[go: up one dir, main page]

JP3979061B2 - Movable blade pump - Google Patents

Movable blade pump Download PDF

Info

Publication number
JP3979061B2
JP3979061B2 JP2001337630A JP2001337630A JP3979061B2 JP 3979061 B2 JP3979061 B2 JP 3979061B2 JP 2001337630 A JP2001337630 A JP 2001337630A JP 2001337630 A JP2001337630 A JP 2001337630A JP 3979061 B2 JP3979061 B2 JP 3979061B2
Authority
JP
Japan
Prior art keywords
impeller
space
pressure
shaft
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001337630A
Other languages
Japanese (ja)
Other versions
JP2003139090A (en
Inventor
一郎 原田
臣吾 木村
康弘 井上
裕 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001337630A priority Critical patent/JP3979061B2/en
Publication of JP2003139090A publication Critical patent/JP2003139090A/en
Application granted granted Critical
Publication of JP3979061B2 publication Critical patent/JP3979061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、羽根の翼角を任意に変えることができる可動翼ポンプに係わり、例えば、排水機場に備えられる排水ポンプや揚水ポンプ等に好適な可動翼ポンプに関する。
【0002】
【従来の技術】
可動翼ポンプは、回転軸に固定された羽根車において、例えばポンプ効率の向上等を目的として羽根の翼角を可変な構造としたものである。
【0003】
このような可動翼ポンプの一例として、例えば、特開平8−61293号公報に記載のように、略鉛直方向に配置した回転軸と、この回転軸の下端部に固定されたハブ及び翼角が可変となるようにハブに設けた複数の羽根を備えた羽根車と、ハブの上方側を覆うように設けたヘッドカバーと、ヘッドカバーと回転軸とのシールを行う軸封装置とを備えたものがある。
【0004】
この従来技術では、羽根車の羽根は、中空のポンプ駆動軸の内部に配設され軸方向に変位可能なロッドと連結され、ステム軸の回りに回動可能な構造となっており、ロッドを軸方向に変位させることで、複数枚の羽根の翼角の大きさを適宜設定できるようになっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術には、以下の課題が存在する。
【0006】
すなわち、上記従来技術では、羽根車のハブ内に羽根の翼角を可変とするための機構を内蔵しており、羽根車背面(言い換えればハブの回転軸側の面)とヘッドカバーとが近接した構造となる。この場合、羽根車背面とヘッドカバーとの間には、略円盤状あるいは略逆お椀状等の比較的狭い空間が形成されることとなり、羽根車の回転に伴って、この空間内に径方向中央側から外周側に向かって増大する(言い換えれば径方向外周側から径方向中央側に向かって減少する)圧力勾配が発生する。このときの径方向外周側と中央側との圧力差は、羽根車の回転速度や、当該空間の径方向寸法等に応じて決まる。
【0007】
一方、ポンプの羽根車吐出し側流路の圧力は吸い込み側流路よりもポンプ揚程分だけ高圧となるが、例えば、排水機場に備えられる排水ポンプや揚水ポンプ等、比較的低揚程にて運転されるポンプの場合、羽根車吐き出し側流路における圧力は、大気圧に対してそれほど高くならない場合がある。このとき、上述した羽根車背面とヘッドカバーとの間の空間の外周側は羽根車吐き出し側流路に連通しておりその圧力に等しくなっていることから、ポンプの各部寸法や運転条件によっては、上述の圧力勾配によって、上記空間の径方向内周側の圧力が大気圧よりも低く(負圧)となる可能性がある。この場合、軸封装置の下端側(接液部)は上記空間の径方向内周側に連通しており負圧となることから、軸封装置の上端側から空気が流入して軸封装置の摺動部分(軸封部)が乾き状態(ドライ状態)となり、健全性を維持するのが困難となる可能性がある。
【0008】
本発明の目的は、低揚程運転時においても、軸封装置の摺動部分の負圧に起因する不具合を確実に防止し、健全性を維持できる可動翼ポンプを提供することにある。
【0009】
【課題を解決するための手段】
(1)上記目的を達成するために、本発明は、回転軸と、この回転軸まわりのシールを行う軸封装置と、前記回転軸に固定され、翼角が可変となるように設けられた複数の羽根を備えた羽根車とを有する可動翼ポンプにおいて、前記軸封装置の羽根車側部分と前記羽根車の背面部分との間に圧力制御用の複数の空間を設け、前記複数の空間のうち前記軸封装置側の第1空間を、静止体側に設けた第1連通路を介し前記羽根車の吐き出し側流路に連通させるとともに、前記複数の空間のうち前記羽根車側の第2空間を、静止体側に設けた第2連通路を介し前記羽根車の吸い込み側流路に連通させる。
【0010】
本発明においては、軸封装置側の第1空間を羽根車の吐き出し側流路に連通させることにより、羽根車の吐き出し側流路からの高圧水を常時第1空間に導入することができる。したがって、低揚程運転であるかどうか、あるいは羽根車背面とヘッドカバーとの間の空間に生じる圧力差の大小に係わらず、軸封装置の第1空間に臨む羽根車側接液部を常時大気に対し正圧に保つことができるので、従来構造のように軸封装置の摺動部分が乾き状態となり健全性が損なわれるのを確実に防止することができる。
【0011】
またこのとき、単に第1空間に高圧水を導入するだけでは、高圧水の一部が羽根車背面とヘッドカバーとの間の空間に流入しこの空間内を径方向中央側から外周側に向かって流れる結果、羽根車をポンプ吸込側に押し付けるスラスト力を増大させ、ポンプ軸推力の増大を招き、好ましくない。そこで本発明においては、羽根車側に第2空間を設け、この第2空間を羽根車の吸い込み側流路に連通させる。これにより、第1空間からの高圧水をこの第2空間より羽根車の吸い込み側流路へと逃がすとともに、上記空間内に径方向外周側から中央側へ向かう流れを生じさせることができる。したがって、上記のような羽根車をポンプ吸込側に押し付けるスラスト力の増大を防止し、ポンプ軸推力を低減することができる。
【0012】
以上のように、本発明によれば、軸封装置羽根車側接液部と羽根車背面との間を高圧側の第1空間及び低圧側の第2空間によって圧力的に分離するので、軸封装置の摺動部分の負圧に起因する不具合を防止でき、さらにポンプ軸推力を低減することができる。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を、図面を参照しつつ説明する。
図1は、本発明の立軸可動翼渦巻斜流ポンプの一実施形態の全体構造を表す縦断面図であり、図2は図1中A部の部分拡大縦断面図である。
【0016】
これら図1及び図2において、本実施形態による立軸可動翼渦巻斜流ポンプ1は、この種のものとして公知の駆動機2と、この駆動機2の回転軸であり略鉛直方向に配置した主軸3と、この主軸3の下端部に固定された羽根車4と、この羽根車4の上方側に設けたヘッドカバー5と、このヘッドカバー5と前記主軸3とのシールを行う軸封装置6と、この軸封装置6の下方側接液部分6aと前記羽根車4の上方側背面部分4aとの間に設けられ、圧力制御用の第1空間7及び第2空間8とを有する。
【0017】
羽根車4は、複数の羽根4bと、これら羽根4bの翼角を可変とする公知の可動翼機構(図示せず)を内蔵したハブ4cとで構成され、このとき羽根車4の上方側背面部分4aは略円盤形状となりヘッドカバー5に接近した位置にある。
【0018】
ヘッドカバー5の上方側には、主軸3を収納する略円筒状中空のベアリングカバー9が取り付けられ、ヘッドカバー5の下方側には羽根車4を収納するケーシング10が取り付けられている。このケーシング10の下部には下方へ向かって若干拡径する略円筒状のサクションパイプ11が取り付けられている。そして、ボルト12によりベアリングカバ−9とヘッドカバー5とケーシング10とが互いに締結固定され、ボルト13によりケーシング10とサクションパイプ11とが互いに締結固定されている。
【0019】
また主軸3は、ベアリングカバー9の径方向中心側に設けた、例えばスラスト軸受14、ラジアル軸受15a,15bにより回転自在に設けられている。
【0020】
サクションパイプ11の内周側には吸い込み側流路16が構成され、ケーシング10内部には吐き出し側流路17が構成されている。
【0021】
また、上記した軸封装置6側(図2中上方側)の第1空間7と羽根車4側(図2中下方側)の第2空間8の間にはブッシュ18aを、また第2空間8と羽根車背面部分4aの間にはブッシュ18bを設けており、それぞれ主軸3との隙間に流れの抵抗を生じさせて漏れ量を抑制するようになっている。そして、上方側の第1空間7は注水管19を介して吐き出し側流路17に連通させ、下方側の第2空間8は排水管20を介して吸い込み側流路16に連通させることによって、第1空間7及び第2空間8を圧力制御する(詳細は後述)ようになっている。
【0023】
次に、本実施形態の動作を以下に説明する。
【0024】
上記本発明の立軸可動翼渦巻斜流ポンプ1において、例えば排水機場等で排水に使用される場合には、駆動機2を駆動し、主軸3を回転させる。これにより、羽根車4が回転し、水をポンプ吸込側のサクションパイプ11より吸い込み、吸い込み側流路16を経て加圧し、加圧された水は吐き出し側流路17を経てケーシング10の吐出口(図示せず)より吐き出される。
【0025】
このような動作における本実施形態の作用を説明するための第1の比較例による立軸可動翼渦巻斜流ポンプの軸封装置近傍の構造を表す部分拡大縦断面図を図3に示す。この比較例は前述の特開平8−61293号公報にほぼ相当するものである。上記本発明の実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。
【0026】
この図3において、上記したように羽根車背面部分4aは略円盤形状となりヘッドカバー5に接近した位置にある。このとき、羽根車4の回転時に生じる羽根車背面部分4aとヘッドカバー5との間の空間における流れは、例えば「遠心形ターボ機械の軸スラストに関する研究」(黒川、豊倉、機械学会論文集41巻346号(昭50−6)P1753〜1762)等に記載のように、一般的に容器内で回転する円板に沿う流れに置き換えて考えることができる。その詳細を図4により説明する。
【0027】
図4は、略円筒状容器内で回転する円板に沿う流れの実験モデルの構造を表す縦断面図である。この図4において、実験モデル21は、上面を構成する固定壁22aと側面及び底面を構成する円筒壁22bとを備えた略円筒状容器22と、この略円筒状容器22内の径方向中心部に取り付けた回転軸である軸23と、この軸23に固定した円板24とから構成されている。
【0028】
このような構成において、円筒状容器22内で回転する円板24に沿う流れは、軸23の回転角速度ωの1/2の角速度で回転する強制渦として捉えることができ、円板上面24aの径方向中心部では、径方向外周部を境界にして強制渦の動圧分の圧力低下を生じる。略円筒状容器22内の漏れ流れが無く、円板上面24aと固定壁22aとの間に径方向の貫流が無い(後述にて説明)条件では、円板上面24aの流体周速度u(u=Krω)は円板24の周速度の0.3〜0.4倍(すなわち、K=0.3〜0.4)となり、下記の式(1)より円板上面24aの径方向中心部における圧力低下値ΔPが求められる。
【0029】
−ΔP=P−P=(1/2)Cρr ω (1)
ΔP:円板中心部の圧力低下値、P:円板中心部の圧力、
:円板外周部の圧力、C:圧力係数、ρ:流体密度、
:円板外周部半径、ω:円板の回転角速度
ここで、この実験モデル21を構成する固定壁22aは上記比較例のヘッドカバー5に、軸23は上記比較例の主軸3に、円板上面24aは上記比較例の羽根車背面部分4aにそれぞれ相当する。このため、図3において、羽根車4の回転時に生じる羽根車背面部分4aとヘッドカバー5との間の空間における流れは、主軸3の回転速度ωの1/2の角速度で回転する強制渦として捉えることができ、羽根車背面部分4aの径方向中心部では、径方向外周部を境界にして強制渦の動圧分の圧力低下を生じることとなる。このとき、式(1)より求められる羽根車背面部分4aの径方向中心部における圧力低下値ΔPは、ポンプの設計条件、構造、仕様、運転条件等により異なるが、大きくなると例えば8mAq程度となる場合もある。したがって、比較的低揚程にて運転される、例えば運転点における全揚程が3〜4mAq程度の排水ポンプ等においては、羽根車背面部分4aの径方向外周部が吐き出し側流路17に連通しておりその圧力は大気圧に対してそれほど高くならないから、前述した圧力低下値ΔPが大きくなって、羽根車背面部分4aの径方向中心部は大気圧より低い負圧となる可能性がある。よって、羽根車背面部分4aの径方向中心部に連通するこの軸封装置接液部分6aも負圧となることから、軸封装置接液部分6aの反対側(図中上方)から空気が流入して軸封装置6の摺動部分が乾き状態となり、軸封装置6及び主軸3の健全性が損なわれる事を防止するのが困難となる可能性があるので好ましくない。
【0030】
次に、第2の比較例として、前記したヘッドカバー5の下端部分に複数のリブ25を設けた立軸可動翼渦巻斜流ポンプの軸封装置近傍の構造を表す部分拡大縦断面図を図5に示し、図5中A−A断面による横断面図を図6に示す。これら図5及び図6において、上記実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。
【0031】
図5及び図6において、この比較例ではヘッドカバー5の下端部分に複数のリブ25を設けている。これにより、羽根車背面部分4aとヘッドカバー5との間の空間に生じる前述した強制渦を抑制し、羽根車背面部分4aの径方向中心部の圧力降下を防止できるようになっている。しかしながら、この場合以下のような別の懸念が生じる。
【0032】
すなわち、前述の、例えば「遠心形ターボ機械の軸スラストに関する研究」(黒川、豊倉、機械学会論文集41巻346号(昭50−6)P1753〜1762)等に記載のように、先の実験モデル21にて、回転する円板上面24aと固定壁22aとの間に径方向中心側へ向かう貫流が重畳すると、円板上面24aの径方向中心部の圧力をさらに低下させる効果があり、逆に径方向外周側へ向かう貫流が重畳すると円板上面24aの径方向中心部の圧力を上昇させる効果があることが既に知らされている。したがって、本比較例のようにリブ25を設けると強制渦を抑制するかわりに羽根車背面部分4aとヘッドカバー5との間に径方向外周側へ向かう貫流が生じるため、羽根車背面部分4aの中心部の圧力を上昇させ、羽根車4を主軸3と反対側に押し付けるスラスト力を増大させる。特に、羽根車4は可動翼機構を内蔵しており通常のポンプのようにバランスホールを設けることが困難であることから、この傾向が顕著となる。
【0033】
次に、第3の比較例として、軸封装置6の下方側接液部分6aに注水するようにした立軸可動翼渦巻斜流ポンプの軸封装置近傍の構造を表す部分拡大縦断面図を図7に示す。図7において、上記実施形態と同等の部分には同一の符号を付し、適宜説明を省略する。
【0034】
図7において、この比較例では、軸封装置6の下方側接液部分6aと羽根車4の上方側背面部分4aとの間に圧力制御用の第1空間7を設け、この第1空間7に外部給水源26より圧力水を注水し、これにより上記第2の比較例同様に羽根車背面部分4aの径方向中心部の圧力降下を防止できるようになっている。
【0035】
しかしながら、この場合、軸封装置接液部6aを正圧に保つためには十分な量と圧力を持つ外部給水源26が必要となり、ポンプ周辺機器の大型化を招くので好ましくない。
【0036】
また、第1空間7に導入する高圧水の一部が羽根車背面部分4aとヘッドカバー5との間の空間に流入し、この空間内を径方向中心側から外周側に向かって流れる。前述の第2の比較例において説明したように、この径方向外周側へ向かう貫流は、羽根車背面部分4aの径方向中心部の圧力を上昇させる効果を生じる。よって、羽根車4を主軸3と反対側に押し付けるスラスト力を増大させ、ポンプ軸推力の増大を招くので好ましくない。
【0037】
これに対し、上記本発明の一実施形態においては、まず、軸封装置接液部分6a側の第1空間7を吐き出し側流路17に注水管19を介し連通させることにより、吐き出し側流路17からの高圧水を常時第1空間7に導入することができる。したがって、低揚程運転であるかどうか、あるいは羽根車背面部分4aとヘッドカバー5との間の空間に生じる圧力低下の数値の大きさに係わらず、軸封装置6の第1空間7に臨む軸封装置接液部6aを常時大気圧に対し正圧に保つことができるので、従来構造のように軸封装置6の摺動部分が乾き状態となり健全性が損なわれるのを確実に防止することができる。
【0038】
上記本発明の一実施形態においては、第1空間7の羽根車4側に第2空間8を設け、この第2空間8を吸い込み側流路16に排水管20を介し連通させる。これにより、第1空間7からの高圧水をこの第2空間8より吸い込み側流路16へと逃がすとともに、羽根車背面部分4aとヘッドカバー5との間の空間内に径方向中心側へ向かう貫流を生じさせることができる。この径方向中心側へ向かう貫流は、前述のように羽根車背面部分4aの径方向中心部の圧力を低下させる効果を生じるので、羽根車4を主軸3と反対側に押し付けるスラスト力の増大を防止し、ポンプ軸推力を低減することができる。
【0039】
以上のように、本実施形態によれば、軸封装置接液部分6aと羽根車背面部分4aとの間を高圧側の第1空間7及び低圧側の第2空間8によって圧力的に分離するので、軸封装置6の摺動部分の負圧に起因する不具合を防止でき、さらにポンプ軸推力を低減することができる。
【0040】
【発明の効果】
本発明によれば、低揚程運転時においても、軸封装置の摺動部分の負圧に起因する不具合を確実に防止し、健全性を維持できる。
【図面の簡単な説明】
【図1】本発明の立軸可動翼渦巻斜流ポンプの一実施形態の全体構造を表す縦断面図である。
【図2】図1中A部の部分拡大縦断面図である。
【図3】本発明の第1の比較例による立軸可動翼渦巻斜流ポンプの軸封装置近傍の構造を表す部分拡大縦断面図である。
【図4】略円筒状容器内で回転する円板に沿う流れの実験モデルの構造を表す縦断面図である。
【図5】本発明の第2の比較例による立軸可動翼渦巻斜流ポンプの軸封装置近傍の構造を表す部分拡大縦断面図である。
【図6】図5中A−A断面による横断面図である。
【図7】本発明の第3の比較例による立軸可動翼渦巻斜流ポンプの軸封装置近傍の構造を表す部分拡大縦断面図である。
【符号の説明】
1 立軸可動翼渦巻斜流ポンプ
3 主軸(回転軸)
4 羽根車
4a 羽根車の背面部分
4b 羽根車の羽根
4c 羽根車のハブ
5 ヘッドカバー
6 軸封装置
6a 軸封装置の下方側接液部分(羽根車側部分)
7 第1空間(圧力制御用の空間)
8 第2空間(圧力制御用の空間)
16 吸い込み側流路(ポンプ低圧部)
17 吐き出し側流路(ポンプ高圧部)
19 注水
20 排水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a movable blade pump capable of arbitrarily changing the blade angle of a blade, and relates to a movable blade pump suitable for, for example, a drainage pump or a pumping pump provided in a drainage station.
[0002]
[Prior art]
The movable blade pump has a structure in which the blade angle of the blade is variable in the impeller fixed to the rotating shaft, for example, for the purpose of improving the pump efficiency.
[0003]
As an example of such a movable blade pump, for example, as described in JP-A-8-61293, a rotating shaft arranged in a substantially vertical direction, and a hub and blade angle fixed to the lower end portion of the rotating shaft are provided. An impeller having a plurality of blades provided on the hub so as to be variable, a head cover provided so as to cover the upper side of the hub, and a shaft seal device for sealing the head cover and the rotating shaft. is there.
[0004]
In this prior art, the blades of the impeller are arranged inside a hollow pump drive shaft and connected to a rod that can be displaced in the axial direction, and have a structure that can rotate around the stem shaft. By displacing in the axial direction, the blade angle of the plurality of blades can be set as appropriate.
[0005]
[Problems to be solved by the invention]
However, the prior art has the following problems.
[0006]
That is, in the above prior art, a mechanism for making the blade angle of the blades variable is incorporated in the hub of the impeller, and the rear surface of the impeller (in other words, the surface on the rotating shaft side of the hub) and the head cover are close to each other. It becomes a structure. In this case, a relatively narrow space such as a substantially disk shape or a substantially inverted bowl shape is formed between the rear surface of the impeller and the head cover, and the radial center is formed in this space as the impeller rotates. A pressure gradient that increases from the side toward the outer peripheral side (in other words, decreases from the radial outer peripheral side toward the radial central side) is generated. The pressure difference between the radially outer peripheral side and the central side at this time is determined according to the rotational speed of the impeller, the radial dimension of the space, and the like.
[0007]
On the other hand, the pressure of the pump impeller discharge side flow path is higher than the suction side flow path by the pump head, but it operates at a relatively low head, for example, a drainage pump or a water pump provided in the drainage station. In the case of a pump, the pressure in the impeller discharge side flow path may not be so high with respect to atmospheric pressure. At this time, since the outer peripheral side of the space between the rear surface of the impeller and the head cover described above communicates with the impeller discharge side flow path and is equal to the pressure thereof, depending on the dimensions and operating conditions of each part of the pump, Due to the pressure gradient described above, the pressure on the radially inner peripheral side of the space may be lower than the atmospheric pressure (negative pressure). In this case, since the lower end side (wetted part) of the shaft seal device communicates with the radially inner peripheral side of the space and becomes negative pressure, air flows from the upper end side of the shaft seal device and the shaft seal device The sliding portion (shaft seal portion) becomes dry (dry) and it may be difficult to maintain soundness.
[0008]
An object of the present invention is to provide a movable blade pump that can reliably prevent a malfunction caused by a negative pressure of a sliding portion of a shaft seal device and maintain soundness even during a low head operation.
[0009]
[Means for Solving the Problems]
(1) In order to achieve the above object, the present invention is provided with a rotating shaft, a shaft sealing device that seals around the rotating shaft, and a blade angle that is fixed to the rotating shaft and is variable. in adjustable vane pump having an impeller having a plurality of blades, a plurality of spaces for pressure control between the rear portion of the impeller-side portion of the shaft sealing device impeller provided, said plurality of spaces the first space of the sac Chi before Kijikufu apparatus, together to communicate with the discharge side passage of the impeller through the first communication passage provided in the stationary body side, of the impeller side of the plurality of spaces The second space communicates with the suction-side flow path of the impeller through a second communication path provided on the stationary body side .
[0010]
In the present invention, it is possible to introduce the first space of the shaft sealing apparatus by communicating the discharge side flow passage of the blades vehicles, high-pressure water from the discharge side flow passage of the impeller always first space . Therefore, the impeller side wetted part facing the first space of the shaft seal device is always kept in the atmosphere regardless of whether it is a low head operation or the pressure difference generated in the space between the rear face of the impeller and the head cover. On the other hand, since the positive pressure can be maintained, it is possible to reliably prevent the sliding portion of the shaft seal device from being dried and sacrificing the soundness as in the conventional structure.
[0011]
At this time, if high-pressure water is simply introduced into the first space, a part of the high-pressure water flows into the space between the rear surface of the impeller and the head cover, and the inside of the space moves from the radial center to the outer periphery. As a result of the flow, the thrust force pressing the impeller toward the pump suction side is increased, leading to an increase in pump shaft thrust, which is not preferable. Therefore, in the present invention, a second space provided on the impeller side, communicates the second space to the suction side passage of the blades vehicles. Thereby, the high-pressure water from the first space can escape from the second space to the suction-side flow path of the impeller , and a flow from the radially outer side toward the center can be generated in the space. Accordingly, it is possible to prevent an increase in thrust force that presses the impeller as described above against the pump suction side, and to reduce pump shaft thrust.
[0012]
As described above, according to the present invention, the shaft seal device impeller side wetted part and the impeller back surface are pressure-separated by the high pressure side first space and the low pressure side second space. Problems caused by the negative pressure of the sliding portion of the sealing device can be prevented, and the pump shaft thrust can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing an overall structure of an embodiment of a vertical axis movable blade spiral mixed flow pump of the present invention, and FIG. 2 is a partially enlarged longitudinal sectional view of a portion A in FIG.
[0016]
1 and 2, the vertical axis movable blade spiral mixed flow pump 1 according to the present embodiment is a known driving machine 2 of this type, and a main shaft disposed in a substantially vertical direction as a rotating shaft of the driving machine 2. 3, an impeller 4 fixed to the lower end portion of the main shaft 3, a head cover 5 provided on the upper side of the impeller 4, a shaft seal device 6 that seals the head cover 5 and the main shaft 3, A first space 7 and a second space 8 for pressure control are provided between the lower liquid contact portion 6 a of the shaft seal device 6 and the upper rear surface portion 4 a of the impeller 4.
[0017]
The impeller 4 is composed of a plurality of blades 4b and a hub 4c incorporating a known movable blade mechanism (not shown) in which the blade angle of these blades 4b is variable. The portion 4 a has a substantially disk shape and is located close to the head cover 5.
[0018]
A substantially cylindrical hollow bearing cover 9 that houses the main shaft 3 is attached to the upper side of the head cover 5, and a casing 10 that houses the impeller 4 is attached to the lower side of the head cover 5. A substantially cylindrical suction pipe 11 having a slightly larger diameter downward is attached to the lower part of the casing 10. The bearing cover 9, the head cover 5, and the casing 10 are fastened and fixed to each other by the bolts 12, and the casing 10 and the suction pipe 11 are fastened and fixed to each other by the bolts 13.
[0019]
The main shaft 3 is rotatably provided by, for example, a thrust bearing 14 and radial bearings 15 a and 15 b provided on the radial center side of the bearing cover 9.
[0020]
A suction-side flow path 16 is configured on the inner peripheral side of the suction pipe 11, and a discharge-side flow path 17 is configured in the casing 10.
[0021]
A bush 18a is provided between the first space 7 on the shaft seal device 6 side (upper side in FIG. 2) and the second space 8 on the impeller 4 side (lower side in FIG. 2). Bush 18b is provided between 8 and impeller back surface portion 4a, and flow resistance is generated in the gap between main shaft 3 and the amount of leakage is suppressed. Then, the first space 7 of the upper side is communicated with the out-side channel 17-out ejection via the water injection tube 19, communicating with the lateral passage 16 and the second space 8 of the lower side narrowing have suction via the drain pipe 20 By doing so, pressure control is performed on the first space 7 and the second space 8 (details will be described later).
[0023]
Next, the operation of this embodiment will be described below.
[0024]
In the above-described vertical axis movable blade spiral mixed flow pump 1 of the present invention, for example, when used for drainage at a drainage station or the like, the drive unit 2 is driven and the main shaft 3 is rotated. As a result, the impeller 4 rotates, sucks water from the suction pipe 11 on the pump suction side, pressurizes it through the suction side flow path 16, and the pressurized water passes through the discharge side flow path 17 and discharges the casing 10. (Not shown).
[0025]
FIG. 3 is a partially enlarged longitudinal sectional view showing the structure in the vicinity of the shaft seal device of the vertical axis movable blade spiral mixed flow pump according to the first comparative example for explaining the operation of the present embodiment in such an operation. This comparative example substantially corresponds to the above-mentioned JP-A-8-61293. Portions equivalent to those of the embodiment of the present invention are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
[0026]
In FIG. 3, as described above, the impeller back surface portion 4 a has a substantially disk shape and is located close to the head cover 5. At this time, the flow in the space between the impeller back surface portion 4a and the head cover 5 generated when the impeller 4 rotates is, for example, “Study on axial thrust of centrifugal turbomachine” (Kurokawa, Toyokukura, Japan Society of Mechanical Engineers, Vol. 41) 346 (Sho 50-6) P1753-1762) and the like, it can be considered that the flow is generally along a disc rotating in a container. The details will be described with reference to FIG.
[0027]
FIG. 4 is a longitudinal sectional view showing the structure of an experimental model of a flow along a disc rotating in a substantially cylindrical container. In FIG. 4, an experimental model 21 includes a substantially cylindrical container 22 having a fixed wall 22 a that constitutes an upper surface and a cylindrical wall 22 b that constitutes a side surface and a bottom surface, and a radial center portion in the substantially cylindrical container 22. The shaft 23 is a rotating shaft attached to the shaft 23, and a disk 24 fixed to the shaft 23.
[0028]
In such a configuration, the flow along the disk 24 rotating in the cylindrical container 22 can be regarded as a forced vortex rotating at an angular velocity that is ½ of the rotational angular velocity ω of the shaft 23, and At the radial center, a pressure drop corresponding to the dynamic pressure of the forced vortex occurs at the radial outer periphery. Under the condition that there is no leakage flow in the substantially cylindrical container 22 and there is no radial flow between the disk upper surface 24a and the fixed wall 22a (described later), the fluid peripheral velocity u (u) of the disk upper surface 24a = Krω) is 0.3 to 0.4 times the peripheral speed of the disk 24 (that is, K = 0.3 to 0.4), and the radial center of the disk upper surface 24a is expressed by the following equation (1). The pressure drop value ΔP at is obtained.
[0029]
−ΔP = P−P 0 = (1/2) C p ρr 0 2 ω 2 (1)
ΔP: pressure drop value at the center of the disk, P: pressure at the center of the disk,
P 0 : pressure on the outer periphery of the disc, C p : pressure coefficient, ρ: fluid density,
r 0 : disc outer peripheral radius, ω: rotational angular velocity of the disc Here, the fixed wall 22a constituting the experimental model 21 is a circle on the head cover 5 of the comparative example, and the shaft 23 is a main shaft 3 of the comparative example. The plate upper surface 24a corresponds to the impeller back surface portion 4a of the comparative example. For this reason, in FIG. 3, the flow in the space between the impeller back surface portion 4 a and the head cover 5 that occurs when the impeller 4 rotates is regarded as a forced vortex that rotates at an angular velocity that is ½ of the rotational speed ω of the main shaft 3. In the central portion in the radial direction of the impeller back surface portion 4a, a pressure drop corresponding to the dynamic pressure of the forced vortex occurs at the outer peripheral portion in the radial direction as a boundary. At this time, the pressure drop value ΔP at the radial center portion of the impeller back surface portion 4a obtained from the equation (1) varies depending on the pump design conditions, structure, specifications, operating conditions, etc., but becomes larger, for example, about 8 mAq. In some cases. Accordingly, in a drainage pump or the like that is operated at a relatively low head, for example, the total head at the operating point is about 3 to 4 mAq, the radially outer peripheral portion of the impeller back surface portion 4a communicates with the discharge-side flow path 17. Since the pressure does not become so high with respect to the atmospheric pressure, the pressure drop value ΔP described above becomes large, and the central portion in the radial direction of the impeller back surface portion 4a may become a negative pressure lower than the atmospheric pressure. Therefore, since the shaft seal device wetted part 6a communicating with the radial center of the impeller back surface part 4a also has a negative pressure, air flows from the opposite side (upper side in the figure) of the shaft seal device wetted part 6a. Then, the sliding portion of the shaft seal device 6 is in a dry state, and it may be difficult to prevent the soundness of the shaft seal device 6 and the main shaft 3 from being impaired.
[0030]
Next, as a second comparative example, FIG. 5 is a partially enlarged longitudinal sectional view showing a structure in the vicinity of the shaft seal device of the vertical shaft movable blade spiral mixed flow pump in which a plurality of ribs 25 are provided at the lower end portion of the head cover 5 described above. FIG. 6 shows a cross-sectional view taken along line AA in FIG. 5 and 6, the same reference numerals are given to the same parts as those in the above embodiment, and the description will be omitted as appropriate.
[0031]
5 and 6, in this comparative example, a plurality of ribs 25 are provided at the lower end portion of the head cover 5. Thereby, the above-mentioned forced vortex generated in the space between the impeller back portion 4a and the head cover 5 is suppressed, and a pressure drop at the radial center of the impeller back portion 4a can be prevented. However, in this case, another concern arises as follows.
[0032]
That is, as described in, for example, the above-mentioned “Research on axial thrust of centrifugal turbomachines” (Kurokawa, Toyohkura, Japan Society of Mechanical Engineers, Vol. 41, No. 346 (Akira 50-6) P1753-1762), In the model 21, when a flow through toward the radial center is superimposed between the rotating disk upper surface 24a and the fixed wall 22a, there is an effect of further reducing the pressure at the radial center of the disk upper surface 24a. It has already been known that if a through-flow toward the radially outer peripheral side is superimposed on this, there is an effect of increasing the pressure in the central portion in the radial direction of the disk upper surface 24a. Therefore, when the rib 25 is provided as in the present comparative example, instead of suppressing the forced vortex, a through-flow is generated between the impeller back surface portion 4a and the head cover 5 toward the radially outer peripheral side. The thrust of the part is increased and the thrust force that presses the impeller 4 to the opposite side of the main shaft 3 is increased. In particular, since the impeller 4 has a built-in movable blade mechanism and it is difficult to provide a balance hole like a normal pump, this tendency becomes remarkable.
[0033]
Next, as a third comparative example, a partially enlarged longitudinal sectional view showing a structure in the vicinity of the shaft seal device of the vertical shaft movable blade spiral mixed flow pump configured to inject water into the lower side wetted portion 6a of the shaft seal device 6 is shown. 7 shows. In FIG. 7, parts that are the same as in the above embodiment are given the same reference numerals, and descriptions thereof are omitted as appropriate.
[0034]
In FIG. 7, in this comparative example, a first space 7 for pressure control is provided between the lower liquid contact portion 6 a of the shaft seal device 6 and the upper rear surface portion 4 a of the impeller 4. Thus, pressure water is injected from the external water supply source 26, so that a pressure drop at the central portion in the radial direction of the impeller back surface portion 4a can be prevented as in the second comparative example.
[0035]
However, in this case, an external water supply source 26 having a sufficient amount and pressure is required to keep the shaft seal device wetted part 6a at a positive pressure, which is not preferable because the peripheral equipment of the pump is increased in size.
[0036]
A part of the high-pressure water introduced into the first space 7 flows into the space between the impeller back surface portion 4a and the head cover 5, and flows in this space from the radial center side toward the outer peripheral side. As described in the second comparative example described above, this through flow toward the radially outer peripheral side has an effect of increasing the pressure in the radial center of the impeller back surface portion 4a. Therefore, the thrust force that presses the impeller 4 to the opposite side of the main shaft 3 is increased, which increases the pump shaft thrust, which is not preferable.
[0037]
In contrast, in one embodiment of the present invention, firstly, by communicating via the water injection tube 19 to the shaft seal device wetted portion 6a side first space 7-discharge-out-out side flow path 17 of discharge side High-pressure water from the flow path 17 can be constantly introduced into the first space 7. Therefore, the shaft seal facing the first space 7 of the shaft seal device 6 regardless of whether it is a low head operation or the magnitude of the numerical value of the pressure drop generated in the space between the impeller back portion 4 a and the head cover 5. Since the device wetted part 6a can always be maintained at a positive pressure with respect to the atmospheric pressure, it is possible to reliably prevent the sliding portion of the shaft seal device 6 from being dried and sacrificing the soundness as in the conventional structure. it can.
[0038]
In the above-described embodiment of the present invention, the second space 8 provided on the impeller 4 side of the first space 7, communicates through a drain pipe 20 to the second space 8 to the side passage 16 narrowing have intake. As a result, the high-pressure water from the first space 7 escapes from the second space 8 to the suction-side flow path 16 and flows into the space between the impeller back surface portion 4a and the head cover 5 toward the radial center. Can be generated. This through-flow toward the center in the radial direction has the effect of reducing the pressure at the center in the radial direction of the impeller back surface portion 4a as described above, and therefore increases the thrust force that presses the impeller 4 against the opposite side of the main shaft 3. And pump shaft thrust can be reduced.
[0039]
As described above, according to the present embodiment, the shaft seal device wetted portion 6a and the impeller back surface portion 4a are pressure-separated by the first space 7 on the high pressure side and the second space 8 on the low pressure side. Therefore, the malfunction resulting from the negative pressure of the sliding part of the shaft seal device 6 can be prevented, and the pump shaft thrust can be further reduced.
[0040]
【The invention's effect】
According to the present invention, even during the low head operation, problems due to the negative pressure of the sliding portion of the shaft seal device can be reliably prevented and the soundness can be maintained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an overall structure of an embodiment of a vertical axis movable blade spiral mixed flow pump of the present invention.
2 is a partially enlarged longitudinal sectional view of a portion A in FIG.
FIG. 3 is a partially enlarged longitudinal sectional view showing a structure in the vicinity of a shaft seal device of a vertical shaft movable blade spiral mixed flow pump according to a first comparative example of the present invention.
FIG. 4 is a longitudinal sectional view showing the structure of an experimental model of a flow along a disk rotating in a substantially cylindrical container.
FIG. 5 is a partially enlarged longitudinal sectional view showing the structure in the vicinity of a shaft seal device of a vertical shaft movable blade spiral mixed flow pump according to a second comparative example of the present invention.
6 is a cross-sectional view taken along a line AA in FIG.
FIG. 7 is a partially enlarged longitudinal sectional view showing a structure in the vicinity of a shaft seal device of a vertical shaft movable blade spiral mixed flow pump according to a third comparative example of the present invention.
[Explanation of symbols]
1 Vertical axis movable blade spiral mixed flow pump 3 Main shaft (rotary shaft)
4 Impeller 4a Impeller back surface portion 4b Impeller blade 4c Impeller hub 5 Head cover 6 Shaft seal device 6a Lower side wetted portion of shaft seal device (impeller side portion)
7 1st space (space for pressure control)
8 Second space (pressure control space)
16 Suction side passage (pump low pressure part)
17 Discharge side flow path (pump high pressure part)
19 Water injection pipe 20 Drain pipe

Claims (1)

回転軸と、この回転軸まわりのシールを行う軸封装置と、前記回転軸に固定され、翼角が可変となるように設けられた複数の羽根を備えた羽根車とを有する可動翼ポンプにおいて、
前記軸封装置の羽根車側部分と前記羽根車の背面部分との間に圧力制御用の複数の空間を設け、
前記複数の空間のうち前記軸封装置側の第1空間を、静止体側に設けた第1連通路を介し前記羽根車の吐き出し側流路に連通させるとともに、前記複数の空間のうち前記羽根車側の第2空間を、静止体側に設けた第2連通路を介し前記羽根車の吸い込み側流路に連通させることを特徴とする可動翼ポンプ。
In a movable blade pump having a rotating shaft, a shaft seal device that seals around the rotating shaft, and an impeller that is fixed to the rotating shaft and includes a plurality of blades provided so that the blade angle is variable ,
A plurality of pressure control spaces are provided between the impeller side portion of the shaft seal device and the rear portion of the impeller,
The first space of the plurality of spatial sac Chi before Kijikufu apparatus, together to communicate with the discharge side flow passage of the impeller through the first communication passage provided in the stationary side, wherein among the plurality of spaces A movable blade pump characterized in that a second space on an impeller side is communicated with a suction side flow path of the impeller through a second communication path provided on a stationary body side .
JP2001337630A 2001-11-02 2001-11-02 Movable blade pump Expired - Fee Related JP3979061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337630A JP3979061B2 (en) 2001-11-02 2001-11-02 Movable blade pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337630A JP3979061B2 (en) 2001-11-02 2001-11-02 Movable blade pump

Publications (2)

Publication Number Publication Date
JP2003139090A JP2003139090A (en) 2003-05-14
JP3979061B2 true JP3979061B2 (en) 2007-09-19

Family

ID=19152233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337630A Expired - Fee Related JP3979061B2 (en) 2001-11-02 2001-11-02 Movable blade pump

Country Status (1)

Country Link
JP (1) JP3979061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121479A (en) * 2010-01-08 2011-07-13 江苏尚宝罗泵业有限公司 Pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121479A (en) * 2010-01-08 2011-07-13 江苏尚宝罗泵业有限公司 Pump

Also Published As

Publication number Publication date
JP2003139090A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
RU2392499C2 (en) Centrifugal pump and its impeller
JP3872966B2 (en) Axial fluid machine
JP3825372B2 (en) Turbo compressor
SE456028B (en) CIRCULATIVE OR CYLINDRICAL PORT PART
US5061151A (en) Centrifugal pump system with liquid ring priming pump
CN111878452B (en) Impeller assembly for a multi-stage submersible pump
US2287397A (en) Double suction liquid pump
EP0631650A1 (en) LIQUID RING PUMP WITH RING DRUM.
KR101603882B1 (en) Double suction type centrifugal pump
TWM589241U (en) Regenerative type pump
JP3979061B2 (en) Movable blade pump
JP3742479B2 (en) Bladeless impeller for submersible pump
US2368528A (en) Pump
KR102432443B1 (en) Pump with leak-proof structure of bearing lubricant
CN201236839Y (en) Centrifugal pump
KR200260750Y1 (en) Simjung Submersible Motor Pump
CN217682310U (en) Cantilever type centrifugal pump for small flow and high lift
KR102386646B1 (en) Turbo compressor
JP2006152994A (en) Centrifugal compressor
CN114321000B (en) Asymmetric double-suction impeller and double-suction centrifugal pump
KR200229322Y1 (en) Centrifugal pump
JPH085358Y2 (en) Gas seal type motor pump device
CN220037055U (en) Submersible pump with double water outlet structure
KR200189331Y1 (en) Under water motor pump for deep well
JP2011007091A (en) Pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees