の濃度を有する高濃度の酸、例えば約6.3規定以上の塩酸水溶液であることが好ましい。またエタノールに溶解した状態の酸を触媒として添加するときには、このエタノール溶液が例えば0.5重量%の水分を含有しているとすれば、エタノール溶液中の酸の濃度は0.15重量%(0.5重量%の0.3倍)以上、例えば塩酸では0.04規定以上、であることが好ましい。
【0019】
また、コーティング液中のシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の合計の濃度は、できるだけ低い方が、上記コーティング液のpHと相俟って、上記式(1)の残りのアルコキシル基の加水分解反応、および式(2)の脱水縮合反応が塗布前のコーティング液中で起こりにくくなるので好ましい。しかしこの濃度があまり低すぎるとシリカ膜の厚みが小さくなり過ぎて、例えば膜厚が5nm未満になって、均一に基材を覆うことが困難となり、基材がアルカリ成分を含む場合にアルカリ成分の拡散を防止する能力が低下して、耐久性能が劣る傾向があり、またその上に機能性膜を被覆する場合、機能性膜を強固にシリカ膜に結合することができなくなる。またシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の合計濃度が3重量%を超えると、得られるシリカ膜の厚みが300nmを超え、膜に傷がつき易く強固な膜とならない。従ってコーティング液中のシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の合計濃度(20量体未満の重合体も含む)の範囲は、シリカに換算して0.010〜3重量%であり、好ましい範囲は、0.010〜0.6重量%である。
【0020】
また、コーティング液中のシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の濃度が比較的に高く保たれる場合には、コーティング液中の酸触媒の濃度も比較的に高く保つことが好ましい。具体的には、コーティング液は、(A)シリカ換算による、シリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)および(B)酸を、「(B)成分(規定)/(A)成分(重量%)」が0.010以上になるように含有することが好ましく、0.03以上になるように含有することが更に好ましい。
【0021】
コーティング液中に多量の水が存在すると、液中でシリコンアルコキシドの加水分解反応が促進され、かつ脱水縮合反応が起こりやすくなり、またコーティング液塗布後の乾燥の際に膜厚のムラが生じ易くなるので、コーティング溶液中の水の濃度はできるだけ小さい方が好ましい。従って、コーティング液中の水の濃度は0〜10重量%であり、0〜2重量%であることが好ましい。
【0022】
このようにコーティング溶液中の水の濃度を維持することにより、上記のコーティング液のpH維持およびコーティング液中のシリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の合計濃度維持と相俟って、上記式(1)の残りのアルコキシル基の加水分解反応、および式(2)の脱水縮合反応が塗布前のコーティング液中で起こりにくくなるので好ましい。コーティング液中の水の濃度がゼロであっても、基材に塗布された後の塗布膜には空気中の水分が吸収されるので加水分解反応が阻害されることはない。しかし、通常のアルコール溶媒には元々若干の水が含まれ、また、酸は水溶液の形で添加することが多いので、コーティング液中の水の濃度は通常は0.1重量%以上となる。
【0023】
また、コーティング液中の酸触媒の濃度が比較的に低く保たれる場合には、コーティング液中の水の含有量を比較的に高く保つことが好ましく、またコーティング液中の水の含有量が比較的に低く保たれる場合には、コーティング液中の酸触媒の濃度を比較的に高く保つことが好ましい。具体的には、コーティング液は、(B)酸および(C)水を、[(B)成分(規定)×(C)成分(重量%)]が0.0020以上になるように含有することが好ましい。例えば、コーティング液中の酸触媒の濃度が0.003規定未満で水の濃度がゼロまたはあまり低い場合には、塗布膜への空気中からの水分吸収だけでは加水分解反応が不十分となりやすい。従って酸触媒の濃度が例えば0.0010規定のコーティング液中には水が約2.0重量%以上含有されていることが好ましい。
【0024】
シリコンアルコキシドおよび酸を上記の割合でアルコール溶媒に溶解した溶液を攪拌すると、溶液中では、上記式(1)の反応により主としてシリコンアルコキシドが加水分解物を形成し、かつ、前記式(2)の反応によりその加水分解物の一部が脱水縮合反応する。このようにしてコーティング液が調製され、このコーティング液中には、シリコンアルコキシドが単量体(加水分解物を含む)または20量体未満の重合体の形で存在する。
【0025】
上記コーティング液が基材に塗布されると、塗布されて膜状となった液の比表面積が増大するので、膜中のアルコール溶媒が急速に蒸発して、シリコンアルコキシドおよびその加水分解物(部分加水分解物を含む)の合計の塗膜中濃度が急に高くなり、それまで抑制されていた加水分解反応および脱水縮合反応(上記20量体未満の重合体の更なる縮重合反応を含む)が急激に起こってシロキサン結合(・・Si−O−Si・・)が塗布膜内で多数生成され、その結果、基材表面と膜との間の結合が強固な、膜厚が5〜300nmのシリカを主成分とする緻密性の高い膜が形成される。このように、本発明においては、成膜時の反応性が高く、室温で反応して、非常に緻密な膜が形成され、その後の焼成は必要ではない。
【0026】
従来のように塗布前のコーティング液中に、すでに脱水縮合反応によるシロキサン結合が多数存在して、20以上の重合度の重合体が含有され場合には、得られたシリカ膜中にシロキサン結合は存在するが、基材表面とシリカ膜とをつなぐシロキサン結合はそれほど多く生成されないので、基材表面とシリカ膜との間の結合はそれほど強固ではない。そしてこの結合を強固にするために、従来は、更に高温度の焼成を必要とする。
【0027】
さらに、本発明によれば、前記コーティング液中でまだ完全には加水分解していなかったシリコンアルコキシド部分加水分解物の加水分解反応および脱水縮合反応が塗布膜中で同時に進行するので、形成されたシリカ膜表面にはアルコキシル基が加水分解されずに残っており、後述のように、このシリカ膜を下地膜としてその上に機能性膜を被覆するときに、機能性膜の付着性を向上させることができる。従来のゾル−ゲル法で緻密なシリカ膜を形成するには、脱水縮合したシリカ膜を通常500〜600℃で加熱する必要がある。
【0028】
本発明では、上記コーティング液を塗布した後に、常温で、または150℃以下の温度で、30秒間〜5分間、自然乾燥または強制乾燥するだけで緻密なシリカ膜が形成される。もし上記塗布膜を150℃以上の温度で加熱すれば、シリカ膜はそれ以上緻密にはならないだけでなく、シリカ膜の上に被覆させる機能性膜の付着性を向上させることができなくなる。
【0029】
上記のシリカ膜表面にアルコキシル基が残存しているかどうかは、シリカ膜表面の静的水滴接触角を測定することによって知ることができる。後に実施例で示すように本発明によるシリカ膜表面の静的水滴接触角は20〜40度である。これに対して例えば従来のゾル−ゲル法でシリカ膜を形成し、膜の緻密化のために500〜600℃で焼成した場合には、静的水滴接触角の値は数度以下となる。このように静的水滴接触角が低くなるのは、焼成の前のシリカ膜表面にはアルコキシル基が残っているものの、上記焼成によりアルコキシル基が分解されてシリカ膜表面の水酸基が増えて親水化することによるものと考えられる。
【0030】
表面に水酸基を有するシリカ膜を下地膜として、その上にオルガノシランを含む機能性膜用液を塗布しても、通常の環境では、オルガノシランを塗布する前に、シリカ下地膜表面の水酸基に空気中の水分が結合して、水が下地膜表面に吸着してしまっているために、常温でシリカ下地膜とオルガノシランの間の化学結合を形成することが困難となるのである。
【0031】
本発明においては、シリカ膜表面にはアルコキシル基が多く残っており、水酸基は少ないので、空気中の水分が下地膜表面に吸着することが防止されると考えられる。従って、このシリカ下地膜にオルガノシランを含む機能性膜用液を塗布した場合には、シリカ下地膜のアルコキシル基とオルガノシランのシラノール基(水酸基または加水分解した官能基)との反応により、常温でシリカ下地膜とオルガノシランの間の化学結合を形成することができ、機能性膜をシリカ下地膜に強固に付着させることができる。
【0032】
酸化物系の下地、ガラスやセラミックス、または、親水処理された金属やプラスチックスの基材の表面に関しても、そのままでは上記と同様に、塗布したオルガノシランの間の化学結合を形成することが困難であるが、本発明によってアルコキシル基が残存するシリカ下地膜をこれらの基材表面に形成させることにより、機能性膜を基材に強固に付着させることができる。このシリカ下地膜は高温に加熱されると、残存していたアルコキシル基が消失し、それに代わって水酸基が形成されるので、その上に被覆させる機能性膜を強固に付着させようとするときには、シリカ下地膜を予め150℃を越える温度で加熱すべきではない。
【0033】
また、本発明で成膜されたシリカ膜はその表面の平滑性が非常に優れている。従って、このシリカ膜の下地の上に機能性オルガノシランを塗布することによって得られる機能性膜も、その表面の平滑性が非常に優れている。すなわち、シリカ膜および機能性膜の表面は算術平均粗さ(Ra)=0.5nm以下、特に0.10〜0.5nm、でかつ十点平均粗さ(Rz)=5.0nm以下、特に1.0〜5.0nm、の粗さを有する。この表面粗さRaおよびRzは、原子間力顕微鏡(AFM)(セイコー電子工業(株)製、走査型プローブ顕微鏡「SPI3700」、カンチレバー;シリコン製「SI−DF20」)を用いて、二次元で定義されるJIS B 0601を三次元に拡張した方法で測定することができる。この場合、試料の測定面積は1μm×1μmの正方形であり、測定点数 512×256点、スキャン速度1.02Hz、DFM(サイクリックコンタクトモード)にて表面形状を測定し、ローパスフィルターによる補正と、測定データのレベリング補正(最小二乗近似によって曲面を求めてフィッティングし、データの傾きを補正し、更にZ軸方向の歪みを除去する)を行い、表面粗さRaおよびRz値を算出した。
【0034】
本発明によるシリカ系膜の上に被覆した機能性膜が優れた撥水性、優れた低摩擦抵抗性、優れた水滴の転がり性、優れた防汚性、および優れた耐久性を示す理由の一つは、平滑性の優れたシリカ膜の上に被覆した機能性膜表面の優れた平滑性によると推定される。そしてこのシリカ膜の優れた平滑性が得られる理由は次のように推測される。すなわち、塗布前のコーティング液中で、シリコンアルコキシドが単量体(加水分解物を含む)または20量体未満の重合体の形で溶媒中に均一に溶解しており、しかも塗布された後には高濃度の酸触媒の存在およびシリコンアルコキシド(加水分解物を含む)の濃度の急速上昇の効果で、室温で緻密なシリカ膜を形成させるために優れた平滑性が得られると推測される。
【0035】
それに対して、本発明において用いるシリコンアルコキシドに代えて、例えば、テトラクロロシランのようなクロロシリル基含有化合物を非水系溶媒に溶解した液を塗布した場合は、クロロシリル基含有化合物の反応性が非常に高いために、反応が不均一となり、得られた膜の表面粗さは、例えば、算術平均粗さ(Ra)=7.9nm、十点平均粗さ(Rz)=29.8nmであり、本発明に比して膜の平滑性が劣っている。
【0036】
以上は、シリカ単体からなる膜の被覆物品について説明したが、シリカを主成分とする膜の被覆物品にも適用することができる。すなわち膜成分として、アルミニウム、ジルコニウム、チタニウム、セリウム等のシリコン以外の酸化物を添加し、酸化物換算で上記シリカの最大30重量%まで、通常は1〜30重量%を置換してシリカ系の多成分酸化物膜とすることによって、さらに耐久性を向上させることができる。なかでも、アルミニウム、ジルコニウムは、下地膜自体を強固にし、さらに機能性皮膜との結合を強固にするので好ましい。シリコン以外の酸化物の添加量は1重量%より少ないと添加効果が得られず、また、30重量%より多いと膜の緻密性が損なわれ強固な膜とならない。
【0037】
これらの酸化物の添加は、これらの金属のアルコキシドを、β−ジケトン、酢酸、トリフルオロ酢酸、エタノールアミン等で化学修飾したキレート化物の形で添加することが好ましい。特に、β−ジケトンの一種であるアセチルアセトンで化学修飾して添加すると、溶液の安定性が優れ、また、比較的強固な膜となるので好ましい。
【0038】
本発明に係るシリカ系膜被覆物品の製造は、上記のアルコール溶液からなるコーティング液を、常温常圧下で、ガラス、セラミックス、プラスチックスあるいは金属等の基材表面に塗布し、常温常圧下で、または150℃以下の温度で、30秒間〜5分間、自然乾燥または強制乾燥することによりおこなわれる。
【0039】
ガラス、セラミックス、金属のような基材表面には水酸基のような親水性基が存在するので、上記コーティング液を塗布したときに基材上に塗膜が形成される。しかし、プラスチックス基材の種類によってはその表面に親水性基が少なく、アルコールとの濡れが悪いために、コーティング液が基材表面ではじかれて塗膜が形成され難いことがある。このように表面の親水性基が少ない前記基材の場合には、その表面を、予め酸素を含むプラズマまたはコロナ雰囲気で処理して親水性化したり、あるいは、基材表面を酸素を含む雰囲気中で200〜300nm付近の波長の紫外線を照射して、親水性化処理を行った後に、シリカ系膜被覆処理を行うことが好ましい。
【0040】
また、シリカ系膜形成用コーティング液の塗布方法は、特に限定されるものではないが、例えばディップコート、フローコート、スピンコート、バーコート、ロールコート、スプレーコート、手塗り法、刷毛塗り法などが挙げられる。
【0041】
本発明によれば、ガラス、セラミックス、金属、プラスチックスなどの基材の表面に、高温に加熱することなく、緻密で硬いシリカ系皮膜を形成することができる。また基材からのアルカリを遮断する性能を有し、または基材と機能性膜との結合強度を向上させる下地膜としても有用であり、上記シリカ系膜上に、例えば加水分解可能な基および機能性官能基、を有するオルガノシランまたはその加水分解物(部分加水分解物を含む)を塗布したり、その他の被覆をおこなうことによって、撥水、撥油、防曇、防汚、低摩擦抵抗、反射防止その他の光学膜、導電膜、半導体膜、保護膜等の機能性膜を形成することができる。
【0042】
上記オルガノシランの加水分解可能な基は、特に限定されるものではないが、ハロゲン、ハイドロジェン、アルコキシル、アシロキシ、イソシアネート等が挙げられる。特に、アルコキシル基は、反応が極端に激しくなく、保存等の取り扱いが比較的容易であるので好ましい。
【0043】
例えば、撥水・撥油の機能性膜の被覆方法としては、特に限定されないが、撥水性官能基としてのフロオロアルキル基、および加水分解可能な基を含有するオルガノシランを用いて処理する方法が好ましい。
【0044】
フロオロアルキル基を含有するオルガノシランとしては、
CF3(CF211(CH22SiCl3、CF3(CF210(CH22Si(Cl)3、CF3(CF29(CH22SiCl3、CF3(CF28(CH22SiCl3、CF3(CF27(CH22SiCl3、CF3(CF26(CH22SiCl3、CF3(CF25(CH22SiCl3、CF3(CF24(CH22SiCl3、CF3(CF23(CH22SiCl3、CF3(CF22(CH22SiCl3、CF3CF2(CH22SiCl3 、CF3(CH22SiCl3のようなパーフロオロアルキル基含有トリクロロシラン;
CF3(CF211(CH22Si(OCH33、CF3(CF210(CH22Si(OCH33、CF3(CF29(CH22Si(OCH33、CF3(CF28(CH22Si(OCH33、CF3(CF27(CH22Si(OCH33、CF3(CF26(CH22Si(OCH33、CF3(CF25(CH22Si(OCH33、CF3(CF24(CH22Si(OCH33、CF3(CF23(CH22Si(OCH33、CF3(CF22(CH22Si(OCH33、CF3CF2(CH22Si(OCH33、CF3(CH22Si(OCH33、CF3(CF211(CH22Si(OC253、CF3(CF210(CH22Si(OC253、CF3(CF29(CH22Si(OC253、CF3(CF28(CH22Si(OC253、CF3(CF27(CH22Si(OC253、CF3(CF26(CH22Si(OC253、CF3(CF25(CH22Si(OC253、CF3(CF24(CH22Si(OC253、CF3(CF23(CH22Si(OC253、CF3(CF22(CH22Si(OC253、CF3CF2(CH22Si(OC253、CF3(CH22Si(OC253 のようなパーフロオロアルキル基含有トリアルコキシシラン;
CF3(CF211(CH22Si(OCOCH33、CF3(CF210(CH22Si(OCOCH33、CF3(CF29(CH22Si(OCOCH33、CF3(CF28(CH22Si(OCOCH33、CF3(CF27(CH22Si(OCOCH33、CF3(CF26(CH22Si(OCOCH33、CF3(CF25(CH22Si(OCOCH33、CF3(CF24(CH22Si(OCOCH33、CF3(CF23(CH22Si(OCOCH33、CF3(CF22(CH22Si(OCOCH33、CF3CF2(CH22Si(OCOCH33、CF3(CH22Si(OCOCH33 のようなパーフロオロアルキル基含有トリアシロキシシラン;
CF3(CF211(CH22Si(NCO)3、CF3(CF210(CH22Si(NCO)3、CF3(CF29(CH22Si(NCO)3、CF3(CF28(CH22Si(NCO)3、CF3(CF27(CH22Si(NCO)3、CF3(CF26(CH22Si(NCO)3、CF3(CF25(CH22Si(NCO)3、CF3(CF24(CH22Si(NCO)3、CF3(CF23(CH22Si(NCO)3、CF3(CF22(CH22Si(NCO)3、CF3CF2(CH22Si(NCO)3、CF3(CH22Si(NCO)3のようなパーフロオロアルキル基含有トリイソシアネートシランを例示することができる。
【0045】
また、アルキル基を含有するオルガノシランを用いて処理することによって、撥水、あるいは、低摩擦抵抗の機能性膜を得ることができる。特に限定されるものではないが、炭素数1〜30の直鎖状のアルキル基、および加水分解可能な基を含有するオルガノシランが好ましく利用できる。
【0046】
アルキル基を含有するオルガノシランとしては、CH3(CH230SiCl3、CH3(CH220SiCl3、CH3(CH218SiCl3、CH3(CH216SiCl3、CH3(CH214SiCl3、CH3(CH212SiCl3、CH3(CH210SiCl3、CH3(CH29SiCl3、CH3(CH28SiCl3、CH3(CH27SiCl3、CH3(CH26SiCl3、CH3(CH25SiCl3、CH3(CH24SiCl3、CH3(CH23SiCl3、CH3(CH22SiCl3、CH3CH2SiCl3、(CH3CH22SiCl2、(CH3CH23SiCl、CH3SiCl3、(CH32SiCl2、(CH33SiClのようなアルキル基含有クロロシラン;
CH3(CH230Si(OCH33、CH3(CH220Si(OCH33、CH3(CH218Si(OCH33、CH3(CH216Si(OCH33、CH3(CH214Si(OCH33、CH3(CH212Si(OCH33、CH3(CH210Si(OCH33、CH3(CH29Si(OCH33、CH3(CH28Si(OCH33、CH3(CH27Si(OCH33、CH3(CH26Si(OCH33、CH3(CH25Si(OCH33、CH3(CH24Si(OCH33、CH3(CH23Si(OCH33、CH3(CH22Si(OCH33、CH3CH2Si(OCH33、(CH3CH22Si(OCH32、(CH3CH23SiOCH3、CH3Si(OCH33、(CH32Si(OCH32、(CH33SiOCH3、CH3(CH230Si(OC253、CH3(CH220Si(OC253、CH3(CH218Si(OC253、CH3(CH216Si(OC253、CH3(CH214Si(OC253、CH3(CH212Si(OC253、CH3(CH210Si(OC253、CH3(CH29Si(OC253、CH3(CH28Si(OC253、CH3(CH27Si(OC253、CH3(CH26Si(OC253、CH3(CH25Si(OC253、CH3(CH24Si(OC253、CH3(CH23Si(OC253、CH3(CH22Si(OC253、CH3CH2Si(OC253、(CH3CH22Si(OC252、(CH3CH23SiOC25、CH3Si(OC253、(CH32Si(OC252、(CH33SiOC25 のようなアルキル基含有アルコキシシラン;
CH3(CH230Si(OCOCH33、CH3(CH220Si(OCOCH33、CH3(CH218Si(OCOCH33、CH3(CH216Si(OCOCH33、CH3(CH214Si(OCOCH33、CH3(CH212Si(OCOCH33、CH3(CH210Si(OCOCH33、CH3(CH29Si(OCOCH33、CH3(CH28Si(OCOCH33、CH3(CH27Si(OCOCH33、CH3(CH26Si(OCOCH33、CH3(CH25Si(OCOCH33、CH3(CH24Si(OCOCH33、CH3(CH23Si(OCOCH33、CH3(CH22Si(OCOCH33、CH3CH2Si(OCOCH33、(CH3CH22Si(OCOCH32、(CH3CH23SiOCOCH3、CH3Si(OCOCH33、(CH32Si(OCOCH32、(CH33SiOCOCH3 のようなアルキル基含有アシロキシシラン;
CH3(CH230Si(NCO)3、CH3(CH220Si(NCO)3、CH3(CH218Si(NCO)3、CH3(CH216Si(NCO)3、CH3(CH214Si(NCO)3、CH3(CH212Si(NCO)3、CH3(CH210Si(NCO)3、CH3(CH29Si(NCO)3、CH3(CH28Si(NCO)3、CH3(CH27Si(NCO)3、CH3(CH26Si(NCO)3、CH3(CH25Si(NCO)3、CH3(CH24Si(NCO)3、CH3(CH23Si(NCO)3、CH3(CH22Si(NCO)3、CH3CH2Si(NCO)3、(CH3CH22Si(NCO)2、(CH3CH23SiNCO、CH3Si(NCO)3、(CH32Si(NCO)2、(CH33SiNCO のようなアルキル基含有イソシアネートシランを例示することができる。
【0047】
さらに、ポリアルキレンオキシド基、および加水分解可能な基を分子内に有するオルガノシランを用いて処理することによって、水滴の転がり始める臨界傾斜角が低く、かつ、汚れが吸着あるいは付着しにくい機能性膜を得ることができる。
【0048】
上記ポリアルキレンオキシド基としては、ポリエチレンオキシド基、ポリプロピレンオキシド基などが主に使用される。これらの基を有するオルガノシランとして、例えば、[アルコキシ(ポリアルキレンオキシ)アルキル]トリアルコキシシラン、N−(トリエトキシシリルプロピル)−O−ポリエチレンオキシドウレタン、[アルコキシ(ポリアルキレンオキシ)アルキル]トリクロロシラン、N−(トリクロロシリルプロピル)−O−ポリエチレンオキシドウレタンのようなオルガノシランが上げられるが、より具体的には[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン、[メトキシ(ポリエチレンオキシ)プロピル]トリエトキシシラン、[ブトキシ(ポリプロピレンオキシ)プロピル]トリメトキシシラン等が好ましく用いられる。
【0049】
これらのオルガノシランをアルコール溶媒に溶解し、酸触媒を用いて加水分解した溶液を前記シリカ系膜(下地膜)上に塗布することによって、特に熱処理を施すことなく、下地膜表面のアルコキシル基とオルガノシランのシラノール基との脱アルコール反応が起こり、シロキサン結合を介して下地膜とオルガノシランが結合される。また、上記オルガノシランの加水分解性官能基の反応性が高い場合、例えば、上記オルガノシランがクロル基、イソシアネート基、アシロキシ基等を有する場合は、下地膜表面にアルコキシル基とともに存在するシラノールや微量の水と反応することにより、下地膜とオルガノシランの結合が形成されるので、上記オルガノシランを、希釈しないでそのままで塗布したり、またはパーフロオロカーボン、塩化メチレン、炭化水素、シリコーンのような非水系溶媒で希釈しただけの液を塗布してもよい。このようにアルコキシル基が表面に残存するシリカ系膜を下地膜とすることにより、機能性膜を基材に強固に付着させることができる。
【0050】
機能性膜膜の塗布方法としては、シリカ系膜被覆処理の場合と同様に、特に限定されないが、フローコート、ロールコート、スプレーコート、手塗り法、刷毛塗り法などが挙げられる。
【0051】
【発明の実施の形態】
以下に本発明の実施例を説明する。
【0052】
[実施例1]
エタノール(ナカライテスク製)98.6gに、テトラエトキシシラン(信越シリコーン製)0.4g、濃塩酸(35重量%、関東化学製)1gを撹拌しながら添加し、シリカ膜処理液を得た。この処理液中のテトラエトキシシラン(シリカ換算)、塩酸および水の含有量は表1に示す通りである。
【0053】
次いで、CF3(CF27(CH22Si(OCH33(ヘプタデカフルオロデシルトリメトキシシラン、東芝シリコーン製)1gをエタノール98gに溶解し、更に0.1規定塩酸を1.0g添加し、1時間撹拌し、撥水処理剤を得た。
【0054】
洗浄したソーダ石灰珪酸塩ガラス基板(300×300mm)上に、湿度30%、室温下で上記シリカ膜処理液をフローコート法にて塗布し、約1分で乾燥し、ガラス基板表面に厚みが約40nmのシリカ膜を被覆した。このシリカ膜の硬度を鉛筆硬度で測定したところ、「H」の芯の鉛筆で膜を引っ掻いても膜は傷つかなかった。なお、上記シリカ膜処理液は、室温で約10日間そのまま置いた後に使用しても全く同じ結果が得られた。
【0055】
この後、このシリカ膜が被覆されたガラス基板表面に、綿布に3mlの上記撥水処理剤をつけ塗り込んだ後、過剰に付着した撥水処理剤を新しい綿布で拭き取り、撥水処理ガラスを得た。
【0056】
この撥水処理ガラスについて、接触角計(CA−DT、協和界面科学製)を用いて、水滴重量2mgとして初期の静的水滴接触角(以下、単に接触角という)を測定した。得られた膜の平滑性は、原子間力顕微鏡(SPI3700、セイコー電子(株)製)を用いて、サイクリックコンタクトモードにて、表面形状を測定し、表面粗さRa、及びRz値を算出した。摩擦試験として、往復摩耗試験機(新東科学製)に乾布を取り付けて、荷重0.3kg/cm2の条件で撥水膜表面を3000回往復摺動させ、その後に接触角を測定した。また撥水剤塗布前のシリカ膜表面の接触角も、参考のために測定した。なお、清浄なガラス基材そのものの接触角は約数度以下である。これらの測定結果を表2に示す。
【0057】
また摩擦試験前の撥水膜表面を肉眼で観察して膜のムラの有無を測定し、表2に、膜ムラのない場合を「OK」、膜ムラが生じた場合を「NG」とそれぞれ表した。
表2に示すように、シリカ膜表面の接触角は30度、撥水処理後の初期接触角は108度、摩擦試験後の接触角は95度を示した。シリカ膜の表面粗さは、Ra=0.4nm、Rz=2.9nmであり、撥水処理後の膜表面の粗さは、Ra=0.3nm、Rz=2.8nmであった。またシリカ膜を被覆する前の洗浄済みソーダ石灰珪酸塩ガラス基板の膜表面の粗さは、Ra=0.7nm、Rz=8.0nmであった。
【0058】
[実施例2]
実施例1でのシリカ膜処理液の調合に用いたテトラエトキシシランをテトラメトキシシラン(東京化成製)に代えた以外は、実施例1と同様にして撥水処理ガラスを得た。シリカ膜処理液の組成を表1に、シリカ膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は31度、撥水処理後の初期接触角は108度、摩擦試験後の接触角は97度を示した。シリカ膜の表面粗さは、Ra=0.3nm、Rz=2.8nmであり、撥水処理後の膜表面の粗さは、Ra=0.3nm、Rz=2.7nmであった。
【0059】
[実施例3]
シリカ膜処理液の塗布をスプレー法に代えた以外は、実施例1と同様にして撥水処理ガラスを得た。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は30度、撥水処理後の初期接触角は108度、摩擦試験後の接触角は95度を示した。シリカ膜の表面粗さは、Ra=0.4nm、Rz=3.0nmであり、撥水処理後の膜表面の粗さは、Ra=0.4nm、Rz=2.9nmであった。
【0060】
[実施例4]
エタノール64.8gに、アセチルアセトン9.8g、アルミニウム−トリ−sec−ブトキシド(関東化学製)25.4gを溶解し、酸化物換算で5重量%のアルミナ原料液を得た。
【0061】
上記アルミナ原料液0.12g、テトラエトキシシラン0.33g、濃塩酸1gとエタノール98.5gを混合して、シリカ系膜処理液とした。このシリカ系膜処理液の組成を表1に示す。
【0062】
実施例1のシリカ処理液に代えて上記シリカ系膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ系膜表面の接触角は31度、撥水処理後の初期接触角は106度、摩擦試験後の接触角は104度を示した。シリカ膜の表面粗さは、Ra=0.4nm、Rz=3.3nmであり、撥水処理後の膜表面の粗さは、Ra=0.4nm、Rz=3.0nmであった。
【0063】
[実施例5]
エタノール78.6gに、アセチルアセトン4.1g、ジルコニウム−テトラ−n−ブトキシド(関東化学製)17.4gを溶解し、酸化物換算で5重量%のジルコニア原料液を得た。
【0064】
上記ジルコニア原料液0.12g、テトラエトキシシラン0.33g、濃塩酸1gとエタノール98.5gを混合してシリカ系膜処理液とした。このシリカ系膜処理液の組成を表1に示す。
【0065】
実施例1のシリカ膜処理液に代えて上記シリカ系膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ系膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ系膜表面の接触角は29度、撥水処理後の初期接触角は107度、摩擦試験後の接触角は103度を示した。シリカ膜の表面粗さは、Ra=0.4nm、Rz=3.4nmであり、撥水処理後の膜表面の粗さは、Ra=0.4nm、Rz=3.2nmであった。
【0066】
[実施例6〜9]
エタノール(ナカライテスク製)、テトラエトキシシラン(信越シリコーン製)および濃塩酸(35重量%、関東化学製)を表3に示す割合で調合してシリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0067】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
【0068】
[実施例10〜13]
実施例1での撥水処理液の調合に用いたCF3(CF27(CH22Si(OCH33(ヘプタデカフルオロデシルトリメトキシシラン、東芝シリコーン(株)製)に代えて、実施例10ではCF3(CF25(CH22Si(OCH33(トリデカフルオロオクチルトリメトキシシラン、東芝シリコーン(株)製)を、実施例11ではCF3(CF23(CH22SiCl3(ノナフルオロヘキシルトリクロロシラン、チッソ(株)製)を、実施例12ではCF3(CH22Si(OCH33(トリフルオロプロピルトリメトキシシラン、チッソ製)を、実施例13ではCF3(CH22Si(OCH33(トリフルオロプロピルトリメトキシシラン、チッソ製)をそれぞれ用いた以外は、実施例1と同様にして撥水処理ガラスを得た。各種接触角等を表2にそれぞれ示す。
表2に示すように、撥水処理後の初期接触角は80〜107度、摩擦試験後の接触角は75〜97度であり、耐摩耗性能の優れる撥水膜が得られた。
【0069】
[実施例14〜18]
実施例1での撥水処理液の調合に用いたCF3(CF27(CH22Si(OCH33(ヘプタデカフルオロデシルトリメトキシシラン、東芝シリコーン製)をアルキルシランに代えた以外は、実施例1と同様にして撥水および低摩擦抵抗ガラスを得た。この撥水および低摩擦抵抗膜処理液の組成を表4に示す。
【0070】
これらの撥水および低摩擦抵抗ガラスについて、初期および摩擦試験後の接触角を測定した。また、摩耗係数測定器(新東科学製)に乾布を取り付けて、膜表面と乾布との間の摩擦係数を測定した。これらの測定結果を表5に示す。表5に示すように、撥水処理後の初期接触角と摩擦試験後の接触角の差が非常に小さく、ほとんど撥水性能の劣化が見られなかった。また、乾布との摩擦係数は、0.22〜0.25であり、実施例1の様にフルオロアルキル基を有するオルガノシランで処理した場合の0.36、無処理の通常ガラスの0.42に比較して、摩擦係数の小さいガラスが得られた。摩擦試験後の摩擦係数は摩擦試験前とほとんど変化はなかった。
【0071】
[実施例19]
実施例1での撥水処理液の調合に用いたCF3(CF27(CH22Si(OCH33(ヘプタデカフルオロデシルトリメトキシシラン、東芝シリコーン製)を[メトキシ(ポリエチレンオキシ)プロピル]トリメトキシシラン(チッソ株式会社製、含有率90%、分子量460〜590、エチレンオキシド単位数6〜9)に代えた以外は、実施例1と同様にして、水滴の転がり始める臨界傾斜角が低く、かつ、汚れが吸着あるいは付着しにくい機能性膜を得た。
【0072】
上記機能性膜の接触角は、38度であった。また、水滴の転がりやすさの目安である臨界傾斜角は、得られた上記機能性膜処理ガラスサンプルを水平に配置し、その上に直径5mm水滴を置き、ガラス板を徐々に傾斜させて、水滴が転がり始めるときの水平からの傾斜角度を測定することによって求めたところ、4度であり、非常に水滴が転がりやすい表面が得られた。さらに、摩擦試験後の接触角は38度であり、摩擦試験後の臨界傾斜角は4度であって、摩擦試験前とほとんど同じ性能を維持していた。
【0073】
[比較例1]
エタノール(ナカライテスク製)99gに、テトラエトキシシラン(信越シリコーン製)0.05g、濃塩酸(35重量%、関東化学製)1gを撹拌しながら添加し、シリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0074】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は29度、撥水処理後の初期接触角は105度、摩擦試験後の接触角は60度を示し、摩擦試験後の撥水性能が低下することがわかる。またシリカ膜の表面粗さは、Ra=0.5nm、Rz=6.2nmであり、撥水処理後の膜表面の粗さは、Ra=0.5nm、Rz=6.0nmであった。シリカ膜および撥水膜のRzがともに5.0nmを超えており、膜の平滑性が劣っていることがわかる。
【0075】
[比較例2]
エタノール(ナカライテスク製)95gに、テトラエトキシシラン(信越シリコーン製)4g、濃塩酸(35重量%、関東化学製)1gを撹拌しながら添加し、シリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0076】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は25度、撥水処理後の初期接触角は110度、摩擦試験後の接触角は80度を示し、摩擦試験後の撥水性能が低下することがわかる。またシリカ膜の表面粗さは、Ra=0.9nm、Rz=8.8nmであり、撥水処理後の膜表面の粗さは、Ra=0.8nm、Rz=9.0nmであった。シリカ膜および撥水膜のRa、Rzがともにそれぞれ0.5nmおよび5.0nmを超えており、膜の平滑性が劣っていることがわかる。また、得られた撥水膜にはムラが見られた。
【0077】
[比較例3]
エタノール(ナカライテスク製)99.1gに、テトラエトキシシラン(信越シリコーン製)0.4g、0.1規定塩酸0.5gを撹拌しながら添加し、シリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0078】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は24度、撥水処理後の初期接触角は110度、摩擦試験後の接触角は70度を示し、摩擦試験後の撥水性能が低下することがわかる。またシリカ膜の表面粗さは、Ra=0.8nm、Rz=11.0nmであり、撥水処理後の膜表面の粗さは、Ra=0.8nm、Rz=10.5nmであって、シリカ膜および撥水膜の表面粗さは、いずれもRa=0.5nm、Rz=5.0nmを超えており、膜表面の平滑性が劣った。
【0079】
[比較例4]
エタノール(ナカライテスク製)89.6gに、テトラエトキシシラン(信越シリコーン製)0.4g、濃塩酸(35重量%、関東化学製)20gを撹拌しながら添加し、シリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0080】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は32度、撥水処理後の初期接触角は107度、摩擦試験後の接触角は87度を示し、摩擦試験後の撥水性能が低下することがわかる。また、得られた膜には膜厚ムラが見られた。シリカ膜の表面粗さは、Ra=0.7nm、Rz=9.8nm、撥水処理後の膜表面の粗さは、Ra=0.7nm、Rz=8.9nmであり、いずれもRa=0.5nm、Rz=5.0nmを超えており、膜表面の平滑性が劣った。
【0081】
[比較例5]
エタノール(ナカライテスク製)29.6gに、テトラエトキシシラン(信越シリコーン製)0.4g、塩酸メタノール溶液(10重量%、東京化成製)70gを撹拌しながら添加し、シリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0082】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は30度、撥水処理後の初期接触角は108度、摩擦試験後の接触角は88度を示し、摩擦試験後の撥水性能が低下することがわかる。また、得られた膜には膜厚ムラが見られた。シリカ膜の表面粗さは、Ra=0.7nm、Rz=8.8nm、撥水処理後の膜表面の粗さは、Ra=0.7nm、Rz=7.8nmであり、いずれもRa=0.5nm、Rz=5.0nmを超えており、膜表面の平滑性が劣った。
【0083】
[比較例6]
エタノール(ナカライテスク製)86.25gに、テトラエトキシシラン(信越シリコーン製)0.4g、濃塩酸(35重量%、関東化学製)1g、さらに、水12.35gを撹拌しながら添加し、シリカ膜処理液を得た。このシリカ膜処理液の組成を表1に示す。
【0084】
実施例1のシリカ膜処理液に代えて上記シリカ膜処理液を使用する以外は、実施例1と同様にして撥水処理ガラスを得て測定を行った。シリカ膜膜の厚み、各種接触角、表面粗さ等を表2にそれぞれ示す。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は32度、撥水処理後の初期接触角は109度、摩擦試験後の接触角は86度を示し、摩擦試験後の撥水性能が低下することがわかる。また、得られた膜には膜厚ムラが見られた。シリカ膜の表面粗さは、Ra=0.6nm、Rz=9.8nm、撥水処理後の膜表面の粗さは、Ra=0.7nm、Rz=10.8nmであり、いずれもRa=0.5nm、Rz=5.0nmを超えており、膜表面の平滑性が劣った。
【0085】
[比較例7]
エタノール(ナカライテスク製)96gに、エチルシリケート(平均重合度約5)の加水分解物(平均分子量408.5、「HAS−10」、コルコート社製、シリカ分10重量%)4gを混合しシリカ膜処理液とした。このシリカ膜処理液の組成を表1に示す。このシリカ膜処理液を、洗浄したガラス基板(300×300mm)上に、湿度30%、室温下でフローコートして塗布、約1分で乾燥した。その後、基板を600℃で1時間焼成しシリカ膜を得た。なお上記焼成前のシリカ膜の硬度を鉛筆硬度で測定したところ、「B」の芯の鉛筆で膜を引っ掻くと膜は傷ついた。そして上記焼成後のシリカ膜は、「H」の芯の鉛筆で膜を引っ掻いても膜は傷つかなかった。
【0086】
さらに、このシリカ膜被覆ガラスを純水中で10分間超音波洗浄を行い、乾燥した後、実施例1と同様にして、撥水処理し撥水ガラスを得た。
表2に示すように、撥水剤塗布前のシリカ膜表面の接触角は2度、撥水処理後の初期接触角は106度、摩擦試験後の接触角は50度を示し、摩擦試験後の撥水性能が著しく低下することがわかる。またシリカ膜の表面粗さは、Ra=0.9nm、Rz=12.1nm、撥水処理後の膜表面の粗さは、Ra=0.8nm、Rz=10.3nmであり、ともにRa=0.5nm、Rz=5.0nmを超えており、膜表面の平滑性が劣った。
【0087】
[比較例8]
実施例15でのシリカ膜塗布工程を行わなかった以外は、実施例15と同様にして撥水および低摩擦抵抗ガラスを得た。各種接触角等を表5にそれぞれ示す。表5に示すように、撥水処理後の初期接触角は95度であり実施例15のガラスについての値と等しかったが、摩擦試験後の接触角は55度であり実施例15のガラスについての値(90度)に比して著しく低く、耐摩耗性能に劣る膜となった。また、摩擦試験後の摩擦係数は0.45であり、摩擦により低摩擦抵抗機能も失われた。
【0088】
[比較例9]
実施例19でのシリカ膜塗布工程を行わなかった以外は、実施例19と同様にして撥水および低摩擦抵抗ガラスガラスを得た。この機能性膜の接触角は、38度であり、臨界傾斜角は4度であり、ともに実施例19での測定値に等しかった。しかし、摩擦試験後の接触角は22度であり、臨界傾斜角は25度であって、接触角の減少および臨界傾斜角の増加が著しく、耐摩耗性が劣っていた。
【0089】
【表1】

Figure 0003982426
【0090】
【表2】
Figure 0003982426
【0091】
【表3】
Figure 0003982426
【0092】
【表4】
Figure 0003982426
【0093】
【表5】
Figure 0003982426
【0094】
【発明の効果】
以上に説明したように本発明によれば、低濃度のシリコンアルコキシドと高濃度の揮発性の酸からなるアルコール溶液を基材に塗布し、常温で乾燥することにより、緻密で強固なシリカ膜が被覆された物品が得られる。またさらに、このシリカ膜を下地膜とし、これに加水分解可能な基と機能性官能基を有するオルガノシランを塗布することにより、常温における処理で、耐久性に優れる機能性被覆物品が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silica-based film-coated article in which a silica-based film is coated on the surface of a substrate such as glass, ceramics, plastics, or metal.
[0002]
[Prior art]
When providing a functional film on the surface of glass or other base material, it improves the bond strength between the base material and the functional film, and prevents the diffusion of the alkali component when the base material contains an alkali component. Various techniques are known in which a silica or other oxide base film is provided between a base material and a functional film for the purpose of enhancing the durability of the functional film.
[0003]
As a method of providing this oxide base film, a sol-gel method (Japanese Patent Publication No. 4-20781, Japanese Patent Laid-Open No. 2-311332), a method of applying a solution in which chlorosilane is dissolved in a non-aqueous solvent (Japanese Patent Laid-Open No. 5-86353). Japanese Patent No. 2525536 (Japanese Patent Laid-Open No. 5-238781)), CVD method, vapor deposition method and the like are known.
[0004]
[Problems to be solved by the invention]
In these methods, the main purpose is to increase the number of hydroxyl groups on the surface of the base film in order to improve the bond strength with the functional film. However, the hydroxyl group on the surface of the base film is easy to adsorb water contained in the air, and once water is adsorbed, it is difficult to remove it easily. When applying a functional film, heating at about 100 to 200 ° C. (Japanese Patent Publication No. 4-20781, Japanese Patent Application Laid-Open No. 2-311332, Japanese Patent Application Laid-Open No. 5-238781), or long-time treatment even when heating is not required (Japanese Patent Application Laid-Open No. 5-86353) Was necessary.
[0005]
Further, in the method for forming an oxide underlayer (JP-A-2-3111332 and Japanese Patent No. 2525536), the strength of the underlayer itself is low only by applying at normal temperature. Firing at about 500 to 600 ° C. was essential after coating. Furthermore, when the base material contains an alkali, it is necessary to form an oxide base film having a thickness of 100 nm or more in order to prevent alkali diffusion during firing. However, when the thickness of the base film is increased, the film thickness is likely to be non-uniform, appearance defects such as uneven reflection tend to occur, and the manufacturing cost is increased.
[0006]
Further, in the method of applying a solution in which tetrachlorosilane is dissolved in a non-aqueous solvent such as perfluorocarbon, methylene chloride, or hydrocarbon (Japanese Patent No. 2525536), although a silica underlayer is obtained at room temperature, scratch resistance is obtained. The nature is low. The chlorosilyl group is extremely reactive, and it is necessary to prepare and store the coating solution in an environment that does not contain water, which is not preferable from the viewpoint of manufacturing cost.
[0007]
The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a silica-based film-coated article that is excellent as a base film without requiring a treatment that leads to an increase in manufacturing cost such as firing.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, an alcohol solution composed of a low concentration silicon alkoxide and a high concentration volatile acid is applied to a substrate and dried at room temperature, whereby a strong and alkoxyl group is formed on the surface. The functional film is firmly attached to the base material by coating the surface of the base material with a silica-based film having a functional group and applying an organosilane having a hydrolyzable group and a functional functional group onto the silica-based film. Was combined.
[0009]
That is, the present invention relates to a method for producing a silica-based film-coated article in which a coating liquid composed of an alcohol solution containing silicon alkoxide and an acid is applied to a substrate.
(A) at least one of silicon alkoxide and its hydrolyzate (including partial hydrolyzate), 0.010 to 3% by weight (in terms of silica),
(B) acid 0.0010 to 1.0 normal, and
(C) 0-10% by weight of water
Is a method for producing a silica-based film-coated article. In addition, when (A) component contains both a silicon alkoxide and its hydrolyzate (a partial hydrolyzate is included), the weight% of (A) component is the sum total.
[0010]
In the present invention, the silicon alkoxide used in the coating solution is not particularly limited, and examples thereof include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, but silicon alkoxide having a relatively low molecular weight. For example, tetraalkoxysilane having an alkoxyl group having 3 or less carbon atoms is preferably used because it tends to be a dense film. Further, polymers of these tetraalkoxysilanes having an average degree of polymerization of 5 or less are also preferably used.
[0011]
The type of acid catalyst used in the coating solution is preferably a volatile acid such as hydrochloric acid, hydrofluoric acid, nitric acid, acetic acid, formic acid, or trifluoroacetic acid from the viewpoint that it volatilizes by drying at room temperature and does not remain in the film. Of these, hydrochloric acid having high volatility and relatively easy handling is particularly preferable.
[0012]
Moreover, although it does not specifically limit about the alcohol solvent used for the said coating liquid, For example, methanol, ethanol, 1-propanol, 2-propanol, butyl alcohol, amyl alcohol etc. can be mentioned, Among them, A chain saturated monohydric alcohol having 3 or less carbon atoms such as methanol, ethanol, 1-propanol and 2-propanol is preferably used because of its high evaporation rate at room temperature.
[0013]
Inside a coating solution consisting of an alcohol solution containing silicon alkoxide, acid, and water (for dissolving acid, impurities in solvent, entering from humidity of atmosphere, etc.), during its preparation, during storage and after application The hydrolysis reaction shown in Formula (1) is performed between silicon alkoxide and water using an acid as a catalyst. In the formula, R is an alkyl group.
[Chemical 1]
(-Si-OR) + (H 2 O) → (-Si-OH) + (ROH) (1)
[0014]
In addition, hydrolyzed silanol groups (—Si—OH) are dehydrated and condensed to form siloxane bonds (—Si—O—Si—) as shown in Formula (2).
[Chemical 2]
(-Si-OH) + (-Si-OH) → (-Si-O-Si-) + (H 2 O) (2)
[0015]
Whether or not the alkoxy group of the silicon alkoxide undergoes a hydrolysis reaction as shown in the above formula (1) in a coating solution composed of an alcohol solution containing silicon alkoxide, acid, and water, and the silanol group (− Whether Si—OH) undergoes a dehydration condensation reaction as shown in the above formula (2) in the coating solution depends largely on the acid concentration of the solution, the concentration of silicon alkoxide or its hydrolyzate, and the amount of water. Is done. The lower the concentration and water content of the silicon alkoxide, the less the reaction of the above formula (1) occurs, and the less the reaction of the above formula (2) occurs, and the acid concentration of the solution is in the range of 0 to 3 in pH. In this case, the reaction of the above formula (1) occurs rapidly, but the reaction of the above formula (2) hardly occurs.
[0016]
In the present invention, the silicon alkoxide in the coating liquid suppresses the dehydration condensation reaction and keeps the degree of polymerization as low as possible before coating. When this coating liquid is applied to the substrate surface and dried, In order to form a siloxane bond by causing the reactions of the above formulas (1) and (2), a dense film can be formed at room temperature. When silicon alkoxide is hydrolyzed and polycondensed in a solution as in the prior art, voids are easily formed because the polymer is bonded to each other when the solution is applied to the substrate surface and dried. In order to form a dense film without becoming a film, baking and curing were necessary. Therefore, in this invention, it is preferable that the silicon alkoxide and its hydrolyzate (a partial hydrolyzate are included) in a coating liquid are a monomer or a polymer less than a 20-mer. However, when the total of the monomer and the polymer of less than 20 mer accounts for 80% by weight or more based on the entire silicon alkoxide and its hydrolyzate (including partially hydrolyzed product), the 20 mer or more The polymer may be contained.
[0017]
In the present invention, by maintaining the concentration of the acid catalyst in the coating solution at 0.0010 to 1.0 N, the pH of the coating solution becomes 0 to 3, particularly when the pH is about 2, the above formula (1 ) Hydrolysis reaction of the remaining alkoxyl group and the dehydration condensation reaction of the above formula (2) are less likely to occur in the coating liquid before application, and these reactions proceed rapidly immediately after the coating liquid is applied. A preferable concentration of the acid in the coating solution is 0.01 to 1.0 N.
[0018]
In order to maintain the acid concentration in the coating solution, it is preferable that the acid added as a catalyst has a high concentration of 0.3 times or more the water content. That is, when an acid in the form of an aqueous solution is used, it is preferably a high concentration acid having a concentration of 23.1% or more, for example, a hydrochloric acid aqueous solution of about 6.3 N or more. When an acid dissolved in ethanol is added as a catalyst, if the ethanol solution contains, for example, 0.5% by weight of water, the acid concentration in the ethanol solution is 0.15% by weight ( 0.5 times by weight, 0.3 times) or more, for example, 0.04 N or more is preferable for hydrochloric acid.
[0019]
Further, the total concentration of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) in the coating solution is as low as possible in combination with the pH of the coating solution, and the rest of the above formula (1) The alkoxyl group hydrolysis reaction and the dehydration condensation reaction of formula (2) are less likely to occur in the coating solution before coating. However, if this concentration is too low, the thickness of the silica film becomes too small, for example, the film thickness becomes less than 5 nm, and it becomes difficult to uniformly cover the base material. The ability to prevent the diffusion of the resin tends to be reduced and the durability performance tends to be inferior, and when the functional film is coated on it, the functional film cannot be firmly bonded to the silica film. On the other hand, if the total concentration of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) exceeds 3% by weight, the resulting silica film has a thickness exceeding 300 nm, and the film is easily damaged and does not become a strong film. Therefore, the range of the total concentration of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) in the coating solution (including polymers less than 20-mer) is 0.010 to 3% by weight in terms of silica. The preferred range is from 0.010 to 0.6% by weight.
[0020]
In addition, when the concentration of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) in the coating solution is kept relatively high, the acid catalyst concentration in the coating solution should also be kept relatively high. Is preferred. Specifically, the coating liquid contains (A) silicon alkoxide and its hydrolyzate (including a partial hydrolyzate) and (B) acid in terms of silica, “(B) component (normative) / (A) The component (% by weight) ”is preferably contained so as to be 0.010 or more, more preferably 0.03 or more.
[0021]
If a large amount of water is present in the coating solution, the hydrolysis reaction of the silicon alkoxide is promoted in the solution, and a dehydration condensation reaction is likely to occur, and unevenness of the film thickness is likely to occur during drying after coating the coating solution. Therefore, it is preferable that the concentration of water in the coating solution is as small as possible. Therefore, the concentration of water in the coating liquid is 0 to 10% by weight, and preferably 0 to 2% by weight.
[0022]
By maintaining the concentration of water in the coating solution in this way, it is possible to maintain the pH of the coating solution and to maintain the total concentration of silicon alkoxide and its hydrolyzate (including partial hydrolyzate) in the coating solution. Thus, the hydrolysis reaction of the remaining alkoxyl group of the above formula (1) and the dehydration condensation reaction of the formula (2) are less likely to occur in the coating solution before coating. Even if the concentration of water in the coating liquid is zero, the hydrolysis reaction is not hindered because moisture in the air is absorbed by the coating film after being applied to the substrate. However, a normal alcohol solvent originally contains some water, and since the acid is often added in the form of an aqueous solution, the concentration of water in the coating solution is usually 0.1% by weight or more.
[0023]
In addition, when the concentration of the acid catalyst in the coating solution is kept relatively low, it is preferable to keep the water content in the coating solution relatively high, and the water content in the coating solution is When kept relatively low, it is preferable to keep the acid catalyst concentration in the coating solution relatively high. Specifically, the coating solution contains (B) acid and (C) water so that [(B) component (normative) × (C) component (wt%)] is 0.0020 or more. Is preferred. For example, when the concentration of the acid catalyst in the coating solution is less than 0.003 N and the concentration of water is zero or too low, the hydrolysis reaction tends to be insufficient only by moisture absorption from the air into the coating film. Accordingly, it is preferable that water is contained in an amount of about 2.0% by weight or more in a coating solution having an acid catalyst concentration of 0.0010 N, for example.
[0024]
When the solution in which the silicon alkoxide and the acid are dissolved in the alcohol solvent in the above ratio is stirred, in the solution, the silicon alkoxide mainly forms a hydrolyzate by the reaction of the formula (1), and the formula (2) A part of the hydrolyzate undergoes dehydration condensation reaction by the reaction. Thus, a coating solution is prepared, and in this coating solution, silicon alkoxide is present in the form of a monomer (including a hydrolyzate) or a polymer of less than 20 mer.
[0025]
When the coating liquid is applied to the substrate, the specific surface area of the liquid formed into a film increases, so that the alcohol solvent in the film rapidly evaporates, resulting in silicon alkoxide and its hydrolyzate (partial). The total concentration in the coating film (including the hydrolyzate) suddenly increased, and the hydrolysis reaction and dehydration condensation reaction that had been suppressed so far (including the further polycondensation reaction of the above polymer of less than 20 mer) Occurs rapidly and a large number of siloxane bonds (··· Si—O—Si ···) are generated in the coating film. As a result, the bond between the substrate surface and the film is strong, and the film thickness is 5 to 300 nm. A highly dense film having silica as a main component is formed. Thus, in the present invention, the reactivity at the time of film formation is high, and the reaction is performed at room temperature to form a very dense film, and subsequent baking is not necessary.
[0026]
In the case where many siloxane bonds by dehydration condensation reaction already exist in the coating solution before coating as in the prior art and a polymer having a polymerization degree of 20 or more is contained, the siloxane bond is contained in the obtained silica film. Although there are many siloxane bonds connecting the substrate surface and the silica film, the bond between the substrate surface and the silica film is not so strong. In order to strengthen this bond, conventionally, firing at a higher temperature is required.
[0027]
Furthermore, according to the present invention, the hydrolysis reaction and the dehydration condensation reaction of the silicon alkoxide partial hydrolyzate that has not been completely hydrolyzed in the coating solution proceed simultaneously in the coating film, and thus formed. Alkoxyl groups remain on the surface of the silica film without being hydrolyzed. As described later, when this silica film is used as a base film and a functional film is coated thereon, the adhesion of the functional film is improved. be able to. In order to form a dense silica film by the conventional sol-gel method, it is necessary to heat the dehydrated and condensed silica film usually at 500 to 600 ° C.
[0028]
In this invention, after apply | coating the said coating liquid, a precise | minute silica film is formed only by carrying out natural drying or forced drying at normal temperature or the temperature of 150 degrees C or less for 30 second-5 minutes. If the coating film is heated at a temperature of 150 ° C. or higher, the silica film will not become denser, and the adhesion of the functional film coated on the silica film cannot be improved.
[0029]
Whether or not an alkoxyl group remains on the surface of the silica film can be determined by measuring a static water droplet contact angle on the surface of the silica film. As will be shown later in Examples, the static water droplet contact angle on the surface of the silica film according to the present invention is 20 to 40 degrees. On the other hand, for example, when a silica film is formed by a conventional sol-gel method and baked at 500 to 600 ° C. for densification of the film, the value of the static water droplet contact angle is several degrees or less. As described above, the static water droplet contact angle is lowered because although the alkoxyl group remains on the surface of the silica film before firing, the alkoxyl group is decomposed by the firing and the hydroxyl group on the surface of the silica film is increased to make the surface hydrophilic. This is thought to be due to
[0030]
Even if a functional film liquid containing organosilane is applied on a silica film having a hydroxyl group on the surface, the hydroxyl group on the surface of the silica undercoat is applied to the surface of the silica undercoat in a normal environment before applying the organosilane. It is difficult to form a chemical bond between the silica underlayer film and the organosilane at room temperature because moisture in the air is bonded and water is adsorbed on the surface of the underlayer film.
[0031]
In the present invention, since many alkoxyl groups remain on the surface of the silica film and there are few hydroxyl groups, it is considered that moisture in the air is prevented from adsorbing on the surface of the base film. Therefore, when a functional film solution containing organosilane is applied to this silica underlayer, the reaction between the alkoxyl group of the silica underlayer and the silanol group (hydroxyl group or hydrolyzed functional group) of organosilane causes Thus, a chemical bond between the silica base film and the organosilane can be formed, and the functional film can be firmly attached to the silica base film.
[0032]
As with the above, it is difficult to form chemical bonds between coated organosilanes on the surface of oxide-based substrates, glass and ceramics, or hydrophilic metal or plastic substrates. However, the functional film can be firmly attached to the base material by forming the silica base film on which the alkoxyl group remains according to the present invention on the surface of the base material. When this silica base film is heated to a high temperature, the remaining alkoxyl group disappears, and instead a hydroxyl group is formed, so when trying to firmly adhere a functional film to be coated thereon, The silica underlayer should not be heated in advance at a temperature exceeding 150 ° C.
[0033]
Further, the silica film formed in the present invention has very excellent surface smoothness. Therefore, the functional film obtained by applying functional organosilane on the base of this silica film is also very excellent in the smoothness of the surface. That is, the surface of the silica film and the functional film has an arithmetic average roughness (Ra) = 0.5 nm or less, particularly 0.10 to 0.5 nm, and a ten-point average roughness (Rz) = 5.0 nm or less. It has a roughness of 1.0 to 5.0 nm. The surface roughness Ra and Rz are measured in two dimensions using an atomic force microscope (AFM) (manufactured by Seiko Denshi Kogyo Co., Ltd., scanning probe microscope “SPI3700”, cantilever; silicon “SI-DF20”). It can be measured by a method that extends JIS B 0601 defined in three dimensions. In this case, the measurement area of the sample is a 1 μm × 1 μm square, the number of measurement points is 512 × 256, the scan speed is 1.02 Hz, the surface shape is measured by DFM (cyclic contact mode), The surface roughness Ra and Rz values were calculated by performing leveling correction of the measurement data (fitting a curved surface obtained by least square approximation, fitting the data, correcting the inclination of the data, and further removing distortion in the Z-axis direction).
[0034]
One reason why the functional film coated on the silica-based film according to the present invention exhibits excellent water repellency, excellent low friction resistance, excellent water droplet rolling property, excellent antifouling property, and excellent durability. This is presumably due to the excellent smoothness of the functional film surface coated on the silica film having excellent smoothness. The reason why the excellent smoothness of this silica film is obtained is presumed as follows. That is, in the coating liquid before application, the silicon alkoxide is uniformly dissolved in the solvent in the form of a monomer (including a hydrolyzate) or a polymer less than 20-mer, and after being applied, It is estimated that excellent smoothness can be obtained to form a dense silica film at room temperature due to the effect of the presence of a high concentration acid catalyst and the rapid increase in the concentration of silicon alkoxide (including hydrolyzate).
[0035]
On the other hand, instead of the silicon alkoxide used in the present invention, for example, when a liquid obtained by dissolving a chlorosilyl group-containing compound such as tetrachlorosilane in a non-aqueous solvent is applied, the reactivity of the chlorosilyl group-containing compound is very high. Therefore, the reaction becomes nonuniform, and the surface roughness of the obtained film is, for example, arithmetic average roughness (Ra) = 7.9 nm, ten-point average roughness (Rz) = 29.8 nm, and the present invention Compared with the film, the smoothness of the film is inferior.
[0036]
The above is a description of a coated article of a film made of silica alone, but it can also be applied to a coated article of a film containing silica as a main component. That is, as a film component, an oxide other than silicon such as aluminum, zirconium, titanium, or cerium is added, and the silica is replaced by up to 30% by weight, usually 1 to 30% by weight, in terms of oxide. The durability can be further improved by using a multi-component oxide film. Of these, aluminum and zirconium are preferable because they strengthen the base film itself and further strengthen the bond with the functional film. If the addition amount of oxides other than silicon is less than 1% by weight, the effect of addition cannot be obtained.
[0037]
These oxides are preferably added in the form of a chelated product obtained by chemically modifying these metal alkoxides with β-diketone, acetic acid, trifluoroacetic acid, ethanolamine or the like. In particular, it is preferable to add acetylacetone, which is a kind of β-diketone, because it is chemically modified and the solution has excellent stability and becomes a relatively strong film.
[0038]
Production of the silica-based film-coated article according to the present invention, the coating solution comprising the above alcohol solution is applied to the surface of a substrate such as glass, ceramics, plastics or metal at room temperature and pressure, and at room temperature and pressure, Alternatively, it is carried out by natural drying or forced drying at a temperature of 150 ° C. or lower for 30 seconds to 5 minutes.
[0039]
Since a hydrophilic group such as a hydroxyl group is present on the surface of a substrate such as glass, ceramics, or metal, a coating film is formed on the substrate when the coating liquid is applied. However, depending on the type of plastic substrate, there are few hydrophilic groups on the surface, and the wettability with alcohol is poor, so that the coating liquid may be repelled on the substrate surface and a coating film may be difficult to form. In the case of the base material having a small number of hydrophilic groups on the surface as described above, the surface is rendered hydrophilic by pretreatment with a plasma or corona atmosphere containing oxygen, or the surface of the base material is in an atmosphere containing oxygen. It is preferable to perform a silica-based film coating treatment after irradiating with ultraviolet rays having a wavelength of about 200 to 300 nm and performing a hydrophilic treatment.
[0040]
The method for applying the silica-based film-forming coating solution is not particularly limited. For example, dip coating, flow coating, spin coating, bar coating, roll coating, spray coating, hand coating, brush coating, etc. Is mentioned.
[0041]
According to the present invention, a dense and hard silica-based film can be formed on the surface of a substrate such as glass, ceramics, metal, and plastics without being heated to a high temperature. In addition, it has the ability to block alkali from the base material, or is useful as a base film for improving the bond strength between the base material and the functional film. On the silica-based film, for example, a hydrolyzable group and Applying organosilane having functional functional group or its hydrolyzate (including partial hydrolyzate) or other coating, water repellency, oil repellency, antifogging, antifouling, low friction resistance Further, functional films such as antireflection and other optical films, conductive films, semiconductor films and protective films can be formed.
[0042]
The hydrolyzable group of the organosilane is not particularly limited, and examples thereof include halogen, hydrogen, alkoxyl, acyloxy, and isocyanate. In particular, an alkoxyl group is preferable because the reaction is not extremely violent and handling such as storage is relatively easy.
[0043]
For example, the coating method of the water / oil repellent functional film is not particularly limited, but is a method of treating with a fluoroalkyl group as a water repellent functional group and an organosilane containing a hydrolyzable group. Is preferred.
[0044]
As an organosilane containing a fluoroalkyl group,
CF Three (CF 2 ) 11 (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) Ten (CH 2 ) 2 Si (Cl) Three , CF Three (CF 2 ) 9 (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) 8 (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) 7 (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) 6 (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) Five (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) Four (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) Three (CH 2 ) 2 SiCl Three , CF Three (CF 2 ) 2 (CH 2 ) 2 SiCl Three , CF Three CF 2 (CH 2 ) 2 SiCl Three , CF Three (CH 2 ) 2 SiCl Three Perfluoroalkyl group-containing trichlorosilane such as
CF Three (CF 2 ) 11 (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) Ten (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) 9 (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) 8 (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) 7 (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) 6 (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) Five (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) Four (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) Three (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) 2 (CH 2 ) 2 Si (OCH Three ) Three , CF Three CF 2 (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CH 2 ) 2 Si (OCH Three ) Three , CF Three (CF 2 ) 11 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) Ten (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) 9 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) 8 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) 7 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) 6 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) Five (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) Four (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) Three (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CF 2 ) 2 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three CF 2 (CH 2 ) 2 Si (OC 2 H Five ) Three , CF Three (CH 2 ) 2 Si (OC 2 H Five ) Three Perfluoroalkyl group-containing trialkoxysilanes such as
CF Three (CF 2 ) 11 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) Ten (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) 9 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) 8 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) 7 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) 6 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) Five (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) Four (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) Three (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CF 2 ) 2 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three CF 2 (CH 2 ) 2 Si (OCOCH Three ) Three , CF Three (CH 2 ) 2 Si (OCOCH Three ) Three Perfluoroalkyl group-containing triacyloxysilanes such as
CF Three (CF 2 ) 11 (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) Ten (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) 9 (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) 8 (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) 7 (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) 6 (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) Five (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) Four (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) Three (CH 2 ) 2 Si (NCO) Three , CF Three (CF 2 ) 2 (CH 2 ) 2 Si (NCO) Three , CF Three CF 2 (CH 2 ) 2 Si (NCO) Three , CF Three (CH 2 ) 2 Si (NCO) Three Such perfluoroalkyl group-containing triisocyanate silanes can be exemplified.
[0045]
In addition, a functional film having water repellency or low friction resistance can be obtained by treatment with an organosilane containing an alkyl group. Although not particularly limited, organosilane containing a linear alkyl group having 1 to 30 carbon atoms and a hydrolyzable group can be preferably used.
[0046]
As an organosilane containing an alkyl group, CH Three (CH 2 ) 30 SiCl Three , CH Three (CH 2 ) 20 SiCl Three , CH Three (CH 2 ) 18 SiCl Three , CH Three (CH 2 ) 16 SiCl Three , CH Three (CH 2 ) 14 SiCl Three , CH Three (CH 2 ) 12 SiCl Three , CH Three (CH 2 ) Ten SiCl Three , CH Three (CH 2 ) 9 SiCl Three , CH Three (CH 2 ) 8 SiCl Three , CH Three (CH 2 ) 7 SiCl Three , CH Three (CH 2 ) 6 SiCl Three , CH Three (CH 2 ) Five SiCl Three , CH Three (CH 2 ) Four SiCl Three , CH Three (CH 2 ) Three SiCl Three , CH Three (CH 2 ) 2 SiCl Three , CH Three CH 2 SiCl Three , (CH Three CH 2 ) 2 SiCl 2 , (CH Three CH 2 ) Three SiCl, CH Three SiCl Three , (CH Three ) 2 SiCl 2 , (CH Three ) Three Alkyl group-containing chlorosilanes such as SiCl;
CH Three (CH 2 ) 30 Si (OCH Three ) Three , CH Three (CH 2 ) 20 Si (OCH Three ) Three , CH Three (CH 2 ) 18 Si (OCH Three ) Three , CH Three (CH 2 ) 16 Si (OCH Three ) Three , CH Three (CH 2 ) 14 Si (OCH Three ) Three , CH Three (CH 2 ) 12 Si (OCH Three ) Three , CH Three (CH 2 ) Ten Si (OCH Three ) Three , CH Three (CH 2 ) 9 Si (OCH Three ) Three , CH Three (CH 2 ) 8 Si (OCH Three ) Three , CH Three (CH 2 ) 7 Si (OCH Three ) Three , CH Three (CH 2 ) 6 Si (OCH Three ) Three , CH Three (CH 2 ) Five Si (OCH Three ) Three , CH Three (CH 2 ) Four Si (OCH Three ) Three , CH Three (CH 2 ) Three Si (OCH Three ) Three , CH Three (CH 2 ) 2 Si (OCH Three ) Three , CH Three CH 2 Si (OCH Three ) Three , (CH Three CH 2 ) 2 Si (OCH Three ) 2 , (CH Three CH 2 ) Three SiOCH Three , CH Three Si (OCH Three ) Three , (CH Three ) 2 Si (OCH Three ) 2 , (CH Three ) Three SiOCH Three , CH Three (CH 2 ) 30 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 20 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 18 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 16 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 14 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 12 Si (OC 2 H Five ) Three , CH Three (CH 2 ) Ten Si (OC 2 H Five ) Three , CH Three (CH 2 ) 9 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 8 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 7 Si (OC 2 H Five ) Three , CH Three (CH 2 ) 6 Si (OC 2 H Five ) Three , CH Three (CH 2 ) Five Si (OC 2 H Five ) Three , CH Three (CH 2 ) Four Si (OC 2 H Five ) Three , CH Three (CH 2 ) Three Si (OC 2 H Five ) Three , CH Three (CH 2 ) 2 Si (OC 2 H Five ) Three , CH Three CH 2 Si (OC 2 H Five ) Three , (CH Three CH 2 ) 2 Si (OC 2 H Five ) 2 , (CH Three CH 2 ) Three SiOC 2 H Five , CH Three Si (OC 2 H Five ) Three , (CH Three ) 2 Si (OC 2 H Five ) 2 , (CH Three ) Three SiOC 2 H Five Alkyl group-containing alkoxysilanes such as
CH Three (CH 2 ) 30 Si (OCOCH Three ) Three , CH Three (CH 2 ) 20 Si (OCOCH Three ) Three , CH Three (CH 2 ) 18 Si (OCOCH Three ) Three , CH Three (CH 2 ) 16 Si (OCOCH Three ) Three , CH Three (CH 2 ) 14 Si (OCOCH Three ) Three , CH Three (CH 2 ) 12 Si (OCOCH Three ) Three , CH Three (CH 2 ) Ten Si (OCOCH Three ) Three , CH Three (CH 2 ) 9 Si (OCOCH Three ) Three , CH Three (CH 2 ) 8 Si (OCOCH Three ) Three , CH Three (CH 2 ) 7 Si (OCOCH Three ) Three , CH Three (CH 2 ) 6 Si (OCOCH Three ) Three , CH Three (CH 2 ) Five Si (OCOCH Three ) Three , CH Three (CH 2 ) Four Si (OCOCH Three ) Three , CH Three (CH 2 ) Three Si (OCOCH Three ) Three , CH Three (CH 2 ) 2 Si (OCOCH Three ) Three , CH Three CH 2 Si (OCOCH Three ) Three , (CH Three CH 2 ) 2 Si (OCOCH Three ) 2 , (CH Three CH 2 ) Three SiOCOCH Three , CH Three Si (OCOCH Three ) Three , (CH Three ) 2 Si (OCOCH Three ) 2 , (CH Three ) Three SiOCOCH Three An alkyl group-containing acyloxysilane such as
CH Three (CH 2 ) 30 Si (NCO) Three , CH Three (CH 2 ) 20 Si (NCO) Three , CH Three (CH 2 ) 18 Si (NCO) Three , CH Three (CH 2 ) 16 Si (NCO) Three , CH Three (CH 2 ) 14 Si (NCO) Three , CH Three (CH 2 ) 12 Si (NCO) Three , CH Three (CH 2 ) Ten Si (NCO) Three , CH Three (CH 2 ) 9 Si (NCO) Three , CH Three (CH 2 ) 8 Si (NCO) Three , CH Three (CH 2 ) 7 Si (NCO) Three , CH Three (CH 2 ) 6 Si (NCO) Three , CH Three (CH 2 ) Five Si (NCO) Three , CH Three (CH 2 ) Four Si (NCO) Three , CH Three (CH 2 ) Three Si (NCO) Three , CH Three (CH 2 ) 2 Si (NCO) Three , CH Three CH 2 Si (NCO) Three , (CH Three CH 2 ) 2 Si (NCO) 2 , (CH Three CH 2 ) Three SINCO, CH Three Si (NCO) Three , (CH Three ) 2 Si (NCO) 2 , (CH Three ) Three An alkyl group-containing isocyanate silane such as SiNCO can be exemplified.
[0047]
Furthermore, by treating with a polyalkylene oxide group and an organosilane having a hydrolyzable group in the molecule, the functional film has a low critical inclination angle at which water droplets start to roll and is less likely to adsorb or adhere dirt. Can be obtained.
[0048]
As said polyalkylene oxide group, a polyethylene oxide group, a polypropylene oxide group, etc. are mainly used. Examples of organosilanes having these groups include [alkoxy (polyalkyleneoxy) alkyl] trialkoxysilane, N- (triethoxysilylpropyl) -O-polyethylene oxide urethane, and [alkoxy (polyalkyleneoxy) alkyl] trichlorosilane. , N- (trichlorosilylpropyl) -O-polyethylene oxide urethane, and more specifically, [methoxy (polyethyleneoxy) propyl] trimethoxysilane, [methoxy (polyethyleneoxy) propyl] tri Ethoxysilane, [butoxy (polypropyleneoxy) propyl] trimethoxysilane and the like are preferably used.
[0049]
By dissolving a solution obtained by dissolving these organosilanes in an alcohol solvent and hydrolyzing with an acid catalyst on the silica-based film (underlying film), the alkoxyl group on the surface of the undercoating film can be formed without any heat treatment. A dealcoholization reaction with the silanol group of the organosilane occurs, and the base film and the organosilane are bonded via a siloxane bond. In addition, when the reactivity of the hydrolyzable functional group of the organosilane is high, for example, when the organosilane has a chloro group, an isocyanate group, an acyloxy group, etc. By reacting with water, a bond between the base film and the organosilane is formed, so that the organosilane can be applied as it is without being diluted, or it can be used as perfluorocarbon, methylene chloride, hydrocarbon, silicone, etc. You may apply | coat the liquid only diluted with the non-aqueous solvent. By using the silica-based film having alkoxyl groups remaining on the surface as the base film in this way, the functional film can be firmly attached to the substrate.
[0050]
The functional film coating method is not particularly limited as in the case of the silica-based film coating treatment, and examples thereof include flow coating, roll coating, spray coating, hand coating, and brush coating.
[0051]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0052]
[Example 1]
To 98.6 g of ethanol (manufactured by Nacalai Tesque), 0.4 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone) and 1 g of concentrated hydrochloric acid (35% by weight, manufactured by Kanto Chemical) were added with stirring to obtain a silica membrane treatment solution. The contents of tetraethoxysilane (in terms of silica), hydrochloric acid and water in this treatment liquid are as shown in Table 1.
[0053]
Then CF Three (CF 2 ) 7 (CH 2 ) 2 Si (OCH Three ) Three 1 g of heptadecafluorodecyltrimethoxysilane (manufactured by Toshiba Silicone) was dissolved in 98 g of ethanol, 1.0 g of 0.1 N hydrochloric acid was further added, and the mixture was stirred for 1 hour to obtain a water repellent treatment agent.
[0054]
On the washed soda-lime silicate glass substrate (300 × 300 mm), the above silica film treatment liquid is applied by a flow coating method at a humidity of 30% and room temperature, and dried in about 1 minute. A silica film of about 40 nm was coated. When the hardness of the silica film was measured by pencil hardness, the film was not damaged even when the film was scratched with a pencil of “H” core. The same results were obtained even when the silica membrane treatment solution was used after being left at room temperature for about 10 days.
[0055]
Thereafter, 3 ml of the above water-repellent treatment agent is applied to the surface of the glass substrate coated with the silica film, and then the excess water-repellent treatment agent is wiped off with a new cotton cloth. Obtained.
[0056]
With respect to this water repellent treated glass, an initial static water droplet contact angle (hereinafter simply referred to as a contact angle) was measured using a contact angle meter (CA-DT, manufactured by Kyowa Interface Science) as a water droplet weight of 2 mg. The smoothness of the obtained film was measured by measuring the surface shape in the cyclic contact mode using an atomic force microscope (SPI3700, manufactured by Seiko Electronics Co., Ltd.), and calculating the surface roughness Ra and Rz value. did. As a friction test, a dry cloth was attached to a reciprocating wear tester (manufactured by Shinto Kagaku), and the surface of the water-repellent film was reciprocated 3000 times under the condition of a load of 0.3 kg / cm 2, and then the contact angle was measured. The contact angle on the surface of the silica film before application of the water repellent was also measured for reference. The contact angle of the clean glass substrate itself is about several degrees or less. These measurement results are shown in Table 2.
[0057]
Also, the surface of the water-repellent film before the friction test was observed with the naked eye to measure the presence or absence of film unevenness. Table 2 shows that “OK” indicates no film unevenness and “NG” indicates that film unevenness occurs. expressed.
As shown in Table 2, the contact angle on the surface of the silica film was 30 degrees, the initial contact angle after the water repellent treatment was 108 degrees, and the contact angle after the friction test was 95 degrees. The surface roughness of the silica film was Ra = 0.4 nm and Rz = 2.9 nm, and the film surface roughness after the water repellent treatment was Ra = 0.3 nm and Rz = 2.8 nm. Moreover, the roughness of the film surface of the washed soda-lime silicate glass substrate before coating the silica film was Ra = 0.7 nm and Rz = 8.0 nm.
[0058]
[Example 2]
A water-repellent treated glass was obtained in the same manner as in Example 1 except that tetraethoxysilane used in the preparation of the silica film treatment liquid in Example 1 was replaced with tetramethoxysilane (manufactured by Tokyo Chemical Industry). The composition of the silica membrane treatment liquid is shown in Table 1, and the thickness, various contact angles, surface roughness, etc. of the silica membrane are shown in Table 2, respectively.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 31 degrees, the initial contact angle after the water repellent treatment was 108 degrees, and the contact angle after the friction test was 97 degrees. The surface roughness of the silica film was Ra = 0.3 nm and Rz = 2.8 nm, and the film surface roughness after the water repellent treatment was Ra = 0.3 nm and Rz = 2.7 nm.
[0059]
[Example 3]
A water-repellent treated glass was obtained in the same manner as in Example 1 except that the application of the silica film treatment liquid was changed to the spray method.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 30 degrees, the initial contact angle after the water repellent treatment was 108 degrees, and the contact angle after the friction test was 95 degrees. The surface roughness of the silica film was Ra = 0.4 nm and Rz = 3.0 nm, and the film surface roughness after the water repellent treatment was Ra = 0.4 nm and Rz = 2.9 nm.
[0060]
[Example 4]
In 64.8 g of ethanol, 9.8 g of acetylacetone and 25.4 g of aluminum-tri-sec-butoxide (manufactured by Kanto Chemical) were dissolved to obtain an alumina raw material liquid of 5% by weight in terms of oxide.
[0061]
0.12 g of the alumina raw material solution, 0.33 g of tetraethoxysilane, 1 g of concentrated hydrochloric acid and 98.5 g of ethanol were mixed to obtain a silica-based film processing solution. Table 1 shows the composition of this silica-based membrane treatment solution.
[0062]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica-based membrane treatment solution was used in place of the silica treatment solution of Example 1. Table 2 shows the thickness of the silica film, various contact angles, surface roughness, and the like.
As shown in Table 2, the contact angle of the silica-based film surface before application of the water repellent was 31 degrees, the initial contact angle after the water repellent treatment was 106 degrees, and the contact angle after the friction test was 104 degrees. The surface roughness of the silica film was Ra = 0.4 nm and Rz = 3.3 nm, and the film surface roughness after the water repellent treatment was Ra = 0.4 nm and Rz = 3.0 nm.
[0063]
[Example 5]
In 78.6 g of ethanol, 4.1 g of acetylacetone and 17.4 g of zirconium-tetra-n-butoxide (manufactured by Kanto Chemical) were dissolved to obtain a 5% by weight zirconia raw material liquid in terms of oxide.
[0064]
0.12 g of the zirconia raw material solution, 0.33 g of tetraethoxysilane, 1 g of concentrated hydrochloric acid, and 98.5 g of ethanol were mixed to obtain a silica-based membrane treatment solution. Table 1 shows the composition of this silica-based membrane treatment solution.
[0065]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica-based membrane treatment solution was used in place of the silica membrane treatment solution of Example 1. Table 2 shows the thickness of the silica-based film, various contact angles, surface roughness, and the like.
As shown in Table 2, the contact angle of the silica-based film surface before application of the water repellent was 29 degrees, the initial contact angle after the water repellent treatment was 107 degrees, and the contact angle after the friction test was 103 degrees. The surface roughness of the silica film was Ra = 0.4 nm and Rz = 3.4 nm, and the film surface roughness after the water repellent treatment was Ra = 0.4 nm and Rz = 3.2 nm.
[0066]
[Examples 6 to 9]
Ethanol (manufactured by Nacalai Tesque), tetraethoxysilane (manufactured by Shin-Etsu Silicone) and concentrated hydrochloric acid (35% by weight, manufactured by Kanto Chemical Co., Inc.) were blended in the proportions shown in Table 3 to obtain a silica membrane treatment solution. The composition of this silica membrane treatment solution is shown in Table 1.
[0067]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness of the silica film, various contact angles, surface roughness, and the like.
[0068]
[Examples 10 to 13]
CF used for the preparation of the water-repellent treatment liquid in Example 1 Three (CF 2 ) 7 (CH 2 ) 2 Si (OCH Three ) Three Instead of (heptadecafluorodecyltrimethoxysilane, manufactured by Toshiba Silicones Co., Ltd.), CF in Example 10 Three (CF 2 ) Five (CH 2 ) 2 Si (OCH Three ) Three (Tridecafluorooctyltrimethoxysilane, manufactured by Toshiba Silicone Co., Ltd.) Three (CF 2 ) Three (CH 2 ) 2 SiCl Three (Nonafluorohexyltrichlorosilane, manufactured by Chisso Corporation), CF in Example 12 Three (CH 2 ) 2 Si (OCH Three ) Three (Trifluoropropyltrimethoxysilane, manufactured by Chisso) Three (CH 2 ) 2 Si (OCH Three ) Three A water-repellent treated glass was obtained in the same manner as in Example 1 except that (trifluoropropyltrimethoxysilane, manufactured by Chisso) was used. Table 2 shows various contact angles.
As shown in Table 2, the initial contact angle after the water repellent treatment was 80 to 107 degrees, the contact angle after the friction test was 75 to 97 degrees, and a water repellent film having excellent wear resistance was obtained.
[0069]
[Examples 14 to 18]
CF used for the preparation of the water-repellent treatment liquid in Example 1 Three (CF 2 ) 7 (CH 2 ) 2 Si (OCH Three ) Three Water-repellent and low-friction glass was obtained in the same manner as in Example 1 except that (heptadecafluorodecyltrimethoxysilane, manufactured by Toshiba Silicone) was replaced with alkylsilane. Table 4 shows the composition of this water-repellent and low-friction-resistant film treatment solution.
[0070]
For these water-repellent and low-friction resistance glasses, the contact angles after the initial and after the friction test were measured. Further, a dry cloth was attached to an abrasion coefficient measuring device (manufactured by Shinto Kagaku), and the friction coefficient between the film surface and the dry cloth was measured. These measurement results are shown in Table 5. As shown in Table 5, the difference between the initial contact angle after the water-repellent treatment and the contact angle after the friction test was very small, and almost no deterioration of the water-repellent performance was observed. The coefficient of friction with the dry cloth is 0.22 to 0.25, 0.36 when treated with an organosilane having a fluoroalkyl group as in Example 1, and 0.42 of untreated normal glass. Compared to the above, a glass having a small friction coefficient was obtained. The coefficient of friction after the friction test was almost unchanged from that before the friction test.
[0071]
[Example 19]
CF used for the preparation of the water-repellent treatment liquid in Example 1 Three (CF 2 ) 7 (CH 2 ) 2 Si (OCH Three ) Three (Heptadecafluorodecyltrimethoxysilane, manufactured by Toshiba Silicone) is replaced with [Methoxy (polyethyleneoxy) propyl] trimethoxysilane (manufactured by Chisso Corporation, content 90%, molecular weight 460-590, ethylene oxide units 6-9) Except for the above, in the same manner as in Example 1, a functional film having a low critical inclination angle at which water droplets start to roll and having dirt hardly adsorbed or adhered thereto was obtained.
[0072]
The contact angle of the functional film was 38 degrees. In addition, the critical inclination angle, which is a measure of the ease of rolling of water droplets, is obtained by horizontally placing the obtained functional membrane-treated glass sample, placing a 5 mm diameter water droplet on it, and gradually inclining the glass plate, The surface was found to be 4 degrees by measuring the inclination angle from the horizontal when the water droplets started to roll, and a surface on which the water droplets were very easy to roll was obtained. Furthermore, the contact angle after the friction test was 38 degrees, the critical inclination angle after the friction test was 4 degrees, and the performance was almost the same as before the friction test.
[0073]
[Comparative Example 1]
To 99 g of ethanol (manufactured by Nacalai Tesque), 0.05 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone) and 1 g of concentrated hydrochloric acid (35% by weight, manufactured by Kanto Chemical) were added with stirring to obtain a silica membrane treatment solution. The composition of this silica membrane treatment solution is shown in Table 1.
[0074]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness of the silica film, various contact angles, surface roughness, and the like.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 29 degrees, the initial contact angle after the water repellent treatment was 105 degrees, the contact angle after the friction test was 60 degrees, and after the friction test It can be seen that the water repellency performance of the is reduced. The surface roughness of the silica film was Ra = 0.5 nm and Rz = 6.2 nm, and the film surface roughness after the water repellent treatment was Ra = 0.5 nm and Rz = 6.0 nm. Both Rz of the silica film and the water-repellent film exceed 5.0 nm, which indicates that the smoothness of the film is inferior.
[0075]
[Comparative Example 2]
4 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone) and 1 g of concentrated hydrochloric acid (35% by weight, manufactured by Kanto Chemical) were added to 95 g of ethanol (manufactured by Nacalai Tesque) with stirring to obtain a silica membrane treatment solution. The composition of this silica membrane treatment solution is shown in Table 1.
[0076]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness of the silica film, various contact angles, surface roughness, and the like.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 25 degrees, the initial contact angle after water repellent treatment was 110 degrees, the contact angle after the friction test was 80 degrees, and after the friction test It can be seen that the water repellency performance of the is reduced. The surface roughness of the silica film was Ra = 0.9 nm and Rz = 8.8 nm, and the film surface roughness after the water repellent treatment was Ra = 0.8 nm and Rz = 9.0 nm. Both Ra and Rz of the silica film and the water-repellent film exceed 0.5 nm and 5.0 nm, respectively, indicating that the smoothness of the film is inferior. In addition, unevenness was observed in the obtained water-repellent film.
[0077]
[Comparative Example 3]
To 99.1 g of ethanol (manufactured by Nacalai Tesque), 0.4 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone) and 0.5 g of 0.1 N hydrochloric acid were added with stirring to obtain a silica membrane treatment solution. The composition of this silica membrane treatment solution is shown in Table 1.
[0078]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness of the silica film, various contact angles, surface roughness, and the like.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 24 degrees, the initial contact angle after the water repellent treatment was 110 degrees, the contact angle after the friction test was 70 degrees, and after the friction test It can be seen that the water repellency performance of the is reduced. The surface roughness of the silica film is Ra = 0.8 nm, Rz = 11.0 nm, and the film surface roughness after the water repellent treatment is Ra = 0.8 nm, Rz = 10.5 nm, The surface roughness of the silica film and the water-repellent film both exceeded Ra = 0.5 nm and Rz = 5.0 nm, and the smoothness of the film surface was inferior.
[0079]
[Comparative Example 4]
To 89.6 g of ethanol (manufactured by Nacalai Tesque), 0.4 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone) and 20 g of concentrated hydrochloric acid (35% by weight, manufactured by Kanto Chemical) were added with stirring to obtain a silica membrane treatment solution. The composition of this silica membrane treatment solution is shown in Table 1.
[0080]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness, various contact angles, surface roughness, and the like of the silica film.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 32 degrees, the initial contact angle after the water repellent treatment was 107 degrees, the contact angle after the friction test was 87 degrees, and after the friction test It can be seen that the water repellency performance of the is reduced. In addition, film thickness unevenness was observed in the obtained film. The surface roughness of the silica film is Ra = 0.7 nm, Rz = 9.8 nm, and the film surface roughness after the water repellent treatment is Ra = 0.7 nm, Rz = 8.9 nm. 0.5 nm and Rz = 5.0 nm were exceeded, and the smoothness of the film surface was poor.
[0081]
[Comparative Example 5]
To 29.6 g of ethanol (manufactured by Nacalai Tesque), 0.4 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone) and 70 g of hydrochloric acid methanol solution (10% by weight, manufactured by Tokyo Chemical Industry) were added with stirring to obtain a silica membrane treatment solution. . The composition of this silica membrane treatment solution is shown in Table 1.
[0082]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness, various contact angles, surface roughness, and the like of the silica film.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 30 degrees, the initial contact angle after the water repellent treatment was 108 degrees, the contact angle after the friction test was 88 degrees, and after the friction test It can be seen that the water repellency performance of the is reduced. In addition, film thickness unevenness was observed in the obtained film. The surface roughness of the silica film is Ra = 0.7 nm, Rz = 8.8 nm, and the film surface roughness after the water repellent treatment is Ra = 0.7 nm, Rz = 7.8 nm. 0.5 nm and Rz = 5.0 nm were exceeded, and the smoothness of the film surface was poor.
[0083]
[Comparative Example 6]
To 86.25 g of ethanol (manufactured by Nacalai Tesque), 0.4 g of tetraethoxysilane (manufactured by Shin-Etsu Silicone), 1 g of concentrated hydrochloric acid (35% by weight, manufactured by Kanto Chemical), and 12.35 g of water were added with stirring. A membrane treatment solution was obtained. The composition of this silica membrane treatment solution is shown in Table 1.
[0084]
A water-repellent treated glass was obtained and measured in the same manner as in Example 1 except that the silica film treatment liquid was used instead of the silica film treatment liquid of Example 1. Table 2 shows the thickness, various contact angles, surface roughness, and the like of the silica film.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 32 degrees, the initial contact angle after water repellent treatment was 109 degrees, the contact angle after the friction test was 86 degrees, and after the friction test It can be seen that the water repellency performance of the is reduced. In addition, film thickness unevenness was observed in the obtained film. The surface roughness of the silica film is Ra = 0.6 nm, Rz = 9.8 nm, and the film surface roughness after the water repellent treatment is Ra = 0.7 nm, Rz = 10.8 nm. 0.5 nm and Rz = 5.0 nm were exceeded, and the smoothness of the film surface was poor.
[0085]
[Comparative Example 7]
96 g of ethanol (manufactured by Nacalai Tesque) was mixed with 4 g of a hydrolyzate of ethyl silicate (average polymerization degree of about 5) (average molecular weight 408.5, “HAS-10”, manufactured by Colcoat, silica content 10% by weight). A membrane treatment solution was obtained. The composition of this silica membrane treatment solution is shown in Table 1. This silica membrane treatment liquid was applied by flow coating on a cleaned glass substrate (300 × 300 mm) at 30% humidity and room temperature, and dried in about 1 minute. Thereafter, the substrate was baked at 600 ° C. for 1 hour to obtain a silica film. When the hardness of the silica film before firing was measured by pencil hardness, the film was damaged when the film was scratched with a pencil with a “B” core. The silica film after firing was not damaged even when the film was scratched with a pencil of “H” core.
[0086]
Further, this silica film-coated glass was subjected to ultrasonic cleaning for 10 minutes in pure water, dried, and then subjected to a water repellent treatment in the same manner as in Example 1 to obtain a water repellent glass.
As shown in Table 2, the contact angle of the silica film surface before application of the water repellent was 2 degrees, the initial contact angle after water repellent treatment was 106 degrees, the contact angle after the friction test was 50 degrees, and after the friction test It can be seen that the water-repellent performance of is significantly reduced. The surface roughness of the silica film is Ra = 0.9 nm, Rz = 12.1 nm, and the film surface roughness after the water-repellent treatment is Ra = 0.8 nm and Rz = 10.3 nm. 0.5 nm and Rz = 5.0 nm were exceeded, and the smoothness of the film surface was poor.
[0087]
[Comparative Example 8]
A water repellent and low friction resistance glass was obtained in the same manner as in Example 15 except that the silica film coating step in Example 15 was not performed. Table 5 shows various contact angles. As shown in Table 5, the initial contact angle after the water repellent treatment was 95 degrees, which was equal to the value for the glass of Example 15, but the contact angle after the friction test was 55 degrees for the glass of Example 15. The film was remarkably lower than the value of (90 degrees) and inferior in wear resistance. The coefficient of friction after the friction test was 0.45, and the low friction resistance function was lost due to friction.
[0088]
[Comparative Example 9]
A water repellent and low friction resistance glass glass was obtained in the same manner as in Example 19 except that the silica film coating step in Example 19 was not performed. The contact angle of this functional film was 38 degrees, and the critical tilt angle was 4 degrees, both of which were equal to the measured values in Example 19. However, the contact angle after the friction test was 22 degrees, the critical inclination angle was 25 degrees, the contact angle decreased and the critical inclination angle increased remarkably, and the wear resistance was inferior.
[0089]
[Table 1]
Figure 0003982426
[0090]
[Table 2]
Figure 0003982426
[0091]
[Table 3]
Figure 0003982426
[0092]
[Table 4]
Figure 0003982426
[0093]
[Table 5]
Figure 0003982426
[0094]
【The invention's effect】
As described above, according to the present invention, an alcohol solution composed of a low concentration silicon alkoxide and a high concentration volatile acid is applied to a substrate and dried at room temperature, whereby a dense and strong silica film is formed. A coated article is obtained. Furthermore, a functional coated article having excellent durability can be obtained by treatment at room temperature by applying an organosilane having a hydrolyzable group and a functional functional group to the silica film as a base film.

Claims (3)

基材と、その基材表面にゾルゲル法により被覆された、酸化ケイ素を主成分とするシリカ系被膜からなり、その被膜の表面が算術平均粗さ(Ra)=0.10nm以上、0.5nm以下でかつ十点平均粗さ(Rz)=1.0nm以上、5.0nm以下の粗さを有するシリカ系膜被覆物品。A base material and a silica-based film mainly composed of silicon oxide coated on the surface of the base material by a sol-gel method. The surface of the film has an arithmetic average roughness (Ra) of 0.10 nm or more and 0.5 nm. A silica-based film-coated article having a roughness of 10 points average roughness (Rz) = 1.0 nm or more and 5.0 nm or less. 前記シリカ系被膜は5〜300nmの厚みを有する請求項1に記載のシリカ系膜被覆物品。The silica-based film-coated article according to claim 1, wherein the silica-based film has a thickness of 5 to 300 nm. 前記基材は透明なガラス板である請求項1または2に記載のシリカ系膜被覆物品。The silica-based film-coated article according to claim 1 or 2, wherein the substrate is a transparent glass plate.
JP2003034681A 1997-12-04 2003-02-13 Silica film coated article Expired - Fee Related JP3982426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034681A JP3982426B2 (en) 1997-12-04 2003-02-13 Silica film coated article

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-334160 1997-12-04
JP33416097 1997-12-04
JP2003034681A JP3982426B2 (en) 1997-12-04 2003-02-13 Silica film coated article

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34243998A Division JP3427755B2 (en) 1997-12-04 1998-12-02 Method for producing silica-based membrane coated article

Publications (2)

Publication Number Publication Date
JP2003292342A JP2003292342A (en) 2003-10-15
JP3982426B2 true JP3982426B2 (en) 2007-09-26

Family

ID=29252710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034681A Expired - Fee Related JP3982426B2 (en) 1997-12-04 2003-02-13 Silica film coated article

Country Status (1)

Country Link
JP (1) JP3982426B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2473002A (en) * 2009-08-25 2011-03-02 Nippon Sheet Glass Co Ltd Reinforcement structure for rubber articles and methods of preparation
JPWO2014199991A1 (en) * 2013-06-11 2017-02-23 日本電気硝子株式会社 Cover member, display device, and method of manufacturing cover member
JP6474383B2 (en) * 2014-02-24 2019-03-06 キヤノンオプトロン株式会社 Anti-fouling optical member and touch panel display
JP2019520289A (en) * 2016-04-26 2019-07-18 ピルキントン グループ リミテッド Corrosion resistant coated glass substrate
CN110606670A (en) * 2019-09-20 2019-12-24 浙江师范大学 A preparation method of wide-spectrum anti-reflection superhydrophobic photovoltaic glass

Also Published As

Publication number Publication date
JP2003292342A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
US6465108B1 (en) Process for the production of articles covered with silica-base coats
JP6823141B2 (en) Transparent article with anti-fog film
JP3588364B2 (en) Surface treated substrate and surface treatment method for substrate
JP4198598B2 (en) Super water-repellent substrate
JP3842554B2 (en) Method for producing water-repellent film-coated article, water-repellent film-coated article, and liquid composition for water-repellent film coating
US6743516B2 (en) Highly durable hydrophobic coatings and methods
JP4914358B2 (en) Water-repellent coated article and method for producing the same
JP3334611B2 (en) Method for producing water-repellent article, water-repellent article and solution for forming water-repellent coating
JP3735136B2 (en) Non-wetting coating composition
JP2007524732A (en) Durable hydrophobic surface paint using silicone resin
WO1998027021A1 (en) Nonfogging and stainproof glass articles
JP3427755B2 (en) Method for producing silica-based membrane coated article
JP4256662B2 (en) Film-coated article and method for producing the same
JP2004136630A (en) Functional film coated article, and its manufacturing method
US20070100066A1 (en) Coated article, coating liquid composition, and method for producing coated article
JP3982426B2 (en) Silica film coated article
JP2001205187A (en) Method for manufacturing silica-base film coated article and silica-base film coated article
JP3649585B2 (en) Water repellent coating solution
JP2000336334A (en) Production of silicaceous film-coated article and functional film-coated article
JP2002348542A (en) Coated article, coating liquid composition, and method for producing the coated article
JP4093987B2 (en) Method for producing surface-treated substrate
JP3744736B2 (en) Highly slidable base material and method for producing the same
JP4152769B2 (en) Method for producing highly durable water slidable coating
KR100492396B1 (en) A substrate having a treatment surface and surface treating method for a substrate
JP2003013048A (en) Method for water-repellent article production, water- repellent article and solution for water-repellent coating film formation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees